平面四杆机构的设计
机械原理 第三章 平面连杆机构及其设计
![机械原理 第三章 平面连杆机构及其设计](https://img.taocdn.com/s3/m/f3e6cde05ef7ba0d4a733b81.png)
2
二、连杆机构的特点 优点:
• 承受载荷大,便于润滑
• 制造方便,易获得较高的精度 • 两构件之间的接触靠几何封闭实现 • 实现多种运动规律和轨迹要求
y B a A Φ b β c ψ ψ0 C B φ A D M3
3
连杆曲线
M
M1
M2
连杆
φ0
d
D
x
缺点:
• 不易精确实现各种运动规律和轨迹要求;
27
55
20
40
70
80 (b)
例2:若要求该机构为曲 柄摇杆机构,问AB杆尺寸 应为多少?
解:1.设AB为最短杆
即 LAB+110≤60+70 2.设AB为最长杆 即 LAB+60≤110+70 3.设AB为中间杆 即 110+60≤LAB+70 100≤LAB LAB≤120 A
70
C
60
B
110
FB
D
36
2、最小传动角出现的位置
C b
F VC
B
c
A
d
D
当 为锐角时,传动角 = 当为钝角时,传动角 = 180º - 在三角形ABD中:BD² =a² +d² -2adcos 在三角形BCD中:BD² =b² +c² -2bccos (1) (2)
37
由(1)=(2)得:
b2 c 2 a 2 d 2 2ad cos cos 2bc
1)当 = 0º 时,即曲柄与机架重叠共线,cos =+1, 取最小值。
min
b c (d a ) arccos 2bc
第二章 平面连杆机构及其设计
![第二章 平面连杆机构及其设计](https://img.taocdn.com/s3/m/78a800707fd5360cba1adb0e.png)
搅拌机
抓片机构
输送机
10/49
§2—1 铰链四杆机构的基本型式和特性
2)摇杆为原动件,曲柄为从动件时: 摇杆的往复摆动 曲柄的连续转动。 3 2
如图所示的缝纫机踏板机构。
3 2 1 4 摇杆主动
4 1
缝纫机踏板机构
11/49
§2—1 铰链四杆机构的基本型式和特性
二、双曲柄机构
双曲柄机构:两个连架杆都是曲柄。 传动特点: 主动曲柄连续等速转动时,从动 曲柄一般作变速转动。
冲床机构
如图所示的旋转式水泵和如上图所示的冲床机构。
A
1 D C 3 A B 2 4 D
1 B
2 C 3
旋转式叶片泵
振动筛机构
12/49
§2—1 铰链四杆机构的基本型式和特性
三、双摇杆机构
两个连架杆都是摇杆,则称为双摇杆机构。 其运动特性是:两摇杆都作摆动,但两 摇杆的摆角大小不同。 应用实例: 图2-6所示的工件夹紧机构、图2-11的飞机起落架机 构 ;
优 点:
图c
图d
3/49
2、缺点:
1)低副中存在间隙,会引起运动误差,使效率降低;
2)动平衡较困难,所以一般不宜用于高速传动;
3)设计比较复杂,不易精确地实现复杂的运动规律。
应 用:
连杆机构广泛地应用在各种机械和仪器中。 如雷 达调整机构(图2-3)、缝纫机踏板机构(图2-5) 、 鹤式起重机、机车驱动轮联动机构(图2-10)、牛头刨 床、椭圆仪(图2-22) 、机器人等。
1、在满足杆长条件下,即Lmin+Lmax≤Li+Lj : 1)取Lmin为机架时,机架上有两个整转副,该机构为 双曲柄机构(2个曲柄)。 2)取Lmin为连架杆(即最短杆的邻边为机架)时,机 架上只有一个整转副,该机构为曲柄摇杆机构(1 个曲柄)。 3)取Lmin为连杆(即最短杆的对边为机架)时,机架 上没有整转副,该机构为双摇杆机构(无曲柄)。
平面四杆机构的设计
![平面四杆机构的设计](https://img.taocdn.com/s3/m/d3d29903905f804d2b160b4e767f5acfa1c7836d.png)
以A为圆心、 l1为半径作圆, 交C1A的延长线于
B1, 交C2A于B2, 即可得连杆的长度l2=B1C1=B2C2
以及机架的长度l4=AD。 机构AB1C1D即为该机构在
极限位置时的运动简图。
返回
机械设计基础
cos l2 cos l4 l3 cos
sin l2 sin l3 sin
机械设计基础
Machine Design Foundation
平面四杆机构的设计
该机构的四个杆组成封闭多边形。取各杆在坐标轴 x和y上的投影,可得以下关系式:
将cosφ和sinφ平移到等式右边,再把等式两边平
机械设计基础
Machine Design Foundation
平面四杆机构的设计
1.3 按给定的行程速度变化系数设计
在设计具有急回特性的平面四杆机构时, 通常 按照实际的工作需要, 先确定行程速度变化系数K的
数值, 并按式(6 - 2)计算出极位夹角θ, 然后利用
机构在极限位置时几何关系, 再结合其它有关的附加 条件进行四杆机构的设计, 从而求出机构中各个构件 的尺寸参数。
P
平面四杆机构的设计
NM
图6- 25 按K值设计曲柄摇杆机构
机械设计基础
Machine Design Foundation
平面四杆机构的设计
解 设计的实质就是确定曲柄与机架组成的固定
铰链中心A的位置, 并求出机构中其余三个构件的长 度l1、 l2和l4。
其设计步骤如下:
(1) 计算极位夹角θ。
根据给定的行程速度变化系数K, 由式(4 - 9)计
解 设计的实质就是确定连架杆与机架组成的固定
铰链中心A和D的位置, 并由此求出机构中其余三个构 件的长度l1、 l3和l4。
第8章第5讲平面四杆机构的设计——解析法
![第8章第5讲平面四杆机构的设计——解析法](https://img.taocdn.com/s3/m/f2b4f863905f804d2b160b4e767f5acfa1c78393.png)
第8章第5讲平面四杆机构的设计——解析法平面四杆机构是机械工程中常用的一种机构,它由4个连接杆组成,通过连接杆与铰链的连接方式,能够实现不同形式的运动。
平面四杆机构的设计可以采用解析法,该方法通过解析机构的运动学性质和机构参数,来确定机构的设计参数和结构尺寸。
在平面四杆机构的解析法设计中,首先需要确定机构的运动类型。
根据机构的运动要求和工作环境,可以选择不同的运动类型,如平行移动、旋转、复杂曲线轨迹等。
运动类型的选择将对机构的结构设计和参数确定产生重要影响。
接下来,需要确定机构的工作原理和结构特点。
根据机构的运动类型,可以选择不同的结构形式,如平行四杆机构、向心四杆机构、菱形四杆机构等。
不同的结构形式具有不同的运动学特性和工作原理,需要根据实际需求进行选择。
确定机构的杆件长度和角度。
在机构设计中,杆件的长度和角度是关键的设计参数。
杆件的长度决定了机构的尺寸和工作范围,而杆件的角度决定了机构的运动轨迹和运动特性。
通过分析机构的运动学方程和几何方程,可以确定机构的杆件长度和角度。
确定机构的铰链位置。
铰链的位置决定了杆件之间的连接方式和机构的运动特性。
通过分析机构的力学平衡条件和运动学方程,可以确定机构的铰链位置,使机构能够实现所需要的运动要求。
最后,进行机构的参数优化和结构优化。
根据机构的运动学性能和工作要求,可以对机构的结构参数进行优化,使机构的运动特性更加优秀。
同时,还需要对机构的结构进行优化,提高机构的强度和刚度,确保机构在工作过程中的可靠性和稳定性。
通过解析法进行平面四杆机构的设计,可以使机构的结构和性能更加合理和可靠。
这种设计方法具有简单易行、工程实用性强的特点,是一种常用的机构设计方法。
在实际的机械设计中,可以根据具体的需求和实际情况,采用解析法进行平面四杆机构的设计,以提高机构的性能和工作效果。
平面四杆机构ppt课件
![平面四杆机构ppt课件](https://img.taocdn.com/s3/m/02c7484bdf80d4d8d15abe23482fb4daa58d1db0.png)
contents
目录
• 平面四杆机构简介 • 平面四杆机构类型 • 平面四杆机构的设计与优化 • 平面四杆机构的特性分析 • 平面四杆机构的实例分析 • 平面四杆机构的未来发展与挑战
01 平面四杆机构简介
定义与特点
定义
平面四杆机构是一种由四个刚性 杆通过铰链连接形成的平面机构 。
3D打印技术
利用3D打印技术,实现复杂结构的设计和快速原型制造。
智能化与自动化
传感器和执行器的集成
01
在机构中集成传感器和执行器,实现实时监测和控制。
智能化控制算法
02
采用先进的控制算法,如模糊控制和神经网络控制,以提高机
构的动态性能和稳定性。
自动化系统集成
03
将机构与自动化系统集成,实现远程监控、故障诊断和预测性
详细描述
摄影升降装置中的平面四杆机构由支架、滑轨、连杆和摄像设备组成。通过电机驱动,滑轨带动连杆运动,使摄 像设备实现升降。平面四杆机构在摄影升降装置中保证了摄像设备的稳定性和精确性,为拍摄高质量的画面提供 了保障。
06 平面四杆机构的未来发展 与挑战
新材料的应用
高强度轻质材料
采用高强度轻质材料,如碳纤维复合材料和铝合 金,以提高机构的强度和减轻重量。
运动特性分析
运动特性
分析平面四杆机构的运动特性, 包括运动范围、运动速度和加速 度等,以及各杆件之间的相对运
动关系。
运动轨迹
研究平面四杆机构中各点的运动轨 迹,包括曲线的形状、变化规律和 影响因素。
运动学分析
通过建立平面四杆机构的运动学方 程,分析其运动规律,为机构的优 化设计提供理论依据。
受力特性分析
实例二:搅拌机
机械设计基础第二章平面连杆机构
![机械设计基础第二章平面连杆机构](https://img.taocdn.com/s3/m/5660a02e2f3f5727a5e9856a561252d380eb20e8.png)
(4)AC1=L2-L1, AC2=L2+L1→ L1=1/2(AC2-AC1)
→无数解
以L1为半径作圆,交B1,B2点 →曲柄两位置
M
N
在圆上任选一点A
C1M与C2N交于P点
作∠C1C2N=90-θ,
P
2.导杆机构: P.33
→取决于机构各杆的相对长度
A
D
B
B’
B”
C
C’
C”
三式相加 → ┌ l1≤l2 │ l1≤l3 └ l1≤l4
当杆1处于AB ”位置→ △AC ”D
→ l1+l2≤l3+l4 (2-3)
→┌(l2-l1) +l3 ≥l4 →┌l1+l4≤l2+l3 (2-1) └(l2-l1) +l4 ≥l3 └l1+l3≤l2+l4 (2-2)
图2-4
曲柄摇杆机构
φ1
φ2
ψ
(2-4)
(二)压力角和传动角 P.30
1.压力角α-
2.传动角γ
:BC是二力杆,驱动 力F 沿BC方向
作用在从动件上的驱动力F与该力作用点绝对速度VC之间所夹的锐角。
工作行程: 空回行程:
B2→B1 (φ 2) →摇杆C2→C1 (ψ) ∵ φ 1> φ 2 , 而ψ不变
B1→B2 (φ1) → 摇杆C1→C2 (ψ)
→ 工作行程时间>空回行程时间
曲柄(主)匀速转动(顺) 摇杆(从)变速往复摆动
图2-4
曲柄摇杆机构
φ1
φ2
ψ
极位:
缺点:
2.应用:
优点
1.手动冲床: ← 两个四杆机构组成 (双摇杆~+摇杆滑 块机构)
2.筛料机构: 六杆机构←两个四杆 机构组成(双曲柄~ +曲柄滑块~)
平面四杆机构的设计
![平面四杆机构的设计](https://img.taocdn.com/s3/m/0c3d7256aeaad1f347933fa3.png)
度的比值; .用缩放仪求出图谱中的连杆曲线和所要求的轨
迹之间相差的倍数,并由此确定所求四杆机构 各杆的真实尺寸; 4.根据连杆曲线上的小圆圈与铰链B、C的相对位 置,即可确定描绘轨迹之点在连杆上的位置。
§4.平面四杆机构的设计
一.连杆机构设计的基本问题 1.型综合---选型
2.尺度综合---决定各构件的尺寸 ①满足给定位置要求或运动规律要求 ②满足给定的轨迹要求
3.画出机构简图
方法:解析法,图解法,实验法。
二用图解法设计四杆机构 1.按连杆预定的位置设计四杆机构 注意:按给定连杆两个位置时,要满足一些 附加条件。如:机架的尺寸,传动角 检查:1)若采用电机等旋转原动机来驱动机构 要求其主动件为曲柄。应检验机构是 否有曲柄存在。 2)检查机构运动的连续性
3.按给定的行程速比系数设计四杆机构
注意:检查许用的传动角min≥〔〕
三。实验法
按照给定的运动轨迹设计四杆机构 1 .运输机构连杆曲线
2.运用连杆曲线图谱设计四杆机构
运用图谱设计实现已知轨迹的四杆机构
• 图3-26就是已出版的《四连杆机构分析图谱》 中的一张。
• 运用图谱设计实现已知轨迹的四杆机构的步骤: 1.从图谱中查出形状与要求实现的轨迹相似的连
3)传力条件的检验:满足min≥〔〕
运动的连续性:是指连杆机构在运动的过程中 能否连续实现给定的各个位置的问题。
B D
A
2. 按连架杆预定的对应位置设计四杆机构
反转法 (p.174)
设计时,先假设一个连架杆,将此连架杆各位置 的铰链与另一个固定铰链点相连,将所求的连架 杆反转相应的角位移求得相当连杆的各个点(B2′ 、B3′…);再按已知连杆位置的方法求解即可。
(完整版)图解法设计平面四杆机构
![(完整版)图解法设计平面四杆机构](https://img.taocdn.com/s3/m/6bb9044d0c22590103029d4d.png)
3.4 图解法设计平面四杆机构3.4.1按连杆位置设计四杆机构1.给定连杆的三个位置给定连杆的三个位置设计四杆机构时,往往是已知连杆B C的长度L B C和连杆的三个位置B1C1和B2C2和B3C3时,怎样设计四杆机构呐?图解过程。
::1::::2::2.给定连杆的两个位置给定连杆的两个位置B1C1和B2C2时与给定连杆的三个位置相似,设计四杆机构图解过程如下。
①选定长度比例尺绘出连杆的两个位置B1C1、B2C2。
②连接B1B2、C1C2,分别作线段B1B2和C1C2的垂直平分线B12和C12,分别在B12和C12上任意取A,D两点,A,D两点即是两个连架杆的固定铰链中心。
连接A B1、C1D、B1C1、A D,A B1C1D即为所求的四杆机构。
③测量A B1、C1D、A D计算l A B、L C D L A D的长度,由于A点可任意选取,所以有无穷解。
在实际设计中可根据其他辅助条件,例如限制最小传动角或者A、D的安装位置来确定铰链A、D的安装位置。
例设计一振实造型机的反转机构,要求反转台8位于位置Ⅰ(实线位置)时,在砂箱7内填砂造型振实,反转台8反转至位置Ⅱ(虚线线位置)时起模,已知连杆B C长0.5m和两个位置B1C1、B2C2.。
要求固定铰链中心A、D在同一水平线上并且A D=B C。
自己可以试着在纸上按比例作出图形,再求出各杆长度。
若想对答案请点击例题祥解3.4.2 按行程速度变化系数设计四杆机构1.设计曲柄摇杆机构按行程速度变化系数K设计曲柄摇杆机构往往是已知曲柄机构摇杆L3的长度及摇杆摆角ψ和速度变化系数K。
怎样用作图法设计曲柄摇杆机构?2.设计曲柄摆动导杆机构已知机架长度l4和速度变化系数K,设计曲柄导杆机构。
①求出极位夹角②根据导杆摆角ψ等于曲柄极位夹角θ,任选一点C后可找出导杆两极限C m、C n。
③作∠M C N的角评分线,取C A=,得到A点,过A点作C m和C n的垂线B1和B2两点,A B1(或A B2)即为曲柄。
按行程速比系数k设计平面四杆机构的几个问题
![按行程速比系数k设计平面四杆机构的几个问题](https://img.taocdn.com/s3/m/c7548b4c53ea551810a6f524ccbff121dd36c5dc.png)
汇报人: 日期:
目 录
• 概述 • 机构设计问题 • 设计方法 • 案例分析 • 总结与展望
01
概述
行程速比系数k的定义
• 行程速比系数k是平面四杆机构的一个重要参数,它定义 为机构两极限位置对应的极位夹角与从动件摆角之比。
k值的意义及选取原则
• k值的意义在于描述机构的急回特性。在机械设计中,选取适当 的k值可以使得机构在运动过程中具有更好的工作性能。通常, 根据实际应用需求来确定k值的选取原则,例如根据所需的最大 回程速度与工作行程速度之比来确定k值。
运动性能分析问题
要点一
总结词
运动性能分析是平面四杆机构设计的核心问题之一。
要点二
详细描述
平面四杆机构的运动性能包括机构的运动学和动力学性能 ,如位移、速度、加速度、力等运动参数。在设计平面四 杆机构时,需要考虑机构的运动性能,包括实现行程速比 系数k的要求,以及机构的平稳性、精度和可靠性等方面。 因此,需要运用机构运动学和动力学理论和方法,对机构 进行详细的分析和计算,以确保其满足设计要求。
存在问题与展望
虽然按行程速比系数k设计平面四杆机构的方法已经得 到广泛应用,但是仍然存在一些问题需要进一步研究 和探讨。例如,对于一些特殊类型的平面四杆机构, 现有的设计方法可能无法得到最优的设计方案;同时 ,在实际应用中,平面四杆机构的运动性能可能会受 到多种因素的影响,如摩擦、重力、惯性力等。因此 ,未来需要进一步深入研究不同类型平面四杆机构的 运动性能和优化设计方法,提高机构的性能和可靠性 。
感谢观看
机构运动特点及性能指标
平面四杆机构的运动特点主要表现在其 运动规律和运动性能上。机构的运动性 能指标主要包括
第八章四杆机构 117页
![第八章四杆机构 117页](https://img.taocdn.com/s3/m/1c92bf7aa8114431b90dd8fb.png)
实现预定轨迹的例题
鹤式起重机
搅拌机
连杆
1.平面四杆机构中,是否存在死点取决于
是否与
连杆共线。
A 、主动件 B、 从动件 C、 机架 D、 摇杆
2、在设计铰链四杆机构时,应使最小传动角 。 A、 尽可能小一些 B 、为0 C、 尽可能大一些 D、 为90
3.一对心曲柄滑块机构中,如果将曲柄改为机架,则将演 化为 机构。
4.下面简图所示的铰链四杆机构,图 是双曲柄机构。 A)a; B)b; C)c; D)d。
(a)
(b)
(c)
(d)
二、平面连杆机构设计
图解法 解析法 实验法
(一)图解法
简单、直观、 易理解知识点、误差大。
1.给定连杆的位置要求设计四杆机构
(1)给定连杆的两个位置设计四杆机构
已知连杆长度,连杆的2个(或3,4。。 个)工作位置B1C1与B2C2。设计此四杆机构。
一 、四杆机构设计的基本问题
1)实现给定位置的设计(导引机构设计) 2)实现预定运动规律的设计(函数机构设计) 3)实现预定轨迹的设计(轨迹机构设计)
1.实现给定位置的设计
例如:满足预定的连杆位置要求
要求所设计的机构 能引导连杆顺序通 过一系列给定的位 置。即要求连杆能 依次占据一系列给 定的位置。
(3)极为夹角=0,则K=1,无急回 运动;
(4)角越大,则K值越大,说明急回 运动的性质也越显著。
曲柄滑块机构中,原动件AB以 1 等速转动
B
a1
2
C2
b
C3 C1
1
A B1 H
4
B2
偏置曲柄滑块机构
H (a b )2 e2(b a )2 e2
四杆机构的基本特性和设计
![四杆机构的基本特性和设计](https://img.taocdn.com/s3/m/6f24f64d77c66137ee06eff9aef8941ea66e4b48.png)
E
θ
φ 设计:潘存云
C1 90°-θ
②任取一点D,作等腰三角形
腰长为CD,夹角为φ;
A
θD
③作C2P⊥C1C2,作C1P使
∠C2C1P=90°-θ,交于P;
P
④作△P C1C2的外接圆,则A点必在此圆上。
⑤选定A,设曲柄为l1 ,连杆为l2 ,则:
A C1= l1+l2 ,A C2=l2- l1 => l1 =( A C1-A C2)/ 2
⑥以A为圆心,A C2为半径作弧交于E,得: l1 =EC1/ 2 l2 = A C1-EC1/ 2
2) 曲柄滑块机构 已知K,滑块行程H,偏
H C1 90°-θ C2
距e,设计此机构 。
A
90°-θ
e
E 设计:潘存云
①计算:
2θ
θ=180°(K-1)/(K+1);
o
②作C1 C2 =H
③作射线C1O 使∠C2C1O=90°-θ, 作射线C2O使∠C1C2 O=90°-θ。
A
B1
C C1 DD
B2
当曲柄以ω逆时针转过180°+θ时,摇杆从C1D位置 摆到C2D。 所花时间为t1 , 平均速度为V1,那么有:
t1 (180 ) / V1 C1C2 t1 C1C2 /(180 )
当曲柄以ω继续转过180°-θ时,摇杆从C2D,置摆到
C1D,所花时间为t2 ,平均速度为V2 ,那么有:
2023最 新 整 理 收 集 do
something
§6.3
平面机构的基本特性
1.曲柄存在条件Βιβλιοθήκη 2.急回运动特性 3.压力角和传动角 4.死点位置
四杆机构
![四杆机构](https://img.taocdn.com/s3/m/1e7a66c1c1c708a1284a4437.png)
急回特性 机构工作件返回行程速度大于工作行程速度的特性。 行程速比系数K 为了表示工作件往复运动时的急回程度,用V2和V1的比值K来描述。
急回性能分析
V2 c2c1 / t 2 t1 1 1800 k V1 c1c2 / t1 t 2 2 1800
演化:曲柄摇杆机构
回转副D→移动副 曲柄滑块机构
§2.2 平面四杆机构的基本形式及其演化
类型:
曲柄滑块机构(偏距e) 对心曲柄滑块机构, e=0 滑块运动线与曲柄回转中心共线 偏置曲柄滑块机构,e≠0 滑块运动线与曲柄回转中心不共线 特点:曲柄等速回转,滑块具有急 回特性。
应用:活塞式内燃机,空气压缩
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
缝纫机脚踏板机构
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
跑步机
§2.2 平面四杆机构的基本形式及其演化
曲柄摇杆机构应用实例
自动送料机构
§2.2 平面四杆机构的基本形式及其演化
2.双曲柄机构——两连杆架均为曲柄的四杆机构 连杆架 曲柄—原动件,等速转动 曲柄—从动件,变速转动
l1+l4≤ l2+ l3 将式2-1、2-2、2-3两两相加,可得 l1≤l2 , l1≤l3 , l1≤l4 AB杆(曲柄)为最短杆 最短杆与任意一杆长度之和≤其它两杆长度之和
§2.3 平面四杆机构的几个基本概念
铰链四杆机构有一个曲柄的条件: (1) 最短杆与最长杆之和小于或等于其余两杆长度之和;
Fn
1 1
A
B
2
4
3 D
g C a
F
第二章-曲柄摇杆机构、四杆机构设计-PPT
![第二章-曲柄摇杆机构、四杆机构设计-PPT](https://img.taocdn.com/s3/m/80a3f357effdc8d376eeaeaad1f34693daef10b9.png)
18
另外,具有整转副的铰链四杆机构是否存 在曲柄,还应根据选择何杆为机架来判断。 (1) 取最短杆为机架时,机架上有两个整转副, 故得双曲柄机构。
19
(2) 取最短杆的邻边为机架时,机架上只有一 个整转副,故得曲柄摇杆机构。
共线。此时杆1与杆2的夹角β的变化范围为也是 0o ~360 0
杆3为摇杆,它与相邻两杆的夹角ψ 、γ 的 变化范围小于360°。
显然,A、B为整转副, C、D不是整转副。
为了实现曲柄 1整周回转,AB杆 必须顺利通过与连 杆共线的两个位置 AB′和AB″。
15
当杆1处于AB′位置时,形成三角形 ACD 。
摇杆自C2D摆回至C1D是其空回行程,这时 C点的平均速度是v2=C1C2 /t2,显然v1 < v2 , 它表明摇杆具有急 回运动的特性。牛 头刨床、往复式输 送机等机械就利用 这种急回特性来缩 短非生产时间,提 高生产率。
4
急回运动特性可用行程速度变化系数(也称 行程速比系数)K 表示。
v2
பைடு நூலகம்
C1C2/t2
根据三角形任意两边之和必大于(极限情况下等于)
第三边的定理可得
l4≤(l2 -l1)+l3
l3≤(l2 -l1)+l4
即 l1+l4≤l2+l3 (2-4) l1+l3≤l2+l4 (2-5)
当杆1处于AB″位置
时,形成三角形ACD 。
可得
l1 + l2 ≤l4 + l3
(2-6)
16
将式(2-4)、(2-5)、(2-6)两两相加
l1+l4≤l2+l3
(2-4)
5.5 平面四杆机构的解析法设计
![5.5 平面四杆机构的解析法设计](https://img.taocdn.com/s3/m/648c32060740be1e650e9a94.png)
5.5平面四杆机构的解析法设计5.5.1按许用传动角设计曲柄摇杆机构设已知从动摇杆的摆角ψ、行程速比系数K,机架的杆长d=1,许用传动角[γ],设曲柄的杆长a为参变量,用解析法[23]确定连杆的杆长b以及摇杆的杆长c。
由行程速比系数K求出极位夹角θ,即θ=180(K-1)/(K+1)。
在图5.20中,由△B1B0B2得B1B2=2c sin(0.5ψ),对△A0B1B2应用余弦定理得由此得a、b、c 与θ的函数关系对△A3B3B0应用余弦定理得将式(5.13)代入式(5.14),得以 a 为设计变量的设计方程为设已知从动摇杆的摆角ψ、若θ=0,K=1,机架的杆长d=1,许用传动角[γ]。
用解析法确定曲柄的杆长a、连杆的杆长b以及摇杆的杆长c。
在图5.21中,K=1,摇杆在B3B0、B4B0位置出现最小传动角且两个最小传动角相等,对△A1B1B0、△A1B2B0应用余弦定理化简上式得机构杆长之间的约束方程为对△A4B4B0、△A3B3B0应用余弦定理得化简上式得令式(5.13)中的θ=0,得杆长c的函数式为联立式(5.20)~(5.23)得曲柄的杆长a、连杆的杆长 b 以及摇杆的杆长 c 的设计方程为【点击链接曲柄摇杆机构的设计动画】5.5.2刚体导引机构的解析法设计刚体导引机构是指它的连杆能够通过一系列有限分离位置的一种机构。
其解析法设计就是建立机构的结构参数与运动参数之间的关系式,采用适宜的数学方法,按一定的精度要求,求出机构的未知参数。
1)平面位移矩阵设一连杆在平面坐标系xOy 中占据n 个位置,连杆的第j(j=1,2,…,n)个位置用向量P j Q j表示。
如图5.22 所示,连杆由位置P1Q1运动到P j Q j可以看成由P1Q1平移到P j Q'j再绕Pj 点转动θ1j的运动之和。
设[Rθ1j]表示连杆旋转θ1j后,其上的向量在旋转前后的关系矩阵,则( Qj -Pj ) = [Rθ1j]( Q'j-P j ) 由于Qj -Pj = Q1 -P1为此( Qj -Pj ) = [Rθ1j]( Q1 -P1 )式中[D1j]为[D1j]称为平面位置矩阵。
平面四杆机构设计介绍
![平面四杆机构设计介绍](https://img.taocdn.com/s3/m/cef2bbc79ec3d5bbfd0a74fd.png)
第三章 平面四杆机构的设计§3—1 平面连杆机构的特点、类型及应用1.1 概 述连杆机构:各构件之间用低副和刚性构件连接起来实行运动传递的机构。
如图2-1 分为平面连杆机构和空间连杆机构 。
连杆机构由连架杆,连杆和机架组成。
平面连杆机构的特点:1.2平面连杆机构的基本类型和结构特点:由于连杆机构的构件一般呈杆状,也以其构件的数量称为多杆机构。
平面杆机构是最基本最常用的连杆机构。
1.2.1 平面连杆机构的基本类型:1) 曲柄摇杆机构 2)双曲柄机构 3)双摇杆机构 1.2.2 平面连杆机构演化 1) 转动副转化为移动副 2)取不同的构件为机架 3)变换构件的形态 4)扩大转动副的尺寸§3—2 平面连杆机构的运动特性2.1平面连杆机构的运动特性:(1Grashoff 定理(简称曲柄存在条件):如图示a + d ≤b + cb ≤ d – a +c c ≤d – a + b a ≤ c a + b ≤ c + da ≤b a +c ≤ b +d a ≤ d a + d ≤ b + c在全铰链四杆机构中,如果最短杆与最长杆杆长之和小于或等于其余两杆杆长之和,则必然存在作整周转动的构件。
若不满足上述条件,即最短杆与最长杆杆长之和大于其余两杆杆长之和,则不存在作整周转动的构件。
(2)四杆机构从动件的急回特性:如图示四杆机构从动件的回程所用时间小于工作行程所用的时间,称为该机构急回特性。
急回特性用行程速比系数K 表示。
212112ϕϕ===t t v v K极位夹角θ—— 从动摇杆位于两极限位置时,原动件两位置所夹锐角。
θ越大,K 越大,急回特性越明显。
§3—3 平面连杆机构的传力特性3.1. 传动角与压力角:如图示在机构处于某一定位置时,从动件上作用力与作用点绝对速度方向所夹的锐角 α 称为压力角。
压力角的余角 γ( γ = 90°— α) 作为机构的传力特性参数,故称为传动角。
平面四杆机构ppt课件
![平面四杆机构ppt课件](https://img.taocdn.com/s3/m/ceba67b1951ea76e58fafab069dc5022aaea46dd.png)
摄影三脚架中的平面四杆机 构通常由三根支撑杆和若干 个连接杆组成。
三根支撑杆通常具有较好的 弹性和韧性,可以适应不同 地形和环境,提供稳定的支 撑效果。连接杆则将三根支 撑杆连接在一起,形成稳定 的三角形结构。
挖掘机机构
挖掘机是一种广泛应用于建筑、道路 、矿山等领域的工程机械设备。它的 主要功能是通过挖掘斗的升降、旋转 和移动来实现挖掘作业。
作用
03
连杆在机构中起到传递运动和动力的作用,还可以改变运动的
方向。
转动副
定义
转动副是平面四杆机构的基本组成之一,是一种 连接两个构件的相对转动的运动副。
特点
转动副由两个构件组成,一个构件作为固定轴, 另一个构件围绕固定轴旋转。
作用
转动副在机构中起到传递运动和动力的作用,同 时也可以改变运动的方向。
双摇杆机构
由两个摇杆和两个连架杆组成的平面四杆机构。双摇杆机构中,两个摇 杆长度相等且平行,连架杆相对摇杆做往复摆动,可以实现将摇杆的往 复摆动转换为连架杆的往复摆动。
平面四杆机构的应用
实例1
缝纫机踏板机构。当脚踏板低速转动时,通过一个曲柄摇杆 机构将脚踏板的往复摆动转换为缝针的上下摆动;当脚踏板 快速转动时,通过一个双曲柄机构将脚踏板的往复摆动转换 为缝针的上下摆动。
利用计算机辅助设计软件进行 数值仿真,通过对机构参数的
调整,实现最优设计。
基于实验设计的优化
通过实验测试机构的性能,利 用实验设计方法对机构进行优 化。
基于人工智能的优化
利用人工智能算法,如神经网 络、遗传算法等,对机构的参 数进行优化。
多学科优化方法
综合考虑机构的多学科因素, 如结构、运动、动力学等,实
转向机构是汽车底盘的一个重要组成部分,它的 主要功能是控制汽车的行驶方向,使车辆能够按 照驾驶员的意愿进行转弯或者改变行驶方向。
平面四杆机构的类型和应用
![平面四杆机构的类型和应用](https://img.taocdn.com/s3/m/5d86fd5c1ed9ad51f01df2ee.png)
θ 180°+θ
180°-θ
思考题: 对心曲柄滑块机构的急回特性如何? 导杆机构的急回特性 应用:空行程节省运动时间,如牛头刨、往复式输送机等。
对于需要有急回运动的机构,常常是根据需要的行程速比系数K, 先求出θ ,然后在设计各构件的尺寸。
3.四杆机构的压力角与传动角
切向分力: Pt= Pcosα = Psinγ
AA
DD
当∠BCD最小或最大时, 都有可能出现γmin
此位置一定是:
主动件与机架共线两处之一。
由余弦定律有: ∠B1C1D=arccos[b2+c2-(d-a)2]/2bc
若∠B1C1D≤90°,则 γ1=∠B1C1D ∠B2C2D=arccos[b2+c2-(d+a)2]/2bc
若∠B2C2D>90°, 则 γ2=180°-∠B2C2D
曲柄滑块机构
偏心曲柄滑块机构
s
φ
s=l sin φ
双滑块机构
正弦机构
(2)改变运动副的尺寸
(3)选不同的构件为机架
偏心轮机构
B
1
2 3
A
4C
曲柄滑块机构
B
1
2 3
A
4C
摆动导杆机构
导杆机构 转动导杆机构
应用实例
6E
C
3
2
B 41
A 5
D
小型刨床
D
3 B2 C
C2
4 C1
1
A
牛头刨床
(3)选不同的构件为机架
解得相对长度: P0 =1.533, P1=-1.0628, P2=0.7805
形状简单、易加工。
②连杆曲线丰富。可满足不同要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
v v
o a o
+∞
δ
-∞
正弦改进等速
9-3
四、选择运ห้องสมุดไป่ตู้规徇
选择原则: 1、机器的工作过程只要求凸轮转过一角度δ 0时,推 杆完成一行程h(直劢推杆)或φ(摆劢推杆),对运 劢规徇并无严格要求。则可选择直线或圆弧等易 加工曲线作为凸轮的轮廓曲线。如夹紧凸轮。
δ0
φ
工件
ω
2、机器的工作过程对推杆运劢有要求,则应严格按工 作要求的运劢规徇来设计凸轮廓线。如函架进给凸 轮。
D
δ 02
o
ω
B
δ 0 δ 01 δ’0 02 δ δ
t
数学表达式:多项式、三角 凼数。
C
一、多项式运劢规徇(polynomial motion) 一般表达式(standard polynomial equation): s=C0+ C1δ + C2δ 2+…+Cnδ n (1)
求一阶导数得速度方程(differentiating):
圆凸轮平底等宽直劢从 劢件
等宽摆动从动件
O
(c)等径凸轮
凸轮理论廓线在径 向上两点之间的距 离D处处相等
(d)共轭 凸轮(主回 双滚子摆动从动件双凸轮 凸轮) 两个固结在 一起的凸轮 控制同一推 杆,从而保 持始终接触
(d) oscillating double-roller and double-lobed cam
δ
在起始和终止处理论上a为有限值,产生柔性冲击。
2.正弦加速度(摆线)(sine acceleration or cycloid)运劢规徇
推程: s=h[δ/δ 0-sin(2πδ/δ 0)/2π] v=hω[1-cos(2πδ/δ 0)]/δ 0
半径为R的圆沿纵坐标作纯 滚动时,圆周上任一点的轨 9-10 迹为一摆线
s h
1 2 3 4 5 6
δ
a=2πhω 2 sin(2πδ/δ 0)/δ 20
回程: 9-10 s=h[1-δ/δ ’0+sin(2πδ/δ ’0)/2π]
δ0
v
vmax=2hω/δ 0
δ
a
amax=6.28hω 2/δ 02
v=hω[cos(2πδ/δ’0)-1]/δ’0 a=-2πhω 2 sin(2πδ/δ’0)/δ’20
(c) 平底推杆(Fig.c, f )
受力好、润滑好,用于 高速传劢(high-speed)。
(c) (c) (f) (f)
(4)按保持接触方式凾
要使推杆根据凸轮的轮廓运劢,就要确保凸 轮和推杆在任何速度,任何位置下都保持接 触.
(a) 力封闭凸轮机构 利用弹簧、重力来使推杆保 持接触。
(b) 几何封闭凸轮机构
4 3
6 s 5
h
推程: 9-9a s=h[1-cos(πδ/δ 0)]/2 v =πhωsin(πδ/δ 0)δ/2δ 0 a =π2hω 2 cos(πδ/δ 0)/2δ 20
2
1 3 4 5 6 δ 0 v V =1.57hω/2 max δ0 δ 1 2
δ
a 回程: 9-9b s=h[1+cos(πδ/δ ’0)]/2 v=-πhωsin(πδ/δ’0)δ/2δ’0 a=-π2hω 2 cos(πδ/δ’0)/2δ’20
推程等减速上升段边界条件: 中间点:δ =δ 0/2,s=h/2 终止点:δ =δ 0,s=h,v=0
s
h/2
求得:C0=-h, C1=4h/δ0 C2=-2h/δ20 等减速段推程运动方程为:9-5b
h/2
3 δ v 6δ
0 0
s =h-2h(δ0 0 v =-4hω(δ0-δ)/δ20 a =-4hω2 /δ20
7)摆劢从劢件圆柱凸轮机构
§9-2 推杆的运劢规徇
凸轮机构设计的基本任务: 1)根据工作要求选定凸轮机构的形式;
2)推杆运劢规徇; 3)合理确定结构尺寸; 4)设计轮廓曲线。
一、推杆的常用运劢规徇 名词术语: B’ 基圆(base circle or prime circle) A 基圆半径 (the radius rp D δ20 r0 of the prime circle ) δ 0 推程(rise) δ 推程运劢角(the cam angle ’ δ0
1. 一 次 多 项 式 ( 等 速 运 劢 (constant velocity motion curve)运劢规徇)
s = C0+ C1δ v = C1ω a =0
在推程起始点:δ=0, s=0 在推程终止点:δ =δ 0 ,s=h 代入得:C0=0, C1=h/δ 0
s h v
δ0 δ
推程运劢方程: 同理得回程运劢方程: a s =hδ /δ 0 s=h(1-δ /δ 0 ′) +∞ v=-hω /δ 0′ v = hω /δ 0 a=0 a=0
移线图。
推杆在推程或回程时,其位移S、速度V和加速度a 随
时间t 的变化规徇叫推杆运劢规徇:
S=S(t),V=V(t),a=a(t)
又因为凸轮一般为等速运 劢,所以推杆的运劢规徇 更常表示为推杆的运劢参 数随凸轮转角变化的规徇 。
s
A h r0
δ0 δ’0 δ 01
B’
位移曲线
S=S(),V=V(),a=a()
e
(3) 按照推杆的形状凾 (a) 尖顶推杆 (Fig. a, d) 构造简单(simple)、易磨损(rapid wear)、用 于仪表机构(used in apparatus); (b) 滚子推杆(Fig.b, e ) ( a ) (d) (a)
磨损小,传力大,应 用广;
(d)
(b) (b)
(e) (e)
缺点: 凸轮的精确加工费用徆高 丌能传递大载荷.(点、线接触易磨损)
应用: 通常被用在控制机器或轻载的机械 传劢中。
9.1.2 凸轮机构的凾类 (1) 按凸轮形状凾 (a)盘形凸轮 具有变化向径的凸轮。The most popular type of cam.
ω
ω
(b) 移劢凸轮
V
移劢凸轮前进和后退过程中产 生徆大的惯性力,所以徆少用到。
s = C0+ C1δ + C2δ 2 推程等加速上升段边界条件: v = C1ω + 2C2ωδ 起始点:δ=0, s=0, v=0 a = 2 C2ω 2 中间点:δ=δ /2,s=h/2
0
求得:C0=0, C1=0,C2=2h/δ 20
加速段推程运劢方程为:(9-5a)
s =2hδ 2 /δ 20 v =4hωδ /δ 20 a =4hω 2 /δ 20
for rise)
0 1
s
h
o δ0
δ0
1
δ ’
0
δ0
2
t
δ
ω
B
远休止角(cam angle for outer dwell)C 回程(return) 可以看出,凸轮等速转 回程运劢角(cam angle for return) 劢时,从劢件按一定规徇 近休止角(cam angle for inner dwell) 运劢,从劢件位移不凸轮 转角之间的关系可以用图 行程(lift)一个循环 线来表示,称为从劢件位 偏心圆 (offset circle)
重写等加速段推程运动方程为:
–δ)2/δ2
2hω /δ
δ
a
4hω 2/δ
2
0
s v a
=2hδ2
/δ20 =4hωδ/δ20 =4hω2 /δ20
δ 柔性冲击 (soft impulse)
3.五次多项式运劢规徇
一般表达式: s =C0+ C1δ + C2δ 2+ C3δ 3+ C4δ 4+C5δ 5 v =ds/dt = C1ω + 2C2ωδ + 3C3ωδ 2+ 4C4ωδ 3+ 5C5ωδ 4 a =dv/dt = 2C2ω 2+ 6C3ω 2δ +12C4ω 2δ 2+20C5ω 2δ 3 边界条件: s
δ
δ
-∞
刚性冲击(rigid impulse)
运劢开始和终止时,速度发生突 变,加速度理论上为∞,有徆大的 冲击,引起冲击称为刚性冲击,产 生冲击、振劢、噪音。
s h v
δ0
δ
δ
因此,只能在低速、轻载的条件 下使用。
a
+∞ -∞
δ
刚性冲击(rigid impulse)
2.二次多项式(等加等减速(constant acceleration and deceleration)运劢规徇) 位移曲线为一抛物线。等加速、等减速各占一半。
ω
δ0
h
3、对高速凸轮,即使对推杆的运劢规徇无要求,也要 有较好的劢力特性,除了避免出现刚性或柔性冲击外, 还应当考虑Vmax和 amax。p172
没有一种对所有实际应用都最好的运劢规徇。
①对重载凸轮,则适合选用Vmax较小的运劢规徇。
→劢量mv↑, 冲击力↑ ( F=mv/t ) p172 9-9,10 。 ②对高速凸轮,则考虑选用amax 愈小愈好。 选择 amax↑ →惯性力F=-ma↑, 对强度和耐磨性要求↑。 Vmax↑
起始点:δ =0,s=0, v=0, a=0 终止点:δ =δ 0,s=h, v=0,a=0
C4=15h/δ 04 , C5=6h/δ 05 v a
δ0
h
δ
求得:C0=C1=C2=0, C3=10h/δ 03 , 位移方程(9-7): s=10h(δ/δ 0)3-15h (δ/δ 0)4+6h (δ/δ 0)5
§9-1 凸轮机构的应用和凾类 §9-2 推杆的运劢规徇 §9-3 凸轮轮廓曲线的设计 §9-4 凸轮机构基本尺寸的确定