2019年高考数学复习(文科)题:天天练 31含解析

合集下载

2019年高考数学一轮复习(文科)训练题:天天练 24 Word版含解析

2019年高考数学一轮复习(文科)训练题:天天练 24 Word版含解析

天天练24 不等式的性质及一元二次不等式一、选择题1.若a >b >0,c <d <0,则一定有( ) A .ac >bd B .ac <bd C .ad <bc D .ad >bc 答案:B解析:根据c <d <0,有-c >-d >0,由于a >b >0,故-ac >-bd ,ac <bd ,故选B.2.若a <b ,d <c ,并且(c -a )(c -b )<0,(d -a )(d -b )>0,则a ,b ,c ,d 的大小关系为( )A .d <a <c <bB .a <d <c <bC .a <d <b <cD .d <c <a <b 答案:A解析:因为a <b ,(c -a )(c -b )<0,所以a <c <b ,因为(d -a )(d -b )>0,所以d <a <b 或a <b <d ,又d <c ,所以d <a <b .综上,d <a <c <b .3.(2018·河南信阳月考)对于任意实数a ,b ,c ,d ,以下四个命题:①若ac 2>bc 2,则a >b ;②若a >b ,c >d ,则a +c >b +d ;③若a >b ,c >d ,则ac >bd ;④若a >b ,则1a >1b .其中正确的有( )A .1个B .2个C .3个D .4个 答案:B解析:因为ac 2>bc 2,可见c 2≠0,所以c 2>0,所以a >b ,故①正确.因为a >b ,c >d ,所以根据不等式的可加性得到a +c >b +d ,故②正确.对于③和④,用特殊值法:若a =2,b =1,c =-1,d =-2,则ac =bd ,故③错误;若a =2,b =0,则1b 无意义,故④错误.综上,正确的只有①②,故选B.4.(2018·辽宁阜新实验中学月考)已知命题p :x 2+2x -3>0,命题q :x >a ,若綈q 的一个充分不必要条件是綈p ,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,1]C .[-1,+∞)D .(-∞,-3]答案:A解析:将x 2+2x -3>0化为(x -1)(x +3)>0,所以命题p :x >1或x <-3.因为綈q 的一个充分不必要条件是綈p ,所以p 的一个充分不必要条件是q ,所以(a ,+∞)是(-∞,-3)∪(1,+∞)的真子集,所以a ≥1.故选A.5.(2018·南昌一模)已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则( )A .T >0B .T <0C .T =0D .T ≥0 答案:B解析:通解 由a +b +c =0,abc >0,知三个数中一正两负,不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc =ab -c 2abc,因为ab <0,-c 2<0,abc >0,所以T <0,故选B. 优解 取特殊值a =2,b =c =-1,则T =-32<0,排除A ,C ,D ,可知选B.6.不等式x2x -1>1的解集为( )A.⎝ ⎛⎭⎪⎫12,1 B .(-∞,1) C.⎝ ⎛⎭⎪⎫-∞,12∪(1,+∞) D.⎝ ⎛⎭⎪⎫12,2 答案:A解析:原不等式等价于x2x -1-1>0,即x -(2x -1)2x -1>0,整理得x -12x -1<0,不等式等价于(2x -1)(x -1)<0,解得12<x <1.故选A. 7.(2018·河南洛阳诊断)若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫-235,+∞B.⎣⎢⎡⎦⎥⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎥⎤-∞,-235 答案:B解析:由Δ=a 2+8>0知方程恒有两个不等实根,又因为x 1x 2=-2<0,所以方程必有一正根,一负根,对应二次函数图象的示意图如图.所以不等式在区间[1,5]上有解的充要条件是⎩⎪⎨⎪⎧f (5)≥0,f (1)≤0,解得-235≤a ≤1,故选B.8.不等式x 2-2x +m >0对一切实数x 恒成立的必要不充分条件是( )A .m >2B .0<m <1C .m >0D .m >1 答案:C解析:当不等式x 2-2x +m >0对一切实数x 恒成立时,对于方程x 2-2x +m =0,Δ=4-4m <0,解得m >1,所以m >1是不等式x 2-2x +m >0对一切实数x 恒成立的充要条件;m >2是不等式x 2-2x +m >0对一切实数x 恒成立的充分不必要条件;0<m <1是不等式x 2-2x +m >0对一切实数x 恒成立的既不充分也不必要条件;m >0是不等式x 2-2x +m >0对一切实数x 恒成立的必要不充分条件.故选C.二、填空题9.已知函数f (x )=ax +b,0<f (1)<2,-1<f (-1)<1,则2a -b 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-32,52解析:设2a -b =mf (1)+nf (-1)=(m -n )·a +(m +n )b ,则⎩⎪⎨⎪⎧m -n =2,m +n =-1,解得m =12,n =-32,∴2a -b =12f (1)-32f (-1),∵0<f (1)<2,-1<f (-1)<1,∴0<12f (1)<1,-32<-32f (-1)<32,则-32<2a-b <52.10.(2018·江苏无锡一中月考)若关于x 的方程(m -1)·x 2+(m -2)x -1=0的两个不等实根的倒数的平方和不大于2,则m 的取值范围为________.答案:{m |0<m <1或1<m ≤2}解析:根据题意知方程是有两个根的一元二次方程,所以m ≠1且Δ>0,即Δ=(m -2)2-4(m -1)·(-1)>0,得m 2>0,所以m ≠1且m ≠0.由根与系数的关系得⎩⎨⎧x 1+x 2=m -21-m,x 1·x 2=11-m,因为1x 1+1x 2=x 1+x 2x 1x 2=m -2,所以1x 21+1x 22=⎝ ⎛⎭⎪⎫1x 1+1x 22-2x 1x 2=(m -2)2+2(m -1)≤2,所以m 2-2m ≤0,所以0≤m ≤2.所以m 的取值范围是{m |0<m <1或1<m ≤2}.11.(2018·内蒙古赤峰调研)在a >0,b >0的情况下,下面四个不等式:①2ab a +b ≤a +b 2;②ab ≤a +b 2;③a +b 2≤ a 2+b 22;④b 2a +a 2b ≥a +b .其中正确不等式的序号是________. 答案:①②③④解析:2ab a +b -a +b 2=4ab -(a +b )22(a +b )=-(a -b )22(a +b )≤0,所以2aba +b≤a +b2,故①正确;由基本不等式知②正确;⎝⎛⎭⎪⎫a +b 22-a 2+b 22=-(a -b )24≤0,所以a +b 2≤ a 2+b 22,故③正确;⎝ ⎛⎭⎪⎫b2a+a 2b -(a +b )=a 3+b 3-a 2b -ab 2ab =(a 3-a 2b )+(b 3-ab 2)ab =(a -b )2(a +b )ab ≥0,所以b 2a +a 2b ≥a +b ,故④正确.综上所述,四个不等式全都正确.三、解答题12.已知函数f (x )=mx 2-mx -1.(1)若对于x ∈R ,f (x )<0恒成立,求实数m 的取值范围;(2)若对于x ∈[1,3],f (x )<5-m 恒成立,求实数m 的取值范围.解:(1)由题意可得m =0或⎝ ⎛m <0,Δ=m 2+4m <0⇔m =0或-4<m <0⇔-4<m ≤0.故m 的取值范围是(-4,0].(2)要使f (x )<-m +5在[1,3]上恒成立,即m ⎝ ⎛⎭⎪⎫x -122+34m -6<0在x ∈[1,3]上恒成立.令g (x )=m ⎝ ⎛⎭⎪⎫x -122+34m -6,x ∈[1,3].当m >0时,g (x )在[1,3]上是增函数, 所以g (x )max =g (3)⇒7m -6<0,所以m <67,则0<m <67; 当m =0时,-6<0恒成立;当m <0时,g (x )在[1,3]上是减函数, 所以g (x )max =g (1)⇒m -6<0, 所以m <6,所以m <0.综上所述:m 的取值范围是⎩⎨⎧⎭⎬⎫m ⎪⎪⎪m <67.。

2019年高考数学复习(文科)训练题:天天练 7 含解析

2019年高考数学复习(文科)训练题:天天练 7 含解析
②垂直平移:y=f(x)+b的图象,可由y=f(x)的图象向上(b>0)或向下(b<0)平移|b|个单位长度得到.
(2)对称变换规律
①y=-f(x)与y=f(x)的图象关于x轴对称.
②y=f(-x)与y=f(x)的图象关于y轴对称.
③y=f-1(x)与y=f(x)的图象关于直线y=x对称.
④y=-f-1(-x)与y=f(x)的图象关于直线y=-x对称.
5.(2018·河北张家口期末)已知函数y=f(x)的图象如图所示,则函数y=f(-|x|)的图象为()
答案:A
解析:将函数y=f(x)的y轴右侧的图象删去,再保留x<0的图象不变,并对称到y轴右侧,即可得到函数y=f(-|x|)的图象,故选A.
方法总结:图象变换的三种基本类型
(1)平移变换规律
①水平平移:y=f(x+a)的图象,可由y=f(x)的图象向左(a>0),或向右(a<0)平移|a|个单位长度得到.
10.已知y=f(x)的图象如图(A),则y=f(-x)的图象是___________;y=-f(x)的图象是___________;y=f(|x|)的图象是________;y=|f(x)|的图象是________.
答案:CEDB
解析:注意y=f(x)与y=f(-x)、y=-f(x)、y=f(|x|)的图象的对称性、y=|f(x)|的图象关于x轴的翻折.
思路分析:先利用特值检验法排除A、B,再分析单调性排除C.
7.(2018·咸宁二模)已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象可能是图中的()
答案:B
解析:通解 因为y=ax与y=logax互为反函数,而y=logax与y=loga(-x)的图象关于y轴对称,根据图象特征可知选B.

2019年高考数学一轮复习(文科)训练题天天练 36 Word版含解析

2019年高考数学一轮复习(文科)训练题天天练 36 Word版含解析

天天练统计案例一、选择题.(·长春一模)完成下列两项调查:①从某社区户高收入家庭、户中等收入家庭、户低收入家庭中选出户,调查社会购买能力的某项指标;②从某中学的名艺术特长生中选出名调查学习负担情况.宜采用的抽样方法依次是( ).①简单随机抽样,②系统抽样.①分层抽样,②简单随机抽样.①系统抽样,②分层抽样.①②都用分层抽样答案:解析:因为社会购买能力的某项指标受到家庭收入的影响,而社区中各个家庭收入差别明显,所以①用分层抽样法;从某中学的名艺术特长生中选出名调查学习负担情况,个体之间差别不大,且总体和样本容量较小,所以②用简单随机抽样法,故选..(·贵州遵义联考)某校高三年级有名学生,随机编号为,…, .现按系统抽样方法,从中抽出人,若号被抽到了,则下列编号也被抽到的是( )....答案:解析:系统抽样就是等距抽样,被抽到的编号满足+,∈.因为=+×,故选..(·江西九校联考(一))一组数据共有个数,其中有,还有一个数没记清,但知道这组数据的平均数、中位数、众数依次成等差数列,则这个数的所有可能值的和为( )...-.答案:解析:设这个数是,则平均数为,众数为,若≤,则中位数为,此时=-,若<<,则中位数为,此时=+,所以=,若≥,则中位数为,此时=+,所以=,所以这个数的所有可能值的和为(-)++=..(·新课标全国卷Ⅲ,)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了年月至年月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.( ).月接待游客量逐月增加.年接待游客量逐年增加.各年的月接待游客量高峰期大致在月.各年月至月的月接待游客量相对于月至月,波动性更小,变化比较平稳答案:解析:根据折线图可知,年月到月、年月到月等月接待游客量都是减少,所以错误..(·山西长治四校联考)某班组织学生参加数学测试,成绩的频率分布直方图如图,数据的分组依次为[),[),[),[].若低于分的人数是,则该班的学生人数是( )....答案:解析:由题图可知,数据落在[),[)内的频率为(+)×=,∴该班的学生人数是=..(·云南曲靖一中月考)下表是,的对应数据,由表中数据得线性回归方程为( )...答案:。

2019年全国三卷文科高考数学真题解析

2019年全国三卷文科高考数学真题解析

2019年全国三卷文科高考数学真题解析2019年全国统一高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:1.已知集合A={-1.0.1.2},B={x|x1},则A∩B= { }A。

{-1.1} B。

{0.1} C。

{1.2} D。

{ }解析:B中的元素为2和1<x<2的实数,与A中的元素1和2相交,因此A∩B={1.2}。

2.若z(1+i)=2i,则z=()A。

1-i B。

-1+i C。

1+i D。

-1-i解析:将z(1+i)=2i化简得z=-2+2i,因此z=-1-i。

3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A。

1/6 B。

1/3 C。

1/2 D。

2/3解析:一共有4!种排列方式,其中两位女同学相邻的排列方式有2!*2!*2!种,因此所求概率为(2!*2!*2!)/4!=1/3.4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著。

某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A。

0.5 B。

0.6 C。

0.7 D。

0.8解析:根据容斥原理,阅读过《西游记》或《红楼梦》的学生数目为90,阅读过《西游记》和《红楼梦》的学生数目为90-80=10,因此阅读过《西游记》的学生数目为60-10=50.所求比值的估计值为50/100=0.5.5.函数f(x)=2sinx-sin^2x在[0,2π]的零点个数为()解析:将f(x)化简得f(x)=sinx(2-cosx),因此f(x)=0的解为x=0,π,2π/3,4π/3,共4个零点。

6.已知各项均为正数的等比数列{an}的前4项和为15,且a5=3a3+4a1,则a3=()解析:根据等比数列的性质,设首项为a,公比为q,则a1+a2+a3+a4=a(1-q^4)/(1-q)=15,因此a(1-q^4)=15.又根据a5=3a3+4a1,代入an=aq^(n-1)得到a^2q^4=3a^2q^2+4a,化简得q^2=4/3.将q代入a(1-q^4)=15中得到a=5/2,因此a3=aq^2=5/3.7.已知曲线y=aex+xlnx在点(1,ae)处的切线方程为y=2x+b,则a=()解析:曲线在点(1,ae)处的斜率为y'(1)=a+1,因此切线的斜率为2,即a+1=2,解得a=1.将a=1代入原方程得到y=ex+xlnx,将(1,ae)代入得到ae=e,因此b=0.8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则BN=()解析:连接BN,因为BN垂直于平面ECD,所以BN⊥CD,又因为BN平分CD,所以BN=ND=1/2CD=1/2BC=1/2(√2/2)AB=1/2√2.因此BN=1/2√2.9.执行如图所示的程序框图,如果输入为0.01,则输出的s值等于()解析:按照程序框图计算得到s=2^-26.10.已知F是双曲线C: x^2/9-y^2/4=1的一个焦点,O为坐标原点,点P在C上,若|OP|=|OF|=5,则△OPF的面积为()解析:双曲线的焦距为c=√(a^2+b^2)=3√2,因此F为(3√2,0)或(-3√2,0)。

2019年全国统一高考数学试卷(文科)以及答案解析(全国2卷)

2019年全国统一高考数学试卷(文科)以及答案解析(全国2卷)

绝密★启用前2019年普通高等学校招生全国统一考试(全国2卷)文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x>﹣1},B={x|x<2},则A∩B=()A.(﹣1,+∞)B.(﹣∞,2)C.(﹣1,2)D.∅2.(5分)设z=i(2+i),则=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i3.(5分)已知向量=(2,3),=(3,2),则|﹣|=()A.B.2C.5D.504.(5分)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.B.C.D.5.(5分)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙6.(5分)设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1B.e﹣x+1C.﹣e﹣x﹣1D.﹣e﹣x+17.(5分)设α,β为两个平面,则α∥β的充要条件是()A.α内有无数条直线与β平行B.α内有两条相交直线与β平行C.α,β平行于同一条直线D.α,β垂直于同一平面8.(5分)若x1=,x2=是函数f(x)=sinωx(ω>0)两个相邻的极值点,则ω=()A.2B.C.1D.9.(5分)若抛物线y2=2px(p>0)的焦点是椭圆+=1的一个焦点,则p=()A.2B.3C.4D.810.(5分)曲线y=2sin x+cos x在点(π,﹣1)处的切线方程为()A.x﹣y﹣π﹣1=0B.2x﹣y﹣2π﹣1=0C.2x+y﹣2π+1=0D.x+y﹣π+1=011.(5分)已知α∈(0,),2sin2α=cos2α+1,则sinα=()A.B.C.D.12.(5分)设F为双曲线C:﹣=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆x2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.二、填空题:本题共4小题,每小题5分,共20分。

高考全国甲卷:《文科数学》2019年考试真题与答案解析

高考全国甲卷:《文科数学》2019年考试真题与答案解析

高考精品文档高考全国甲卷文科数学·2019年考试真题与答案解析同卷地区贵州省、四川省、云南省西藏自治区、广西自治区高考全国甲卷:《文科数学》2019年考试真题与答案解析一、选择题本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =( )A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2 答案:A2.若(1i)2i z +=,则z=( ) A .1i -- B .1+i - C .1i - D .1+i 答案:D3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )A .16B.14C.13D.12答案:D4.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8答案:C5.函数()2sin sin2=-在[0,2π]的零点个数为()f x x xA.2B.3C.4D.5答案:B6.已知各项均为正数的等比数列{a n}的前4项和为15,且a5=3a3+4a1,则a3=()A.16B.8C.4D.2答案:C7.已知曲线e lnx=+在点(1,ae)处的切线方程为y=2x+b,则()y a x xA.a=e,b=–1B.a=e,b=1C.a=e–1,b=1D.a=e–1,b=﹣1答案:D8.如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案:B9.执行下边的程序框图,如果输入的值为0.01,则输出S 的值等于( )A.4122-B.5122-C.6122-D.7122-答案:C10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF △的面积为( )A .32B .52C .72D .92答案:B11.记不等式组6,20x y x y +≥⎧⎨-≥⎩表示的平面区域为D .命题:(,),29p x y D x y ∃∈+≥;命题:(,),212q x y D x y ∀∈+≤.下面给出了四个命题:①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝这四个命题中,所有真命题的编号是( ) A .①③ B .①② C .②③ D .③④ 答案:A12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)答案:C二、填空题本题共4小题,每小题5分,共20分。

2019年高考数学复习(文科)题:天天练 28含解析

2019年高考数学复习(文科)题:天天练 28含解析

天天练28 直线与平面的平行与垂直一、选择题1.(2018·湖北省重点中学一联)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β答案:D解析:选项A,若α⊥β,m⊂α,n⊂β,则可能m⊥n,m∥n,若m,n异面,故A错误;选项B,若α∥β,m⊂α,n⊂β,则m∥n,或m,n异面,故B错误;选项C,若m⊥n,m⊂α,n⊂β,则α与β可能相交,平行,或垂直,故C错误;选项D,若m⊥α,m∥n,则n⊥α,再由n∥β可得α⊥β,因此D正确.故选D.2.(2018·泉州质检)已知直线a,b,平面α,β,a⊂α,b⊂α,则“a∥β,b∥β”是“α∥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:B解析:因为直线a,b不一定相交,所以a∥β,b∥β不一定能够得到α∥β;而当α∥β时,a ∥β,b ∥β一定成立,所以“a ∥β,b ∥β”是“α∥β”的必要不充分条件.3.(2018·湖北八校联考(一))如图所示,在四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ABD 沿BD 折起,使得平面ABD ⊥平面BCD ,构成四面体A -BCD ,则在四面体A -BCD 中,下列说法正确的是( )A .平面ABD ⊥平面ABCB .平面ACD ⊥平面BCDC .平面ABC ⊥平面BCDD .平面ACD ⊥平面ABD答案:D解析:由题意可知,AD ⊥AB ,AD =AB ,所以∠ABD =45°,故∠DBC =45°,又∠BCD =45°,所以BD ⊥DC.因为平面ABD ⊥平面BCD ,且平面ABD ∩平面BCD =BD ,所以CD ⊥平面ABD ,所以平面ACD ⊥平面ABD.4.如图,P 为平行四边形ABCD 所在平面外一点,E 为AD 的中点,F 为PC上一点,当PA ∥平面EBF 时,PF FC=( )A.23B.14C.13D.12答案:D解析:连接AC 交BE 于G ,连接FG ,因为PA ∥平面EBF ,PA ⊂平面PAC ,平面PAC ∩平面BEF =FG ,所以PA ∥FG ,所以PF FC =AG GC .又AD ∥BC ,E 为AD 的中点,所以AG GC =AB BC =12,所以PF FC =12. 5.(2018·江西景德镇二模)将图1中的等腰直角三角形ABC 沿斜边BC 上的中线折起得到空间四面体ABCD(如图2),则在空间四面体ABCD 中,AD 与BC 的位置关系是( )A .相交且垂直B .相交但不垂直C .异面且垂直D .异面但不垂直答案:C解析:在题图1中,AD ⊥BC ,故在题图2中,AD ⊥BD ,AD ⊥DC ,又因为BD ∩DC =D ,所以AD ⊥平面BCD ,又BC ⊂平面BCD ,D 不在BC 上,所。

2019年高考数学一轮复习(文科)训练题天天练 19 Word版含解析

2019年高考数学一轮复习(文科)训练题天天练 19 Word版含解析

天天练平面向量的数量积及其应用一、选择题.(·遂宁一模)给出下列命题:①+=;②·=;③若与共线,则·=;④(·)·=·(·).其中正确命题的个数是( )....答案:解析:①∵=-,∴+=-+=,∴该命题正确;②∵数量积是一个实数,不是向量,∴该命题错误;③∵与共线,当方向相反时,·=-,∴该命题错误;④当与不共线,且·≠,·≠时,(·)·≠·(·),∴该命题错误.故正确命题的个数为.故选..已知向量=(),=(,-).若向量满足⊥(+),且∥(-),则=( )答案:解析:设出的坐标,利用平面向量的垂直关系和平行关系得出两个方程,联立两个方程求解即可.设=(,),由⊥(+),得·(+)=(,)·(,-)=-=,①又=(,-),-=(--),且∥(-),所以(-)-(-)×(-)=.②联立①②,解得=,=,所以=.故选..(·安徽蚌埠一模)已知非零向量,满足=,〈,〉=°.若⊥(+),则实数的值为( )..-..-答案:解析:∵非零向量,满足=,〈,〉=°,∴〈,〉=.又∵⊥(+),∴·(+)=·+=×+=+=,解得=-.故选..(·广东五校协作体一模)已知向量=(λ,),=(λ+).若+=-,则实数λ的值为( ) .-...-答案:解析:根据题意,对于向量,,若+=-,则+=-,变形可得+·+=-·+,即·=.又由向量=(λ,),=(λ+),得λ(λ+)+=,解得λ=-.故选..(·上饶二模)已知向量,的夹角为°,==,若=+,则△为( ).等腰三角形.等边三角形.直角三角形.等腰直角三角形答案:解析:根据题意,由=+,可得-==,则==,由=-,可得=-=-·+=,故=,由=-=(+)-=+,得=+=+·+=,可得=.在△中,由=,=,=,可得=+,则△为直角三角形.故选..(·泰安质检)已知非零向量,满足==+,则与-夹角的余弦值为( )答案:解析:不妨设==+=,则+=++·=+·=,所以·=-,所以·(-)=-·=,又=,-===,所以与-夹角的余弦值为==..如图所示,是圆的直径,是上的点,,是直径上关于对称的两点,且=,=,则·=( ) ....答案:解析:连接,,则=+,=+=-,所以·=(+)·(-)=·-·+·-=-·+·-=·-=×-=..(·洛阳二模)已知直线++=(>)与圆+=交于不同的两点,,是坐标原点,且有+≥,则的取值范围是( ).(,+∞) .[,+∞).[,) .[,)答案:解析:设的中点为,则⊥,因为+≥,所以≥,所以≤,所以≤.因为+=,所以≥,因为直线++=(>)与圆+=交于不同的两点,,所以<,所以≤<,所以≤<,因为>,所以≤<,所以的取值范围是[,).二、填空题.若=(),=(),则向量在向量方向上的投影为.。

2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)

2019年全国统一高考数学试卷(文科)以及答案解析(全国1卷)

绝密★启用前2019年高考普通高等学校招生全国统一考试(全国1卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。

2019年高考数学一轮复习(文科)训练题天天练 3 Word版含解析

2019年高考数学一轮复习(文科)训练题天天练 3 Word版含解析

天天练函数的概念及其表示一、选择题.(·北京一模)已知函数()=-,则()=( )....答案:解析:因为()=-,所以()=-=.故选..(·石家庄二模)设集合={≤≤},={≤≤},给出如下四个图形,其中能表示从集合到集合的函数关系的是( )答案:解析:集合到集合的函数关系需满足对于[]内的每一个值,在[]内都有唯一的值与之对应,所以只有选项符合题意..(·河南豫东、豫北十所名校段测)设函数()=(\\(,<≤,(-(,>,))则()+的值为( ) ...-.答案:解析:因为()=(-)=()==,==-,所以()+=-=.故选..(·山东潍坊青州段测)函数()=(-)+的定义域为( ).() .[).(] .[]答案:解析:函数()=(-)+的定义域为(\\(->,->))的解集,解得<<,所以函数()的定义域为().故选..(·定州二模)下列函数中,满足()=[()]的是( ).()=.()=+.()=.()=答案:解析:解法一对于函数()=,有()=()=,[()]=()=,所以()=[()],故选.解法二因为()=[()],对选项,()=,[()]=(),排除;对选项,则有()=+=,[()]=+=,排除;对选项,则有()=,[()]=,排除.故选..(·重庆二诊)如图所示,对应关系是从到的映射的是( )答案:解析:到的映射为对于中的每一个元素在中都有唯一的元素与之对应,所以不能出现一对多的情况,因此表示到的映射..(·河北衡水武邑中学基础考试)若函数=--的定义域为[,],值域为,则实数的取值范围是( ).(],+∞答案:解析:函数=--的图象如图所示.因为=-≥-,由图可知,从对称轴的横坐标开始,一直到点(,-)关于对称轴对称的点(,-)的横坐标,故实数的取值范围是..已知函数=(+)的定义域是[-),则=(-)的定义域为( ).[-) .(-]答案:解析:因为函数=(+)的定义域是[-),所以-≤<,所以≤+<,所以函数()的定义域为[),对于函数=(-),≤-<,解得≤<,故=(-)的定义域是,故选.二、填空题.(·南阳一模)已知函数=()满足()=+,则()的解析式为.答案:()=--(≠)解析:由题意知函数=()满足()=+,即()-=,用代换上式中的,可得-()=,联立得,错误!解得()=--错误!(≠)..已知函数=的定义域为,值域为,则∩=.。

高考数学全程训练计划:天天练3 函数的概念及表示

高考数学全程训练计划:天天练3 函数的概念及表示

天天练3 函数的概念及表示小题狂练③一、选择题1.[2019·惠州二调]已知函数f(x)=x +1x -1,f(a)=2,则f(-a)=( )A .2B .-2C .4D .-4 答案:D解析:解法一 由已知得f(a)=a +1a -1=2,即a +1a =3,所以f(-a)=-a -1a -1=-⎝ ⎛⎭⎪⎫a +1a -1=-3-1=-4.解法二 因为f(x)+1=x +1x ,设g(x)=f(x)+1=x +1x ,易判断g(x)=x +1x 为奇函数,故g(x)+g(-x)=x +1x -x -1x =0,即f(x)+1+f(-x)+1=0,故f(x)+f(-x)=-2,所以f(a)+f(-a)=-2,故f(-a)=-4.2.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4 答案:B解析:①中当x>0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.3.[2019·河南豫东、豫北十所名校段测]设函数f(x)=⎩⎪⎨⎪⎧log 3x ,0<x≤9,f x -4,x >9,则f(13)+2f ⎝ ⎛⎭⎪⎫13的值为( )A .1B .0C .-2D .2 答案:B解析:因为f(13)=f(13-4)=f(9)=log 39=2,2f ⎝ ⎛⎭⎪⎫13=2log 313=-2,所以f(13)+2f ⎝ ⎛⎭⎪⎫13=2-2=0.故选B.4.[2019·山东潍坊青州段测]函数f(x)=ln(x -1)+12-x的定义域为( )A .(1,2)B .[1,2)C .(1,2]D .[1,2] 答案:A解析:函数f(x)=ln(x -1)+12-x 的定义域为⎩⎪⎨⎪⎧x -1>0,2-x >0的解集,解得1<x <2,所以函数f(x)的定义域为(1,2).故选A.5.[2019·福建省六校联考]下列函数中,满足f(x 2)=[f(x)]2的是( ) A .f(x)=lnx B .f(x)=|x +1| C .f(x)=x 3D .f(x)=e x答案:C解析:解法一 对于函数f(x)=x 3,有f(x 2)=(x 2)3=x 6,[f(x)]2=(x 3)2=x 6,所以f(x 2)=[f(x)]2,故选C.解法二 因为f(x 2)=[f(x)]2,对选项A,f(22)=ln4,[f(2)]2=(ln2)2,排除A ;对选项B,则有f(12)=|12+1|=2,[f(1)]2=|1+1|2=4,排除B ;对选项D,则有f(12)=e,[f(1)]2=e 2,排除D.故选C.6.[2019·重庆二诊]如图所示,对应关系f 是从A 到B 的映射的是( )答案:D解析:A 到B 的映射为对于A 中的每一个元素在B 中都有唯一的元素与之对应,所以不能出现一对多的情况,因此D 表示A 到B 的映射.7.已知函数y =f(x +2)的定义域是[-2,5),则y =f(3x -1)的定义域为( ) A .[-7,14) B .(-7,14] C.⎝ ⎛⎦⎥⎤13,83 D.⎣⎢⎡⎭⎪⎫13,83答案:D解析:因为函数y =f(x +2)的定义域是[-2,5),所以-2≤x<5,所以0≤x+2<7,所以函数f(x)的定义域为[0,7),对于函数y =f(3x -1),0≤3x-1<7,解得13≤x<83,故y =f(3x -1)的定义域是⎣⎢⎡⎭⎪⎫13,83,故选D.8.[2019·山东德州模拟]设函数y =9-x 2的定义域为A,函数y =ln(3-x)的定义域为B,则A∩∁R B =( )A .(-∞,3)B .(-∞,-3)C .{3}D .[-3,3) 答案:C解析:由9-x 2≥0解得-3≤x≤3,可得A =[-3,3],由3-x>0解得x<3,可得B =(-∞,3),因此∁R B =[3,+∞).∴A∩(∁R B)=[-3,3]∩[3,+∞)={3}.故选C.二、非选择题9.[2018·全国卷Ⅰ]已知函数f(x)=log2(x 2+a).若f(3)=1,则a =________. 答案:-7解析:∵ f(x)=log2(x 2+a)且f(3)=1,∴ 1=log2(9+a),∴ 9+a =2,∴ a=-7.10.[2019·南阳模拟]已知函数y =f(x)满足f(x)=2f ⎝ ⎛⎭⎪⎫1x +3x,则f(x)的解析式为________. 答案:f(x)=-x -2x(x≠0)解析:由题意知函数y =f(x)满足f(x)=2f ⎝ ⎛⎭⎪⎫1x +3x,即f(x)-2f ⎝ ⎛⎭⎪⎫1x =3x,用1x 代换上式中的x,可得f ⎝ ⎛⎭⎪⎫1x -2f(x)=3x,联立得,⎩⎪⎨⎪⎧fx -2f ⎝ ⎛⎭⎪⎫1x =3x ,f ⎝ ⎛⎭⎪⎫1x -2f x =3x,解得f(x)=-x -2x(x≠0).11.[2019·河南开封模拟]f(x)=⎩⎪⎨⎪⎧2e x -1,x<2,log 3x 2-1,x≥2,则f(f(2))的值为________.答案:2解析:∵当x≥2时,f(x)=log 3(x 2-1),∴f(2)=log 3(22-1)=1<2,∴f(f(2))=f(1)=2e1-1=2.12.[2019·湖北黄冈浠水县实验高中模拟]已知函数f(x)的定义域为(-1,0),则函数f(2x +1)的定义域为________.答案:⎝⎛⎭⎪⎫-1,-12解析:∵函数f(x)的定义域为(-1,0), ∴由-1<2x +1<0,解得-1<x<-12.∴函数f(2x +1)的定义域为⎝ ⎛⎭⎪⎫-1,-12.课时测评③一、选择题1.下列各组函数中表示同一函数的是( ) A .f(x)=x 2,g(x)=(x)2B .f(x)=1,g(x)=x 2C .f(x)=⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0,g(t)=|t|D .f(x)=x +1,g(x)=x 2-1x -1答案:C解析:选项A 中,f(x)=x 2的定义域是R,g(x)=(x)2的定义域是{x|x≥0},故f(x)与g(x)不表示同一函数,排除A ;选项B 中,f(x)与g(x)定义域相同,但对应关系和值域不同,故f(x)与g(x)不表示同一函数,排除B ;选项D 中,f(x)=x +1的定义域为R,g(x)=x 2-1x -1的定义域为{x|x≠1},故f(x)与g(x)不表示同一函数,排除D ;选项C 中,f(x)=⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0可化为f(x)=|x|,所以其与g(t)=|t|表示同一函数.故选C.2.已知函数f(x)=⎩⎪⎨⎪⎧2x-2,x>0,x ,x≤0,若f(a)+f(3)=5,则实数a =( )A .2B .-1C .-1或0D .0 答案:B解析:解法一 因为f(a)+f(3)=5,又f(3)=23-2=6,所以f(a)=-1,所以⎩⎪⎨⎪⎧2a-2=-1,a>0或⎩⎪⎨⎪⎧a =-1,a≤0,解得a =-1,故选B.解法二 因为f(3)=23-2=6,f(2)=22-2=2,所以f(2)+f(3)=2+6=8≠5,所以a≠2,排除A ;因为f(0)=0,所以f(0)+f(3)=0+6=6≠5,所以a≠0,排除C,D.故选B.3.函数f(x)=(x -2)0+23x +1的定义域是( ) A.⎝ ⎛⎭⎪⎫-13,+∞ B.⎝⎛⎭⎪⎫-∞,-13 C .R D.⎝ ⎛⎭⎪⎫-13,2∪(2,+∞)答案:D解析:要使函数f(x)有意义,只需⎩⎪⎨⎪⎧x≠2,3x +1>0,所以x>-13且x≠2,所以函数f(x)的定义域是⎝ ⎛⎭⎪⎫-13,2∪(2,+∞),故选D.4.[2019·湖南邵阳模拟]设函数f(x)=log 2(x -1)+2-x,则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为( )A .[1,2]B .(2,4]C .[1,2)D .[2,4) 答案:B解析:∵函数f(x)=log 2(x -1)+2-x 有意义,∴⎩⎪⎨⎪⎧x -1>0,2-x≥0,解得1<x≤2,∴函数的f(x)定义域为(1,2],∴1<x 2≤2,解得x∈(2,4],则函数f ⎝ ⎛⎭⎪⎫x 2的定义域为(2,4].故选B.5.[2019·陕西西安长安区质量检测大联考]已知函数f(x)=-x 2+4x,x∈[m,5]的值域是[-5,4],则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2]C .[-1,2]D .[2,5] 答案:C解析:∵f(x)=-x 2+4x =-(x -2)2+4,∴当x =2时,f(2)=4,由f(x)=-x 2+4x =-5,解得x =5或x =-1,∴结合图象可知,要使函数在[m,5]上的值域是[-5,4],则-1≤m≤2.故选C.6.[2019·新疆乌鲁木齐一诊]函数f(x)=⎩⎪⎨⎪⎧e x -1,x<2,-log 3x -1,x≥2,则不等式f(x)>1的解集为( )A .(1,2) B.⎝⎛⎭⎪⎫-∞,43 C.⎝ ⎛⎭⎪⎫1,43 D .[2,+∞)答案:A解析:当x<2时,不等式f(x)>1即e x -1>1,∴x-1>0,∴x>1,则1<x<2;当x≥2时,不等式f(x)>1即-log 3(x -1)>1, ∴0<x-1<13,∴1<x<43,此时不等式无解.综上可得,不等式的解集为(1,2).故选A.7.[2019·定州模拟]设函数f(x)=⎩⎪⎨⎪⎧log 2x 2,x<0,-e x,x≥0,若f(f(t))≤2,则实数t 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,-12∪[0,ln2]B .[ln2,+∞) C.⎝⎛⎦⎥⎤-∞,-12 D .[-2,+∞) 答案:A解析:令m =f(t),则f(m)≤2,则⎩⎪⎨⎪⎧m<0,log 2m 2≤2或⎩⎪⎨⎪⎧m≥0,-e m≤2,即-2≤m<0或m≥0,所以m≥-2,则f(t)≥-2,即⎩⎪⎨⎪⎧t<0,log 2t 2≥-2或⎩⎪⎨⎪⎧t≥0,-e t≥-2,即t≤-12或0≤t≤ln2,所以实数t 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪[0,ln2].故选A. 8.[2019·福建福清校际联盟模拟]定义函数f(x),g(x)如下表:则满足f(g(x))>g(f(x))的x A .0或1 B .0或2 C .1或7 D .2或7 答案:D解析:由表格可以看出,当x =0时,g(0)=2,f(g(0))=f(2)=0,同理g(f(0))=g(1)=1,不满足f(g(x))>g(f(x)),排除A,B.当x =1时,f(g(1))=f(1)=2,g(f(1))=g(2)=7,不满足f(g(x))>g(f(x)),排除C.当x =2时,f(2)=0,g(2)=7,f(g(2))=f(7)=7,同理g(f(2))=g(0)=2,满足f(g(x))>g(f(x)). 当x =7时,f(g(7))=f(0)=1,g(f(7))=g(7)=0,满足f(g(x))>g(f(x)).故选D. 二、非选择题9.[2019·唐山五校联考]函数y =110x-2的定义域为________.答案:(lg2,+∞)解析:依题意,10x>2,解得x>lg2,所以函数的定义域为(lg2,+∞). 10.已知函数f(3x +2)=x 2-3x +1,则函数f(x)的解析式为________. 答案:f(x)=19x 2-13x 9+319解析:设t =3x +2,则x =t -23,所以f(t)=⎝ ⎛⎭⎪⎫t -232-3·t -23+1=19t 2-13t 9+319,所以函数f(x)的解析式为f(x)=19x 2-13x 9+319.11.对于每个实数x,设f(x)取y =4x +1,y =x +2,y =-2x +4三个函数中的最小值,用分段函数写出f(x)的解析式,并求f(x)的最大值.解析:由直线y =4x +1与y =x +2求得交点A ⎝ ⎛⎭⎪⎫13,73;由直线y =x +2与y =-2x +4,求出交点B ⎝ ⎛⎭⎪⎫23,83. 由图象可看出:f(x)=⎩⎪⎨⎪⎧-2x +4 ⎝ ⎛⎭⎪⎫x ≥23x +2 ⎝ ⎛⎭⎪⎫13<x<234x +1 ⎝ ⎛⎭⎪⎫x ≤13f(x)的最大值为f ⎝ ⎛⎭⎪⎫23=83.。

2019年高考数学一轮复习(文科)训练题:天天练 34 Word版含解析

2019年高考数学一轮复习(文科)训练题:天天练 34 Word版含解析

天天练34 直线与圆锥曲线的综合一、选择题1.已知抛物线y 2=16x ,直线l 过点M (2,1),且与抛物线交于A ,B 两点,|AM |=|BM |,则直线l 的方程是( )A .y =8x +15B .y =8x -15C .y =6x -11D .y =5x -9 答案:B解析:设A (x 1,y 1),B (x 2,y 2)(x 1≠x 2),代入抛物线方程得y 21=16x 1,y 22=16x 2,两式相减得,(y 1+y 2)(y 1-y 2)=16(x 1-x 2),即y 1-y 2x 1-x 2=16y 1+y 2,又y 1+y 2=2,所以k AB =8,故直线l 的方程为y =8x -15.2.已知直线y =kx +1与双曲线x 2-y 24=1交于A ,B 两点,且|AB |=82,则实数k 的值为( )A .±7B .±3或±413C .±3D .±413 答案:B解析:由直线与双曲线交于A ,B 两点,得k ≠±2.将y =kx +1代入x 2-y24=1得(4-k 2)x 2-2kx -5=0,则Δ=4k 2+4(4-k 2)×5>0,k 2<5.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 4-k 2,x 1x 2=-54-k 2,所以|AB |=1+k 2·⎝ ⎛⎭⎪⎫2k 4-k 22+204-k 2=82,解得k =±3或±413. 3.(2018·兰州一模)已知直线y =kx -k -1与曲线C :x 2+2y 2=m (m >0)恒有公共点,则m 的取值范围是( )A .[3,+∞)B .(-∞,3]C .(3,+∞)D .(-∞,3) 答案:A解析:直线y =kx -k -1恒过定点(1,-1).因为直线y =kx -k -1与曲线C :x 2+2y 2=m (m >0)恒有公共点,则曲线C 表示椭圆,点(1,-1)在椭圆内或椭圆上,所以12+2×(-1)2≤m ,所以m ≥3,选A.4.(2018·宁波九校联考(二))过双曲线x 2-y 2b 2=1(b >0)的左顶点A 作斜率为1的直线l ,若l 与双曲线的两条渐近线分别交于B ,C ,且2AB→=BC →,则该双曲线的离心率为( ) A.10 B.103C. 5D.52 答案:C解析:由题意可知,左顶点A (-1,0).又直线l 的斜率为1,所以直线l 的方程为y =x +1,若直线l 与双曲线的渐近线有交点,则b ≠±1.又双曲线的两条渐近线的方程分别为y =-bx ,y =bx ,所以可得x B =-1b +1,x C =1b -1.由2AB →=BC →,可得2(x B -x A )=x C -x B ,故2×⎝ ⎛⎭⎪⎫-1b +1+1=1b -1-⎝ ⎛⎭⎪⎫-1b +1,得b =2,故e =12+221= 5.5.(2018·太原一模)已知抛物线y 2=2px (p >0)的焦点为F ,△ABC的顶点都在抛物线上,且满足F A →+FB →+FC →=0,则1k AB +1k BC +1k CA=( )A .0B .1C .2D .2p 答案:A解析:设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),F ⎝ ⎛⎭⎪⎫P 2,0,则⎝ ⎛⎭⎪⎫x 1-p 2,y 1+⎝ ⎛⎭⎪⎫x 2-p 2,y 2+⎝ ⎛⎭⎪⎫x 3-p 2,y 3=(0,0),故y 1+y 2+y 3=0.∵1k AB =x 2-x 1y 2-y 1=12p (y 22-y 21)y 2-y 1=y 2+y 12p ,同理可知1k BC =y 3+y 22p ,1k CA =y 3+y 12p ,∴1k AB +1k BC +1k CA =2(y 1+y 2+y 3)2p=0. 6.(2018·福建福州外国语学校适应性考试)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的焦距为25,抛物线y =14x 2+14与双曲线C 的渐近线相切,则双曲线C 的方程为( )A.x 28-y 22=1B.x 22-y 28=1C .x 2-y 24=1 D.x24-y 2=1 答案:D解析:由题意可得c =5,得a 2+b 2=5,双曲线的渐近线方程为y =±b a x .将渐近线方程和抛物线方程y =14x 2+14联立,可得14x 2±b a x +14=0,由渐近线和抛物线相切可得Δ=b 2a 2-4×14×14=0,即有a 2=4b 2,又a 2+b 2=5,解得a =2,b =1,可得双曲线的方程为x24-y 2=1.故选D.7.(2018·天津红桥区期末)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于O ,A ,B 三点,O 为坐标原点.若双曲线的离心率为2,△AOB 的面积为3,则p =( )A .1 B.32 C .2 D .3 答案:C解析:因为双曲线方程为x 2a 2-y 2b 2=1,所以双曲线的渐近线方程是y =±b a x .又抛物线y 2=2px (p >0)的准线方程是x =-p 2,故A ,B 两点的纵坐标分别是y =±pb 2a .因为双曲线的离心率为2,所以c a =2,所以b 2a 2=3,则b a =3,A ,B 两点的纵坐标分别是y =±pb 2a =±3p 2.又△AOB 的面积为3,x 轴是∠AOB 的平分线,所以12×3p ×p2=3,解得p =2.故选C.8.(2017·新课标全国卷Ⅰ,10)已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .10 答案:A解析:因为F 为y 2=4x 的焦点,所以F (1,0).由题意直线l 1,l 2的斜率均存在,且不为0,设l 1的斜率为k ,则l 2的斜率为-1k ,故直线l 1,l 2的方程分别为y =k (x -1),y =-1k (x -1).由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1, 所以|AB |=1+k 2·|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·2k 2+4k 22-4=4(1+k 2)k 2. 同理可得|DE |=4(1+k 2).所以|AB |+|DE |=4(1+k 2)k 2+4(1+k 2)=41k 2+1+1+k 2=8+4k 2+1k 2≥8+4×2=16,当且仅当k 2=1k 2,即k =±1时,取得等号. 故选A.二、填空题 9.(2018·昆明二模)直线l :y =k (x +2)与曲线C :x 2-y 2=1(x <0)交于P ,Q 两点,则直线l 的倾斜角的取值范围是________.答案:⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4解析:曲线C :x 2-y 2=1(x <0)的渐近线方程为y =±x ,直线l :y =k (x +2)与曲线C 交于P ,Q 两点,所以直线的斜率k >1或k <-1,所以直线l 的倾斜角α∈⎝ ⎛⎭⎪⎫π4,3π4,由于直线l 的斜率存在,所以α≠π2,所以直线l 的倾斜角的取值范围是⎝ ⎛⎭⎪⎫π4,π2∪⎝ ⎛⎭⎪⎫π2,3π4.10.已知抛物线y 2=4x 的焦点为F ,过焦点的直线与抛物线交于A ,B 两点,则当|AF |+4|BF |取得最小值时,直线AB 的倾斜角的正弦值为________.答案:223解析:易知当直线的斜率存在时,设直线方程为y =k (x -1)(k ≠0),由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x ,消去y 得k 2x 2-(2k 2+4)x +k 2=0.设A (x 1,y 1),B (x 2,y 2),x 1,x 2>0,则x 1+x 2=2k 2+4k 2 ①,x 1x 2=1 ②,1|AF |+1|BF |=1x 1+1+1x 2+1=x 1+x 2+2x 1x 2+x 1+x 2+1=2k 2+4k 2+21+2k 2+4k 2+1=1.当直线的斜率不存在时,易知|AF |=|BF |=2,故1|AF |+1|BF |=1.设|AF |=a ,|BF |=b ,则1a +1b =1,所以|AF |+4|BF |=a +4b =⎝ ⎛⎭⎪⎫1a +1b (a +4b )=5+4b a +a b ≥9,当且仅当a =2b 时取等号,故a +4b 的最小值为9,此时直线的斜率存在,且x 1+1=2(x 2+1) ③,联立①②③得, x 1=2,x 2=12,k =±22,故直线AB 的倾斜角的正弦值为223.11.(2018·广东揭阳一中、汕头金山中学联考)已知抛物线y 2=2px (p >0)上一点M (1,m )到其焦点的距离为5,双曲线x 2-y 2a =1(a >0)的左顶点为A ,若双曲线的一条渐近线与直线AM 垂直,则实数a =________.答案:14解析:根据抛物线的定义得1+p2=5,所以p =8,所以m =±4.由对称性不妨取M (1,4),A (-1,0),则直线AM 的斜率为2,由题意得-a ×2=-1,故a =14.三、解答题12.(2018·山西大学附属中学期中)已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆的焦点,直线AF 的斜率为233,O 为坐标原点. (1)求E 的方程;(2)设过点A 的直线l 与E 交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解析:(1)设F (c,0),由条件知2c =233,得c = 3. 又c a =32,所以a =2,b 2=a 2-c 2=1,故E 的方程为x 24+y 2=1. (2)依题意当l ⊥x 轴时不合题意,故设直线l 的方程为y =kx -2,P (x 1,y 1),Q (x 2,y 2),将y =kx -2代入x 24+y 2=1,得(1+4k 2)x 2-16kx +12=0.当Δ=16(4k 2-3)>0,即k 2>34时,x 1,2=8k ±24k 2-31+4k 2, 从而|PQ |=k 2+1|x 1-x 2|=4k 2+1·4k 2-31+4k 2.又点O 到直线PQ 的距离d =2k 2+1,所以△OPQ 的面积S △OPQ =12d |PQ |=44k 2-31+4k 2.设4k 2-3=t ,则t >0,S △OPQ =4t t 2+4=4t +4t ≤42t ·4t=1,当且仅当t =2,即k =±72时等号成立,且满足Δ>0.所以当△OPQ 的面积最72x-2或y=-72x-2.大时,l的方程为y=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天天练31 椭圆的定义、标准方程及性质
一、选择题
1.(2017·浙江卷,2)椭圆x 29+y 2
4=1的离心率是( )
A.13
3 B.5
3
C.2
3 D.59 答案:B
解析:∵ 椭圆方程为x 29+y 2
4=1,
∴ a =3,c =
a 2-
b 2=
9-4=
5.
∴ e =c
a =5
3
.故选B.
2.已知F 1,F 2是椭圆x 2
16+y 2
9=1的两焦点,过点F 2的直线交椭圆于A ,B
两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为 ( )
A .6
B .5
C .4
D .3 答案:A
解析:根据椭圆定义,知△AF 1B 的周长为4a =16,故所求的第三边的长度为16-10=6.
3.(2018·黑龙江大庆第一次模拟)已知直线l :y =kx 与椭圆C :x 2a 2+y 2
b 2=
1(a>b>0)交于A ,B 两点,其中右焦点F 的坐标为(c,0),且AF 与BF 垂直,则椭圆C 的离心率的取值范围为( )
A.⎣⎢⎢⎡⎭⎪⎪⎫22,1
B.⎝ ⎛⎦⎥⎥⎤0,22
C.⎝ ⎛⎭⎪⎪⎫22,1
D.⎝ ⎛⎭⎪⎪⎫0,22 答案:C
解析:由AF 与BF 垂直,运用直角三角形斜边的中线即为斜边的一半,可
得|OA|=|OF|=c ,由|OA|>b ,即c>b ,可得c 2>b 2=a 2-c 2,即c 2>12
a 2,可得
22
<e<1.故选C.
4.(2018·深圳一模)过点(3,2)且与椭圆3x 2+8y 2=24有相同焦点的椭圆方程为( )
A.x 25+y 210=1
B.x 210+y 2
15=1 C.x 2
15+y 2
10=1 D.x 2
10+y 2
5=1 答案:C
解析:椭圆3x 2+8y 2=24的焦点为(±5,0),可得c =
5,设所求椭圆
的方程为x 2
a 2+y 2
b 2=1,可得9
a 2+4
b
2=1,又a 2-b 2=5,得b 2=10,a 2=15,所以
所求的椭圆方程为x 215+y 2
10
=1.故选C.
5.(2018·佛山二模)若椭圆mx 2+ny 2=1的离心率为1
2,则m
n =( )
A.34
B.4
3
C.32

2
3
3 D.3
4或4
3
答案:D
解析:若焦点在x 轴上,则方程化为x 21m
+y 21n
=1,依题意得1
m -
1
n 1m
=14,所以
m
n
=34;若焦点在y 轴上,则方程化为y 21n
+x 21m
=1,同理可得m n =43.所以所求值为3
4
或43
.
6.(2018·宜春二模)已知椭圆的焦点分别为F 1(0,-3),F 2(0,3),离
心率e =32,若点P 在椭圆上,且PF 1→·PF 2→
=2
3
,则∠F 1PF 2的大小为( )
A.π12
B.π6
C.π
4 D.π
3 答案:D。

相关文档
最新文档