有理数与整式检测12

合集下载

七年级数学上册专题卷(三)有理数整式与一元一次方程的实际应用习题新版新人教版2

七年级数学上册专题卷(三)有理数整式与一元一次方程的实际应用习题新版新人教版2

解:设A饮料生产了x瓶,则B饮料生产了(10000-x)瓶. 根据题意,得0.02x+0.03(10000-x)=260, 解得x=4000,则10000-x=6000. 答:A饮料生产了4000瓶,B饮料生产了6000瓶.
9.某超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品
C.300×0.2-x=60
D.300-0.2x=60
5.一次知识竞赛共有25道选择题,答对一题得4分,答错或不答倒扣1分,某
学生回答了全部试题共得70分,则他答对的题数为( B )
A.18道
B.19道 C.20道 D.21道
6.某工厂的年产值连续增长,去年是前年的1.5倍,今年是去年的2倍,这三 年的总产值是50万元,今年的年产值是__3_0_0___万元.
方式二:顾客不购买会员卡,每次游泳付费25元.
设小亮在一年内来此游泳馆游泳的次数为x次.
(1)请用含x的式子分别表示两种收费方式一年的游泳费用;
解:(1)方式一:(300+15x)元,方式二:25x元.
(2)若小亮一年内来此游泳馆游泳40次,选择哪种方式更省钱?说明理由.
(2)方式一:当x=40时,300+15x=300+15×40=900(元), 方式二:当x=40时,25x=25×40=1000(元), 因为900<1000,所以选择方式一更省钱.
专题卷(三) 有理数、整式与 一元一次方程的实际应用
类型一 有理数的实际应用 1.新华文具用品店最近购进了一批钢笔,进价为每支6元,为了合理定价,在销售
前4天试行机动价格,卖出时每支以10元为标准,超过10元的部分记为正,不足 10元的部分记为负.文具店记录了这四天该钢笔的销售情况,如下表所示:
答:该超市第一次购进甲商品200件、乙商品100件.

初一上期有理数应用题、绝对值、整式习题(教师版)

初一上期有理数应用题、绝对值、整式习题(教师版)

初一有理数应用题卷参考答案与试题解析一.解答题(共30小题)1.某电力检修小组乘汽车从A地出发沿公路检修线路,先向南走了3km到达甲维修点,继续向南走2.5km 到达乙维修点,然后向北走了8.5km到达丙维修点,最后回到A地.(1)以A为原点,以向南方向为正方向,用1cm表示1km,在数轴上表示甲、乙、丙三个维修点的位置.(2)甲、丙两个维修点相距多远?(3)若每千米路程耗油0.2升,问从A地出发到检修结束共耗油多少升?考点:有理数的混合运算;有理数的加法;有理数的减法。

专题:行程问题。

分析:(1)首先,画出数轴,以向南方向为正方向,用1cm表示1km,根据题意标出A地(原点)、甲(+3)、乙(+5.5)、丙(﹣3)三个维修点.(2)甲、丙两个维修点的距离转化为求绝对值.(3)从A地出发到检修结束走的路程包括:A地到甲维修点的距离,甲、乙两维修点的距离,乙、丙两维修点的距离,丙维修点到A地的距离).从A地出发到检修结束共耗油量=每千米路程耗油量×A地出发到检修结束走的路程解答:解:(1)(2)由题意得|(+3)﹣(﹣3)|=6(km)(3)由题意,列代数式”(|3|+|2.5|+|8.5|+|3|)×0.2=3.4(升)点评:本题是一道典型的有理数混合运算的应用题,同学们一定要掌握能够将应用问题转化为有理数的混合运算的能力.如工程问题、行程问题等都是这类.2.小王上周末买进股票1000股,每股25元.下表为本周内每天该股票下午收盘时的涨跌情况(正数表示相对前一天上涨的价格,负数表示相对前一天下跌的价格)星期一二三四五每股涨跌(元)+4 +4.5 ﹣1.5 ﹣2.5 ﹣6(1)星期四收盘时,每股多少元?(2)本周内哪一天股票价格最高?最高是多少元?(3)已知买进股票需付0.15%的手续费,卖出时需付成交金额0.1%的交易税,如果小王在本周星期五收盘前将股票全部卖出,他的收益情况如何?请写出具体过程.考点:有理数的混合运算。

RJ人教版七年级上册第一章《有理数》单元测试习题卷内含答案和解析

RJ人教版七年级上册第一章《有理数》单元测试习题卷内含答案和解析

第一章《有理数》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.-1的绝对值是【】A.1B.0C.-1D.±12.下列说法中,正确的是【】A.一个数的绝对值一定是正数B.任何正数一定大于它的倒数C.-a一定是负数D.0与任何一个数相乘,积一定是03.下面计算中,正确的是【】A.-(-2)2=22B.(-3)2=6C.-34=(-3)4D.(-0.1)2=0.124.下列说法不正确的是【】A.正整数、0、负整数统称为整数B.大于0的数叫正数C.有理数包括正数和负数D.有理数包括整数和分数5.在-(-3),|-3|,-32,(-3)3中,正数有【】A.1个B.2个C.3个D.4个6.若A,B两点在数轴上的位置如图所示,则A,B两点间的距离是【】A.-3B.5C.6D.77.下列数据是近似数的是【】A.王哲林单场拿下25个篮板B.姚明身高约226cmC.朱芳雨在亚俱杯中单节拿下16分D.在NBA联赛中,热火队取得27连胜8.下列各式中正确的是【】A.-4-3=-1B.5-(-5)=0C.10+(-7)=-3D.-5-4-(-4)=-59.若有理数a,b在数轴上的位置如图所示,则下列结论正确的是【】A.ab>0B.ab>0C.a-b>0D.a-b<010.下列说法中正确的是【】A.有最小的有理数B.有最大的负有理数C .有绝对值最小的有理数D .有最小的正数11.已知a 、b 是有理数,它们在数轴上的对应点的位置如图所示:下列选项中,把a 、-a 、b 、-b 按照从小到大的顺序排列正确的是【 】A.-b<-a<a<bB.-a<-b<a<bC.-b<a<-a<bD.-b<b<-a<a12.若一个有理数的偶次方是正数,则这个有理数的奇次方是【 】 A.正数B.负数C.正数或负数D.整数13.下列说法中,正确的是【 】A.近似数2.34和2.340的精确度相同B.近似数89.0精确到个位C.近似数8千和近似数8000的精确度相同D.近似数3.1416精确到万分位14.第六次人口普查的时间是2010年11月1日零时,普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.下列用科学记数法表示这个数正确的为 【 】A.1.33×1010B.1.34×1010 C.1.33×109D.1.34×10915.如图,两个温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这一天的最高气温比最低气温高【 】A.5℃B.7℃C.12℃D.-12℃16.一根1m 长的小木棒,第一次截去它的13,第二次截去余下的13,如此截下去,截完第五次后剩下的小木棒的长度是【 】A.(13)5mB.5113⎡⎤⎛⎫⎢⎥- ⎪⎝⎭⎢⎥⎣⎦mC.(23)5mD.5213⎡⎤⎛⎫⎢⎥- ⎪⎝⎭⎢⎥⎣⎦m第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上) 17.有理数-15的倒数是 . 18.一个点从数轴的原点开始,先向右移动5个单位长度,再向左移动8个单位长度,则到达的终点所对应的数是_____________.19.定义新运算“×”:对任意有理数a 、b ,都有a × b=a2-b ,例如:3×2-2=7,那么2 × 1=____________. 20.数轴上,如果点A 对应的数为-78,点B 对应的数为-76,那么离原点较近的点为____________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)计算:(1)(-5)×(-7)-5×(-6);(2)(-12)÷4×(-6)÷2;(3)(-58)×(-4)2-0.25×(-5)×(-4)3.22.(本小题满分10分)列式计算:(1)-4、-5、+7三个数的和比这三个数的绝对值的和小多少?(2)从-1中减去-512、78、-34的和,所得的差是多少?23.(本小题满分10分)把下列各数在数轴上表示出来,并且用“>”号把它们连接起来:-3,-(-4),0,|-2.5|,-11 224.(本小题满分11分)给出依次排列的下列数:-1,2,-4,8,-16,32,….(1)按照给出的这几个数的某种规律,继续写出接下来的3个数;(2)这一列数中第n个数是什么?25.(本小题满分12分)某医院的急诊病房收治了一位急诊病人,护士需要每隔两小时为病人量一次体温(正常人的体温是36.5℃).(1)试完成下表:(2)在8时到22时,该病人哪个时刻体温最低?比最高体温低多少?26.(本小题满分14分)有A、B、C、D四种装置,将一个数输入一种装置后会输出另一个数.装置A:将输入的数加上5;装置B:将输入的数除以2;装置C:将输入的数减去4;装置D:将输入的数乘以3.这些装置可以连接,如装置A后面连接装置B就写成A·B,输入1后,经过A·B,输出3.(1)输入9,经过A·B·C·D,输出几?(2)若经过B·D·A·C,输出的是100,则输入的是多少?第二章《整式的加减》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在式子0,2a,3,,52a b xa y-+中,单项式共有【】A.2个B.3个C.4个D.5个2.单项式-3πxy2z3的系数和次数分别是【】A.-π,5B.-1,6C.-3π,6D.-3,73.多项式1+2xy-3xy2的次数及最高次项的系数分别是【】A.3,-3B.2,-3C.5,-3D.2,34.多项式12x|m|-(m-2)x+7是关于x的二次三项式,则m的值是【】A.2B.-2C.2或-2D.35.计算-2x2+3x2的结果为【】A.-5x2B.5x2C.-x2D.x26.下列叙述正确的是【】A.-273a b的系数是-7B.xy的系数为0C.a+b+c+d是四项式D.“a与b的平方差”列整式为(a-b)27.下列各组中的两个单项式能合并的是【】A.4和4xB.3x2y3和-y2x3C.2ab2和10ab2cD.y和2 3y8.减去-12x后,等于4x2-3x-5的整式是【】A.4x2-52x-5 B.-4x2+52x+5C.4x2-72x-5 D.-4x2+72x-59.下列去括号错误的是【】A.3x2-(x-2y+5z)=3x2-x+2y-5zB.5a2+(-3a-b)-(2c-d)=5a2-3a-b-2c+dC.3x2-3(x+6)=3x2-3x+6D.-(x-2y)-(-x2+y2)=x2-y2-x+2y10.下列各组式子:①a-b与-a-b;②a+b与-a-b;③a+1与1-a;④-a+b与a-b.其中互为相反数的是【】A.②④B.①②④C.①③④D.③④11.当x的值分别取2和-2时,多项式2x4的值【】A.互为相反数B.互为倒数C.相等D.异号且绝对值不相等12.下列各组单项式中,是同类项的为【】A.-2x2y与2yx2B.5x2y与-5xy2C.22与x2D.2πR与πR213.一块长方形园地的长是a,宽是b,园地中除一个直径为5的圆形水池外都是绿地,则绿地面积是【】A.ab-25πB.ab+6.25πB.C.ab+25π D.ab-6.25π14.多项式(xyz2+4xy-1)+(-3xy+z2yx-3)-(2xyz2+xy)的值【】A .与x ,y ,z 的大小都无关B .与x ,y 的大小有关,与z 的大小无关C .与x 的大小有关,而与y ,z 的大小无关D .与x ,y ,z 的大小都有关15.若M=4x 2-5x+11,N=3x 2-5x+10,则M 与N 的大小关系是 【 】A.M >NB.M=NC.M <ND.无法确定16.对于有理数a 、b ,定义a ※b=3a+2b ,则式子[]x y x y 2x +-()※()※化简后得 【 】A.15x-6yB.8x+3yC.8x-3yD.19x+3y第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上) 17.单项式-3πxy 2的系数是 ,次数是 . 18.已知单项式3a mb 2与-ab n+3的和是单项式,那么m-n= . 19.当k= 时,式子x 3-kxy 2-4x 2+15xy 2+10中不含xy 2项. 20.如图是某花圃摆放的一组花盆图案(“○”代表红花花盆,“×”代表黄花花盆).观察图形并探索:在第n 个图案中,红花和黄花的盆数分别是 .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分) 化简:(1)(2xy-y )-(-y+yx ); (2)2223x7y 24x y 2x ⎡⎤----⎣⎦().22.(本小题满分10分)(1)当n 为何值时,多项式2x 3y 2n+4-3x 2y 5+14x 3y 3是八次多项式? (2)化简求值:x-3(x-14y 2)+(-x+14y 2),其中x=-2,y=-13.23.(本小题满分10分)化简后再求值:520+2(-3y 3z-2x )-4(-x-23y 3z ),其中x 、y 、z 满足下列方程●●●.圆点部分是被周亮不小心用墨水污染的条件,可是汤灿同学却认为不要那部分条件也能求出正确答案,你同意汤灿同学的说法吗?请你通过计算解释原因.(1)你的判断是(填“同意”或“不同意”). (2)原因:24.(本小题满分11分)若一个三位数的百位数字是a-b+c ,十位数字是b-c+a ,个位数字是c-a+b. (1)列出这个三位数的式子,并简化. (2)当a=2,b=5,c=4时,求出这个三位数. 25.(本小题满分12分)有一列单列式:-x ,2x 2,-3x 3,4x 4,…,-19x 19,20x 20,…. (1)你能说出它们的规律是什么吗? (2)写出第2014个单项式;(3)写出第n 个、第(n+1)个单项式. 26.(本小题满分14分)某农户2012年承包荒山若干亩,投资7800元改造后,种果树2000棵,今年水果总产量为18000kg ,此水果在市场上每千克售a 元,在果园每千克售b 元(b<a ).该农户将水果拉到市场出售,平均每天出售1000kg ,需8位工人,每位工人每天付工资50元.(1)分别用含a ,b 的式子表示两种方式出售水果的纯收入(注:纯收入=收入-支出);(2)若a=1.5,b=1,且两种出售水果方式都在相同时间内售完全部水果,请你通过计算说明,选择哪种出售方式较好.期中复习达标检测 第Ⅰ卷选择题 (共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列说法中错误的是 【 】A.0的相反数是0B.正数和负数统称为有理数C.0既不是正数,也不是负数D.0的绝对值是02.南海资源丰富,其面积约为350万km 2,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为【 】A.0.35×108B.3.5×107C.3.5×106D.35×1053.下列说法:①x 和0都是单项式;②多项式-5a 2b+9a 2b 3c-7ab 2+1的次数是5;③单项式-234m n 的系数是-3;④-3x 3+8xy 2-2y 3可读作-3x 3,8xy 2,-2y 3的和.其中正确的说法有 【 】 A.1个B.2个C.3个D.4个4.下列各组中的两个多项式,不是同类项的是【 】A.3m 2n 与-14nm2 B.-1与20142C.abc 与-9abcD.-25x 3y 2与-25x 2y 35.一运动员某次跳水的最高点离跳台2m ,记作+2m ,则水面离跳台10m 可以记作 【 】 A.-10mB.-12mC.+10mD.+12m 6.下列运算正确的是【 】A.(-2)3=8B.-22=4C.(-12)3=-18D.(-2)3=-6 7.下列去括号正确的是【 】A.12x-(a+b-c )=12x-a+b-c B.13a-(12a-a )=13a-12a+a C.m-(n+3m-13n )=m-n+3m+113nD.-[]x y a -+-()=-x+y+a 8.如图,数轴上的A ,B ,C 三点所表示的数分别为a ,b ,c ,其中AB=BC.如果|a|>|c|>|b|,那么该数轴的原点O 的位置应该在【 】A.点A 的左边B.点A 与点B 之间C.点B 与点C 之间D.点C 的右边9.如果单项式-x a+1y 3与12y b x 2是同类项,那么a ,b 的值分别为【 】A.a=2,b=3B.a=1,b=2C.a=1,b=3D.a=2,b=2 10.若m-n=-1,则(m-n )2-2m+2n 的值是【 】 A.3B.2C.1D.-111.已知a 是正数,b 是负数,且|b|>|a|,用数轴上的点来表示a ,b ,则下列正确的是【 】12.规定一种新运算“※”,若a ,b 是有理数,则a ※b=3a-2b ,则2※(-5)= 【 】A.-4B.4C.-16D.1613.若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,则m 2-cd+a bm+的值为【 】A.-3B.3C.-5D.3或-514.若|m-3|+(n+2)2=0,则m+2n 的值为【 】A.-4B.-1C.0D.415.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则下列大小关系中正确的是 【 】A.a >b >cB.b >c >aC.b >a >cD.c >a >b 16.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%.那么顾客到哪家超市购买这种商品更合算【 】A .甲B .乙C .丙D .一样第Ⅱ卷非选择题 (共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.比较大小:-(-5) |-5|,|-0.1| |0.01|.18.小亮按图中所示的程序输入一个数x 等于10,最后输出的结果为 .19.一组单项式为:2x,4x 2,8x 3,16x 4,…,观察其规律,推断第n 个单项式应为.20.如图是小明家的楼梯示意图,其水平距离(AB 的长度)为(2a+b )m , 一只蚂蚁从A 点沿着楼梯边缘爬到C 点,共爬了(3a-b )m ,问小明家楼 梯的竖直高度(BC 的长度)为 m.(提示:蚂蚁爬行的总长度为AB 与 BC 的长度和)三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分9分) 计算: (1)-14-16×223⎡⎤--⎣⎦();(2)24×(16-34-58)+(-13)2÷(-172);(3)-13(9a-3)+2(a+1). 22.(本小题满分10分)若关于x ,y 的整式(ax 2+2xy-3y 3+1)-(4x 2+y 3-bxy -8)的值与x 的取值无关,求整式9(a-b )-[]8ab 3a b --()-4[]a b 5ab --()的值. 23.(本小题满分10分)已知表示数a 的点距离原点3个单位长度,且在原点的左边,表示数b 的点距离原点32个单位长度,且在原点的右边,求2a 2b-[]2ab22a2b 2ab2-+()的值.24.(本小题满分11分)有理数a ,b ,c 在数轴上的对应点分别为A ,B ,C ,其位置如图所示. (1)请结合图,用“<”或“>”填空: c+b 0;a-c 0;b+a 0.(2)试去掉绝对值符号并合并同类项:|c|-|c+b|+|a-c|+|b+a|.25.(本小题满分12分)两摞规格相同的数学课本整齐地叠放在课桌面上,请根据图中所给的数据信息,解答下列问题: (1)若课本数为m (本),请写出整齐叠放在桌面上的数学课本距离地面的高度(用含m 的整式表示); (2)现课桌上有56本与题(1)中规格相同的数学课本,整齐叠放成一摞,若从中取出14本,求余下的数学课本距离地面的高度.26.(本小题满分14分) 阅读下列材料:1×2=13×(1×2×3-0×1×2); 2×3=13×(2×3×4-1×2×3);3×4=13×(3×4×5-2×3×4).由以上三个等式相加,可得1×2+2×3+3×4=13×3×4×5=20. 读完以上材料,请你计算下列各题:(1)1×2+2×3+3×4+…+10×11(写出过程); (2)1×2+2×3+3×4+…+n ×(n+1)= .第三章《一元二次方程》达标检测第Ⅰ卷选择题 (共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列方程是一元一次方程的是 【 】A.x 2-x-2=0 B.3x+2y+1=0 C.2+3=5D.2x-3=2x 2.下列说法中,错误的是【 】A.若a=b ,则b=aB.若a=b ,则7a=7bC.若a=b ,则a+10=b+10D.若a=b ,则a b m m3.马小虎解的下列四个方程,你认为正确的是【 】A.x-2x=3的解为x=3B.5y-3y=1的解为y=2C.x-12x=1的解为x=2 D.7y-2y=1-6的解为y=1 4.把方程12x=1变形为x=2,其依据是【 】A.等式的性质1B.等式的性质2C.分数的基本性质D.以上均不正确5.已知x=2是方程ax+3bx+6=0的解,则3a+9b-5的值是【】A.15B.12C.-13D.-146.解方程322323x x++-=1时,去分母后,正确的结果是【】A.9x+6-4x+3=1B.9x+6-4x-6=1C.9x+6-4x-6=6D.9x+2-4x+3=67.若代数式5x-7与代数式4x+9的值相等,则x的值等于【】A.2B.16C.29D.1698.已知x=y,则下列各式中:x-3=y-3,3x=3y,-2x=-2y,yx=1,正确的有【】A.1个B.2个C.3个D.4个9.在下列方程中,解是x=-1的是【】A.2x+1=1B.2-2x=2014C.x=1D.13 32x x+--=210.将方程3x-5=2x-4变形,得3x-2x=-4+5,那么变形的依据是【】A.合并同类项法则B.乘法分配律C.等式的性质1D.等式的性质211.当x=2时,整式ax-2x的值为4,当x=-2时,这个整式的值为【】A.-8B.-4C.-2D.812.如图,天平中的物体a,b,c使天平处于平衡状态,则物体a与物体c的重量关系是【】A.2a=3cB.4a=9cC.a=2cD.a=c13.如图是超市中某品牌洗发露的价格标签,一服务员不小心将墨水滴在标签上,使得原价看不清楚,请你帮忙算一算,该洗发露的原价为【】A.22元B.23元C.24元D.26元14.小郑的年龄比妈妈小28岁,今年妈妈的年龄正好是小郑的5倍,小郑今年的年龄是【】A.7岁B.8岁C.9岁D.10岁15.已知关于x的方程(k-2)x|k|-1+5=3k是一元一次方程,则k的值是【】A.±2B.2C.-2D.±116.某地水费收费标准如下:用水每月不超过6m3,按0.8元/m3收费;如果超过6m3,超过部分按1.2元/m3收费.已知某用户某月的水费平均为0.88元/m3,那么该用户这个月应交水费为【】A.6.6元 B.6元 C.7.8元 D.7.2元第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.如果3x2a-1+5=6是关于x的一元一次方程,那么a= .18.有一个密码系统,其原理如下面的框图所示.当输出的值为10时,则输入的x= .19.在还没有出现字母以前,我们的祖先常用一些符号来表示方程中的未知数.现有一个方程:3× +5×=32,那么的值为 .20.有两桶水,甲桶有水180L,乙桶有水150L,要使甲桶水的体积是乙桶水的体积的两倍,则应由乙桶向甲桶倒 L水.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)解方程:(1)43-8x=3-112x;(2)12313 37x x-+=-(3)设y1=15x+1,y2=214x+,当x为何值时,y1与y2互为相反数呢?22.(本小题满分10分)数学迷小虎在解方程21134y y a-+=-去分母时,方程右边的-1漏乘了分母的最小公倍数12,因而求得方程的解为y=3,请你帮助小虎同学求出a的值,并正确求出原方程的解.23.(本小题满分10分)足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场得0分.在2013年的中国足球超级联赛中,广州恒大战绩出色,在前29场比赛中,只输了一场,积74分排名榜首.请问这支球队胜了多少场?平了多少场?24.(本小题满分11分)七年级(2)班一个综合实践活动组去某停车场调查停车情况,下面是三位同学的谈话.你知道小型车停了几辆吗?中型车呢?25.(本小题满分12分)如图,用一根质地均匀长30cm的直尺和一些相同棋子做实验.已知支点到直尺左右两端的距离分别为a,b,通过实验可得如下结论:若左端棋子数×a=右端棋子数×b,则直尺就能平衡.现在已知a=10cm,并且左端放了4枚棋子,那么右端需放几枚棋子,直尺才能平衡?26.(本小题满分14分)一天,熊妈妈出门办事,临走吩咐小熊替它照看水果店.喜欢贪小便宜的小狐狸来买水果.它挑选了总共8kg 的鸭梨和葡萄,每千克鸭梨卖3元,每千克葡萄卖5元.在算账的时候,粗心的小熊把鸭梨和葡萄的价格搞错了,以鸭梨每千克5元、葡萄每千克3元的价格卖了28元.小狐狸付完钱后乐滋滋的走了.请聪明的你算一算,价格弄错后,小熊损失了多少钱?第四章《几何图形初步》达标检测第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.右图中的物体的形状类似于【】A.棱柱B.圆柱C.圆锥D.球2.按下列语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,则下列图中,符合题意的是【】3.55°角的余角的度数是【】A.55°B.45°C.35°D.125°4.若某测绘装置上一枚指针原来指向南偏西50°,把这枚指针按逆时针方向旋转14周角后,此时指针的指向是【】A.东南方向 B.北偏西40°C.南偏东50°D.南偏东40°5.如图,将平面图形绕轴旋转一周,得到的几何体是【】6.下列说法中,错误的是【】A.棱柱侧面的形状不可能是三角形B.夹角就是一条直线C.圆是平面图形D.角的两边不能用刻度尺度量7.下列单位换算中,错误的是【】A.(32)°=90' B.0.025°=90"----------------------------------------------C.125.45°=125°45'D.1000"=(518)°8.若∠A的补角是∠C,∠C又是∠B的余角,则∠A一定是【】A.锐角B.钝角C.直角D.无法确定9.如图,桌上放着一摞书和一个茶杯,则从正面看书和茶杯得到的平面图形是【】10.如图,是一个正方体的展开图,则图中“加”字所在面的对面所标的字是【】A.我B.的C.同D.学11.2012年12月26日京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制车票【】A.6种B.12种C.15种D.30种12.如图,C是线段AB上一点,M是线段AC的中点,若AB=8cm,BC=2cm,则MC的长是【】A.2cmB.3cmC.4cmD.6cm13.永州境内的潇水河畔有朝阳岩、柳子庙和迥龙塔等三个名胜古迹(如图).其中柳子庙坐落在潇水之西的柳子街上,始建于1056年,是永州人民为纪念唐宋八大家之一的柳宗元而筑建.现有三位游客分别参观这三个景点,为了使这三位游客参观完景点后步行返回旅游车上所走的路程总和最短.那么旅游车等候这三位游客的最佳地点应在【】A.朝阳岩B.柳子庙C.迥龙塔D.朝阳岩和迥龙塔这段路程的中间位置14.如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于【】A.35°B.70°C.110°D.145°15.如图,点A、B、C顺次在直线l上,点M是线段AC的中点,点N是线段BC的中点.若想求出MN的长度,那么只需条件【】A.AB=12B.BC=4C.AM=5=216.如图,直线AB,CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是【】A.40°B.50°C.80°D.100°第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.已知平面内的四个点A、B、C、D,过其中两点画直线,如果最多可以画m条,最少可以画n条,那么m+n 的值为_____________.18.如图,延长线段AB到点C,使BC=4,若AB=8,则线段AC的长是BC长的________倍.19.把一副三角尺按照如图所示的位置旋转,则图①中∠α与∠β的关系是__________,图②中∠α与∠β的关系是_________.20.将一副直角三角尺的直角顶点重合成如图所示的形状,如果∠AOD=120°,那么∠BOC的度数为___________.三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,是由几个相同的小正方体搭成的几何体,请你画出它从正面、左面、上面三个不同方向看到的平面图形.22.(本小题满分10分)计算:(1)48°39´+67°31´;(2)21°17´×4+176°52´÷3.23.(本小题满分10分)(1)一个角的补角加上10°后,等于这个角的余角的3倍,求这个角的度数;(2)把一条长为20cm的线段分成三段,中间的一段长为8cm,问第一段线段的中点到第三段线段的中点的距离等于多少?24.(本小题满分11分)下面是马小虎同学解的一道题.题目:在同一平面内,若∠BOA=70°,∠BOC=15°.求∠AOC的度数.解:根据题意可画出图形如图.因为∠BOA=70°,∠BOC=15°,所以∠AOC=∠BOA-∠BOC=70°-15°=55°.你若是马小虎的数学老师,会给马小虎同学满分吗?若会,请说明理由;若不会,请将马小虎的错误指出,并给出你认为正确的解法.25.(本小题满分12分)读题、画图、计算并作答.画线段AB=3cm,在线段AB上取一点K,使AK=BK,在线段AB的延长线上取一点C,使AC=3BC,在线段BA的延长线上取一点D,使AD=12AB.(1)求线段BC、DC的长;(2)点K是哪些线段的中点?26.(本小题满分14分)如图①,已知点O在直线BF上,∠BOD-∠BOC=90°,∠AOC=∠BOD,射线OM平分∠AOF.(1)∠DOM的度数是多少?(2)将图①中的射线OB沿射线OC折叠得到射线OE,如图②,请你在折叠后的图中找出等于2∠DOM的角.(3)将图①中的射线OF绕点O顺时针旋转得到射线ON,如图③,且∠AON=90°,则在旋转后的图中互补的角共有多少对?期末复习达标检测(一)第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.2的相反数是【】A.12B.-1C.2D.-22.天气预报说:“某地明天的气温是26~34℃”,其具体含义理解错误的是【】A.该地明天最低气温是零上26℃B.该地明天的温差是8℃C.该地明天最高气温是零上34℃D.该地明天的平均气温是零上30℃3.拒绝“餐桌浪费”,刻不容缓.据统计全国每年浪费食物总量约50 000 000 000kg,这个数据用科学记数法表示为【】A.0.5×1011kgB.50×109kgC.5×109kgD.5×1010kg4.下列运算正确的是【】A.-57+27=-(57+27)=-1B.-7-2×(-5)=-9×(-5)=45C.3÷54×45=3÷1=3D.-5÷12+7=-10+7=-35.下列各对单项式中,是同类项的是【】A.-12x3y2与3x3y2 B.-x与yC.3与3aD.3ab2与a2b6.如图,是一个正方体的表面展开图,则原正方体中“梦”字所在的面相对的面上标的字是【】A.大B.伟C.国D.的7.小魏同学利用手中一副三角尺想摆放成∠α与∠β互余,下面四种摆放方式中符合要求的是【】8.“天上的星星有几颗,7后跟上22个0”,这是国际天文学联合大会上宣布的消息,用科学记数法表示宇宙空间星星的颗数为【】A.700×1020 B.7×1023 C.0.7×1025 D.7×10229.已知2x6y2和-13x3m y n是同类项,则3m2-2(m2-n)的值是【】A.8B.4C.-8D.-410.下列各题正确的是【】A.由7x=4x-3移项,得7x-4x=3B.由2(2x-1)-3(x+3)=1去括号,得4x-2-3x-9=1C.由2(2x+1)=x+7去括号、移项、合并同类项,得x=5D.由23132x x x--=+去分母,得2(2x-1)=1+3(x-3)11.如图,若∠AOB=90°,∠BOC=40°,OD平分∠AOC,则∠BOD的度数是【】A.40°B.60°C.30°D.25°12.多项式2mx2-x2+3x+1与x2-4y2+3x+5的差不含有x的二次项,则(m-2)2014的值为【】A.0B.1C.2D.201413.如图,数轴上A、B两点分别对应有理数a、b,则下列结论中,正确的是【】A.a+b>0B.ab>0C.a-b>0D.|a|-|b|>014.线段AB被分为2∶3∶4三部分,已知第一部分和第三部分的中间点的距离是5.4cm,则线段AB的长应为【】A.8.1cmB.9.1cmC.10.8cmD.7.4cm15.中央电视台《墙来了》是大众非常喜爱的一个娱乐节目.红队的“终极墙”有一道这样的题:“已知式子x+2y的值是3,则式子2x+4y+1的值是 .”假如你是红队其中的一员,你认为应选择下列哪个答案就不会掉下水里. 【】A.1B.4C.7D.不能确定16.在长方形ABCD中放入六个长、宽都相同的小长方形,所标尺寸如图所示,求小长方形的宽AE.若设AE=xc m,依题意可得方程【】A.6+2x=14-3xB.6+2x=x+(14-3x)C.14-3x=6D.6+2x=14-x第Ⅱ卷非选择题(共78分)二、填空题(本大题共4个小题,每小题3分,共12分.把答案填在题中横线上)17.-1.5的倒数是,绝对值是 .18.比较大小:-57-79(填“>”“<”或“=”).19.若关于x的方程13x=5-k的解是x=-3,则k= .20.在有理数的原有运算法则中,我们补充新运算法则“*”如下:当a≥b时,a*b=a2;当a<b时,a*b=a.则当x=-2时,(-12*x)·x2-[]3*x-()=.(“·”和“-”仍为有理数运算中的乘号和减号)三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)计算:(1)(-4)2×(-34)+30÷(-6);(2)(-1)3×(-5)÷2325⎡⎤-+⨯-⎣⎦()().22.(本小题满分10分)解方程:(1)4(x-1)=1-x;(2)1231 23x x+--=23.(本小题满分10分)已知|x+3|+(y-13)2=0,试求式子2(3xy+4x2)-3(xy+4x2)的值.24.(本小题满分11分)一个体服装店老板以每件60元的价格购进50件童装,针对不同的顾客,50件童装的售价不完全相同.若以80元为标准,将超过的钱数记为正,不足的钱数记为负,则记录的结果如下表:请你求出该服装店在售完这50件童装后,赚了多少钱?25.(本小题满分12分)如图,OC、OE分别是∠AOD、∠BOD的平分线,且∠BOD=72°,求∠COD、∠DOE、∠COE的度数并比较大小.26.(本小题满分14分)某公园门票价格规定如下表所示:某中学七(1)、(2)两个班共104人去游公园,其中(1)班人数较少,不足50人.经估算,如果两个班都以班为单位购票,那么一共应付1240元,问:(1)如果两班联合起来,作为一个团体购票,那么省多少钱?(2)两班各有多少学生?(3)如果七(1)班单独组织去游公园,作为组织者的你将如何购票才最省钱(只说方案,不必说明理由)?期末复习达标检测(二)第Ⅰ卷选择题(共42分)一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.根据搜狐视频官方数据显示,第五集《中国好声音》节目在播出后48h内,在搜狐视频平台创造了2.01亿次播放量记录.2.01亿用科学记数法表示为【】A.2.01×104 B.20.1×107C.2.01×108D.0.201×1092.鲜艳欲滴的水果是人们的最爱,观察图中的三幅图片,则与所示食物相类似的立体图形按从左到右的顺序依次是【】A.球、圆锥、圆柱B.球、棱柱、棱锥C.圆柱、圆锥、球D.球、圆柱、圆锥3.下列说法中,正确的是【】A.8πx4的系数是8B.-ab2的系数是-1,次数是3C.-225x y的系数是-2D.3不是单项式4.如图,下列说法中,错误的是【】A.直线OB与直线AB是同一条直线B.点O在射线BA的延长线上C.射线OB和射线OA是同一条射线D.点O在直线AB上5.某书中有这样一道方程:23x+⊗+1=x,其中⊗处印刷时被墨迹盖住了,查看后面答案,知这道题的解为x=-2.5,那么⊗处的数为【】A.-2.5B.2C.3.5D.56.已知∠A=65°,则∠A的补角等于【】A.125°B.105°C.115°D.95°7.下列说法中,正确的是【】A.x的指数是0B.-2ab的系数是-2C.单项式-235x y的系数是35,次数是2D.-3x2y+4x2y2-y-1是三次四项式8.以下各图均由彼此连接的6个小正方形纸片组成,其中不能折叠成一个正方体的是【】9.如图,将三个相同的正方形的一个顶点重合放置,那么∠1的度数为【】A.30°B.40°C.20°D.45°10.若n-m=-1,则(m-n)3-3n+3m的值是【】A.4B.3C.2D.-411.平面内不同的两点确定一条直线,不同的三点最多确定三条直线.若平面内的不同的n个点最多可确定15条直线,则n的值为【】A.4B.5C.6D.712.小龙和小刚两人玩“打弹珠”游戏,小龙对小刚说:“把你珠子的一半给我,我就有十颗珠子”.小刚却说:“只要把你的13给我,我也有10颗珠子”,那么小刚的弹珠颗数是【】A.3B.4C.6D.813.若|x|=3,|y|=2,且xy<0,则x+y的值是【】A.5或-5B.1或-1C.5或-1D.-5或114.如图,已知∠BOC=55°,∠AOC=∠BOD=90°.则∠AOD的度数为【】A.35°B.45°C.55°D.65°15.如图,淇淇和嘉嘉做数学游戏:假设嘉嘉抽到牌的点数为x,淇淇猜中的结果应为y,则y的值为【】A.2B.3C.6D.x+316.元旦当天,6位朋友均匀地围坐在圆桌旁共度佳节.如图,圆桌半径为60cm,每人离圆桌的距离均为10cm,现又来了两位客人,每人向后挪动了相同的距离,再左右。

临猗县三中七年级数学上册 第二章 有理数及其运算 12 用计算器进行运算教案 北师大版

临猗县三中七年级数学上册 第二章 有理数及其运算 12 用计算器进行运算教案 北师大版

12 用计算器进行运算1.了解计算器的按键功能,会使用计算器进行有理数的加、减、乘、除、乘方的混合运算.2.能运用计算器进行实际问题的复杂运算.重点会使用计算器进行有理数的混合运算.难点能运用计算器进行实际问题的复杂运算.一、情境导入教师:同学们,大家都去过超市吧?超市每天都有很多顾客,特别是到了节假日,那更是人山人海.当顾客推着满满一车物品去付款时,营业员总是能在很短的时间内告诉他应该付多少钱,为什么营业员会算得那么快呢?学生:因为是用计算器计算的.教师:你知道在我们日常生活中还有哪些地方用到了计算器吗?学生:在菜场买菜时;在书店买书结账时用到了计算器;工人在拿工资时也用到过计算器……教师:今天这节课我们就一起来学习“用计算器进行运算”.(板书课题)二、探究新知1.认识计算器教师:你了解计算器吗?假如你是一位计算器的推销员,你打算怎样向大家介绍你手中的这款计算器的构造?(同桌之间相互说一说后再全班交流)学生(边指边说):我的计算器是经过国家质量验证过的.这是显示器,下面是键盘,有数字键,运算符号键和功能键,它们是用三种不同的颜色来表示的……教师:各种不同的计算器的功能和操作方法也不完全相同,因此在使用前一定要先看使用说明书.但对于一些简单的操作,方法还是相同的,像开机按键和关机按键.2.用计算器进行有理数运算教师:大家已经认识了计算器,你是如何用计算器进行计算的呢?现在请把计算器准备好,我们用计算器来算一些题目.(1)课件出示:75+47=24×7.6=62.8-0.95=学生独立完成后指名汇报按键顺序.学生1:75+47我是这样操作的:先按75,再按“+”,再按47,最后按“=”,显示器上就出现了结果,是122.学生2:24×7.6我是这样操作的:先按24,再按“×”再按7.6,再按一下“=”结果就出来了,是182.4.学生3:62.8-0.95我是这样操作的,先按62.8,再按“-”,再按0.95,再按“=”结果是61.85.学生4:62.8-0.95我的操作和他不一样,在按0.95时,我是先按小数点,再按9按5的.教师:是吗?我们按照这种方法一起操作,看看能得到0.95吗?教师:通过计算这三题,我们可以发现,用计算器计算时只要从左往右依次按键就可以了.现在我们要来比一比谁算得最快.(2)课件出示:41.9×(-0.6)= 23×65=1.22= 124= 学生操作完后并汇报答案.教师:通过用计算器计算上面这些题,你有什么体会? 学生:我觉得用计算器计算又对又快. 3.用计算器探索规律教师:计算器还有没有其他的作用呢?下面我们就来一起探索. (1)课件出示: 1 122÷34= 111 222÷334=学生操作完后汇报答案. (2)课件出示:111 111 222 222÷333 334=111 111 111 222 222 222÷333 333 334= 学生独立操作,小组交流. 教师:你遇到什么问题?学生:发现计算器已经不能把这些数显示出来了. 教师:那该怎么办呢?有什么规律呢?(小组合作) 学生1:商中3的个数和被除数中1的个数相同. 学生2:商中3的个数和被除数中2的个数相同. 学生3:商中3的个数和除数的位数相同.学生4:商中3的个数比除数中3的个数多一个. 教师:通过这组练习,你有什么体会? 学生:计算器还可以帮助我们探索规律. (3)课件出示:3+7= 28 042+13 208= 2×5= 172×56=25×4= 25 144÷449= 198+2=学生用计算器计算并汇报答案.教师:通过这些题的计算,你有什么感想?学生:对于一些可以直接看出结果的题如果用计算器计算会比较慢,而对于一些大数目的计算用计算器比较快.教师:因此,在实际应用时我们应该根据需要合理使用计算器,不可过分地依赖计算器来计算.三、案例分析例(课件出示教材第68页例题) 学生独立完成,教师讲评. 四、练习巩固1.教材第69~70“随堂练习”页第1,2题.2.随着世界油价的上涨,新日电动车厂也迎来了销售旺季,利润大幅度增加,6月份的利润额为400万元,7月份提高了20%,8月份比7月份又提高了20%,9月份比8月份多47万,求9月份的利润额是多少元?五、小结1.通过本节课的学习,你有什么收获?2.使用计算器进行运算时需要注意什么?六、课外作业教材第71页习题2.17第1~3题.本节课的内容是使用计算器进行运算.通过日常生活中的现象,导入新课题.在教学过程中,先让学生观察、讨论并介绍自己手中的计算器,然后总结出它们的共同点(计算器的共同按键);再结合具体计算题,观察计算器在计算中每步的结果,让学生学会使用计算器进行运算,最后通过练习,让学生明白在实际应用时应根据需要合理使用计算器,不可过分地依赖计算器来计算.为学生提供足够的时间和空间,使学生在轻松愉快地环境下学习.第2课时有理数的加减混合运算【知识与技能】使学生理解加减法统一成加法的意义,能熟练地进行有理数加减法的混合运算.【过程与方法】通过加减法的相互转化,培养学生的应变能力,口头表达能力及计算能力.【情感态度】敢于面对数学活动中的困难,并获得独立克服困难和运用知识解决问题的成功体验.【教学重点】把加减混合运算理解为加法算式.【教学难点】把省略括号的和的形式直接按有理数加法进行计算.一、情境导入,初步认识竞赛活动比一比,看谁算得快(-20)+(+3)-(-5)-(+7)①(-7)+(+5)+(-4)-(-10)②师:对比上式①,你首先想到将原式如何变形?生:根据有理数的减法法则把减号统一成加号,即原式变为:-20+(+3)+(+5)+(-7)③师:很好,可见在引入相反数后,加减混合运算可以统一为加法运算.用字母可表示成:a+b-c=a+b+(-c).下面,请大家一起来练习计算以上两道题.【教学说明】式③表示的是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号,从而有-20+3+5-7.大家要注意到,虽然加号和括号都省略了,但-20+3+5-7仍表示-20,+3,+5,-7的和,所以这个算式可以读作“负20,正3,正5,负7的和”.当然,按运算意义也可读作“负20加3加5减7”.学生尝试用两种读法读.同桌间互相出式,并读出两种读法.刚才在大家练习的过程中,我们看到有两种典型的处理方法,一是将原式按次序计算;二是将原式换成(-20-7)+(3+5).大家观察比较一下,你看哪种方法更好,为什么?生:第二种过程更简便、合理.因为它运用了有理数加法的交换律、结合律.师:太棒了,在有理数的加法运算中,通常应用加法运算律,可使计算简化,根据刚才过程可见,在有理数加减混合运算统一成加法后,一般应注意运算的合理性,适当运用运算律.大家一起看栏目二中的思考题.二、思考探究,获取新知【教学说明】解题过程由学生口述、教师板演,同时提问每步的根据和目的,并强调书写的规范化,然后由学生小组交流并归纳得出结论.【归纳结论】有理数的加减混合运算的计算有如下几个步骤:1.将减法转化成加法运算;2.省略加号和括号;3.运用加法交换律和结合律,将同号两数相加;4.按有理数加法法则计算.三、典例精析,掌握新知例1比谁算得对,算得快【分析】按照正确的运算法则进行运算.【答案】(1)-1;(2)1;(3)-5050例2银行储蓄所办理了8笔工作业务,取出950元,存进500元,取出800元,存进1200元,存进2500元,取出1025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元?【分析】根据题意把取出记为“-”,存进记为“+”,列出算式进行运算.解:每次存款数记为-950,+500,-800,+1200,+2500,-1025,-200,+400.则总额为:银行存款增加3,且增加了1625元-950+500+(-800)+1200+2500+(-1025)+(-200)+400=1625(元)例3计算:1-3+5-7+9-11+……+97-99【分析】抓住算式的结构规律,可以考虑两两结合.解:原式=(1-3)+(5-7)+(9-11)+……+(97-99)=-50四、运用新知,深化理解1.(1)式子-6-8+10+6-5读作,或读作 .(2)把-a+(+b)-(-c)+(-d)写成省略加号的和的形式为 .(3)若|x-1|+|y+1|=0,则x-y= .(4)运用交换律填空:-8+4-7+6= - + + .2.(1)已知m是6的相反数,n比m的相反数小2,则m+n等于()A.4B.8C.-10D.-2(2)使等式|-5-x|=|-5|+|x|成立的x是()A.任意一个数B.任意一个正数(3)-a+b-c由交换律可得()A.-b+a-cB.b-a-cC.a-+c-bD.-b+a+c(4)a、b两数在数轴上位置如图,设M=a+b,N=-a+b,H=a-b,G=-a-b,则下列各式中正确的是()A.M>N>H>GB.H>M>G>NC.H>M>N>GD.G>H>M>N3.计算题.【教学说明】这4题可由学生独立完成,老师评讲. 【答案】1.(1)负6,负8,正10,正6与负5的和负6减8加10加6减5(2)-a+b+c-d(3)2(4)-8 7 4 62.(1)D(2)D(3)B(4)B3.(1)-1(2)25/24(3)-52 7五、师生互动,课堂小结回顾一下本节课所学内容,你学会了什么?【教学说明】在学生思考回答的过程中将本节的重点知识纳入知识系统.1.布置作业::从教材习题1.3中选取.2.完成练习册中本课时的练习.本课时主要通过学生习题的训练,巩固有理数加法、减法及加减混合运算的法则与技能,教师要认真归纳学生在进行有理数加法、减法运算时常犯的错误,以便本节课教学时针对性指导.训练以学生自主解答为主,教师根据学生所做的解法,及时指出最具代表性的方法给学生指明解题方向.章末复习一、复习导入1.导入课题:同学们,学完本章内容后,你对本章的知识结构和知识要点以及知识运用等方面掌握得怎么样?还有哪些疑点?下面大家一起来走进本章的小结复习课堂,进行查漏补缺,完善本章的知识体系.2.三维目标:(1)知识与技能①能够熟练地解一元一次方程;能够准确找出实际问题中的等量关系,建立方程模型;能够在解决实际问题的过程中,判断一个方程的解的合理性.②能够体会方程是刻画现实世界的有效的数学模型,并在发现问题和解决问题的过程中寻求一种探究建立模型的方法.(2)过程与方法能够从日常生活中发现和提出与方程相关的问题,并尝试从不同的角度寻求解决问题的方法.(3)情感态度敢于面对解方程和建立方程模型过程中的各种困难,并有独立克服困难和运用知识解决问题的成功体验,对学习一元一次方程充满信心.3.学习重、难点:重点:一元一次方程的解法.难点:一元一次方程的应用.二、分层复习1.复习指导:(1)复习内容:教材第110页到第111页的内容.(2)复习时间:5~8分钟.(3)复习方法:阅读课本内容,通过回顾本章的知识展开过程,熟悉本章的知识点及运用.(4)复习参考提纲:①回顾本章知识展开顺序,完成下列填空:②一元一次方程的解法:(填表).③用一元一次方程解决实际问题的基本过程是:这一过程包括设、列、解、检、答等步骤.正确分析问题中的相等关系是列方程的基础和关键.④方程和等式是什么关系?一元一次方程的基本特点是什么?方程一定是等式,等式不一定是方程.只含有一个未知数,未知数的次数都是1,等号两边都是整式.⑤你对本章知识目标还有哪些疑难?请相互交流探讨.2.自主复习:学生可结合复习指导进行复习.3.互助复习:(1)师助生:①明了学情:教师深入课堂巡视了解学生的知识点梳理情况,倾听学生讨论的问题.收集学情信息,以便进行指导.②差异指导:引导学生相互提问来检验知识掌握情况,促进记忆和理解,对重点复习的环节和共性疑点进行点拨引导.(2)生助生:学生之间相互交流解疑.4.强化复习:(1)知识结构图.(2)重要知识点.(3)解一元一次方程的一般步骤.(4)列方程解决实际问题的基本过程.1.复习指导:(1)复习内容:典例分析.(2)复习时间:8分钟.(3)复习方法:按例题的分析引导,积极思考,然后尝试求解.(4)复习参考提纲:例1:已知x=-1是方程ax3+bx-3=2的解,则当x=1时,求代数式ax3+bx-3的值.分析:根据方程解的意义,将x=-1代入方程中,然后比较所求的代数式可求值.解:将x=-1代入方程a(-1)3+b(-1)-3=2,即a+b=-5.当x=1时,原式=a·12+b·1-3=a+b-3=-8.例2:在“五一”期间,小明、小亮等同学随家长一同到某公园游玩,下面是购买门票时,小明与他爸爸的对话(如图)试根据图中信息,解答下列问题:①小明他们一共去了几个成人,几个学生?8个成人,4个学生.②请你帮助小明算一算,用哪种方式购票更省钱?说明理由.分析:a.设成人的人数为x,则学生人数为12-x,根据总共的票价可列出方程:35x+17.5(12-x)=350.b.算一算团体票的最少费用,再比较它与350的大小.解:购买团体票,共需要花费的费用:35×16×0.6=336(元)<350元.答:买团体票便宜.2.自主复习:同学们在自学指导下进行学习,力求独立求解,若有困难,可请教他人或相互协作完成.3.互助复习:(1)师助生:①明了学情:教师深入课堂了解学生的学习进度,遇到的困难和出现的问题.②差异指导:根据学情进行相应指导.(2)生助生:小组内相互交流、研讨,互帮互学.4.强化复习:(1)各小组展示学习成果,得出例题的规范解答.(2)练习:三、评价1.学生的自我评价:谈谈自己在本章复习小结学习中的态度、方法和成效.2.教师对学生的评价:(1)表现性评价:教师从总体和个体两个方面对学生在学习中的态度、学法和成效等进行总结.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时的复习目的是使学生进一步系统掌握方程知识,学会用一元一次方程解决实际问题的基本技能和基本方法,进一步提高综合应用数学知识、灵活地分析和解决问题的能力.要抓住应用问题的基本类型和一般等量关系,利用知识间的联系加强理解,便于实际应用,提高计算能力.一、基础巩固1.(10分)已知4x2n-5+5=0 是关于x 的一元一次方程,则n =3.2.(10分)当x=65时,代数式12x-1 和324x的值互为相反数.3.(10分)某商品的进价是1000元,售价为1500元,由于销售情况不好,商场决定降价出售,但又要保证利润不低于15%,那么商场最多降350元出售此商品.4.(10分)对方程14[43-12(2x -3)]=34x 变形,第一步较好的方法是(A ) A.去分母 B.去括号 C.移项 D.合并同类项5.(10分)为鼓励居民节约用水,对自来水用户按分段计费方式收取水费:若每月用水不超过7立方米,则按每立方米1元收费,若每月用水超过7立方米,则超过部分按每立方米2元收费.如果某用户今年5月缴纳17元水费,那么这户居民今年5月份的用水量为12立方米.二、综合应用7.(20分)小刚和小强从A 、B 两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2 h 两人相遇,相遇时小刚比小强多行进24 km ,相遇后0.5 h 小刚到达B 地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A 地?解:设相遇时小强行进的路程为x km ,小刚行进的路程为(x+24) km ,小强行进的速度为2x km/h ,小刚行进的速度为242x km/h.三、拓展延伸8.(10分)甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出了不同优惠方案:在甲超市累计购买商品超过300元后,超过部分按原价8折优惠;在乙超市累计购买商品超过200元后,超出部分按原价8.5折优惠,若顾客累计购买商品x(x ≥300) 元.(1)用含x 的式子分别表示顾客在甲、乙两家超市的费用.(2)当x为多少时,两家超市费用一样多.(3)当x=500时,选择哪家超市优惠?说明理由.(4)当x=1000时,选择哪家超市优惠?说明理由.解:(1)甲家:300+0.8×(x-300)=0.8x+60乙家:200+0.85(x-200)=0.85x+30 (2)0.8x+60=0.85x+30解得:x=600.(3)选择乙家比较优惠甲:300+0.8×(500-300)=460(元);乙:200+0.85×(500-200)=455(元)∴选乙家.(4)选择甲家比较优惠.甲:300+0.8×(1000-300)=860(元);乙:200+0.85×(1000-200)=880(元)∴选甲家.。

有理数及整式的加减单元总结及练习题

有理数及整式的加减单元总结及练习题

数学要点难点归纳第一章 有理数1.1正数和负数一、定义1.大于0的数叫做正数。

2.在正数前面加上负号“-”的数叫做负数。

说明:⑴0既不是正数,也不是负数,0是正数和负数的分界,0的意义已不仅是表示“没有”。

⑵一个数前面的“+”与“-”叫做它的符号。

⑶判断一个数是不是负数,要看是不是在正数的前面加上“-”号,而不能看它是否带有“-”号。

⑷有时根据需要,在正数前面也加上“+”(正号),在一般情况下,正数前面的“+”号省略不写,本书绝大多数的地方,正数都不带正号。

⑸用正负数描述指定方向变化的情况:①向指定方向变化用正数表示;②向指定方向的相反方向变化用负数表示。

二、相反意义的量相反意义的量的要素:⑴表示的意义相反;⑵都具有数量。

1.2有理数一、有理数1.定义整数和分数统称有理数。

说明:⑴正整数、0、负整数统称为整数。

⑵有理数可以写成nm(m,n 是整数,n ≠0)的形式;形如nm (m,n 是整数,n ≠0)的数是有理数;故有理数可以用nm (m,n 是整数,n ≠0)表示。

(分析如下:①正整数、0、正分数可以写成n m(m 是正整数或0,n 是正整数)的形式; ②负整数、负分数可以写成-nm(m ,n 是正整数)的形式;③学习负数的除法后,可以知道有理数可以写成nm(m ,n 是整数,n ≠0)的形式;⑶到目前为止,学过的数(除π外)都是有理数。

2.分类整数:正整数、0、负整数按整数、分数(定义)分类分数:正分数、负分数有理数正有理数:正整数、正分数按正、负性(符号)分类 0负有理数:负整数、负分数二、数轴1.定义规定了原点、正方向和单位长度的直线叫做数轴。

说明:⑴数轴有三要素:原点、正方向和单位长度,三者缺一不可;⑵数轴是直线,可以向两端无限延伸;⑶定义中“规定”是说原点的选取、正方向规定、单位长度大小的确定,都是根据需要规定的。

2.画法⑴画:画一条直线;说明:为了读画方便,通常把直线画成水平或竖直,一般画成水平;⑵标:在直线上适当选取一点为原点,并标上数字0;说明:原点是“任取”一点,通常取适中的位置,如所需的数都是正数,也可以偏向左边;⑶定:确定正方向;说明:通常规定直线上原点向右(或上)为正方向,用箭头表示出来(箭头标在画线部分的最右端),不要画成射线或线段。

有理数、整式的加减综合习题

有理数、整式的加减综合习题

第一章 有理数测试题(考试时间:90分钟,总分:100分)一、选择题.(每小题3分,共30分)1.下列说法错误的是( D )A.-3.1是负小数。

B.+5可写作5。

C.自然数一定是整数。

D.-a 一定是负数。

2.在数轴上-3与3之间的有理数有( D )个A.4B.5C.6D.无数。

3.-5的相反数是( A ) A.5 B.-5 C.51 D.-51 4.1-2+3-4+5-6…+49-50=( C )A.0B.20C.-25D.255.若ab=0,则 DA.a=0B.b=0C.a=0且b=0D.a=0或b=06.一个数的绝对值是3,这个数是( C )A.3B.-3C.3或-3D.无法判断7.()4(422=-+- A )A.0B.32C.16D.-168.据统计,全国每小时约有510000000吨污水排入江海,用科学计数法表示为( C )吨.A.5.1B.0.51×109C.5.1×108D.5.1×1099.(-0.125)200720088⨯=( C ) A.81 B.- 81 C.-8 D.8 10.两个互为相反数的有理数相乘,积为( D )A.正数B.负数C.零D.负数或零二.填空题。

(每小题2分,共30分)11.高出海平面5000米记作+5000米,那么低于海平面3000米记作 -3000 。

12.写出一个大于-2的有理数是:0 。

13.-(-3)= 3 ,5.7-=7.5 。

14.到原点的距离等于6的数是 -6 。

15.绝对值小于2008的所有整数的和是 0 。

16.若a=30, b=-34, c=-21,则a,b,c 从大到小排列为 A>C>B 。

17.0.301520的有效数字是 0.30152 。

18.若m-(-n)=0,则m 与n 的关系是 相反数 。

19.若│x-1│+(y+2)2=0,则x-y= 3 ;20. 若ab>0,bc<0,则ac 《 0.21.已知a=25,b= -3,则a 99+b 100的末位数字 6 。

初中数学单元测试卷有理数整式练习题含答案

初中数学单元测试卷有理数整式练习题含答案

(2)
5、化简求值:
,其中
五、解答题。根据题目要求解答,并写出解题步骤。(共 5 题,每题 1 分,共 5 分) 1、求代数式的值:2x2﹣3x+ 1,其中 x=3;
2、(每小题 6 分,共 12 分)解方程
(1)解方程:
(2)先化简,再求值:2(5a2-7ab+9b2)-3(14a2-2ab+3b2),其中 a=
5、答案:化简得
,.
(3)
B.
,故原选项错误;
C.
,该选项正确;
D.
,错误.
故选 C.
考点:合并同类项.
8、答案:A.试题分析:A、x3?x2=x5,故本选项正确; B、(x3)3=x9,故本选项错误; C、x5+x5=2x5,故本选项错误; D、x6-x3≠x3,故本选项错误. 故选 A. 考点:1.合并同类项;2.同度数幂的乘法;3.幂的乘方.
27、下列各式中,运算正确的是(

A.3a-4a+a=0 B.x3 +x3 =2x6 C.5x2 -2xy2 =3xy D.5m-m=4
28、下列计算中,结果正确的是( ▲)
A.2x2+3x3=5x5 B.2x3·3x2=6x6 C.2x3÷x2=2x D.(2x2)3=2x6
29、已知:
,那么
的值为(

3、(5 分) 先化简,再求值:
,其中
4、图 1 是一个长为 2 ,宽为 2 的长方形,沿图中虚线剪开,可分成四块小长方形. (1)求出图 1 的长方形面积;
(2)将四块小长方形拼成一个图 2 的正方形.利用阴影部分面积的不同表示方法,直接写出代数式

)2、(

有理数和整式概念题

有理数和整式概念题

有理数和整式概念题1.下列语句:①不带“-”号的数都是正数;②如果a 是正数,那么-a 一定是负数;③不存在既不是正数也不是负数的数;④0 ℃表示没有温度,其中正确的有____________2.(沈阳中考)0这个数( ) A .是正数 B .是负数 C .是整数 D .不是有理数3.下列说法中,正确的是( ) A .正分数和负分数统称为分数B .0既是整数也是负整数C .正整数、负整数统称为整数D .正数和负数统称为有理数4.对-3.14,下面说法正确的是( ) A .是负数,不是分数 B .是负数,也是分数C .是分数,不是有理数D .不是分数,是有理数5.下列各数:3,-5,-12,0,2,0.97,-0.21,-6,9,23,85,1.其中正数有________,负数有____________,正分数有_______________,负分数有_________________.6.下列说法正确的是( ) A .所有的整数都是正数 B .不是正数的数一定是负数C .0不是最小的有理数D .正有理数包括整数和分数7.关于数轴,下列说法最准确的是( ) A .一条直线 B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线8.下列说法中,正确的是( ) A .一个数的相反数是负数 B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧9.如果一个数的相反数是非负数,那么这个数是____________10.下列判断正确的是( ) A .符号不同的两个数互为相反数B .互为相反数的两个数一定是一正一负 C .相反数等于本身的数只有零D .互为相反数的两个数的符号一定不同11.在有理数中,绝对值等于它本身的数有__________________个12.因为互为相反数的两个数到原点的距离相等,所以到原点的距离为2 016的点有________个,分别是________,即绝对值等于2 016的数是________.13.若|a|+|b|=0,则a =________,b =________.14.下列说法中正确的是( ) A .最小的整数是0 B .有理数分为正数和负数C .如果两个数的绝对值相等,那么这两个数相等D .互为相反数的两个数的绝对值相等15.若|x|=|-2|,则x =________;若|m|=13,且m <0,则m =________. 16.在数轴上,下列说法不正确的是( )A .两个有理数,绝对值大的数离原点远B .两个有理数,其中较大的数在右边C .两个负有理数,其中较大的数离原点近D .两个有理数,其中较大的数离原点远17.若a 、b 为有理数,a >0,b <0,且|a|<|b|,则a 、b 、-a 、-b 的大小关系是____________18.下列结论不正确的是( )A .若a>0,b>0,则a +b>0 B .若a<0,b<0,则a +b<0C .若a>0,b<0,且|a|>|b|,则a +b>0D .若a<0,b>0,且|a|>|b|,则a +b>019.下列说法正确的是( ) A .两个数之差一定小于被减数 B .减去一个负数,差一定大于被减数 C .减去一个正数,差不一定大于被减数 D .0减去任何数,差都是负数20.若两数的乘积为正数,则这两个数一定是( )A .都是正数B .都是负数C .一正一负D .同号21.下列说法正确的是( ) A .负数没有倒数 B .正数的倒数比自身小C .任何有理数都有倒数D .-1的倒数是-122.下列说法正确的是( )A .若ab>0,则a>0,b>0 B .若ab =0,则a =0,b =0C .若ab>0,且a +b>0,则a>0,b>0D .若a 为任意有理数,则a(-a)<023.下列说法,正确的有_____________个①一个数同1相乘,仍得这个数;②一个数同-1相乘,得这个数的相反数;③一个数同0相乘,仍得0;④互为倒数的两个数的积为1.24.有2 016个有理数相乘,如果积为0,那么这2 016个数中( )A .全部为0B .只有一个为0C .至少有一个为0D .有两个互为相反数25.下列说法错误的有______________个①几个不等于零的有理数相乘,其积一定不是零;②几个有理数相乘,只要其中有一个因数是零,其积一定是零;③几个有理数相乘,积的符号由负因数的个数决定;④三个有理数相乘,积为负,则这三个数都是负数.26.若两个数的商为正数,则这两个数( ) A .都为正 B .都为负 C .同号 D .异号27.下列说法正确的是( ) A .零除以任何数都等于零 B .1除以一个数就等于乘这个数的倒数 C .一个不等于零的有理数除以它的相反数等于-1 D .两数相除,商一定小于被除数28.若a 为有理数,且|a|a=-1,则a 为( )A .正数 B .负数 C .非正数 D .非负数 29.一个有理数的平方一定是___________30.一个数的立方等于它本身,这个数是____,一个数的平方等于它本身,则这个数是______31.下列各式书写规范的是( )A .x6 B .3k ÷2 C.12m D .213n 32.下列各式是单项式的有(填序号):____________.①x +12;②abc ;③b 2;④-5ab 2;⑤y +x ;⑥-xy 2;⑦-5;⑧c. 33.(台州中考)单项式2a 的系数是____________34.下列说法正确的是( )A .单项式x 的次数和系数都是0 B .22x 3是五次单项式C .0是单项式D .3x 3y 的次数是335.下列各式中,是四次单项式的为( )A .3abcB .-2πx 2yC .xyz 2D .x 4+y 4+z 436.下列各组单项式中,次数相同的是( )A .3ab 与-4xy 2B .3π与aC .-13x 2y 2与xy D .a 3与xy 2 37.关于单项式-23x 2y 2z ,下列结论正确的是( )A .系数是-2,次数是4B .系数是-2,次数是5C .系数是-2,次数是8D .系数是-23,次数是538.在多项式2x 2-xy 3+18中,次数最高的项是________________39.(佛山中考)多项式1+2xy -3xy 2的次数及最高次项的系数分别是_____,______40.下列式子:a +2b ;a -b 2;13(x 2-y 2);2a;0中,整式的个数是____________ 41.下列说法正确的是( )A .7+1a是多项式 B .3x 2-5x 2y 2-6y 4-2是四次四项式 C .x 6-1的项数和次数都是6 D.a +b 3不是多项式 42.(济宁中考)如果整式x n -2-5x +2是关于x 的三次三项式,那么n 等于________43.一个关于x 的二次三项式,一次项的系数是1,二次项的系数和常数项都是-12,则这个二次三项式为_________.45.下列叙述中,不正确的是( ) A .整式包括单项式和多项式B .-x +y 2+6是多项式,也是整式C .-x +y 2+6的次数是3D .-x +y 2+6是二次三项式46.如果一个多项式是五次多项式,那么它任何一项的次数( )A .都小于5B .都等于5C .都不小于5D .都不大于547.(佛山中考)多项式2a 2b -a 2b -ab 的项数及次数分别是________,______________48.下列各组中是同类项的是( )A .3x 2y 与2xy 2 B.13x 4y 与12yx 4 C .-2a 与0 D.12πa 2bc 3与-3a 2cb 3 49.(张家界中考)若-5x 2y m 与x n y 是同类项,则m +n 的值为______________50.单项式3ab m 与单项式nab 2的和是9ab 2,则m =________,n =________.51.如果多项式x 2-7ab +b 2+kab -1不含ab 项,那么k 的值为____________52.如果2a 2b n +1与-13a mb 3的和仍然是一个单项式,那么mn =________. 53.若代数式mx 2+5y 2-2x 2+3的值与字母x 的取值无关,则m 的值是________.54.若(2x 2+3ax -y)-2(bx 2-3x +2y -1)的值与字母x 的取值无关,则3(a -b)-2(a +b)的值是________.。

2012年潘中701班数学第二次测试(有理数与整式加减)及参考答案

2012年潘中701班数学第二次测试(有理数与整式加减)及参考答案

2012年潘中701班数学第二次测试(有理数与整式加减)一、选择题(每小题4分,共40分)1.(2012)下面的数中,与-3的和为0的是 ……( )A.3B.-3C.31 D.31- 2.(2011)-2,0,2,-3这四个数中最大的是( )A .-1B .0C .1D .23.(2011) 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是( )A .3804.2×103B .380.42×104C .3.842×106D .3.842×1054、(2010)在-1,0,1,2这四个数中,既不是正数也不是负数的是( ) A 、-1 B 、0 C 、1 D 、25、(2009)2(3)-的值是……( )A .9 B.-9 C .6 D .-6 6.(2008)-3的绝对值是…………………………( )A.3B.-3C.13 D. 13- 7.(2012)某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A.(a -10%)(a +15%)万元B. a (1-10%)(1+15%)万元C.(a -10%+15%)万元D. a (1-10%+15%)万元 8.下列各式中,与y x 2是同类项的是( )A .2xyB .2xyC .-y x 2D .223y x 9.计算2a-3(a-b)的结果是( )A .-a -3bB .a-3bC .a+3bD .-a+3b10.下列各题去括号所得结果正确的是( )A .22(2)2x x y z x x y z --+=-++ B .(231)231x x y x x y --+-=+-+C .[]35(1)351x x x x x x ---=--+D .22(1)(2)12x x x x ---=---二、填空题(每小题4分,共20分)11.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。

有理数及整式测试题)

有理数及整式测试题)

有理数及整式测试题一、选择题(下列的四个选项中只有一个是正确的,请选择出最佳选项)1、计算(-6)×(-3)+(-7)的值为()A、-11B、0C、11D、-252、-(-6)的相反数是()A、-6B、0C、6D、1/63、(-2)³为()A、-8B、-6C、6D、84、2的倒数与(-2)的绝对值的和为()A、0B、-4C、2.5D、45、绝对值大于2而不大于4的整数有()A、1个B、2个C、3个D、4个6、有理数在数轴上的位置如图所示,则(), , , ,A、a>b>c>0B、a>c>b>0 a 0 b cC、c>a>b>0D、c>b>0>a7、如果a/b>0,则a与b()A、同为正数B、同为负数C、同号D、异号8、若6a4b3-m与-4a2-n b3互为同类项,则m,n的值为()A、3,0B、0,2C、0,-2D、3,-29、- a - b + c的相反数为()A、a + b + cB、a - b + cC、a + b - cD、c - b – a10、若式子x²+ x-2的值为3,则式子2x²+2x +(-6)的值为()A、2B、3C、4D、5二、填空题11、|-3|-|-5|=_________;12、-6y+2x²y-3+4xy³是_____次______项式,最高项式_________,一次项系数为________;13、已知a与b互为相反数,且|m|=2,则m+a+b=_______;14、化简(a + b)+2(a + b)-4(a + b)结果是_________;15、若-7xy n+1与3x m y是同类项,则m + n=________;三、计算题16、在数轴上标出下列各点。

-6,0,2.5,-3,4,1.517、计算:-7²+2×(-3)²+(-6)÷(-1/3)²18、将多项式5x²+ 4 - 4x²-5x + 6x³+3x -3x²合并同类项19、先化简,再求值-3a²b-2(-a b + a²b -2ab)+a b²-a²b,其中a=2,b=1/2。

有理数和整式加减综合检测(含答案)

有理数和整式加减综合检测(含答案)

有理数和整式加减综合检测一、单选题(共13道,每道7分)1.若,则有理数a在数轴上的对应点应是在( )A.原点的右侧B.原点的左侧C.原点或原点的右侧D.原点或原点的左侧答案:D解题思路:试题难度:三颗星知识点:绝对值法则2.有理数a,b在数轴上的位置如图所示,则化简的结果为( )A.-bB.-2a-bC.-2a+b-2D.-2a-3b答案:C解题思路:试题难度:三颗星知识点:去绝对值3.已知,,且,则( )A. B.或C. D.答案:C解题思路:试题难度:三颗星知识点:绝对值的几何意义4.若,,且,那么a-b的值为( )A.5或17B.5或-17C.-5或17D.-5或-17答案:A解题思路:试题难度:三颗星知识点:绝对值的几何意义5.当x=____时,有最_____值,是_____.( )A.-3,小,6B.-3,大,6C.0,小,0D.-3,大,0答案:A解题思路:试题难度:三颗星知识点:利用绝对值的非负性求最值6.若,则代数式的值为( )A.-2B.C.4D.答案:B解题思路:试题难度:三颗星知识点:整体代入7.观察下列数表:根据数表所反应的规律,第n行第n列交叉点上的数应为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:数表规律8.下列图形都是由相同大小的黑点按一定的规律组成的,其中第1个图形中一共有4个黑点,第2个图形中一共有9个黑点,第3个图形中一共有14个黑点,…,则第10个图形中黑点的个数为( )A.44B.48C.49D.54答案:C解题思路:试题难度:三颗星知识点:图形规律9.如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2015个格子中的数为( )A.3B.2C.0D.-1答案:D解题思路:试题难度:三颗星知识点:循环规律10.计算的结果为( )A.34B.-38C.46D.-11答案:B解题思路:试题难度:三颗星知识点:有理数混合运算11.计算的结果为( )A.-18B.26C.24D.10答案:C解题思路:试题难度:三颗星知识点:有理数混合运算12.已知多项式,,且,则C为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:整式的加减13.化简的结果为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:去括号法则。

有理数 整式复习-学生用卷

有理数 整式复习-学生用卷
③如果一次性购物总额超过 500 元,其中 500 元给予 8 折优惠,超过 500 元的部分
给予 5 折优惠,某人两次购物分别用去 130 元、432 元.
问:(1)此人两次购物的物品的实际价值分别是多少元?
(2)在这次活动中他节省了多少钱?
(3)若此人将两次购买的物品合并起来一次性付款,则他总共只需付款多少元?
A. -1
B. -5
C. 5
第 1 页,共 7 页
D. 1
9.
已知 a,b,c 在数轴上的位置如图所示,化简|a+c|-|a-2b|-|c-2b|的结果是(
A. 0
B. 4b
C. -2a-2c

D. 2a-4b
10. 下列关系式不成立的是()
A.




= − = −
B.



=


3.

B. -3
下列说法正确的是(
C. -5

D. 11

A. 一个有理数不是整数就是分数
B. 正整数和负整数统称为整数
C. 正整数、负整数、正分数、负分数统称为有理数
D. 0 不是有理数
6.
过度包装既浪费资源又污染环境.据测算,如果全国每年减少 10%的过度包装纸用
量,那么可减排二氧化碳 3120000 吨,把数据 3120000 用科学记数法表示为()
29. 一名运动员在练习往返跑,从原点出发前进记为正数,返回记为负数,往返记录(单
位:m):+7,-5,+3,-10,-6,+9,-1.
(1)该名运动员是否回到了出发点?
(2)该名运动员离出发点最远的一次是多少?

数学七年级上册十道有理数计算十道整式加减十道解方程

数学七年级上册十道有理数计算十道整式加减十道解方程

数学七年级上册十道有理数计算十道整式加减十道解方程一、有理数计算:1、若太平洋最深处低于海平面11034米,记作-11034米,则珠穆朗玛峰高出海平面8848米,记作______。

2、+10千米表示王玲同学向南走了10千米,那么-9千米表示_______;0千米表示_____。

3、在月球表面上,白天阳光垂直照射的地方温度高达127℃,夜晚温度可降到-183℃,那么-183℃表示的意义为_______。

4、七(8)班数学兴趣小组在一次数学智力大比拼的竞赛中的平均分数为90分,张红得了85分,记作-5分,则小明同学行92分,可记为____,李聪得90分可记为____,程佳+8分,表示______。

5、有理数中,最小的正整数是____,的负整数是____。

6、数轴上表示正数的点在原点的,原点左边的数表示,____点表示零。

7、数轴上示-5的点离开原点的距离是___个单位长度,数轴上离开原点6个单位长度的点有____个,它们表示的数是____8、在1.5-7.5之间的整数有_____,在-7.5与-1.5之间的整数有_____9、已知下列各数:-23、-3.14、,其中正整数有__________,整数有______,负分数有____ __,分数有_________。

10、把下列各数填在相应的集合内:-23,0.25,-5.18,18,-38,10,+7,0,+12正数集合:{ }整数集合:{ }分数集合:{ }二、整式加减1、苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克____元(用含x的代数式表示).2、在代数式,-3xy3,0,4ab,3x2-4,,n中,单项式有____个.3、若-xm+3y与2x4yn+3是同类项,则(m+n)2017=____.4、若单项式-m2nx-1和5a4b2c的次数相同,则代数式x2-2x+3的值为____.5、已知2a﹣3b=7,则8+6b﹣4a=_____.6、若(x-1)2+4|y-6|=0,则(5x+6y)-(4x+8y)的值为__.7、.小明在求一个多项式减去x2-3x+5的结果时,误认为是加上x2-3x+5,得到的结果是5x2-2x+4,则正确的结果是_______.8、化简:(1)2m-3n+[6m-(3m-n)];(2)(2a2-1+3a)-2(a+1-a2).9、用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求☆3;(2)若2☆x=m,☆3=n(其中x为有理数),试比较m,n的大小.10、合肥百货大楼开展国庆大酬宾活动,某品牌西服每套定价2000元,领带每条定价400元.在开展促销活动期间,向客户提供两种优惠方案:西装和领带都按定价的90%付款;买一套西装送一条领带.现某客户要购买x套西装(x≥1),领带条数比西装套数的4倍多5.(1)若该客户分别按方案、购买,则各需付款多少元?(用含x的代数式表示)(2)若x=10,通过计算说明按哪种方案购买较为合算.三、解方程:1、2x+3=5x-182、2x-1=5x+73、3x-2=5x+64、8x=2x-75、6x-10=12x+96、当m= 时,式子3+m与式子-2m+1的值相等.7、下面的框图表示了解这个方程的流程:其中,“移项”这一步骤的依据是8、关于x的方程是3x-7=11+x的解是。

七年级数学复习有理数与整式

七年级数学复习有理数与整式

复习测试(满分120)一选择题(每题1分)1.某粮店出售的三种品牌的面粉袋上,分别标有质量为(25±0.1)kg、(25±0.2)kg、(25±0.3)kg的字样,从中任意拿出两袋,它们的质量最多相差()A.0.8kg B.0.6kg C.0.5kg D.0.4kg2.飞机上升了-80米,实际上是()A.上升80米B.下降-80米C.先上升80米,再下降80米D.下降80米3.学校、家、书店,依次坐落在一条南北走向的大街上,学校在家的南边20米,书店在家的北边70米,小明同学从家出发,向北走了50米,接着又向南走了-20米,此时小明的位置是()A.在家B.在书店C.在学校D.在家的北边30米处5.若a<b<0<c<d,则以下四个结论中,正确的是()A.a+b+c+d一定是正数B.c+d-a-b可能是负数C.d-c-a-b一定是正数D.c-d-a-b一定是正数7.下列说法正确的是()①在+5与-6之间没有正数②在-1与0之间没有负数③在+5与+6之间有无数个正分数④在-1与0之间没有正分数A.仅④正确 B.仅③正确 C.仅③④正确D.①②④正确8.下列说法中不正确的是()A.零是整数,也是自然数B.有最小的正整数,没有最小的负整数C.-(+3)是负数,也是正数D.一个整数不是奇数,就是偶数9.下列说法错误的是()A.负整数和负分数统称负有理数B.正整数,0,负整数统称为整数C.正有理数与负有理数组成全体有理数D.3.14是小数,也是分数10.下列说法中,正确的是()A.没有最大的正数,但有最大的负数B.有绝对值最小的数,没有绝对值最大的数C.有理数包括正有理数和负有理数D.相反数是本身的数是正数11.如图,数轴上的点P、O、Q、R、S表示某城市一条大街上的五个公交车站点,有一辆公交车距P站点3km,距Q站点0.7km,则这辆公交车的位置在()A.R站点与S站点之间B.P站点与O站点之间C.O站点与Q站点之间D.Q站点与R站点之间12.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动.设该机器人每秒钟前进或后退1步,并且每步的距离是1个单位长,x n表示第n秒时机器人在数轴上的位置所对应的数.给出下列结论:(1)x3=3;(2)x5=1;(3)x108<x104;(4)x2007<x2008;其中,正确结论的序号是()A.(1)、(3)B.(2)、(3)C.(1)、(2)、(3)D.(1)、(2)、(4)13.数轴上表示整数的点称为整点.某数轴的单位长度是1厘米,若在这个数轴上随意画出一条长为2004厘米的线段AB,则线段AB盖住的整点的个数是()A.2002或2003 B.2003或2004 C.2004或2005 D.2005或200614.已知如图:数轴上A,B,C,D四点对应的有理数分别是整数a,b,c,d,且有c-2a=7,则原点应是()A.A点B.B点C.C点D.D点15.已知数轴上A、B两点坐标分别为-3、-6,若在数轴上找一点C,使得A与C的距离为4;找一点D,使得B与D的距离为1,则下列何者不可能为C与D的距离()A.0 B.2 C.4 D.616.如果x<0,y>0,x+y<0,那么下列关系式中正确的是()A.x>y>-y>-x B.-x>y>-y>x C.y>-x>-y>x D.-x>y>x>-y17.如图数在线的O是原点,A、B、C三点所表示的数分别为a、b、c.根据图中各点的位置,下列各数的絶对值的比较何者正确()A.|b|<|c| B.|b|>|c| C.|a|<|b| D.|a|>|c|18.在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求第10个数为何()A.13 B.14 C.16 D.1719.若0<x<1,则x,1/x,x2的大小关系是()A.1/x<x<x2B.x<1/x<x2C.x2<x<1/x D.1/x<x2<x20.对于实数a,b,如果a>0,b<0且|a|<|b|,那么下列等式成立的是()A.a+b=|a|+|b| B.a+b=-(|a|+|b|)C.a+b=-(|a|-|b|)D.a+b=-(|b|-|a|)21.把-1,0,1,2,3这五个数,填入下列方框中,使行、列三个数的和相等,其中错误的是()A.B.C.D.22.下表是某电台本星期的流行歌曲排行榜,其中歌曲J是新上榜的歌曲,箭头“↑”或“↓”分别表示该歌曲相对于上星期名次的变化情况,“↑”表示上升,“↓”表示下降,不标注的则表明名次没有变化,已知每首歌的名次变化都不超过两位,则上星期排在第1,5,7名的歌曲分别是()A.D,E,H B.C,F,I C.C,E,I D.C,F,H23.若x<0,y>0,且|x|>|y|,那么x+y是()A.正数B.负数C.0 D.正、负不能确定24.5个有理数中,若其中任意4个数的和都大于另一个数,那么这5个有理数中()A.最多有4个是0 B.最多有2个是0C.最多有3个是0 D.最多有1个是025.下列判断:①两个有理数相加,它们的和一定大于每一个加数;②一个正数与一个负数相加一定得0;③两个负数的和的绝对值一定等于它们的绝对值的和;④两个正数的和一定是正数.其中正确的个数有()A.4个B.3个C.2个D.1个26.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B .a 1+ a 4+ a 7+ a 3+ a 6+ a 9=2(a 2+ a 5+ a 8)C .a 1+ a 2+ a 3+ a 4+ a 5+ a 6+ a 7+ a 8+ a 9=9a5D .(a 3+ a 6+ a 9)-(a 1+ a 4+ a 7)=(a 2+ a 5+ a 8)27.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( )A .1,2B .1,3C .4,2D .4,328.2012年5月25日有700多位来自全国各地的知名企业家聚首湖北共签约项目投资总额为909260000000元,将909260000000用科学记数法表示为表示(保留3个有效数字),正确的是( )A .909×1010B .9.09×1011C .9.09×1010D .9.0926×101129.任意有理数a ,式子1-|a|,|a+1|,|-a|+a ,|a|+1中,值不能为0的是( )A .1-|a|B .|a+1|C .|-a|+aD .|a|+130.当式子|x-1|+|x-2|+|x-3|+…+|x-1997|取得最小值时,实数x 的值等于( )A .999B .998C .1997D .031.已知x 为实数,且|3x-1|+|4x-1|+|5x-1|+…+|17x-1|的值是一个确定的常数,则这个常数是( )A .5B .10C .15D .7532.若|m-3|+(n+2)2=0,则m+2n 的值为( )A .-4B .-1C .0D .433.若|a-2|与(b+3)2互为相反数,则b a 的值为( )A .-6B .-8C .8D .934.下列说法错误的是( )A .3a+7b 表示3a 与7b 的和B .7x2-5表示x2的7倍与5的差C .1a-1b 表示a 与b 的倒数差D .x2-y2表示x ,y 两数的平方差35.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(a-10%)(a+15%)万元B .a (1-10%)(1+15%)万元C .(a-10%+15%)万元D .a (1-10%+15%)万元36.在代数式,3x 2-2x-3,abc ,0,,π,x+yz ,中,下列结论正确的是( )A .有4个单项式,2个多项式B .有5个单项式,3个多项式C .有7个整式D .有3个单项式,2个多项式37.若-3x 2m y 3与2xy 2n 是同类项,则|m-n|的值是( )y x a+b ab 1 2 b 2A.0 B.1 C.7 D.-1二、填空题(每题2分)1.对点(x,y)的一次操作变换记为P1(x,y),定义其变换法则如下:P1(x,y)=(x+y,x-y);且规定P n(x,y)=P1(P n-1(x,y))(n为大于1的整数).如P1(1,2)=(3,-1),P2(1,2)=P1(P1(1,2))=P1(3,-1)=(2,4),P3(1,2)=P1(P2(1,2))=P1(2,4)=(6,-2).则P2011(1,-1)=2.大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是3.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n为正整数,3+5+7+…+(2n+1)=168,则n=4.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是5.已知x、y是实数,且满足(x+4)2+|y-1|=0,则x+y的值是6.观察下列图形的排列规律(其中▲、■、★分别表示三角形、正方形、五角星).若第一个图形是三角形,则第18个图形是(填图形的名称)▲■★■▲★▲■★■▲★▲…7.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是8.一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的奇数是9.若|a-b|=b-a,且|a|=3,|b|=2,则(a+b)3的值为10.有理数a,b,c在数轴上的位置如图,则化简|a+c|+|b+c|+|c-1|+|a-2c|-|b-c|的结果是11. 若a、b、c为非零的有理数,则|a|/a+b/|b|+|c|/c的值是12.若m=x3-3x2y+2xy2+3y3,n=x3-2x2y+xy2-5y3,则2x3-7x2y+5xy2+14y3的值为13.计算(-3)3+52-(-2)2之值为14.设a为最小的正整数,b是最大的负整数,c是绝对值最小的数,d是倒数等于自身的有理数,则a+b+c+d的值为15.甲,乙,丙三家超市为了促销一种定价均为m 元的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品最划算应到的超市是16..若a ,b ,c 均为整数,且|a-b|2001+|c-a|2000=1,则|a-c|+|c-b|+|b-a|的值为17.已知1+x+x 2+x 3+x 4=0,则多项式1+x+x 2+x 3+…+x 2004的值等于18.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是19.化简5(2x-3)-4(3-2x )之后,可得20.已知A=3a 2+b 2-c 2,B=-2a 2-b 2+3c 2,且A+B+C=0,则C=三、解答题(1到3每题8分,4题9分 第5题10分)1. 阅读材料,解决问题:由31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…, 不难发现3的正整数幂的个位数字以3、9、7、1为一个周期循环出现,由此可以得到: 因为3100=34×25,所以3100的个位数字与34的个位数字相同,应为1;因为32009=34×502+1,所以32009的个位数字与31的个位数字相同,应为3.(1)请你仿照材料,分析求出299的个位数字及999的个位数字;(2)请探索出22010+32010+92010的个位数字;(3)请直接写出92010-22010-32010的个位数字.2. 试求出所有的整数n ,使是整数.3. 图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面-层有一个圆圈,以下各层均比上-层多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n= .如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是多少;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数-23,-22,-21,…,求图4中所有圆圈中各数的绝对值之和.24n 2+15 3n+2 n(n+1)24.如图,是一张面积为630cm2的矩形张贴广告,它的上、下、左、右空白部分的宽度都是2cm.设印刷部分(矩形)的一边为x cm,印刷面积为y cm2.(1)试用x的代数式表示y;(2)若印刷面积为442 cm2时,求张贴广告的长和宽.5.下图的数阵是由全体奇数排成:(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在数阵图中任意作一类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由;(3)这九个数之和能等于1998吗?2005,1017呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.。

有理数、整式加减、一元一次方程经典习题(考试必备)

有理数、整式加减、一元一次方程经典习题(考试必备)

-41+(1-0.5)×31×[2×()23-] ()22--2[()221--3×43]÷51 -27+2×()23-+(-6)÷()231--10+8÷()22--4×3-|-3|÷10-(-15)×3132(6)8(2)(4)5-⨯----⨯13. 199711(10.5)3---⨯2232[3()2]23-⨯-⨯-- (-43)×(8-34-0.4)666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-215[4(10.2)(2)]5---+-⨯÷-23122(3)(1)6293--⨯-÷-25×43+(―25)×21+25×(-41)(-1)3-(1-21)÷3×[3―(―3)2]()42-÷(-8)-()321-×(-22)4)214(2)2(3-3.++--y x y x1)]1([222----x x x-)32(3)32(2a b b a -+-21x -3(2x -32y 2)+(-23x +y 2) 2237(43)2x x x x ⎡⎤----⎣⎦-22225(3)2(7)a b ab a b ab ---3x 2-[5x-2(14x -32)+2x 2] -3(2a +3b )-31(6a -12b ) 3(2)(3)3ab a a b ab -+--+22112()822a ab a ab ab ⎡⎤--+-⎢⎥⎣⎦ )24()215(2222ab ba ab b a +-+- 化简再求值:)3123()21(22122b a b a a ----- 其中 32,2=-=b a .化简再求值:()22463421x y xy xy x y ⎡⎤----+⎣⎦,其中12,2x y ==-已知 1232+-=a a A ,2352+-=a a B ,求B A 32-)5(4)3(2+-=-x x138547=+--x x 421312+-=-x x 6751412-=--y y x 21-10754=如果方程21x a x +=-的解是4x =-,求32a -的值.当x 是多少时,代数式354-x 的值是1-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形初步认识与相交线平行线检测(六)
____班,姓名_______
一、选择题(每题3分,共30分)
1.
,0,+a ,3.14,-10,-1-a 2
中,负数有( )个 A. 1 B. 2 C. 3 D. 4 【poonadtw 】 2.a+b-c 的相反数是( ) 【pothmion 】 A .-a-b-c B.a-b+c C. –a-b+c D.a+b+c
3.下列各式不正确的是( ) 【posiditw 】 A .(-2)100
=2100
B. (-3)101
=-3101
C. (-a)n
=a n
(n 为正整数) D. (-a)
2n+1
=-a
2n+1
(n 为正整数)
4.若a>0,b<0,|a|<|b|,则( ) 【poonadon 】 A. a+b>0 B. a+b<0 C. ab>0 D. a-b<0
5.下列计算正确的是( ) 【pothtion 】 A.若|a|=a,则a 是正数 B.若|a|=-a,则a 是负数 C.若|a|+a=0,则a 是非正数 D.若|a|-a=0,则a 是正数
6.若5a m+7b 4
与-3a 4b 2n
是同类项,则m n
的值是( ) A.9 B.-9 C.16 D.-16 【poonadze 】 7.若2x<0,则|x-|x||=( ) 【posimith 】 A.0 B.2x C.-2x D.-x
8.若|a-2|与(b+3)2
互为相反数,则下列正确的是( ) A.a-b=-1 B.ab=6 【poeiditw 】 C.a+b=-5 D.b a
=9
9.下列各式不正确的是( ) 【posimith 】 A.-24=-16 B. C. D. 10.若|a|=a+2,则a 是( ) 【potemise 】
A. 0
B.1
C. -1
D.2
二、填空题(每题3分,共30分) 11.2+4+6+…+2n=_________ 12.1+3+5+…+2n+3=_________ 13.|x-1|-|x+3|的最大值是________ 14.|x-1|+|x+3|的最小值是________
15.若代数式0.5a 2+a+1的值为2,则2a 2+4a+3的值为__
16.6与x+1的商为整数,则整数x 的值为_____ 17.若mn=-1,m 2n+mn 2=2,则3m 2n+3mn 2+m+n=_______ 18.|a-b|+a-b=________
19.若x<-2,则5-|5-|x-5||=_____________
20. .已知整数a 1,a 2,a 3,a 4,……满足条件:a 1=0,a 2=-|a 1+1| a 3=-|a 2+2|,a 4=-|a 3+3|,….依次类推:a 2n+6=______ 三、解答题
21. (3分)
【potwadze 】 22. 计算: (4分)
【neonovtw 】 23. 化简:5a 2
-[a 2
+(5a 2
-2a)-2(a 2
-3a)]+4a (4分)
【po(a,tw)】
24.有理数a,b,c 大小如图所示 (4分) `
化简:-|2a-b|-3|c-a|+2|b-c|`
7
11- a b c
0 3
4)32(2
-=-
343
2(2
=-9
4)32(2=
-22
1)2(271
324÷⨯-+⨯5
25]}8.051()5([21
4{22÷-⨯----
25. 求下列图中线段的条数
(4分)
26. 求下列图中三角形的个数(5分)
27.求下列图中角的个数.(5分)
28.两条直线相交最多交点个数为a 1,3条直线相交最多交点个数为a 2,4条直线相交最多交点个数为a 3,…,n 条直线相交最多交点个数为a n-1,求a 1,a 2,a 3,a 4及a n 的值.(5分)
29.已知点C 是直线AB 上一点,M 是线段AB 的中点,N 是线段BC 的中线,且AB=a,BC=b,用含a,b 的代数式表示MN.
A
B
C 1
C 2
C 3 C n-1 …
12n-1n
C 1 2n-1C n。

相关文档
最新文档