二次函数在几何图形中的应用

合集下载

几何画板二次函数案例

几何画板二次函数案例

几何画板二次函数案例二次函数在几何画板中的应用非常广泛,下面我将为你提供一个案例,详细解释如何使用二次函数来构建一个几何图形。

案例:构建一个抛物线喷泉喷泉是一种常见的城市景观和装置,它通过一个喷水装置将水以特定的形式喷射出来,形成美丽的水柱。

在这个案例中,我们将使用二次函数来模拟喷泉的形状。

首先,让我们定义一个二次函数来描述喷泉的形状。

假设水柱的高度(h)是和喷射距离(x)相关的,我们可以使用以下二次函数来描述这种关系:h(x) = ax^2 + bx + c其中,a、b、c是需要确定的常数。

喷泉的形状通常是一个开口朝下的抛物线,所以a的值应该小于0。

接下来,我们将确定a、b和c的值。

为了简化问题,我们假设喷泉的最高高度是10米,并且喷射的最远距离是20米。

我们可以选择两个点来确定这个二次函数的值。

假设我们选择喷泉的两个关键点分别是(0,0)和(20,10)。

将这两个点带入二次函数的方程,我们可以得到以下两个方程:0=a*0^2+b*0+c=>c=010=a*20^2+b*20+0=>400a+20b=10通过解这个方程组,我们可以得到a和b的值。

解方程组可以得到a=-0.0125和b=0.25、所以二次函数的方程为:h(x)=-0.0125x^2+0.25x现在,我们可以使用这个二次函数来绘制喷泉的形状。

通过在几何画板上画出一系列点,然后使用平滑曲线连接这些点,我们可以得到整个喷泉的形状。

首先,我们选择几个x的值,例如x=0,2,4,...,20。

然后,我们使用二次函数计算对应的h(x)的值。

最后,在几何画板上画出这些点,并使用平滑曲线连接它们。

通过加入适当的颜色和细节,我们可以使这个几何图形更加真实和立体感。

我们还可以添加其他元素,如水柱顶部的喷雾效果。

通过调整二次函数的参数,我们可以自由地改变喷泉的形状和高度。

这使得几何画板成为优秀的工具,用于设计和模拟各种喷泉的形状,并选择出最佳的设计。

二次函数的地位和作用

二次函数的地位和作用

生物多样性
生物多样性是指地球上所有生物 种类的种数和分布情况,可以用 包含二次函数的模型来描述其变 化趋势。
二次函数在心理学中的应用
二次函数在心理学中有着广泛的应用,例如在学习曲线和人格测验中。
学习曲线
学习新事物的过程可以使用包含二次函数的学习 曲线模型来描述。
人格测验
人格测验经常会涉及到一些包含二次函数的推断 和计算。
二次函数在计算机科学中的应用
二次函数在计算机科学方面有着广泛的应用,例如在图形处理和算法分析中。
1
图形处理
图形处理包括图像变形、平移和缩放等,
算法分析
2
这些变换都可以通过二次函数模型实现。
算法的运行时间经常可以使用可插入的 二次函数来描述,用于算法的分析和比
较。
二次函数在原子物理学中的应用
二次函数在原子物理学中有着广泛的应用,例如在谐振子模型和电离截面方面。
细胞生长
细胞生长可以看作是一种非常复 杂的二次函数过程,它受到许多 不同因素的影响。
二次函数在工程学中的应用
二次函数在工程学方面有着广泛的应用,例如在建筑设计和机械振动分析中。
建筑设计
建筑设计师可以使用二次函数来优化建筑的外观和结构。
机械振动分析
机械工程师可以使用二次函数来描述和分析机械部件的振动。
经济学
二次函数在经济学的各个领域中都有着广泛的应 用,例如在成本分析和供需分析中等。
心理学
二次函数在心理学研究中的应用越来越多,例如 在人格测验和学习曲线研究中的应用等。
二次函数在统计学中的应用
二次函数在统计学中有着广泛的应用,例如在回归分析和数据建模中。
1
回归分析
回归分析是一种常见的统计分析方法,使用包含二次函数的曲线对数据进行建模。

2024中考数学专题 二次函数的应用

2024中考数学专题 二次函数的应用

二次函数的应用(1)利用二次函数解决利润问题在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x 的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x 的取值范围.(2)几何图形中的最值问题几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.(3)构建二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.题型一利润问题..................................................................................................................................1题型二几何问题................................................................................................................................14题型三构造函数解决实际问题.. (21)题型一利润问题1.某商店从厂家以每件21元的价格购进一批商品,该商店可以自行定价.若每件商品售为x 元,则可卖出(350-10x )件商品,那么商品所赚钱y 元与售价x 元的函数关系为()A .2105607350y x x =--+ B .2105607350y x x =-++ C .210350y x x =-+D .2103507350y x x =-+-2.某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式.(2)若商场要每天获得销售利润2000元,销售单价应定为多少元?(3)求销售单价为多少元时,该文具每天的销售利润最大?最大利润是多少?3.某运动器材批发市场销售一种篮球,每个篮球进价为50元,规定每个篮球的售价不低于进价.经市场调查,每月的销售量y(个)与每个篮球的售价x(元)满足一次函数关系,部分数据如下表:售价x606264y500480460销售量(1)求y与x之间的函数关系式;(不需求自变量x的取值范围)(2)该批发市场每月想从这种篮球销售中获利8000元,又想尽量多给客户实惠,应如何给这种篮球定价?(3)物价部门规定,该篮球的每个利润不允许高于进货价的50%,设销售这种篮球每月的总利润为w(元),那么销售单价定为多少元可获得最大利润?最大利润是多少?4.新华书店销售一个系列的儿童书刊,每套进价100元,销售定价为140元,一天可以销售20套.为了扩大销售,增加盈利,减少库存,书店决定采取降价措施.若一套书每降价1元,平均每天可多售出2套.设每套书降价x元时,书店一天可获利润y元.(1)求出y与x的函数关系式;(2)若要书店每天盈利1200元,则每套书销售定价应为多少元?(3)当每套书销售定价为多少元时,书店一天可获得最大利润?这个最大利润为多少元?5.某商场以每件20元的价格购进一种商品,规定这种商品每件售价不高于35元,经市场调查发现:该商品每天的销售量y(件)与每件售价x(元)之间符合一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)设商场销售这种商品每天获利w(元),当每件商品的售价定为多少元时,每天销售利润最大?最大利润是多少?6.某商城在“双11”期间举行促销活动,一种热销商品进货价为每个12元,标价为每个20元.(1)商城举行了“感恩老用户”活动,对于老客户,商城对甲商品连续进行两次降价,每次降价的百分率相同,最后以每个14.45元售出,求每次降价的百分率;(2)市场调研表明:当甲商品每个标价20元时,平均每天能售出40个,当每个售价每降1元时,平均每天就能多售出10个.①在保证甲每个商品的售价不低于进价的前提下,若商城要想销售甲商品每天的销售额为1190元,则每个应降价多少元?②若要使用甲商品每天的销售利润最大,每个应该降价多少元?此时最大利润为多少元?7.某公司去年推出一种节能产品,售价(y 元/个)与月销量(x 个)的函数关系如下表,成本为20(元/个),同时每月还需支出固定广告费47500元.售价y (元/个)119118117116115…月销量x (个)100200300400500…(1)请观察题中的表格,用所学过的一次函数或反比例函数的有关知识,写出y 与x 之间的函数关系式;(2)若出售这种节能产品的月利润为(w 元),请用含x 的代数式表示月利润w ,并求出当月销售量为5000个时的月利润;(3)该公司去年每个月都销售了5000个这种节能产品.从今年一月份开始,因物价上涨,广告费每月上涨了2500元,产品成本增加了m %,因此售价上调0.6%m 元,由此月销量减少0.4%m .结果今年一月份的月利润比去年每个月的月利润减少了3500元.求m 698.3≈768.7≈27616.6≈)8.某公司购进一批受环境影响较大的商品,该商品需要在特定的环境中才能保存.已知该商品成本y (元/件)与保存的时间第x (天)之间的关系满足2217y x x =++,该商品售价p (元/件)与保存时间第x (天)之间满足一次函数关系,其对应数据如下表所示.x (天) (1)2…p (元/件)…97105…(1)求商品的售价p (元/件)与保存时间第x (天)之间的函数解析式;(2)求保存第几天时,该天此商品不赚也不亏;(3)请你帮助该公司确定在哪一天卖出时,该天每件商品能获得最大利润,并求此时每件商品的售价是多少?9.云浮市各级公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定,郁南县某商场同时购进,A B 两种类型的头盔,已知购进3个A 类头盔和4个B 类头盔共需288元;购进6个A 类头盔和2个B 类头盔共需306元.(1),A B 两类头盔每个的进价各是多少元?(2)在销售中,该商场发现A 类头盔每个售价50元时,每个月可售出100个;每个售价提高5元时,每个月少售出10个.设A 类头盔每个x 元(50100x ≤≤),y 表示该商家每月销售A 类头盔的利润(单位:元),求y 关于x 的函数解析式并求最大利润.10.某商品的进价为每件40元,当售价为每件50元时,每个月可卖出210件,如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨x元,每个月的销售量为y件.(1)则y与x的函数关系式为:______,自变量x的取值范围是:______;(2)每件商品的售价定为多少元时(x为正整数),每个月可获得最大利润?最大的月利润是多少元?a a>元的其它费用,商家发现当售价每件不低于58元时,每月的销售利(3)若在销售过程中每一件商品都有()0润随x的增大而减小,请直接写出a的取值范围:______.11.跳绳项目在中考体考中易得分,是大多数学生首选的项目,在中考体考来临前,某文具店看准商机购进甲、乙两种跳绳.已知甲、乙两种跳绳进价单价之和为32元;甲种跳绳每根获利4元,乙种跳绳每根获利5元;店主第一批购买甲种跳绳25根、乙种跳绳30根一共花费885元.(1)甲、乙两种跳绳的单价分别是多少元?(2)若该文具店预备第二批购进甲、乙两种跳绳共60根,在费用不超过1000元的情况下,如何进货才能保证利润W最大?(3)由于质量上乘,前两批跳绳很快售完,店主第三批购进甲、乙两种跳绳若干,当甲、乙两种跳绳保持原有利润时,甲、乙两种跳绳每天分别可以卖出120根和105根,后来店主决定将甲、乙两种跳绳的售价同时提高相同的售价,已知甲、乙两种跳绳每提高1元均少卖出5根,为了每天获取更多利润,请问店主将两种跳绳同时提高多少元时,才能使日销售利润达到最大?12.我市某苗木种植基地尝试用单价随天数而变化的销售模式销售某种果苗,利用30天时间销售一种成本为10元/株的果苗,售后经过统计得到此果苗,单日销售n (株)与第x 天(x 为整数)满足关系式:50n x =-+,销售单价m (元/株)与x 之间的函数关系为1201202420102130x x m x x⎧+≤≤⎪⎪=⎨⎪+≤≤⎪⎩()()(1)计算第10天该果苗单价为多少元/株?(2)求该基地销售这种果苗20天里单日所获利润y (元)关于第x (天)的函数关系式.(3)“吃水不忘挖井人”,为回馈本地居民,基地负责人决定将区30天中,其中获利最多的那天的利润全部捐出,进行“精准扶贫”,试问:基地负员人这次为“精准扶贫”捐赠多少钱?13.某电子公司,生产并销售一种新型电子产品,经过市场调查发现:每月生产x 台电子产品的成本y (元)由三部分组成,分别是生产线投入、材料成本、人工成本,其中生产线投入固定不变为2000元,材料成本(单位:元)与x 成正比例,人工成本(单位:元)与x 的平方成正比例,在生产过程中得到数下数据:x (单位:台)2040y (单位:元)21042216(1)求y 与x 之间的函数关系式;(2)若某月平均每台电子产品的成本26元,求这个月共生产电子产品多少台?(3)若每月生产的电子产品均能售出,电子产品的售价也随着x 的增大而适当增大,设每台电子产品的售价为Q (单位:元),且有Q mx n =+(m 、n 均为常数),已知当2000x =台时,Q 为35元,且此时销售利润W (单位:元)有最大值,求m 、n 的值(提示:销售利润=销售收入-成本费用)14.某文具店某种型号的计算器每个进价14元,售价22元,多买优惠,优惠方法是:凡是一次买10个以上的,每多买一个,所买的全部计算器每个就降价0.1元,例如:某人买18个计算器,于是每个降价()0.118100.8⨯-=(元),因此所买的18个计算器都按每个21.2元的价格购买,但是每个计算器的最低售价为18元.(1)一次至少购买___________个计算器,才能以最低售价购买(2)写出该文具店一次销售()10x x >个时,所获利润y (元)与x (个)之间的函数关系式,并写出自变量x 的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当1050x <≤时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?15.随着我国经济、科技的进一步发展,我国的农业生产的机械化程度越来越高,过去的包产到户就不太适合机械化的种植.现在很多地区就出现了一种新的生产模式,很多农民把自己的承包地转租给种粮大户或者新型的农村合作社,出现了大农田,这些农民则成为合作社里的工人,这样更有利于机械化种植.河南某地某种粮大户,去年..种植优质小麦360亩,平均每亩收益440元.他计划今年..多承租一些土地,预计原来种植的360亩小麦,每亩收益不变.新承租的土地,每增加一亩,其每亩平均收益比去年每亩平均收益减少2元.(1)该大户今年..新承租多少亩土地,才能使总收益为182400元?(2)该大户今年..应新承租多少亩土地,可以使总收益最大,最大收益是多少?16.红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少0.1万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.17.在“乡村振兴”行动中,某村办企业以A,B两种农作物为原料开发了一种有机产品,A原料的单价是B原料单价的1.5倍,若用900元收购A原料会比用900元收购B原料少100kg.生产该产品每盒需要A原料2kg和B原料4kg,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是x元(x是整数),每天的利润是w元,求w关于x的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过a元(a是大于60的常数,且是整数),直接写出每天的最大利润.18.甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.说明:①汽车数量为整数..;②月利润=月租车费-月维护费;③两公司月利润差=月利润较高公司的利润-月利润较低公司的利润.在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:(1)当每个公司租出的汽车为10辆时,甲公司的月利润是_______元;当每个公司租出的汽车为_______辆时,两公司的月利润相等;(2)求两公司月利润差的最大值;a>给慈善机构,如果捐款后甲公司剩余的月利润仍高(3)甲公司热心公益事业,每租出1辆汽车捐出a元()0于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.19.随着龙虾节的火热举办,某龙虾养殖大户为了发挥技术优势,一次性收购了10000kg小龙虾,计划养殖一段时间后再出售.已知每天养殖龙虾的成本相同,放养10天的总成本为166000,放养30天的总成本为178000元.设这批小龙虾放养t天后的质量为akg,销售单价为y元/kg,根据往年的行情预测,a与t的函数关系为a=()()1000002010080002050tt t⎧≤≤⎪⎨+<≤⎪⎩,y与t的函数关系如图所示.(1)设每天的养殖成本为m元,收购成本为n元,求m与n的值;(2)求y与t的函数关系式;(3)如果将这批小龙虾放养t天后一次性出售所得利润为W元.问该龙虾养殖大户将这批小龙虾放养多少天后一次性出售所得利润最大?最大利润是多少?(总成本=放养总费用+收购成本;利润=销售总额﹣总成本)20.2020年新冠肺炎疫情期间,部分药店趁机将口罩涨价,经调查发现某药店某月(按30天计)前5天的某型号口罩销售价格p (元/只)和销量q (只)与第x 天的关系如下表:第x 天12345销售价格p (元/只)23456销量q(只)7075808590物价部门发现这种乱象后,统一规定各药店该型号口罩的销售价格不得高于1元/只,该药店从第6天起将该型号口罩的价格调整为1元/只.据统计,该药店从第6天起销量q (只)与第x 天的关系为2280200q x x =-+-(630x ≤≤,且x 为整数),已知该型号口罩的进货价格为0.5元/只.(1)直接写出....该药店该月前5天的销售价格p 与x 和销量q 与x 之间的函数关系式;(2)求该药店该月销售该型号口罩获得的利润W (元)与x 的函数关系式,并判断第几天的利润最大;(3)物价部门为了进一步加强市场整顿,对此药店在这个月销售该型号口罩的过程中获得的正常利润之外的非法所得部分处以m 倍的罚款,若罚款金额不低于2000元,则m 的取值范围为______.题型二几何问题1.如图,四边形ABCD 是边长为2cm 的正方形,点E ,点F 分别为边AD ,CD 中点,点O 为正方形的中心,连接,OE OF ,点P 从点E 出发沿E O F --运动,同时点Q 从点B 出发沿BC 运动,两点运动速度均为1cm/s ,当点P 运动到点F 时,两点同时停止运动,设运动时间为s t ,连接,BP PQ ,BPQ V 的面积为2cm S ,下列图像能正确反映出S 与t 的函数关系的是()A .B .C .D .2.如图,ABC 是等边三角形,6cm AB =,点M 从点C 出发沿CB 方向以1cm/s 的速度匀速运动到点B ,同时点N 从点C 出发沿射线CA 方向以2cm/s 的速度匀速运动,当点M 停止运动时,点N 也随之停止.过点M 作//MP CA 交AB 于点P ,连接MN ,NP ,作MNP △关于直线MP 对称的MN P ',设运动时间为ts ,MN P '与BMP 重叠部分的面积为2cm S ,则能表示S 与t 之间函数关系的大致图象为()A .B .C .D .3.如图,在四边形ABCD 中,//AD BC ,45A ∠=︒,90C ∠=︒,4cm AD =,3cm CD =.动点M ,N 同时从点A 出发,点M 2cm /s 的速度沿AB 向终点B 运动,点N 以2cm /s 的速度沿折线AD DC -向终点C 运动.设点N 的运动时间为s t ,AMN 的面积为2cm S ,则下列图象能大致反映S 与t 之间函数关系的是()A .B .C .D .4.如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P 2cm /s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC →向终点C 运动,设点Q 的运动时间为(s)x ,APQ △的面积为()2cmy ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .5.【生活情境】为美化校园环境,某学校根据地形情况,要对景观带中一个长4m AD =,宽1m =AB 的长方形水池ABCD 进行加长改造(如图①,改造后的水池ABNM 仍为长方形,以下简称水池1),同时,再建造一个周长为12m 的矩形水池EFGH (如图②,以下简称水池2).【建立模型】如果设水池ABCD 的边AD 加长长度DM 为()()m 0x x >,加长后水池1的总面积为()21my ,则1y 关于x 的函数解析式为:()140y x x =+>;设水池2的边EF 的长为()()m 06x x <<,面积为()22m y ,则2y 关于x 的函数解析式为:()22606y x x x =-+<<,上述两个函数在同一平面直角坐标系中的图像如图③.【问题解决】(1)若水池2的面积随EF 长度的增加而减小,则EF 长度的取值范围是_________(可省略单位),水池2面积的最大值是_________2m ;(2)在图③字母标注的点中,表示两个水池面积相等的点是_________,此时的()m x 值是_________;(3)当水池1的面积大于水池2的面积时,()m x 的取值范围是_________;(4)在14x <<范围内,求两个水池面积差的最大值和此时x 的值;(5)假设水池ABCD 的边AD 的长度为()m b ,其他条件不变(这个加长改造后的新水池简称水池3),则水池3的总面积()23m y 关于()()m 0x x >的函数解析式为:()30y x b x =+>.若水池3与水池2的面积相等时,()m x 有唯一值,求b 的值.6.某农场要建一个矩形养鸡场,鸡场的一边靠墙,另外三边用木栅栏围成.已知墙长25m,木栅栏长47m,在与墙垂直的一边留出1m宽的出入口(另选材料建出入门).求鸡场面积的最大值.7.某农场计划建造一个矩形养殖场,为充分利用现有资源,该矩形养殖场一面靠墙(墙的长度为10m),另外三面用栅栏围成,中间再用栅栏把它分成两个面积为1:2的矩形,已知栅栏的总长度为24m,设较小矩形的宽为xm(如图).(1)若矩形养殖场的总面积为362m,求此时x的值;(2)当x为多少时,矩形养殖场的总面积最大?最大值为多少?8.为落实国家《关于全面加强新时代大中小学劳动教育的意见》,某校准备在校园里利用围墙(墙长12m)和21m 长的篱笆墙,围成Ⅰ、Ⅱ两块矩形劳动实践基地.某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图①,全部利用围墙的长度,但要在Ⅰ区中留一个宽度1mAE 的水池且需保证总种植面积为232m,试分别确定CG、DG的长;(2)方案二:如图②,使围成的两块矩形总种植面积最大,请问BC应设计为多长?此时最大面积为多少?9.如图1,隧道截面由抛物线的一部分AED 和矩形ABCD 构成,矩形的一边BC 为12米,另一边AB 为2米.以BC 所在的直线为x 轴,线段BC 的垂直平分线为y 轴,建立平面直角坐标系xOy ,规定一个单位长度代表1米.E (0,8)是抛物线的顶点.(1)求此抛物线对应的函数表达式;(2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点1P ,4P 在x 轴上,MN 与矩形1234PP P P 的一边平行且相等.栅栏总长l 为图中粗线段12PP ,23P P ,34P P ,MN 长度之和.请解决以下问题:(ⅰ)修建一个“”型栅栏,如图2,点2P ,3P 在抛物线AED 上.设点1P 的横坐标为()06m m <≤,求栅栏总长l 与m 之间的函数表达式和l 的最大值;(ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形1234PP P P 面积的最大值,及取最大值时点1P 的横坐标的取值范围(1P 在4P右侧).10.如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体A 处,另一端固定在离地面高2米的墙体B 处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度y (米)与其离墙体A 的水平距离x (米)之间的关系满足216y x bx c =-++,现测得A ,B 两墙体之间的水平距离为6米.图2(1)直接写出b ,c 的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为3724米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?题型三构造函数解决实际问题1.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A .3B .2C .13D .7米2.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A ,B 两点,拱高为78米(即最高点O 到AB 的距离为78米),跨径为90米(即AB=90米),以最高点O 为坐标原点,以平行于AB 的直线为x 轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A .226675y x =B .226675y x =-C .2131350y x =D .2131350y x =-3.竖直上抛物体离地面的高度()h m 与运动时间()t s 之间的关系可以近似地用公式2005h t v t h =-++表示,其中()0h m 是物体抛出时离地面的高度,()0/v m s 是物体抛出时的速度.某人将一个小球从距地面1.5m 的高处以20/m s 的速度竖直向上抛出,小球达到的离地面的最大高度为()A .23.5m B .22.5m C .21.5m D .20.5m4.如图是抛物线形拱桥,当拱顶离水面2米时,水面宽6米,水面下降________米,水面宽8米.5.如图,一抛物线型拱桥,当拱顶到水面的距离为2m 时,水面宽度为4m ;那么当水位下降1m 后,水面的宽度为_________m.6.如图,是一名男生推铅球时,铅球行进过程中形成的抛物线.按照图中所示的平面直角坐标系,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是21251233y x x =-++,则铅球推出的水平距离OA 的长是_____m .7.根据物理学规律,如果不考虑空气阻力,以40m /s 的速度将小球沿与地面成30︒角的方向击出,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间的函数关系是2520h t t =-+,当飞行时间t 为___________s 时,小球达到最高点.8.如图,以一定的速度将小球沿与地面成一定角度的方向击出时,小球的飞行路线是一条抛物线.若不考虑空气阻力,小球的飞行高度h (单位:m )与飞行时间t (单位:s )之间具有函数关系:2520h t t =-+,则当小球飞行高度达到最高时,飞行时间t =_________s .9.如图,一位篮球运动员投篮,球沿抛物线20.2 2.25y x x =-++运行,然后准确落入篮筐内,已知篮筐的中心离地面的高度为3.05m ,则他距篮筐中心的水平距离OH 是_________m .10.某学生在一平地上推铅球,铅球出手时离地面的高度为53米,出手后铅球在空中运动的高度y (米)与水平距离x (米)之间的函数关系式为2112y x bx c =-++,当铅球运行至与出手高度相等时,与出手点水平距离为8米,则该学生推铅球的成绩为________米.11.如图,水池中心点O 处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点O 在同一水平面.安装师傅调试发现,喷头高2.5m 时,水柱落点距O 点2.5m ;喷头高4m 时,水柱落点距O 点3m .那么喷头高_______________m 时,水柱落点距O 点4m .12.崇左市政府大楼前广场有一喷水池,水从地面喷出,喷出水的路径是一条抛物线.如果以水平地面为x 轴,建立如图所示的平面直角坐标系,水在空中划出的曲线是抛物线y=﹣x 2+4x (单位:米)的一部分.则水喷出的最大高度是________米.13.某厂今年一月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂今年三月份新产品的研发资金y (元)关于x 的函数关系式为y=________.。

第八讲 二次函数与几何图形的综合运用1(含答案)

第八讲 二次函数与几何图形的综合运用1(含答案)

第八讲 二次函数与几何图形的运用一、知识梳理二次函数与三角形的综合运用:1、求面积及最值2、与三角形的综合运用3、与相似三角形的综合运用4、与四边形的综合运用二、例题例1:如图,已知抛物线y=﹣x 2+mx+3与x 轴交于A ,B 两点,与y 轴交于点C ,点B 的坐标为(3,0)(1)求m 的值及抛物线的顶点坐标.(2)点P 是抛物线对称轴l 上的一个动点,当PA+PC 的值最小时,求点P 的坐标.变式 1 如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0). (1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.例2、如图,已知点A(0,2),B(2,2),C(﹣1,﹣2),抛物线F:y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)当抛物线F经过点C时,求它的表达式;(2)设点P的纵坐标为y P,求y P的最小值,此时抛物线F上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)当抛物线F与线段AB有公共点时,直接写出m的取值范围.例3:在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.例4:已知二次函数y=ax2﹣2ax+c(a>0)的图象与x轴的负半轴和正半轴分别交于A、B 两点,与y轴交于点C,它的顶点为P,直线CP与过点B且垂直于x轴的直线交于点D,且CP:PD=2:3(1)求A、B两点的坐标;(2)若tan∠PDB=,求这个二次函数的关系式.例5、如图1,二次函数y1=(x﹣2)(x﹣4)的图象与x轴交于A、B两点(点A在点B的左侧),其对称轴l与x轴交于点C,它的顶点为点D.(1)写出点D的坐标.(2)点P在对称轴l上,位于点C上方,且CP=2CD,以P为顶点的二次函数y2=ax2+bx+c (a≠0)的图象过点A.①试说明二次函数y2=ax2+bx+c(a≠0)的图象过点B;②点R在二次函数y1=(x﹣2)(x﹣4)的图象上,到x轴的距离为d,当点R的坐标为时,二次函数y2=ax2+bx+c(a≠0)的图象上有且只有三个点到x轴的距离等于2d;③如图2,已知0<m<2,过点M(0,m)作x轴的平行线,分别交二次函数y1=(x﹣2)(x ﹣4)、y2=ax2+bx+c(a≠0)的图象于点E、F、G、H(点E、G在对称轴l左侧),过点H 作x轴的垂线,垂足为点N,交二次函数y1=(x﹣2)(x﹣4)的图象于点Q,若△GHN∽△EHQ,求实数m的值.三、课堂练习1、如图,在Rt∠AOB的平分线ON上依次取点C,F,M,过点C作DE⊥OC,分别交OA,OB于点D,E,以FM为对角线作菱形FGMH.已知∠DFE=∠GFH=120°,FG=FE.设OC=x,图中阴影部分面积为y,则y与x之间的函数关系式是 ( )A.y=32x2 B.y=3x2 C.y=23x2 D.y=33x22、已知抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,且经过A(m﹣1,n)和B(m+3,n),过点A,B分别作x轴的垂线,垂足记为M,N,则四边形AMNB的周长为.3、直线y=kx+b与抛物线y=x2交于A(x1,y1)、B(x2,y2)两点,当OA⊥OB时,直线AB 恒过一个定点,该定点坐标为.4、如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.(1)求抛物线的解析式;(2)以点A为圆心,作与直线BC相切的⊙A,请判断⊙A与y轴有怎样的位置关系,并说明理由;(3)在直线BC上方的抛物线上任取一点P,连接PB、PC,请问:△PBC的面积是否存在最大值?若存在,求出这个值和此时点P的坐标;若不存在,请说明理由.5、如图,在平面直角坐标系中,抛物线y=ax 2+bx+c 的顶点坐标为(2,9),与y 轴交于点A (0,5),与x 轴交于点E 、B . (1)求二次函数y=ax 2+bx+c 的表达式;(2)过点A 作AC 平行于x 轴,交抛物线于点C ,点P 为抛物线上的一点(点P 在AC 上方),作PD 平行与y 轴交AB 于点D ,问当点P 在何位置时,四边形APCD 的面积最大?并求出最大面积;(3)若点M 在抛物线上,点N 在其对称轴上,使得以A 、E 、N 、M 为顶点的四边形是平行四边形,且AE 为其一边,求点M 、N 的坐标.六、课后作业1、已知抛物线y=ax 2﹣3x+c (a ≠0)经过点(﹣2,4),则4a+c ﹣1= .2、a 、b 、c 是实数,点A (a+1、b )、B (a+2,c )在二次函数y=x 2﹣2ax+3的图象上,则b 、c 的大小关系是b c (用“>”或“<”号填空)3、已知二次函数n mx x y ++=2的图像经过点()1,3-P ,对称轴是经过()0,1-且平行于y轴的直线。

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型-原卷版 2023-2024学年九年级数学考点归纳与解题策略

考点08 二次函数实际应用问题的7大类型1 围栏篱笆图形类问题的解决方法几何图形中的二次函数问题常见的有:几何图形中面积的最值,用料的最佳方案以及动态几何中的最值的讨论.面积的最值问题应设图形的一边长为自变量,所求面积为函数,建立二次函数的模型,利用二次函数有关知识求得最值,要注意函数自变量的取值范围.一般涉及到矩形等四边形问题,把图形的面积公式掌握,把需要用到的边和高等用未知数表示,即可表示出面积问题的二次函数的关系式,通过最值问题的解决方法,即可求出最值等问题,注意自变量的取值范围问题。

2 图形运动问题的解决思路此类问题一般具体分析动点所在位置,位置不同,所求的结果也不一样,一般把每一段的解析式求出来,根据解析式判断函数类型,从而判断图像形状。

3 拱桥问题的解决方法◆1、建立二次函数模型解决实际问题利用二次函数解决抛物线形的隧道、大桥和拱门等实际问题时,要恰当地把这些实际问题中的数据落实到平面直角坐标系中的抛物线上,从而确定抛物线的解析式,通过解析式可解决一些测量问题或其他问题.◆2、建立二次函数模型解决实际问题的一般步骤:(1)根据题意建立适当的平面直角坐标系;(2)把已知条件转化为点的坐标;(3)合理设出函数解析式;(4)利用待定系数法求出函数解析式;(5)根据求得的解析式进一步分析、判断并进行有关的计算.4 销售问题◆1、销售问题中的数量关系:销售利润=销售收入﹣成本;销售总利润=销售量×单价利润◆2、求解最大利润问题的一般步骤:(1)建立利润与价格之间的函数关系式:运用“总利润 = 单件利润×总销量”或“总利润 = 总售价 - 总成本”;(2)结合实际意义,确定自变量的取值范围;(3)在自变量的取值范围内确定最大利润:可以利用配方法或公式求出最大利润;也可以画出函数的简图,利用简图和性质求出.◆3、在商品经营活动中,经常会遇到求最大利润,最大销量等问题.解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围.5 投球问题的解决方法此类问题一般需要建立平面直角坐标系,设定好每个点的坐标,分析好题目中的每句话的含义是解决这类问题的关键,有排球、足球、高尔夫球、篮球等,首先根据已知条件确定设定的解析式形式,求出解析式,再根据题意了解问题所求的实质是什么求出即可。

二次函数几何意义

二次函数几何意义

二次函数几何意义
函数是数学中概念最为重要的概念之一,广泛应用于科学技术、商业运算等领域。

今天,我们将讨论一下二次函数的几何意义。

首先,让我们从数学定义上来谈谈二次函数。

在几何意义上,二次函数是一种多项式函数,它的形式为y=ax2+bx+c,其中a、b、c
是常数,x是变量,y是函数的值。

其次,让我们来看看二次函数的几何意义。

一个二次函数可以用一个抛物线来表示,抛物线被平面内切成两个部分,其中一部分在x 轴的右边,另一部分在x轴的左边。

这条抛物线是一条开口向上的曲线,其图像上形成一个“U”形,其图形有两个交点,即抛物线的凹陷处,而抛物线的凸起处则是它的顶点。

再次,让我们来看看二次函数的特征值。

这类函数的特征值非常重要,它包括函数的顶点、凹陷处的值、单调性、对称性等等。

最后,让我们来讨论一下二次函数的应用。

二次函数广泛应用于工程学、物理学、生物学等领域,其中包括抛物线运动轨迹预测、空气动力学中流体动态计算、热传导计算、医学影像分析等。

此外,它还被用于几何图形分析、椭圆计算、逃逸率计算、圆周率求解等。

总之,二次函数是一个重要的数学概念,具有广泛的应用潜力。

它的几何特征包括顶点、凹陷处的值、单调性和对称性等,在工程学、物理学、生物学等领域都有应用,是很多数学模型的基础。

- 1 -。

《实际问题与二次函数》(几何图形最值)

《实际问题与二次函数》(几何图形最值)

2023-11-08CATALOGUE目录•引言•二次函数基本概念•几何图形与二次函数•二次函数最值概念•几何图形最值问题求解•实际问题最值应用案例01引言几何图形最值问题是数学中的一个经典问题,它涉及到图形的形状、大小和位置的最优化。

在实际生活中,几何图形最值问题也有广泛的应用,例如建筑设计、城市规划、物理研究等。

课程背景介绍1课程目标23理解几何图形最值的基本概念和解决方法。

学习如何运用数学方法和计算机技术求解几何图形最值问题。

掌握常见的几何图形最值问题的建模和求解技巧。

课程大纲1. 几何图形最值的基本概念最值的定义和性质几何图形的参数化课程大纲2. 求解方法与技术问题的数学建模微积分方法课程大纲010203线性代数方法数值计算方法计算机模拟技术3. 常见的几何图形最值问题直线段的最短长度圆形的最大面积课程大纲课程大纲椭圆形的最小周长立体图形的最大体积 4. 应用案例分析010302课程大纲02城市规划中的最值问题03物理研究中的最值问题02二次函数基本概念当轴动区间定时,二次函数的最值出现在对称轴上。

具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a。

当轴定区间动时,二次函数的最值出现在区间的端点或对称轴上。

具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a;当x取区间端点时,二次函数取得最大值。

当轴动区间动时,二次函数的最值出现在区间的端点、对称轴或二者重合处。

具体地,如果对称轴为x=-b/2a,那么当x=-b/2a时,二次函数取得最小值y=c-b^2/4a;当x取区间端点时,二次函数取得最大值。

03几何图形与二次函数矩形与二次函数在几何图形中最值问题中有着密切的联系。

详细描述在矩形中,长和宽可以看作是二次函数图像的两个根,而面积则可看作是二次函数的顶点。

因此,矩形的最值问题可以通过二次函数来求解。

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 ( a ≠0)中的应用

几何画板在二次函数y=ax2 (a ≠0)中的应用【摘要】几何画板在二次函数y=ax²中的应用,是一个有趣而实用的工具。

通过几何画板,我们可以直观地展示二次函数的图像绘制过程,以及开口方向的改变和顶点的坐标变化。

几何画板还能帮助我们观察二次函数的对称性和轴对称图形,以及与直线的交点。

通过几何画板的应用,学生可以更深入地理解二次函数的特性,提高学习效率和兴趣。

几何画板为学习二次函数y=ax²提供了直观、可视化的工具,让抽象概念变得具体易懂。

通过这种实际操作,学生能够更好地掌握二次函数的相关知识,从而提升数学学习的效果。

【关键词】几何画板、二次函数、y=ax²、图像绘制、开口方向、顶点、对称性、轴对称图形、交点、学习、可视化、理解、学习效率、兴趣。

1. 引言1.1 介绍几何画板的基本概念几何画板是一种用于绘制几何图形和数学函数图像的工具。

它通常由一个平面表面和一支可移动的笔组成,通过在平面表面上移动笔来绘制各种图形。

几何画板可以帮助学生更直观地理解数学概念,尤其是在几何和代数方面的应用中。

在数学中,二次函数y=ax²是一种常见的函数类型,其中a代表非零常数。

这种函数的图像通常是一个开口向上或向下的抛物线,其特点在于顶点坐标、轴对称性和与直线的交点等。

通过几何画板,我们可以更清晰地呈现二次函数的各种特性,使学生能够直观地感受到数学概念的含义。

几何画板的基本概念包括平面上的坐标系、直线和曲线的绘制方法,以及如何利用这些基本元素来展示数学函数图像。

通过在几何画板上绘制二次函数y=ax²的图像,学生可以更直观地理解函数的性质,比如开口方向、顶点坐标以及与直线的交点。

几何画板为学习二次函数提供了一个直观、可视化的工具,帮助学生更快速地理解和掌握这一数学概念。

1.2 二次函数y=ax²的定义二次函数y=ax² 是一种形式为y=ax² 的二次多项式函数,其中a 不等于0。

二次函数在几何图形中的应用

二次函数在几何图形中的应用

15 7 r r 1 1 设窗户的面积为 S,则 S= π r2+2ry= π r2+2r× =-3.5r2+7.5r, 2 2 4
因为-3.5<0,所以 S 有最大值。 -(7.5)2 7.5 当 r=- ≈1.07(m)时,S 最大值= ≈4.02(m2)。 2×(-3.5) 4×(-3.5) 即当半径约为 1.07m 时,窗户通过的光线最多,此时窗户的面积约为 4.02m2。 点拨:二次函数与几何图形相结合时,往往题目并未明确表示二次函数的关系式,二 次函数的关系式可能隐藏在几何图形中,这时我们需要根据题中所给的信息设出自变量和 函数,推导出函数关系式,再求出相应最值。 三、 二次函数与几何图形的实际应用 首先,能够根据几何图形的特点建立二次函数模型。其次,会利用二次函数解决与几 何图形相关的实际应用问题。建立三角形或四边形的面积与边长之间的二次函数关系时, 关键是找出三角形或四边形的高,用面积公式建立二次函数关系,当所给几何图形的边长 与高之间的关系不明显时,常常把几何图形分割成三角形或四边形,或利用等积式将问题 转化。 例题 3 某水渠的横截面呈抛物线形,水面的宽度为 AB(单位:米),现以 AB 所在
二次函数在几何图形中的应用 一、 二次函数与三角形的综合应用 在三角形或一般四边形中,通常设一边为自变量,用自变量表示这条边上的高,则其 面积是这一边长的二次函数。 例题 1 如图所示,有一块直角三角形的铁板,要在其内部作一个长方形 ABCD,其中 ) B. 3m C. 2m D. 5 m 2
AB 和 BC 分别在两直角边上, 设 AB=x m, 长方形的面积为 y m2, 要使长方形的面积最大, 其边长 x 应为( A. 4m
料总长(图中所有黑线的长度和)为 15m.当半圆的半径等于多少时,窗户通过的光线最 多?(结果精确到 0.01m)此时,窗户的面积是多少?(精确到 0.01m2)

二次函数应用几何图形的最大面积问题教学课件

二次函数应用几何图形的最大面积问题教学课件
根据几何图形的特性,选择合 适的二次函数模型来表示面积 。
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所

二次函数应用--几何图形的最大面积问题

二次函数应用--几何图形的最大面积问题

F6
=-2x2 + 16x =-2(x-4)2 + 32
B
(0<x<6)
10 所以当x=4时 花园的最大面积为32
注: 1。自变量X的取值范围为一切实数,顶点处取 最 值。
2。有取值范围的在端点或顶点处取最值。
引例 从地面竖直向上抛出一小球,小球的高度 h(单
位:m)与小球的运动时间 t(单位:s)之间的关系 式是h= 30t - 5t 2 (0≤t≤6).小球的运动时间是多少时
,小球最高?小球运动中的最大高度是多少?
∵a<0, ∴抛物线开口向下 C
Q 1cm/秒B
∴ 当P、Q同时运动2秒后Δ PBQ的面积y最大 最大面积是 4 cm2
在矩形荒地ABCD中,AB=10,BC=6, 今在四边上分别选取E、F、G、H四点,且 AE=AH=CF=CG=x,建一个花园,如何设 计,可使花园面积最大?
H
D AE
解:设花园的面积为y G C 则 y=60-x2 -(10-x)(6-x)
2a
值 y 4ac b2 . 4a
h= 30t - 5t 2 (0≤t≤6)
t

b 2a


2
30 (
5)
3,
h
4ac b2 4a

4 (3025) 45.
小球运动的时间是 3s 时,小球最 h/
高.小球运动中的最大高度是 45
m4 0
h= 30t - 5t
2
m.
2 0
问题 如何求自变量的取值范围? 0 < x ≤18.
问题 如何求最值?
由于30 >18,因此只能利用函数的增减性求其最值. 当x=18时,S有最大值是378.

二次函数的综合应用

二次函数的综合应用

二次函数的综合应用一、二次函数与几何图形问题例一:(2019 吉林中考)如图,抛物线y=(x-1)²+k与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C(0,-3)。

P为抛物线上一点,横坐标为m,且m>0。

(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求ΔABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m 的函数解析式,并写出自变量m 的取值范围!②当h=9时,直接写出ΔBCP的面积.二、二次函数与销售问题例一:(2020 湖北中考)某款旅游纪念品很受游客喜爱,每个纪念品进价40元,规定销售单价不低于44元且不高于52元,某商户在销售期间发现,当销售单价定价为44元时,每天可售出300个,销售单价每上涨1元,每天销量减少10个,现商家决定提价销售,设每天销售量为y个,销售单价为x元。

(1)写出y与x之间的函数关系式和自变量x的取值范围;(2)将纪念品的销售单价定位多少元时,商家每天销售纪念品获得的利润w最大?最大利润是多少元?(3)该商户从每天的利润中提出200元做慈善,为了保证捐款后每天剩余利润不低于2200元,求销售单价x的取值范围。

三、二次函数与增长率问题例一:为积极响应国家“旧房改造”工程,该市推出《加快推进就放改造工作的实施方案》推进新型城镇化建设,改善民生,优化城市建设。

(1)根据方案该市的旧房改造户数从2020年底的3万户增长到2022年底的4,32万户,求该市这两年旧房改造户数的平均年增长率;(2)该市计划对某小区进行旧房改造,如果计划改造300户,计划投入改造费用平均20000元/户,且计划改造的户数每增加1户,投入改造费平均减少50元/户,求旧房改造申报的最高投入费用是多少元?四、二次函数与行程问题例一:(2019 江西中考)蜗牛A和蜗牛B分别从相距120厘米的甲水坑和乙水坑以相同的速度同时相向而行,相遇后,两只蜗牛继续前进,蜗牛A的速度不变,蜗牛B每分钟比原来多走1厘米,结果蜗牛B到达甲水坑后蜗牛A还需10分钟才能到达乙水坑,求两只蜗牛原来的速度是多少?五、二次函数与动点问题例一:(2019秋惠州期末)如图,抛物线y=x²+bx+c与x轴交于A、B两点,与y轴交于C 点,OA=2,OC=6,连接AC和BC.(1)求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,求点D的坐标;(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;六、二次函数与阅读理解型问题(新定义题型)例一:(2019 )在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量x,这两个函数对应的函数值记为y1、y2,恒有点(x,y1)和点(x,y2)关于点(x,x)成中心对称(此三个点可以重合),由于对称中心(x,x)都在直线y=x上,所以称这两个函数为关于直线y=x的“相依函数”.例如:y=3/4*x和y=5/4*x为关于直线y=x的“相依函数”。

二次函数的应用ppt课件

二次函数的应用ppt课件

②根据题意,得绿化区的宽为
= (x-20)(m),
∴y=100×60-4x(x-20).又 ∵28≤100-2x≤52,∴24≤x≤36. 即 y 与 x 的函数关系式及 x 的取值范围为 y=-4x2+80x+6 000 (24≤x≤36);
-7-
2.4 二次函数的应用
(2)y=-4x2+80x+6 000=-4(x-10)2+6 400. ∵a=-4<0,抛物线的开口向下,对称轴为直线 x= 10. 当 24≤x≤36 时,y 随 x 的增大而减小, ∴ 当 x=24 时,y 最大=5 616,即停车场的面积 y 的最大值为 5 616 m2; (3)设费用为 w. 由题意,得 w=100(-4x2+80x+6 000)+50×4x(x- 20)=-200(x-10)2 +620 000, ∴ 当 w=540 000 时,解得 x1=-10,x2=30. ∵24≤x≤36,∴30≤x≤36,且 x 为整数, ∴ 共有 7 种建造方案. 题型解法:本题是确定函数表达式及利用函数的性质设计工程方案的问题. 解题过程中应理解:(1)工程总造价是绿化区造价和停车场造价两部分的和; (2)根据投资额得出方程,结合图象的性质求出完成工程任务的所有方案.
(1)解决此类问题的关键是建立恰当的平面直角坐标系; 注意事项
(2)根据题目特点,设出最容易求解的函数表达式形式
-9-
2.4 二次函数的应用
典题精析 例 1 赵州桥的桥拱是近似的抛物线形,建立如图所示的平面直角坐标系, 其函数的关系式为 y=- x2,当水面离桥拱顶的高度 DO 是 4 m 时,水面宽 度 AB 为 ( ) A. -20 m B. 10 m C. 20 m D. -10 m

例举与函数相关的几例几何图形问题

例举与函数相关的几例几何图形问题

例举与函数相关的几例几何图形问题函数与几何图形问题呈现了完美的结合,函数与几何密不可分,其中复杂的问题可以通过分析函数与几何之间的联系来解决。

下面介绍几个常见的函数与几何图形问题。

一、抛物线:抛物线是一种二元二次函数,它的定义式为:y = ax² + bx + c,它有一个最典型的图形,类似于一个“U”字型,许多科学问题都可以使用该图来描述和解决,抛物线是应用非常广泛的几何图形。

二、双曲线:双曲线是一种三元一次函数,它的定义式为:y² = ax² + bx + c,双曲线通常由两个半双曲线组成,是几何图形当中比较复杂的一种,其在科学研究中发挥重要的作用。

三、圆形:圆形是一种二元一次函数,它的定义式为:(x-a)²+(y-b)²=r²,即圆心(a,b)与半径(r)的函数形式,圆形的函数表达式非常简单,其曲线在理论上可用无穷条线段来逼近,也是几何图形中最重要的图形之一。

四、椭圆:椭圆是一种三元二次函数,它的定义式为:(x-a)²/a²+(y-b)²/b²=1,椭圆是一种比较复杂的几何图形,它和圆形相差较大,它的定义比较复杂,其在科学研究中发挥重要的作用。

五、曲面:曲面是一种三维函数,它的定义式为:z = f(x, y),它是一种比较复杂的几何图形,其表面结构可以有多种样式,例如凸曲面、凹曲面等,曲面是应用非常广泛的几何图形之一。

总之,函数与几何图形问题是一个十分重要的课题,它们俩结合可以解决许多复杂的科学问题,上述就是常见的几种函数与几何图形问题,它们在科学研究中是扮演着重要的角色。

二次函数应用

二次函数应用

二次函数应用一、常见类型1、二次函数常用来解决最优化问题,这类问题实际上就是求函数的最大(小)值;2、二次函数的应用包括以下方面: ① 分析和表示不同背景下实际问题中变量之间的二次函数关系;② 运用二次函数的知识解决实际问题中的最大(小)值.3、二次函数实际问题主要分为两个方面的问题,几何图形面积问题和经济问题。

(1)几何问题:解几何图形面积问题时要把面积公式中的各个部分分别用同一个未知数表示出来,如三角形S=hl 21,我们要用x 分别把h ,l 表示出来,然后再直接利用面积公式求解。

(2)利润问题:总利润=总销售额-总成本;总利润=单件利润×销售数量。

(3)解最值问题时,一定要注意自变量的取值范围,分为三类:①对称轴在取值范围内;②取值范围在对称轴左边;③取值范围在对称轴右边。

二、解决实际问题时的基本思路: (1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系; (4)利用二次函数的有关性质进行求解; (5)检验结果的合理性,对问题加以拓展等. 【典型例题】 题型一:利润问题方法:(1)表示销售量、销售单价;(2)利润=销售总价-成本;(3)利润=(一件商品的售价-成本)×销售量 【例1】某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱. (1)求平均每天销售量y (箱)与销售价x (元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w (元)与销售价x (元/箱)之间的函数关系式. (3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【例2】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)【练习】某公司生产的某种产品,它的成本是2元,售价是3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:x(十万元) 0 1 2 ……y 1 1.5 1.8 …….(1)求y与x的函数表达式。

九年级数学下册《二次函数在几何方面的应用》教案、教学设计

九年级数学下册《二次函数在几何方面的应用》教案、教学设计
-着重考查学生对二次函数与几何问题的理解和应用能力。
2.教师巡回指导,解答学生疑问,及时发现问题并给予指导。
(五)总结归纳
1.让学生回顾本节课所学内容,总结二次函数在几何方面的应用方法和技巧。
2.教师点评学生的总结,强调重点和难点,梳理知识体系。
3.提醒学生课后加强练习,巩固所学知识,为下一节课的学习做好准备。
(3)计算抛物线y = x^2与直线x = 2所围成的封闭图形的面积。
2.提高拓展题:
(1)已知抛物线y = x^2 + 2x - 3,求该抛物线在x轴上方的部分与x轴所围成的图形的面积。
(2)求解抛物线y = -x^2 + 4x + 5与直线y = 2x + 1的交点坐标,并分析交点个数及其几何意义。
-二次函数求解几何问题的方法和步骤。
2.各小组分享讨论成果,教师点评并总结。
-鼓励学生发表自己的观点,培养他们的表达能力。
-对学生的解答给予肯定和鼓励,指出其中的不足,引导他们进一步完善。
(四)课堂练习
1.设计具有代表性的习题,让学生独立完成,巩固所学知识。
-选择不同难度的题目,以满足不同层次学生的需求。
-鼓励学生运用二次函数知识,自主解决几何问题。
2.创设生活情境,让学生在实际问题中感受二次函数与几何图形的联系。
-通过生活中的实例,如抛物线形状的拱桥、体育比赛中抛物线运动的球等,让学生认识到二次函数在实际生活中的应用。
3.分层次教学,满足不同学生的学习需求。
-对基础薄弱的学生,重点巩固二次函数的基本概念和性质,逐步引导他们运用到几何问题中。
1.创设情境:以生活中的实例引入,激发学生的学习兴趣,引导学生主动探究二次函数在几何方面的应用。

[详细讲解]利用二次函数求几何图形面积的最值问题

[详细讲解]利用二次函数求几何图形面积的最值问题

利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。

2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。

3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。

例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。

二次函数在几何中的应用

二次函数在几何中的应用

二次函数在几何中的应用二次函数是一种重要的数学函数,它在几何学中有着广泛的应用。

从抛物线的形状到曲线光滑的特性,二次函数在描述自然界中的曲线和形状方面发挥着重要的作用。

本文将探讨二次函数在几何中的应用,并通过一些具体的例子来阐述。

1. 平移和缩放二次函数中的平移和缩放操作对于修改几何图形的形状和位置是非常重要的。

平移是指通过改变二次函数的常数项来使整个图形在平面上移动。

缩放则是通过改变二次函数的系数来改变图形的大小。

举个例子,考虑函数y = ax^2,其中a是非零常数。

当a>1时,抛物线的开口向上,图形比标准的抛物线更加“尖锐”,而当0<a<1时,抛物线的开口向下,图像则更加“扁平”。

这些变化可以通过改变a的值来实现。

2. 曲线的焦点焦点是指在平面上到给定曲线上的所有点的距离相等的点。

对于二次函数而言,它的图形是一个抛物线。

这个抛物线的焦点是该二次函数的一个重要几何特性。

具体来说,对于二次函数y = ax^2 + bx + c,焦点的x坐标可以通过公式x = -b/(2a)来计算,而y坐标则是函数在该点的函数值。

通过求解焦点,我们可以更好地理解二次函数的几何特性。

3. 最值问题二次函数在几何中的应用还可以涉及到最值问题。

由于二次函数的抛物线形状,它可以帮助我们确定图形的最大值和最小值。

举个例子,考虑函数y = ax^2 + bx + c,其中a>0。

这个函数对应着一个开口向上的抛物线。

由于抛物线的性质,我们可以通过函数的顶点(即最值点)来找到函数的最小值。

4. 几何图形的求解除了以上提到的常见应用,二次函数还能够帮助我们求解几何图形的性质和问题。

例如,通过解二次方程可以计算出两个抛物线的交点,这对于确定图形的交点、重叠部分或者切线非常有用。

同时,利用二次函数的图形性质,我们还可以计算出图形的切线方程和切点位置,为几何问题的求解提供了数学工具。

总结:二次函数在几何中扮演着至关重要的角色,通过平移和缩放,我们可以修改图形的形状和尺寸。

二次函数的应用(1)——以几何图形为背景

二次函数的应用(1)——以几何图形为背景

二次函数的应用(1)——以几何图形为背景1、二次函数342+-=x x y 的图象交x 轴于A 、B 两点,交y 轴于点C ,△ABC 的面积为()A.1B.3C.4D.62、在直角坐标系x O y 中,O 是坐标原点,抛物线62--=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。

如果点M 在y 轴右侧的抛物线上,COB AMO ∆∆=S32S ,那么点M 的坐标是。

3、如图,在直角△ABC 中,︒=∠90C ,BC=4,AC=8,点D 在斜边AB 上,分别作DE ⊥AC ,DF ⊥BC ,垂足分别为E 、F ,得四边形DECF 。

设DE=x ,DF=y ,则y 与x 之间的函数关系式是,x 的取值范围是,这个四边形DECF 的面积S 的最大值是。

4、如图所示,△ABC 中,BC=4,B ∠=45°,AB=23,M 、N 分别是AB,AC 上的点,MN//BC.设MN=x ,△MNC 的面积为S.(1)求出S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)是否存在平行于BC 的线段MN,使△MNC 的面积等于2?若存在,请求出MN 的长;若不存在,请说明理由.AB CDE F xy5、初三(1)班数学兴趣小组在社会实践活动中,进行了如下的课题研究:用一定长度的铝合金材料,将它设计成外观为长方形的三种框架,使长方形框架面积最大.小组讨论后,同学们做了以下三种试验:(1)(2)(3)(4)请根据以上图案回答下列问题:(1)在图案(1)中,如果铝合金材料总长度(图中所有黑线的长度和)为6m,当AB 为1m 时,长方形框架ABCD 的面积是m 2.(2)在图案(2)中,如果铝合金材料总长度为6m,设AB 为x m,长方形框架ABCD 的面积为S=;(用含x 的代数式表示);当AB=m 时,长方形框架ABCD 的面积S 最大;在图案(3)中,如果铝合金材料总长度为l m,设AB 为x m,当AB=m 时,长方形框架ABCD 的面积S 最大.(3)经过这三种情形的试验,他们发现对于图案(4)这样的情形也存在着一定的规律.探索:如图案(4),如果铝合金材料总长度为l m,共有n 条竖档,那么当竖档AB 长为多少时,长方形框架ABCD 的面积最大?6、小华想在紧靠围墙的空地上,利用围墙及一段长为80m 的木栅栏围成一块园地.(1)小华的方案如图(1)所示围成一块矩形园地.设靠墙的一边长为x m ,①要想使园地的面积达到600m 2,那么该矩形园地的长宽各是多少?②设矩形园地的面积为y m 2,请写出y 与x 的函数关系式,并求出何时园地的面积最大?最大面积是多少?(2)如果可以改变园地的形状,围成的面积会更大吗?请你在图(2)中设计一个面积更大的方案(画出图形,计算出更大面积的值).A B C D A B C D A B C D AB C D ……7、如图(1),平面直角坐标系中有一张矩形纸片OABC,O 为坐标原点,A 点坐标为(10,0),C 点坐标为(0,6).D 是BC 边上的动点(与点B,C 不重合),现将△COD 沿OD 翻折,得到△FOD;再在AB 边上选取适当的点E,将△BDE 沿DE 翻折,得到△GDE,并使直线DG,DF 重合.(1)如图(2),若翻折后点F 落在OA 边上,求直线DE 的函数关系式;(2)设D(a,6),E(10,b),求b 关于a 的函数关系式,并求b 的最小值.(1)(2)8、如图,正方向ABCD 的边长为1,点E 是AD 边上的动点,从点A 沿AD 向D 运动,在BE 的上方作正方形BEFG ,连结CG 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、(韶关市)为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m )的空地上修建一个矩形绿化带ABCD ,绿化带一边靠墙,另三边用总长为40m 的栅栏围住(如图1).若设绿化带的BC 边长为x m ,绿化带的面积为y m 2.
(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;
(2)当x 为何值时,满足条件的绿化带的面积最大?
2、(十堰市)某农户计划利用现有的一面墙再修四面墙,建造如图2所示的长方体游泳池,培育不同品种的鱼苗,他已备足可以修高为1.5m ,长18m 的墙的材料准备施工,设图中与现有一面墙垂直的三面墙的长度都为x m ,即AD =EF =BC =x m.(不考虑墙的厚度)
(1)若想水池的总容积为36m 3,x 应等于多少?
(2)求水池的容积V 与x 的函数关系式,并直接写出x 的取值范围;
(3)若想使水池的总容积V 最大,x 应为多少?最大容积是多少?
3、(南京市)在梯形ABCD 中,AD ∥BC ,AB =DC =AD =6,∠ABC =60°,点E ,F 分别在线段AD ,DC 上(点E 与点A ,D 不重合),且∠BEF =120°,设AE =x ,DF =y .
(1)求y 与x 的函数表达式;
(2)当x 为何值时,y 有最大值,最大值是多少?
图1
图2 A E D F B 图3
1、(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.
2、(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?
3、(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.
(1)求FC 的长;
(2)利用如图5求出矩形顶点B 所对的...顶点..
到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?
(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.

1 图 2
图4 图5。

相关文档
最新文档