1.3《三角函数的诱导公式》教学案3

合集下载

三角函数诱导公式 教案

三角函数诱导公式 教案

三角函数诱导公式教案
教案标题:三角函数诱导公式
教案目标:
1. 理解三角函数诱导公式的概念和作用。

2. 掌握使用三角函数诱导公式求解相关问题的方法。

3. 培养学生的数学思维能力和解决问题的能力。

教学步骤:
引入活动:
1. 引导学生回顾正弦函数、余弦函数和正切函数的定义和性质。

2. 提问学生是否知道如何计算较大角度的三角函数值,引出三角函数诱导公式
的概念。

知识讲解:
1. 介绍三角函数诱导公式的定义和推导过程,包括正弦函数、余弦函数和正切
函数的诱导公式。

2. 解释三角函数诱导公式的作用,即通过将大角度化为小角度,简化计算过程。

示例演练:
1. 给出若干实际问题,引导学生运用三角函数诱导公式解决问题。

2. 通过示例演练,让学生熟悉使用三角函数诱导公式的方法。

拓展应用:
1. 提供更复杂的问题,要求学生运用三角函数诱导公式解决。

2. 引导学生思考如何应用三角函数诱导公式解决其他相关问题。

总结归纳:
1. 总结三角函数诱导公式的定义和作用。

2. 强调掌握三角函数诱导公式的重要性和实用性。

作业布置:
1. 布置练习题,要求学生运用三角函数诱导公式解决相关问题。

2. 鼓励学生自主学习,寻找更多应用三角函数诱导公式的例子。

教学反思:
1. 对学生在课堂上的表现进行评价和反馈。

2. 总结教学过程中的不足和需要改进的地方,为下一次教学做准备。

注:以上教案仅供参考,具体教学内容和步骤可以根据实际教学情况进行调整和修改。

《三角函数的诱导公式(三)》教学设计

《三角函数的诱导公式(三)》教学设计

《三角函数的诱导公式(三)》教学设计教学目的:能熟练掌握诱导公式一至五,并运用求任意角的三角函数值,同时学会关于90︒ k ± α, 270︒ ± α四套诱导公式,并能应用,进行简单的三角函数式的化简及论证。

教学重点:诱导公式教学难点:诱导公式的灵活应用授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪教学过程:一、复习引入:诱导公式一(其中Z ∈k ): 用弧度制可写成ααsin )360sin(=︒⋅+k απαsin )2sin(=+kααcos )360cos(=︒⋅+k απαcos )2cos(=+kααtan )360tan(=︒⋅+k απαtan )2tan(=+k公式二: 用弧度制可表示如下: αα-sin 180sin(=+︒) ααπ-sin sin(=+)αα-cos 180cos(=+︒) ααπ-cos cos(=+)ααtan 180tan(=+︒) ααπtan tan(=+)公式三: αα-sin sin(=-)ααcos cos(=-)ααtan tan(-=-)公式四: 用弧度制可表示如下: ααsin 180sin(=-︒) ααπsin sin(=-)αα-cos 180cos(=-︒) ααπ-cos cos(=-)ααtan 180tan(-=-︒) ααπtan tan(-=-)公式五: 用弧度制可表示如下: αα-sin 360sin(=-︒) ααπ-sin 2sin(=-)ααcos 360cos(=-︒) ααπcos 2cos(=-)ααtan 360tan(-=-︒) ααπtan 2tan(-=-)二、讲解新课:诱导公式6:sin(90︒ -α) = cos α, cos(90︒ -α) = sin α.tan(90︒ -α) = cot α, cot(90︒ -α) = tan α. sec(90︒ -α) = csc α, csc(90︒ -α) = sec α诱导公式7: sin(90︒ +α) = cos α, cos(90︒ +α) = -sin α.tan(90︒ +α) = -cot α, cot(90︒ +α) = -tan α. sec(90︒ +α) = -csc α, csc(90︒+α) = sec α如图所示 sin(90︒ +α) = M ’P ’ = OM = cos αcos(90︒ +α) = OM ’ = PM = -MP = -sin α或由6式:sin(90︒ +α) = sin[180︒- (90︒ -α)] = sin(90︒ -α) = cos α cos(90︒ +α) = cos[180︒- (90︒ -α)] = -sin(90︒ -α) = -cos α 诱导公式8:sin(270︒ -α) = -cos α, cos(270︒ -α) = -sin α.tan(270︒ -α) = cot α, cot(270︒ -α) = tan α.sec(270︒ -α) = -csc α, csc(270︒-α) = sec α诱导公式9:sin(270︒ +α) = -cos α, cos(270︒ +α) = sin α.tan(270︒ +α) = -cot α, cot(270︒ +α) = -tan α.sec(270︒ +α) = csc α, csc(270︒+α) = -sec α三、讲解范例:例1)2cos()5cos()2sin()4sin()cot()2tan()23cos()2sin(απαπαπαπαπαπαπαπ+-+--=+-+---+k k k 求证: 证:α-ααα=α+α-α+α=sin cos cos sin cot tan sin cos 左边 α-ααα=α+α-αα-=sin cos cos sin sin cos cos sin 右边 左边 = 右边 ∴等式成立例2的值。

《三角函数的诱导公式》教学设计方案

《三角函数的诱导公式》教学设计方案

课题:三角函数的诱导公式(一)一、教学内容分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.二、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.三、学习者特征分析本节课的授课对象是本校高一(4)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学策略选择与设计数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.五、教学重点及难点理解并掌握诱导公式.正确运用诱导公式,求三角函数值,化简三角函数式.六、教学过程教师活动学生活动设计意图1.复习锐角300,450,600的三 1. 让学生发现300角的由特殊问题的引角函数值;2.复习任意角的三角函数定义;3.问题:由,你能否知道sin2100的值吗?引如新课.终边与2100角的终边之间有什么关系;2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;3.Sin2100与sin300之间有什么关系.入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.由sin3000= -sin600出发,用三角的定义引导学生求出sin (-3000),Sin150 0值,让学生联想若已知sin3000= -sin600,能否求出sin(-3000),Sin150 0)的值.1.探究任意角与的三角函数又有什么关系;2.探究任意角与的三角函数之间又有什么关系.遗忘的规律是先快后慢,过程的再现是深刻记忆的重要途径,在经历思考问题-观察发现-到一般化结论的探索过程,从特殊到一般,数形结合,学生对知识的理解与掌握以深入脑中,此时以类同问题的提出,大胆的放手让学生分组讨论,重现了探索的整个过程,加深了知识的深刻记忆,对学生无形中鼓舞了气势,增强了自信,加大了挑战.而新知识点的自主探讨,对教师驾驭课堂的能力也充满了极大的挑战.彼此相信,彼此信任,产生了师生的默契,师生共同进步.展示学生自主探究的结果七、教学评价设计三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符合.(即:函数名不变,符号看象限.)设计意图简便记忆公式.八、板书设计1.小结使用诱导公式化简任意角的三角函数为锐角的步骤.2.体会数形结合、对称、化归的思想.3.“学会”学习的习惯.九.教学反思可以从如下角度进行反思(不少于200字):对本节内容在进行教学设计之前,本人反复阅读了课程标准和教材,针对教材的内容,编排了一系列问题,让学生亲历知识发生、发展的过程,积极投入到思维活动中来,通过与学生的互动交流,关注学生的思维发展,在逐渐展开中,引导学生用已学的知识、方法予以解决,并获得知识体系的更新与拓展,收到了一定的预期效果,尤其是练习的处理,让学生通过个人、小组、集体等多种解难释疑的尝试活动,感受“观察——归纳——概括——应用”等环节,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提高了学生主体的合作意识,达到了设计中所预想的目标。

1_1.3三角函数的诱导公式教案

1_1.3三角函数的诱导公式教案

三角函数的诱导公式目标:理解诱导公式及其探究思路,学会利用诱导公式求解任意角的三角函数值,会进行简单的化简与证明。

一、问题情景:回顾前面已经学习的理论知识,我们已经学习了任意角的三角函数的定义,学习了三角函数线,还有同角三角函数关系,但是我们还有一个关键问题没有解决,那就是:我们如何来求任意角的三角函数值呢?二 、学生活动: 讨论:1、找出我们可以解决的和目前无法解决的2、对于还无法解决的,可否借助前面学习的知识求解3、这些角之间有何关联指导:我们前面学过了三角函数的定义和三角函数线,知道角的终边和单位圆的交点的坐标就是角对应的三角函数值,大家先画出一个单位圆,然后把第一个角的终边画出来,它和单位圆的交点记为(00,x y ),然后分别画出另外四个角的终边和单位圆的交点,看看你在画图的时候发现了什么。

(给五分钟画图、总结,学生在画图中容易看出另外的几个角和开始的锐角的关系) 三、 意义建构:A第一组:由画图发现0390的角的终边和6π的终边是重合的,它们相差0360,由三角函数定义可知,终边相同的角的同一三角函数值相等,表中第二列和第一列值相同。

我们可否也把它推广到任意的角呢?总结一下就是“终边相同的角的三角函数值相同”,如何用符号表示? 诱导公式一: απαsin )2sin(=+k απαcos )2cos(=+kαπαtan )2tan(=+k (其中Z ∈k ) 这个公式有什么作用?作用:把任意角的正弦、余弦、正切化为00360 之间角的正弦、余弦、正切,其方法是先在000360 内找出与角α终边相同的角再把它写成诱导公式(一)的形式,然后得出结果简单来说就是“大化小”。

此处还可以得出三角函数是“多对一”的单值对应,为下面研究函数的周期性打下铺垫。

B 、第二组:由画图发现030-的角的终边和6π的终边是关于x 轴对称的,由三角函数定义可知,它们的余弦值相等,正弦值和正切值互为相反数。

我们可否也把它推广到任意的角? 总结一下就是“函数名不变,正号是余弦”,如何用符号表示?诱导公式二: αα-sin sin(=-)ααcos cos(=-)ααtan tan(-=-) 这个公式有什么作用?作用:把任意负角的正弦、余弦、正切化为该角正角的正弦、余弦、正切,其方法是对于正弦和正切直接提出负号,对于余弦可以直接去掉负号,简单来说就是“负变正”。

1.3三角函数的诱导公式(教案)

1.3三角函数的诱导公式(教案)

1.3三角函数的诱导公式教案教学目标:(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式;(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题;(3)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力;(4)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.教学重点:用联系的观点发现并证明诱导公式.教学难点: 如何引导学生从单位圆的对称性与任意角终边的对称性中,发现问题,提出研究方法.教学过程:一.问题引入与复习巩固:角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值.怎么求呢?先看一个具体的问题。

求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,即有:sin(α+2kπ) = sinα,cos(α+2kπ) = cosα,ta n(α+2kπ) = tanα (k∈Z) 。

(公式一) 二.尝试推导由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等。

反过来呢?问题:你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π -α) = sin α,cos(π -α) = - cos α,(公式二)tan(π -α) = - tan α。

因为与角α终边关于y轴对称是角π-α,,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数。

于是,我们就得到了角π-α与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。

三.自主探究问题:两个角的终边关于x轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α与角α的终边关于x轴对称,有:sin(-α) = -sin α,cos(-α) = cos α,(公式三)tan(-α) = -tan α。

1.3三角函数的诱导公式教案

1.3三角函数的诱导公式教案

1.3三角函数的诱导公式(第1课时)抚松六中 唐 玲一.教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用。

承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简,以及三角函数的图象与性质(包括三角函数的周期性)等内容。

同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉。

这些构成了学生的知识基础。

诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想。

二.教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。

(2)能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题。

2.过程与方法(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。

(2)通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力。

3.情感、态度、价值观(1)通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度。

(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。

三.教学重点与难点教学重点:探求π-α的诱导公式。

π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出。

教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”。

四.教学方法与教学手段问题教学法、合作学习法,结合多媒体课件五.教学过程导入新课思路1.①利用单位圆表示任意角的正弦值和余弦值.②复习诱导公式一及其用途. sin(α+2k π) = sin α,cos(α+2k π) = cos α, (k ∈Z ) (公式一)tan(α+2k π) = tan α。

《三角函数的诱导公式》教学设计

《三角函数的诱导公式》教学设计

《三角函数的诱导公式》教学设计一、教学目标1.了解三角函数诱导公式的概念和性质;2.掌握三角函数诱导公式的推导方法;3.掌握三角函数诱导公式在解决三角方程和三角恒等式中的应用方法;4.培养学生的逻辑思维能力和推导能力。

二、教学内容1.三角函数诱导公式的概念和性质;2.三角函数诱导公式的推导方法;3.三角函数诱导公式在解决三角方程和三角恒等式中的应用方法。

三、教学过程A.导入(5分钟)1.回顾正弦函数和余弦函数的定义,引出诱导公式的概念。

2.以一个具体的例题引起学生思考,如证明sin(π/4) = cos(π/2- π/4)。

B.基本推导(10分钟)1.从一个直角三角形中引入角的概念,并给出三角函数的定义。

2.以一个直角三角形为例,推导出sin(α + β) 和cos(α + β)的公式。

3.总结得到sin(α + β) = sinαcosβ + cosαsinβ, cos(α + β) = cosαcosβ - sinαsinβ。

C.诱导公式的证明(20分钟)1.先证明sin(α + β) = sinαcosβ + cosαsinβ。

2.使用sin(α + β) 的性质,推导出sin(2α) 的表达式。

3.分别使用sin^2α + cos^2α = 1 和1 + tan^2α = sec^2α,推导出cos(α + β) 的表达式。

4.总结得到sin(α + β) = sinαcosβ + cosαsinβ 和cos(α + β) = cosαcosβ - sinαsinβ。

D.应用举例(25分钟)1.解决三角方程,如 sin2x + 3sinx - 4 = 0。

a)使用诱导公式将 sin2x 表示成 sinx 的函数;b)令 t = sinx,将方程转化为 t^2 + 3t - 4 = 0;c)求解t的值,再解出x的值。

2.证明三角恒等式,如tan(α + β) = (tanα + tanβ) / (1 - tanαtanβ)。

《三角函数的诱导公式》新课程高中数学必修4省优质课比赛说课教案

《三角函数的诱导公式》新课程高中数学必修4省优质课比赛说课教案

三角函数的诱导公式教材:在北师大版普通高中课程标准实验教科书必修4中,单位圆与正弦、余弦函数的内容约4课时,下面笔者从教学背景分析、教学设计分析、目标分析、过程分析、板书设计等方面谈谈“三角函数的诱导公式”这节课的教学设计.一、教学背景分析(一)教材的地位和作用本节教学内容是4组三角函数诱导公式的推导过程及其简单应用.承上,有任意角三角函数正弦、余弦和正切的比值定义、三角函数线、同角三角函数关系等;启下,学生将学习利用诱导公式进行任意角三角函数的求值化简以及三角函数的图象与性质(包括三角函数的周期性)等内容.同时,学生在初中就接触过对称等知识,对几何图形的对称等知识相当熟悉,这些构成了学生的知识基础.诱导公式的作用主要在于把任意角的三角函数化归成锐角的三角函数,体现了把一般化特殊、复杂化简单、未知化已知的数学思想.(二)目标定位诱导公式可以帮助我们把任意角的三角函数化为锐角三角函数,但是随着计算器的普及,上述意义不是很大.我们认为,诱导公式的教学价值主要体现在以下几个方面:第一,感受探索发现,通过几何对称这个研究工具,去探索发现任意角三角函数间的数量关系式,即三角函数的基本性质乃是圆的几何性质(主要是其对称性质)的代数解析表示.第二,学会初步应用,能够选用恰当的诱导公式将任意角的三角函数转化为锐角三角函数问题并求解.第三,领悟思想方法,在诱导公式的学习过程中领悟化归、数形结合等思想方法.第四,积累数学经验,为学生认识任意角的三角函数既是一个起源于圆周运动的周期函数又是研究现实世界中周期变化现象的“最有表现力的函数”做好准备.二、教学设计分析在进行本课教学设计时,有以下两条典型教学路线可供选择:(1)两个角的终边有哪些特殊的对称关系?(2)怎样把非第一象限的角转化为第一象限的角?笔者最终选择了第一条路线,主要基于以下两点考虑.(一)尊重教材的编写方式从对教材的分析来看,北师大版教材将三角函数作为一种数学模型来定位,力图在单位圆中借助对称性来考察对应点的坐标关系,从而统整各组诱导公式.教材的编写处理体现了教材专家的集体智慧和版本教材的一贯特色,教师应该努力体会和把握,不宜轻率抛开教材另搞一套.(二)切合学生的认知水平利用学生熟悉的圆及其对称性研究三角函数的相关性质,符合学生的认知心理.同时,单位圆及其对称性的表象对学生推导诱导公式、理解公式之间的内在联系、形象记忆三角函数诱导公式都将起到事半功倍的效果.三、教学环境分析根据教学内容和学生实际情况,确定选择使用多媒体教室.四、教学目标分析(一)知识与技能1.能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式.2.能够运用诱导公式,把任意角的三角函数的化简、求值问题转化为锐角三角函数的化简、求值问题.(二)过程与方法1.经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力.2.通过对诱导公式的探求和运用,培养化归能力,提高学生分析问题和解决问题的能力.(三)情感、态度、价值观1.通过对诱导公式的探求,培养学生的探索能力、钻研精神和科学态度.2.在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神.五、教学重点与难点教学重点:探求π-α的诱导公式.π+α与-α的诱导公式在小结π-α的诱导公式发现过程的基础上,教师引导学生推出.教学难点:π+α,-α与角α终边位置的几何关系,发现由终边位置关系导致(与单位圆交点)的坐标关系,运用任意角三角函数的定义导出诱导公式的“研究路线图”.六、教学方法与教学手段问题教学法、合作学习法,结合多媒体课件.七、教学过程角的概念已经由锐角扩充到了任意角,前面已经学习过任意角的三角函数,那么任意角的三角函数值怎么求呢?先看一个具体的问题.(一)问题提出如何将任意角三角函数求值问题转化为0°~360°角三角函数求值问题.【问题1】求390°角的正弦、余弦值.一般地,由三角函数的定义可以知道,终边相同的角的同一三角函数值相等,三角函数看重的就是终边位置关系.即有sin(α+k·360°) = sinα,cos(α+k·360°) = cosα, (k∈Z)tan(α+k·360°) = tanα.这组公式用弧度制可以表示成sin(α+2kπ) = sinα,cos(α+2kπ) = cosα, (k∈Z) (公式一)tan(α+2kπ) = tanα.【设计意图】前面的学习中,已经将角的概念从锐角扩充到了任意角,学习了任意角三角函数的定义,接下来自然地会提出任意角的三角函数值怎么去求.于是,先安排求特殊值再过渡到一般情形比较符合学生的身心特点和认知规律,意在培养学生从特殊到一般归纳问题和抽象问题的能力,引导学生在求三角函数值时抓坐标、抓角终边之间的关系.同时,首先考虑α+2kπ(k∈Z)与α的三角函数值之间的关系,有助于学生理解三角函数被看成刻画现实世界中周期性变化的数学模型的确切含义.(二)尝试推导如何利用对称推导出角π-α与角α的三角函数之间的关系.由上一组公式,我们知道,终边相同的角的同一三角函数值一定相等.反过来呢?如果两个角的三角函数值相等,它们的终边一定相同吗?比如说:【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?角π-α与角α的终边关于y轴对称,有sin(π-α) = sinα,cos(π-α) = -cosα,(公式二)tan(π-α) = -tanα.【设计意图】对问题2的提问方式的设计主要是考虑到我们在研究问题的时候常常会研究它的逆命题、否命题、等价命题等.事实上问题2可以看成是“若两个角的终边相同,则它们的正弦值相同”的逆命题,即“若两个角的正弦值相同,则两个角的终边相同”.但这里是以问题的形式提出的,实际上教会了学生一种自己研究问题的方法.〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?因为与角α终边关于y 轴对称是角π-α,利用这种对称关系,得到它们的终边与单位圆的交点的纵坐标相等,横坐标互为相反数.于是,我们就得到了角π-α与角α的三角函数值之间的关系:正弦值相等,余弦值互为相反数,进而,就得到我们研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系.【设计意图】阶段小结,让学生将对称作为研究三角函数问题的一种方法使用.将上述研究过程进行梳理,得出“角间关系→对称关系→坐标关系→三角函数值间关系”的研究路线图.(三)自主探究 如何利用对称推导出π+ α,- α与α的三角函数值之间的关系.刚才我们利用单位圆,得到了终边关于y 轴对称的角π-α与角α的三角函数值之间的关系,下面我们还可以研究什么呢?【问题3】两个角的终边关于x 轴对称,你有什么结论?两个角的终边关于原点对称呢?角-α与角α的终边关于x 轴对称,有:sin (-α) = -sin α,cos (-α) = cos α,(公式三)tan (-α) = -tan α.角π +α与角α终边关于原点O 对称,有:sin (π +α) = -sin α,cos (π +α) = -cos α,(公式四)tan (π +α) = tan α.上面的公式一到四都称为三角函数的诱导公式.【设计意图】从两个角的终边关于y 轴对称的情况进行自然过渡,给学生留下了自主探究的空间,让他们再次经历公式的研究过程,从而得出公式三和四,并将问题2研究方法一般化.(四)简单应用例:求下列各三角函数值: (1) ; (2) 2cos 3π;(3) . 7sin()6-π31cos 6-π【设计意图】初步熟悉诱导公式的使用,让学生感悟在解决问题的过程中,如何合理地使用这几组公式.此外,引导学生注意同一个三角函数的求值问题可以采用不同的诱导公式,启发学生这些公式的内在关系和联系,体会数学方法的多样性.(五)回顾反思【问题4】回顾一下,我们是怎样获得诱导公式的?研究的过程中,你有哪些体会?知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系.主要体现了化归和数形结合的数学思想.具体可以表示如下:【设计意图】开放式小结,使得不同的学生有不同的学习体验和收获.这些问题的提出,侧重于诱导公式推导方法的回顾和反思,侧重于个体情感体验的分享和表达,从而区别于侧重公式规律的总结和记忆.(六)分层作业1.阅读课本,体会三角函数诱导公式推导过程中的思想方法;2.必做题:课本20页A组1, 6,21页B组 1;3.选做题:(1)你能由公式二、三、四中的任意两组公式推导到另外一组公式吗?(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?【设计意图】分层作业有利于不同层次的学生巩固知识,提升思维能力.阅读课本旨在引导学生教科书是学习的根本,阅读课本有利于培养学生良好的回归课本的学习习惯.而出现选做题目,目的是提供多元化和挑战性选择,促使学有余力的学生课后思考和自主探究几组公式之间的内在联系.(七)板书设计。

03【数学】1.3《三角函数的诱导公式》教案(新人教A版必修4)

03【数学】1.3《三角函数的诱导公式》教案(新人教A版必修4)

第一章三角函数4-1.3三角函数的诱导公式一、教材分析(一)教材的地位与作用:1、本节课教学内容“诱导公式(二)、(三)、(四)”是人教版数学4,第一章1、3节内容,是学生已学习过的三角函数定义、同角三角函数基本关系式及诱导公式(一)等知识的延续和拓展,又是推导诱导公式(五)的理论依据。

2、求三角函数值是三角函数中的重要问题之一。

诱导公式是求三角函数值的基本方法。

诱导公式的重要作用是把求任意角的三角函数值问题转化为求0°~90°角的三角函数值问题。

诱导公式的推导过程,体现了数学的数形结合和归纳转化思想方法,反映了从特殊到一般的数学归纳思维形式。

这对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大的意义。

(二)教学重点与难点:1、教学重点:诱导公式的推导及应用。

2、教学难点:相关角边的几何对称关系及诱导公式结构特征的认识。

二、目标分析根据教学内容的结构特征,依据学生学习的心理规律和新课程标准的要求,结合学生的实际水平,本节课的教学目标为:1、知识目标:(1)识记诱导公式。

(2)理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数式的化简和证明。

2、能力目标:(1)通过诱导公式的推导,培养学生的观察力、分析归纳能力,领会数学的归纳转化思想方法。

(2)通过诱导公式的推导、分析公式的结构特征,使学生体验和理解从特殊到一般的数学归纳推理思维方式。

(3)通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的实践能力。

3、情感目标:(1)通过诱导公式的推导,培养学生主动探索、勇于发现的科学精神,培养学生的创新意识和创新精神。

(2)通过归纳思维的训练,培养学生踏实细致、严谨科学的学习习惯,渗透从特殊到一般、把未知转化为已知的辨证唯物主义思想。

300 2100 х三、过程分析(一)创设问题情景,引导学生观察、联想,导入课题I 重现已有相关知识,为学习新知识作铺垫。

三角函数的诱导公式学案3

三角函数的诱导公式学案3

三角函数的诱导公式学习目标:理解记忆三角函数的诱导公式并学会正确应用。

教学重点:诱导公式的记忆与应用。

复习案:1、同角三角函数的基本关系式是:2、正弦、余弦、正切函数在各个象限的正负是:3、角度数乘以( )=弧度数,弧度数乘以()=角度数预习学案问题探究1.终边相同的角的同一三角函数值有什么关系?2.角 -α与α的终边有何位置关系?3.角 -α与α的终边有何位置关系?4.角 +α与α的终边有何位置关系?【模块一】创设情境,提出问题问题1:设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么:sin α= cos α= tan α= ( α≠ ) 问题2:前面学习的公式一是怎样描述的?它有什么作用?公式一: 作用:sin(2)cos(2)tan(2)k k k απαπαπ+⋅=+⋅=+⋅=其中k Z ∈【模块二】质疑解惑,探究新知思考: (1)30°角与210°角的终边有什么关系?结论:(2)30°角与210°角终边与单位圆的交点坐标有什么关系?结论:(3)请根据三角函数的定义写出30°角与210°角的三角函数值有什么关系?结论:(4)45°角与225°角有上述(1)至(3)的关系吗?结论:(5)角α与角180α︒+角有上述(1)至(3)的关系吗?诱导公式二:____________________xy________________________________________总结反思:公式二的作用【模块三】合作探究,深化理解类比前面的研究方法,探索下列问题:探索一:角α-与α的终边有什么关系?它们的三角函数之间有什么关系? 诱导公式三:____________________________________________________________总结反思:公式三的作用探索二:角0180α-与α的终边有什么关系?它们的三角函数之间有什么关系?你还有其他途径得到这种关系吗?诱导公式四:____________________________________________________________总结反思:公式四的作用质疑探究:如何记忆诱导公式一、二、三、四?公式概括:x y xy口诀:【模块四】即时应用,巩固新知例1.求下列三角函数值例2 化简0000cos(180)sin(360)sin(180)cos(180)a a a a +∙+--∙--练习反馈探究三:已知任意角a 的终边与单位圆相交于点 P(x,y), 请同学们思考回答点p 关于直线 y=x 对称的点的坐标是什么?=︒225cos )1(=311sin )2(π=-)316sin()3(π=︒-)2040cos()4((1)tan 3,2cos()3sin()4cos()sin(2)απαπααπα=--+-+-已知:求的值.3(2),6356παπα已知cos(+)=求cos(-)的值.x y例3:化简:【模块五】总结反思,提高认识【模块六】课后作业,巩固提高sin α.α)2πcos(cos α,α)2πsin(:公式-=+=+六sin α.α)2πcos(cos α,α)2πsin(:公式五=-=-)29)sin(-)sin(--)sin(3-cos()-211)cos(2)cos()cos(-sin(2απαπαπαπαπαπαπαπ+++。

1.3.1三角函数诱导公式-教学设计

1.3.1三角函数诱导公式-教学设计
1.3 三角函数的诱导公式 (第一课时) (导学案-教学设计) 甘肃省临夏中学 设计者:苏小俊
1.3
科目 课题 名称 教学 目标
三角函数的诱导公式 (第一课时) (教学设计)
2017 级 高一 第 1 课时 教师 课型 苏小俊 新授课 1.3 三角函数的诱导公式
数学(必修 4)
1 知识与技能:识记诱导公式,理解和掌握诱导公式的内涵和结构特征,会初步运用诱导公式求三 角函数的值,并进行简单三角函数的化简; 2 过程与方法:通过诱导公式的推导,培养学生的观察能力,分析归纳能力,领会数学的化归思想 方法,使学生体验和理解从特殊到一般的数学归纳推理思维模式; 3 情感态度与价值观:通过诱导公式的推导,培养学生主动探索,培养学生的创新意识和创新精 神。 用联系的观点,发现并证明诱导公式,体会把未知问题化归成已知问题的思想方法。 如何引导学生从单位圆的对称性与任意角终边的对称性中发现问题,提出研究方法。 《普通高中课程标准实验教科书》数学必修 4、教参、多媒体 问题教学法、自主探究法,多媒体课
教学 重点 教学 难点 教学 资源 教学 方法

一、公式一 二、公式二 三、公式三



公式二的推导
多 媒 体 教 学
四、公式四 学生板演 学生板演 (公式三推导、例题)
课 后 反 思
对本节内容针对教材的内容,编排了一系列问题,让学生亲历知识发 生、发展的过程,通过与学生的互动交流,关注学生的思维发展,在 逐渐展开中,让学生通过个人、小组、集体等多种解难释疑的尝试活 动,感受“观察——归纳——概括——应用”等环节,在知识的形 成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决 问题的能力和创造性思维的能力,充分发挥了学生的主体作用,也提 高了学生主体的合作意识,达到了设计中所预想的目标。 缺憾:对本节内容,难度不高,本人认为,教师的讲解还是太多。

1.3三角函数的诱导公式(4课时)

1.3三角函数的诱导公式(4课时)

1⋅3三角函数的诱导公式学习目标1、掌握三角函数的“化角”规律,会把任意角三角函数化为锐角三角函数;2、熟练应用公式进行三角函数式的化简或证明。

学习重、难点三角函数的“化角”规律;把任意角三角函数化为锐角三角函数;三角函数式的化简或证明。

一、知识链接1、判定三角函数的符号2、判断下列角的终边0° ;2π;π ;2π-;270° ;360° ;2k π⋅ ()k Z ∈ 。

3、根据三角函数定义求下列角的三角函数值,并把它们的值与60°角的值进行比较。

二、新课导学学习探究1、学习课本P23-25,根据三角函数定义理解公式(三)问题1:把下列负角三角函数化为正角三角函数:16sin()3π-= ; cos(-2040°)= ;tan()5π-= ;cot(-70°6′)= ;sec(-420°)= ;7csc()5π-= 。

新知 1、 负角三角函数一般化为正角三角函数——任意负角α-一律看作第四象限角,再确定化为正角的三角函数的符号。

即:问题2:观察、归纳1)将120°、150°、210°、240°、290°、330°转化为锐角时,写成了“k ⋅90°β±”形式;其中各角使用的“k ⋅90°”有什么不同?它们的不同对化为锐角三角函数有什么影响?2)120°、150°、210°、240°、290°、330°的各个三角函数值的符号..与所化成的锐角三角函数的符号..有什么联系?角α化为:2k παβ⋅=±(β为锐角)后: ○1若角2k π⋅终边在 x 轴(即k .为偶数...),则函数名... ; 若角2k π⋅终边在 y 轴 (即k .为.奇数..),则函数名... ;( 奇变偶不变.....;或:y .变.x .不变..) ○2锐角β的三角函数的符号..,由 决定。

【教学设计】高一数学《三角函数的诱导公式》

【教学设计】高一数学《三角函数的诱导公式》

教案:1.3 三角函数的诱导公式(一)一、教学三维目标(一)知识与技能1.借助单位圆,推导、识记和应用诱导公式;2.理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数值,并进行简单三角函数式的化简。

(二)过程与方法1.通过诱导公式的推导,分析公式的结构特征,使学生体验和理解数形结合、从特殊到一般的数学思想方法;2.通过习题组的练习,提高学生分析问题和解决问题的实践能力,使学生体验和理解转化与化归的数学思想方法。

(三)情感态度与价值观培养学生主动探索,勇于发现的科学精神,并在课程中渗透数形结合、从特殊到一般以及把未知转化为已知的转化与化归的数学思想方法。

二、教学重难点(一)教学重点1. 诱导公式的探究,利用诱导公式进行简单三角函数式的求值和化简;2.利用四组诱导公式会进行简单的化简与证明。

(二)教学难点发现圆的对称性与任意角终边坐标的联系,及诱导公式的合理运用。

三、教学过程(一)、温故知新1、角α与角α的终边相同的角的三角函数值之间的关系公式一:终边相同的角的同一三角函数的值相等。

通过公式一,我们就可以把绝对值大于2π的任意角的三角函数问题,转化 为研究绝对值小于2π的角的三角函数问题.(二)、热身小试求下列各三角函数值: );38sin()1(ππ+ .319cos )2(π (三)、合作探究 变式、求 产生认知冲突,从而进行探究探究1: 角π+α与角α的三角函数值之间的联系。

结论1:角α+π 的终边与角α的终边关于原点对称; 结论2:它们的终边与单位圆的交点坐标满足:横坐标互为相反数,纵坐标互为相反数.由此得出结论(公式二): 完成变式、求结合公式一,对两个公式结构特征进行分析直接抛出探究2:角-α与角α的三角函数值之间有什么联系?学生合作探究,发现结论公式三 Zk k k k ∈=⋅+=⋅+=⋅+,tan )2tan(,sin )2sin(,cos )2cos(απααπααπα.310cos π.tan )tan(,sin )sin(,cos )cos(ααπααπααπ=+-=+-=+.310cos π.tan )tan(,sin )sin(,cos )cos(αααααα-=--=-=-由此给出诱导公式的概念(四)、公式应用 例1、求下列各三角函数值:变式1、求 (由变式一启发思维,进行公式三和二的综合应用) 进而推论:角π-α与角α的三角函数值之间的联系:例2、求下列各三角函数值:(公式的综合应用)四、回顾总结(一)、知识小结:1、诱导公式一、二、三、四的推导、记忆和应用;2、诱导公式的应用原则。

三角函数的诱导公式教案

三角函数的诱导公式教案

三角函数的诱导公式教案【教案】三角函数的诱导公式一、教学目标1. 了解三角函数的诱导公式的概念和作用;2.掌握利用诱导公式推导三角函数恒等式的方法;3. 熟练运用诱导公式求解相关题目和实际问题。

二、教学内容1. 三角函数的诱导公式的概念和推导过程;2. 利用诱导公式推导三角函数的恒等式;3. 利用诱导公式求解相关题目和实际问题。

三、教学过程1. 导入新知识教师引导学生回顾正弦、余弦的定义,并鼓励他们尝试将正弦、余弦的变量角分别设置为60°和30°,观察结果。

2. 学习三角函数的诱导公式教师介绍诱导公式的概念,并通过具体的例子进行演示,使学生理解三角函数的诱导公式的作用和用法。

3. 推导正弦、余弦的诱导公式(1)求解正弦的诱导公式:根据正弦的定义,将变量角设置为∠A和∠B,其中∠A = 30°,∠B = 60°,则有:sin(∠A) = sin(∠B)sin(30°) = sin(60°)1/2 = √3/2(2)求解余弦的诱导公式:根据余弦的定义,将变量角设置为∠A和∠B,其中∠A = 30°,∠B = 60°,则有:cos(∠A) = cos(∠B)cos(30°) = cos(60°)√3/2 = 1/24. 运用诱导公式推导三角函数恒等式(1)推导正弦的相反角公式:根据诱导公式sin(π - θ) = sinθ,将变量角设置为θ,则有:sin(π - θ) = sinθsin(180° - θ) = sinθsinθ = sinθ(2)推导余弦的补角公式:根据诱导公式cos(π/2 - θ) = sinθ,将变量角设置为θ,则有:cos(π/2 - θ) = sinθcos(90° - θ) = sinθsi nθ = sinθ5. 拓展运用教师引导学生运用诱导公式求解相关题目和实际问题,巩固所学知识。

三角函数的诱导公式(教学案例)

三角函数的诱导公式(教学案例)

三角函数的诱导公式教学案例数学组 蔺宪芳教学目标:1 知识与技能:识记诱导公式,理解和掌握诱导公式的内涵和结构特征,会初步运用诱导公式求三角函数的值,并进行简单三角函数的化简;2 过程与方法:通过诱导公式的推导,培养学生的观察能力,分析归纳能力,领会教学的化归思想方法,使学生体验和理解从特殊到一般的数学归纳推理思维模式;3 情感态度与价值观:通过诱导公式的推导,培养学生主动探索,勇于发现的科学精神,培养学生的创新意识和创新精神。

教学重点:用联系的观点,发现并证明诱导公式,体会把未知问题化归成已知问题的思想方法。

教学难点:如何引导学生从单位圆的对称性与任意角终边的对称性中发现问题,提出研究方法。

教学方法:问答探究式教学。

教学过程:一、课前回顾1.任意角α的正弦、余弦、正切是怎样定义的? 2.2()k k Z πα+∈与α的三角函数之间的关系是什么? 3.求sin750°和sin930°的值。

利用诱导公式一,可将任意角的三角函数值,转化为0°~360°范围内的三角函数值,其中锐角的三角函数可以查表计算,而对于90°~360°范围内的三角函数值,如何转化为锐角的三角函数值,是我们需要研究和解决的问题。

二、新课探究知识探究一:απ+的诱导公式问1:210°角与30°角有何内在联系? 210°=180°+30°问2:若α为锐角,则(180°,270°)范围内的角可以怎样用α表示? 180°+α问3:对于任意给定的一个角α,角απ+的终边与角α的终边有什么关系? 关于原点对称。

问4:设角α的终边与单位圆交于点P ),(y x ,则角απ+的终边与单位圆的交点Q 坐标如何?Q ),(y x --问5:根据三角函数定义,试确定sin(απ+)、 cos (απ+)、tan (απ+)的值分别是什么?y -=+)sin(απ , ,问6:对比sin α,cos α,tan α的值,απ+的三角函数与α的三角函数有什么关系?y -=+)s i n(απ观察得出:公式二问7:该公式有什么特点,如何记忆? 特点一:各等式函数名相同;特点二:若将α当成锐角,则απ+为第三象限角,此时sin α为正,sin(απ+)为负。

高中数学三角函数1.3三角函数的诱导公式教学案新人教版

高中数学三角函数1.3三角函数的诱导公式教学案新人教版

1.3 三角函数的诱导公式第1课时诱导公式二、三、四[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P23~P26的内容,回答下列问题.(1)给定一个角α,则角π+α的终边与角α的终边有什么关系?它们的三角函数之间有什么关系?提示:π+α的终边与α的终边关于原点对称,sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tan_α.(2)给定一个角α,则角π-α的终边与角α的终边有什么关系?它们的三角函数之间有什么关系?提示:π-α的终边与角α的终边关于y轴对称,sin(π-α)=sin_α,cos(π-α)=-cos_α,tan(π-α)=-tan_α.(3)给定一个角α,则角-α的终边与角α的终边有什么关系?它们的三角函数之间有什么关系?提示:-α的终边与角α的终边关于x轴对称,sin(-α)=-sin_α,cos(-α)=cos_α,tan(-α)=-tan_α.2.归纳总结,核心必记(1)特殊角的终边对称性①π+α的终边与角α的终边关于原点对称,如图①;②-α的终边与角α的终边关于x轴对称,如图②;③π-α的终边与角α的终边关于y轴对称,如图③.(2)诱导公式(3)公式一~四的应用记忆口诀:负化正,大化小,化到锐角再求值.[问题思考](1)诱导公式一、二、三、四中的角α有什么限制条件?提示:sin(α+2k π),sin(π±α),sin(-α),cos(α+2k π),cos(π±α),cos(-α)公式中的α∈R ;而tan(α+2k π),tan(π±α),tan(-α)中的α≠π2+k π,k ∈Z .(2)在△ABC 中,你认为sin A 与sin(B +C ) ,cos A 与cos(B +C )之间有什么关系? 提示:∵A +B +C =π,即B +C =π-A , 故sin A =sin[π-(B +C )]=sin(B +C ), cos A =cos[π-(B +C )]=-cos(B +C ).[课前反思](1)π+α,-α,π-α的终边与α终边的关系: ;(2)诱导公式一、二、三、四的内容: ;(3)公式一~四的应用: .讲一讲1.求下列三角函数值:(1)sin(-1 200°);(2)tan 945°; (3)cos 119π6.[尝试解答] (1)sin(-1 200°)=-sin 1 200°=-sin (3×360°+120°)=-sin 120°=-sin(180°-60°)=-sin 60°=-32. (2)tan 945°=tan (2×360°+225°)=tan 225°=tan(180°+45°)=tan 45°=1.(3)cos 119π6=cos ⎝ ⎛⎭⎪⎫20π-π6=cos ⎝ ⎛⎭⎪⎫-π6=cos π6=32.利用诱导公式解决给角求值问题的步骤1.求sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°的值. 解:sin 585°cos 1 290°+cos(-30°)sin 210°+tan 135°=sin(360°+225°)cos (3×360°+210°)+cos 30°sin 210°+tan(180°-45°) =sin 225°cos 210°+cos 30°sin 210°-tan 45°=sin(180°+45°)cos(180°+30°)+cos 30°·sin(180°+30°)-tan 45° =sin 45°cos 30°-cos 30°sin 30°-tan 45° =22×32-32×12-1=6-3-44.讲一讲2.(1)化简:cos (-α)tan (7π+α)sin (π-α)=________;(2)化简sin (1 440°+α)·cos (α-1 080°)cos (-180°-α)·sin (-α-180°)=________.[尝试解答](1)cos (-α)tan (7π+α)sin (π-α)=cos αtan (π+α)sin α=cos α·tan αsin α=sin αsin α=1.(2)原式=sin (4×360°+α)·cos (3×360°-α)cos (180°+α)·[-sin (180°+α)]=sin α·cos (-α)(-cos α)·sin α=cos α-cos α=-1.答案:(1)1 (2)-1利用诱导公式一~四化简应注意的问题(1)利用诱导公式主要是进行角的转化,从而达到统一角的目的; (2)化简时函数名没有改变,但一定要注意函数的符号有没有改变;(3)同时有切(正切)与弦(正弦、余弦)的式子化简,一般采用切化弦,有时也将弦化切. 练一练2.化简:sin[(k +1)π+θ]·cos[(k +1)π-θ]sin (k π-θ)·cos (k π+θ)(k ∈Z ).解:当k 为奇数时,不妨设k =2n +1,n ∈Z ,则原式=sin[(2n +2)π+θ]·cos[(2n +2)π-θ]sin (2n π+π-θ)·cos (2n π+π+θ)=sin θ·cos θsin (π-θ)·cos (π+θ)=sin θ·cos θsin θ·(-cos θ)=-1;当k 为偶数时,不妨设k =2n ,n ∈Z ,则原式=sin[(2n +1)π+θ]·cos[(2n +1)π-θ]sin (2n π-θ)·cos (2n π+θ)=sin (π+θ)·cos (π-θ)sin (-θ)·cos θ=-sin θ·(-cos θ)-sin θ·cos θ=-1.综上,sin[(k +1)π+θ]·cos[(k +1)π-θ]sin (k π-θ)·cos (k π+θ)=-1.讲一讲3.(1)已知sin β=13,cos(α+β)=-1,则sin(α+2β)的值为( )A .1B .-1 C.13 D .-13(2)已知cos(α-55°)=-13,且α为第四象限角,则sin(α+125°)的值为________.[尝试解答] (1)∵cos(α+β)=-1,∴α+β=π+2k π,k ∈Z , ∴sin(α+2β)=sin[(α+β)+β]=sin(π+β)=-sin β=-13.(2)∵cos(α-55°)=-13<0,且α是第四象限角.∴α-55°是第三象限角.∴sin(α-55°)=-1-cos 2(α-55°)=-223.∵α+125°=180°+(α-55°), ∴sin(α+125°)=sin[180°+(α-55°)] =-sin(α-55°)=223.答案:(1)D (2)223解决此类问题的方法是先根据所给等式和被求式的特点,发现它们之间的内在联系,特别是角之间的关系,再选择恰当的三角公式化简求值.练一练3.(1)若sin(π+α)=12,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan(π-α)等于( )A .-12B .-32C .- 3 D.33(2)已知α为第二象限角,且sin α=35,则tan(π+α)的值是( )A.43B.34 C .-43 D .-34解:(1)因为sin(π+α)=-sin α, 根据条件得sin α=-12,又α∈⎝ ⎛⎭⎪⎫-π2,0,所以cos α= 1-sin 2α=32.所以tan α=sin αcos α=-13=-33.所以tan(π-α)=-tan α=33. (2)因为sin α=35且α为第二象限角,所以cos α=-1-sin 2α=-45,所以tan α=sin αcos α=-34.所以 tan(π+α)=tan α=-34.故选D.答案:(1)D (2)D——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是诱导公式二、三、四,难点是诱导公式的应用. 2.要掌握诱导公式的三个应用 (1)解决给角求值问题,见讲1; (2)解决化简求值问题,见讲2; (3)解决给值(式)求值问题,见讲3. 3.本节课要牢记诱导公式的内容(1)诱导公式二、三、四可以概括成:f (π+α)=±f (α),f (-α)=±f (α),f (π-α)=±f (α),其中等号右边的“±”号只取其一,规律口诀是“函数名不变,符号看象限”.例如sin(π+α)=-sin α,就是正弦函数名不改变,而α是锐角,则π+α为第三象限角,第三象限角的正弦为负,故符号取“-”.(2)上述诱导公式都是为了化任意角成锐角α的,如果α为其他范围的角也都成立,这就是说,使用这些诱导公式,不必限定α为锐角,但是用口诀“函数名不变,符号看象限”时,都把α看作锐角记忆,即便α不是锐角,上述公式也全部成立.课下能力提升(六)[学业水平达标练]题组1 给角求值问题 1.cos 300°等于( ) A .-32 B .-12 C.12 D.32解析:选C cos 300°=cos(360°-60°)=cos 60°=12.2.cos (-585°)sin 495°+sin (-570°)的值等于________.解析:原式=cos (360°+225°)sin (360°+135°)-sin (360°+210°)=cos (180°+45°)sin (180°-45°)-sin (180°+30°)=-2222+12=2-2.答案:2-2 题组2 化简求值问题3.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .2解析:选D 原式=(-sin α)2-(-cos α)cos α+1=sin 2α+cos 2α+1=2. 4.2+2sin (2π-θ)-cos 2(π+θ)可化简为________. 解析:2+2sin (2π-θ)-cos 2(π+θ) =2+2sin (-θ)-cos 2θ=1-2sin θ+sin 2θ=|1-sin θ|=1-sin θ. 答案:1-sin θ5.化简:tan (2π-θ)sin (2π-θ)cos (6π-θ)(-cos θ)sin (5π+θ).解:原式=tan (-θ)sin (-θ)cos (-θ)(-cos θ)sin (π+θ)=tan θsin θcos θcos θsin θ=tan θ.题组3 给值(式)求值问题6.已知sin(π+α)=45,且α是第四象限角,则cos(α-2π)的值是( )A .-35 B.35 C .±35 D.45解析:选B 由sin(π+α)=45,得sin α=-45,而cos(α-2π)=cos α,且α是第四象限角,∴cos α=1-sin 2α=35.7.已知cos(508°-α)=1213,则cos(212°+α)=________.解析:由于cos ()508°-α=cos(360°+148°-α)=cos(148°-α)=1213,所以cos(212°+α)=cos(360°+α-148°)=cos(α-148°)=cos(148°-α)=1213. 答案:12138.已知cos α=13,且-π2<α<0,求cos (-α-π)·sin (2π+α)cos (-α)·cos (π+α)的值.解:∵-π2<α<0,∴sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫132=-223. 原式=-cos α·sin αcos α·(-cos α)=sin αcos α=-223×3=-2 2.[能力提升综合练]1.如图所示,角θ的终边与单位圆交于点P ⎝ ⎛⎭⎪⎫-55,255,则cos(π-θ)的值为( )A .-255B .-55C.55 D.255解析:选C ∵r =1,∴cos θ=-55, ∴cos(π-θ)=-cos θ=55. 2.记cos(-80°)=k ,那么tan 100°等于( ) A.1-k2kB .-1-k2kC.k1-k2D.k1-k2解析:选B ∵cos(-80°)=k,∴cos 80°=k,∴sin 80°=1-k2,∴tan 80°=1-k2k,∴tan 100°=-tan 80°=-1-k2k.3.已知tan⎝⎛⎭⎪⎫π3-α=13,则tan⎝⎛⎭⎪⎫2π3+α=( )A.13B.-13C.233D.-233解析:选B ∵tan⎝⎛⎭⎪⎫2π3+α=tan⎣⎢⎡⎦⎥⎤π-⎝⎛⎭⎪⎫π3-α=-tan⎝⎛⎭⎪⎫π3-α,∴tan⎝⎛⎭⎪⎫2π3+α=-13.4.若α∈⎝⎛⎭⎪⎫π2,3π2,tan(α-7π)=-34,则sin α+cos α的值为( )A.±15B.-15C.15D.-75解析:选B ∵tan(α-7π)=tan(α-π)=tan[-(π-α)]=tan α,∴tan α=-34,∴sin αcos α=-34,∵cos2α+sin2α=1,α∈⎝⎛⎭⎪⎫π2,3π2,∴cos α=-45,sin α=35,∴sin α+cos α=-15.5.设函数f(x)=a sin(πx+α)+b cos(πx+β),其中a,b,α,β都是非零实数,且满足f(2 016)=-1,则f(2 017)的值为________.解析:∵f(2 016)=a sin(2 016π+α)+b cos(2 016π+β)=-1,∴f(2 017)=a sin(2 017π+α)+b cos(2 017π+β)=a sin[π+(2 016π+α)]+b cos[π+(2 016π+β)]=-[a sin(2 016π+α)+b cos(2 016π+β)]=1.答案:16.已知f (x )=⎩⎪⎨⎪⎧sin πx (x <0),f (x -1)-1(x >0),则f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116的值为________.解析:因为f ⎝ ⎛⎭⎪⎫-116=sin ⎝ ⎛⎭⎪⎫-116π=sin ⎝ ⎛⎭⎪⎫-2π+π6=sin π6=12;f ⎝ ⎛⎭⎪⎫116=f ⎝ ⎛⎭⎪⎫56-1=f ⎝ ⎛⎭⎪⎫-16-2=sin ⎝ ⎛⎭⎪⎫-π6-2=-12-2=-52.所以f ⎝ ⎛⎭⎪⎫-116+f ⎝ ⎛⎭⎪⎫116=-2. 答案:-2 7.化简:1+2sin 280°·cos 440°sin 260°+cos 800°.解:原式=1+2sin (360°-80°)·cos (360°+80°)sin (180°+80°)+cos (720°+80°)=1-2sin 80°·cos 80°-sin 80°+cos 80°=sin 280°+cos 280°-2sin 80°·cos 80°-sin 80°+cos 80°=(sin 80°-cos 80°)2-sin 80°+cos 80°=|cos 80°-sin 80°|cos 80°-sin 80°=sin 80°-cos 80°cos 80°-sin 80°=-1.8.已知1+tan (θ+720°)1-tan (θ-360°)=3+22,求:[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)的值.解:由1+tan (θ+720°)1-tan (θ-360°)=3+22,得(4+22)tan θ=2+22,所以tan θ=2+224+22=22, 故[cos 2(π-θ)+sin(π+θ)·cos(π-θ)+2sin 2(θ-π)]·1cos 2(-θ-2π)=(cos 2θ+sin θcos θ+2sin 2θ)·1cos 2θ=1+tan θ+2tan 2θ=1+22+2×⎝ ⎛⎭⎪⎫222=2+22. 第2课时 诱导公式五、六[核心必知]1.预习教材,问题导入根据以下提纲,预习教材P 26~P 27的内容,回答下列问题.如图所示,设α是任意角,其终边与单位圆交于点P 1(x ,y ),与角α的终边关于直线y =x 对称的角的终边与单位圆交于点P 2.(1)P 2点的坐标是什么? 提示:P 2(y ,x ).(2)π2-α的终边与角α的终边关于直线y =x 对称吗?它们的正弦、余弦值有何关系?提示:对称.sin ⎝ ⎛⎭⎪⎫π2-α=cos_α,cos ⎝ ⎛⎭⎪⎫π2-α=sin_α. 2.归纳总结,核心必记 (1)诱导公式五和公式六(2)诱导公式的记忆诱导公式一~六可归纳为k ·π2±α的形式,可概括为“奇变偶不变,符号看象限”:①“变”与“不变”是针对互余关系的函数而言的.②“奇”、“偶”是对诱导公式k ·π2±α中的整数k 来讲的.③“象限”指k ·π2±α中,将α看成锐角时,k ·π2±α所在的象限,根据“一全正,二正弦、三正切,四余弦”的符号规律确定原函数值的符号.[问题思考](1)诱导公式五、六中的α是任意角吗? 提示:是.(2)在△ABC 中,角A 2与角B +C2的三角函数值满足哪些等量关系?提示:∵A +B +C =π,∴A 2=π2-B +C2,∴sin A 2=sin ⎝ ⎛⎭⎪⎫π2-B +C 2=cos B +C 2,cos A 2=cos ⎝ ⎛⎭⎪⎫π2-B +C 2=sin B +C 2.[课前反思](1)诱导公式五: ; (2)诱导公式六: .讲一讲1.已知f (α)=sin (π-α)cos (2π-α)cos ⎝ ⎛⎭⎪⎫-α+3π2cos ⎝ ⎛⎭⎪⎫π2-αsin ()-π-α.(1)化简f (α);(2)若α为第三象限角,且cos ⎝ ⎛⎭⎪⎫α-3π2=15,求f (α)的值;(3)若α=-31π3,求f (α)的值.[尝试解答] (1)f (α)=sin αcos α()-sin αsin αsin α=-cos α.(2)∵cos ⎝⎛⎭⎪⎫α-3π2=-sin α=15,∴sin α=-15,又∵α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=265.(3)f ⎝ ⎛⎭⎪⎫-31π3=-cos ⎝ ⎛⎭⎪⎫-31π3 =-cos ⎝⎛⎭⎪⎫-6×2π+5π3=-cos 5π3=-cos π3=-12.三角函数式化简的方法和技巧(1)方法:三角函数式化简的关键是抓住函数名称之间的关系和角之间的关系,据此灵活应用相关的公式及变形,解决问题.(2)技巧:①异名化同名;②异角化同角;③切化弦. 练一练1.化简:sin ⎝ ⎛⎭⎪⎫-α-3π2·sin ⎝ ⎛⎭⎪⎫3π2-α·tan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-α·cos ⎝ ⎛⎭⎪⎫π2+α·cos 2()π-α.解:原式=sin ⎝ ⎛⎭⎪⎫-α+π2·⎣⎢⎡⎦⎥⎤-sin ⎝ ⎛⎭⎪⎫π2-α·tan 2(2π-α)cos ⎝ ⎛⎭⎪⎫π2-α·cos ⎝ ⎛⎭⎪⎫π2+α·cos 2(π-α)=cos α·(-cos α)·tan 2αsin α·(-sin α)·cos 2α=tan 2αsin 2α=1cos 2α.讲一讲2.(1)已知cos 31°=m ,则sin 239°tan 149°的值是( ) A.1-m2mB.1-m 2C .-1-m 2mD .-1-m 2(2)已知sin ⎝ ⎛⎭⎪⎫π3-α=12,则cos ⎝ ⎛⎭⎪⎫π6+α的值为________.[尝试解答] (1)sin 239°tan 149° =sin(180°+59°)·tan(180°-31°)=-sin 59°(-tan 31°)=-sin(90°-31°)·(-tan 31°) =-cos 31°·(-tan 31°) =sin 31°=1-cos 231°=1-m 2. (2)cos ⎝⎛⎭⎪⎫π6+α=cos ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π3-α=sin ⎝ ⎛⎭⎪⎫π3-α=12.答案:(1)B (2)12解决条件求值问题的策略(1)解决条件求值问题,首先要仔细观察条件与所求式之间的角,函数名称及有关运算之间的差异及联系.(2)可以将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化. 练一练2.已知cos(π+α)=-12,求cos ⎝ ⎛⎭⎪⎫π2+α的值. 解:∵cos(π+α)=-cos α=-12,∴cos α=12,∴α为第一或第四象限角. ①若α为第一象限角, 则cos ⎝⎛⎭⎪⎫π2+α=-sin α=-1-cos 2α=-1-⎝ ⎛⎭⎪⎫122=-32;②若α为第四象限角, 则cos ⎝⎛⎭⎪⎫π2+α=-sin α=1-cos 2α=1-⎝ ⎛⎭⎪⎫122=32.讲一讲3.求证:tan (2π-α)sin (-2π-α)cos (6π-α)sin ⎝ ⎛⎭⎪⎫3π2+αcos ⎝ ⎛⎭⎪⎫3π2+α=-tan α.[尝试解答] 左边=tan (-α)sin (-α) cos (-α)sin ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫π2-αcos ⎣⎢⎡⎦⎥⎤2π-⎝ ⎛⎭⎪⎫π2-α=(-tan α)(-sin α)cos αsin ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π2-αcos ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫π2-α=sin 2α-sin ⎝ ⎛⎭⎪⎫π2-αcos ⎝ ⎛⎭⎪⎫π2-α=sin 2α-cos αsin α=-sin αcos α=-tan α=右边. 即原等式成立.三角恒等式的证明策略对于恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一、变更论证的方法.常用定义法、化弦法,拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法.练一练3.求证:sin (2π-θ)cos (π+θ)cos ⎝ ⎛⎭⎪⎫π2+θcos ⎝ ⎛⎭⎪⎫11π2-θcos (π-θ)sin (3π-θ)sin (-π-θ)sin ⎝⎛⎭⎪⎫9π2+θ=-tan θ.证明:sin (2π-θ)cos (π+θ)cos ⎝ ⎛⎭⎪⎫π2+θcos ⎝ ⎛⎭⎪⎫11π2-θcos (π-θ)sin (3π-θ)sin (-π-θ)sin ⎝ ⎛⎭⎪⎫9π2+θ=-sin θ·(-cos θ)·(-sin θ)·cos ⎝ ⎛⎭⎪⎫3π2-θ-cos θ·sin θ·sin θ·sin ⎝ ⎛⎭⎪⎫π2+θ=sin θ·cos θ·sin θ·sin θ-cos θ·sin θ·sin θ·cos θ=-tan θ.——————————————[课堂归纳·感悟提升]———————————————1.本节课的重点是诱导公式五、六及其应用,难点是利用诱导公式解决条件求值问题. 2.要掌握诱导公式的三个应用(1)利用诱导公式解决化简求值问题,见讲1; (2)利用诱导公式解决条件求值问题,见讲2; (3)利用诱导公式解决三角恒等式的证明问题,见讲3.3.本节课要掌握一些常见角的变换技巧π6+α=π2-⎝ ⎛⎭⎪⎫π3-α⇔⎝ ⎛⎭⎪⎫π6+α+⎝ ⎛⎭⎪⎫π3-α=π2,π4+α=π2-⎝ ⎛⎭⎪⎫π4-α⇔⎝ ⎛⎭⎪⎫π4+α+⎝ ⎛⎭⎪⎫π4-α=π2,⎝ ⎛⎭⎪⎫5π6+α-⎝ ⎛⎭⎪⎫π3+α=π2等.课下能力提升(七) [学业水平达标练]题组1 化简求值1.下列与sin ⎝ ⎛⎭⎪⎫θ-π2的值相等的式子为( ) A .sin ⎝ ⎛⎭⎪⎫π2+θ B .cos ⎝ ⎛⎭⎪⎫π2+θ C .cos ⎝⎛⎭⎪⎫3π2-θ D .sin ⎝ ⎛⎭⎪⎫3π2+θ解析:选D 因为sin ⎝ ⎛⎭⎪⎫θ-π2=-sin ⎝ ⎛⎭⎪⎫π2-θ=-cos θ, 对于A ,sin ⎝ ⎛⎭⎪⎫π2+θ=cos θ;对于B ,cos ⎝ ⎛⎭⎪⎫π2+θ=-sin θ; 对于C ,cos ⎝⎛⎭⎪⎫3π2-θ=cos ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2-θ=-cos ⎝ ⎛⎭⎪⎫π2-θ=-sin θ; 对于D ,sin ⎝⎛⎭⎪⎫3π2+θ=sin ⎣⎢⎡⎦⎥⎤π+⎝ ⎛⎭⎪⎫π2+θ=-sin ⎝ ⎛⎭⎪⎫π2+θ=-cos θ. 2.化简:sin(-α-7π)·cos ⎝ ⎛⎭⎪⎫α-3π2=________.解析:原式=-sin(7π+α)·cos ⎝⎛⎭⎪⎫3π2-α=-sin(π+α)·⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫π2-α=sin α·(-sin α)=-sin 2α.答案:-sin 2α3.化简:1tan 2(-α)+1sin ⎝ ⎛⎭⎪⎫π2-α·cos ⎝ ⎛⎭⎪⎫α-3π2·tan (π+α).解:∵tan(-α)=-tan α,sin ⎝⎛⎭⎪⎫π2-α=cos α, cos ⎝ ⎛⎭⎪⎫α-3π2=cos ⎝ ⎛⎭⎪⎫3π2-α=-sin α, tan(π+α)=tan α,∴原式=1tan 2α+1cos α·(-sin α)·tan α=1sin 2αcos 2α+1-sin 2α=cos 2α-1sin 2α=-sin 2αsin 2α=-1. 题组2 条件求值问题4.已知tan θ=2,则sin ⎝ ⎛⎭⎪⎫π2+θ-cos (π-θ)sin ⎝ ⎛⎭⎪⎫π2-θ-sin (π-θ)等于( )A .2B .-2C .0 D.23解析:选B 原式=cos θ+cos θcos θ-sin θ=2cos θcos θ-sin θ=21-tan θ=-2.5.若sin(π+α)+cos ⎝ ⎛⎭⎪⎫π2+α=-m ,则cos ⎝ ⎛⎭⎪⎫3π2-α+2sin(2π-α)的值为( ) A .-23m B.23mC .-32m D.32m解析:选C ∵sin(π+α)+cos ⎝ ⎛⎭⎪⎫π2+α=-sin α-sin α=-m ,∴sin α=m 2.∴cos ⎝⎛⎭⎪⎫3π2-α+2sin(2π-α)=-sin α-2sin α=-3sin α=-3×m 2=-32m .6.已知cos(60°+α)=13,且-180°<α<-90°,则cos(30°-α)的值为( )A .-223 B.223C .-23 D.23解析:选A 由-180°<α<-90°,得-120°<60°+α<-30°,又cos(60°+α)=13>0,所以-90°<60°+α<-30°,即-150°<α<-90°,所以120°<30°-α<180°,cos(30°-α)<0,所以cos(30°-α)=sin(60°+α)=-1-cos 2(60°+α)= -1-⎝ ⎛⎭⎪⎫132=-223. 7.已知α是第三象限角,且cos(85°+α)=45,则sin(α-95°)=________.解析:由α是第三象限角,cos(85°+α)=45>0,知85°+α是第四象限角, ∴sin(85°+α)=-35,sin(α-95°)=sin[(85°+α)-180°]=-sin[180°-(85°+α)]=-sin(85°+α)=35.答案:358.已知sin α是方程3x 2-10x -8=0的根,且α为第三象限角,求sin ⎝ ⎛⎭⎪⎫α+3π2·sin ⎝ ⎛⎭⎪⎫3π2-α·tan 2(2π-α)·tan (π-α)cos ⎝ ⎛⎭⎪⎫π2-α·cos ⎝ ⎛⎭⎪⎫π2+α的值.解:∵方程3x 2-10x -8=0的两根为x 1=4或x 2=-23,又∵-1≤sin α≤1,∴sin α=-23.又∵α为第三象限角, ∴cos α=-1-sin 2α=-53,tan α=255. ∴原式=(-cos α)·(-cos α)·tan 2α·(-tan α)sin α·(-sin α)=tan α=255.题组3 三角恒等式的证明9.求证:tan (2π-α)cos ⎝ ⎛⎭⎪⎫3π2-αcos (6π-α)tan (π-α)sin ⎝ ⎛⎭⎪⎫α+3π2cos ⎝ ⎛⎭⎪⎫α+3π2=1.证明:左边=tan (-α)⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫π2-αcos (-α)(-tan α)⎣⎢⎡⎦⎥⎤-sin ⎝ ⎛⎭⎪⎫π2+α⎣⎢⎡⎦⎥⎤-cos ⎝ ⎛⎭⎪⎫π2+α=(-tan α)(-sin α)cos α(-tan α)(-cos α)sin α=1=右边.∴原式成立.10.求证:cos (π-θ)cos θ⎣⎢⎡⎦⎥⎤sin ⎝ ⎛⎭⎪⎫3π2-θ-1+cos (2π-θ)cos (π+θ)sin ⎝ ⎛⎭⎪⎫π2+θ-sin ⎝ ⎛⎭⎪⎫3π2+θ=2sin 2θ. 证明:左边=-cos θcos θ(-cos θ-1)+cos θ-cos θcos θ+cos θ=11+cos θ+11-cos θ=1-cos θ+1+cos θ(1+cos θ)(1-cos θ)=21-cos 2θ=2sin 2θ=右边.∴原式成立. [能力提升综合练]1.如果cos(π+A )=-12,那么sin ⎝ ⎛⎭⎪⎫π2+A 等于( ) A .-12 B.12C .-32 D.32解析:选B cos(π+A )=-cos A =-12,∴cos A =12,∴sin ⎝ ⎛⎭⎪⎫π2+A =cos A =12. 2.已知sin ⎝ ⎛⎭⎪⎫α+π2=13,α∈⎝ ⎛⎭⎪⎫-π2,0,则tan α的值为( ) A .-2 2 B .2 2 C .-24 D.24解析:选A 由已知得,cos α=13,又α∈⎝ ⎛⎭⎪⎫-π2,0, 所以sin α=-1-cos 2α=-1-19=-223. 因此,tan α=sin αcos α=-2 2.3.已知sin(75°+α)=13,则cos(15°-α)的值为( )A .-13 B.13C .-223 D.223解析:选B ∵(75°+α)+(15°-α)=90°, ∴cos(15°-α)=cos[90°-(75°+α)] =sin(75°+α)=13.4.在△ABC 中,下列各表达式为常数的是( ) A .sin(A +B )+sin C B .cos(B +C )-cos A C .sin2A +B2+sin 2C 2 D .sin A +B 2sin C 2解析:选C sin2A +B2+sin 2C2=sin2π-C 2+sin 2C 2=cos 2C 2+sin 2C 2=1.5.sin 21°+sin 22°+sin 23°+…+sin 289°=________.解析:将sin 21°+sin 22°+sin 23°+…+sin 289°中的首末两项相加得1,第二项与倒数第二项相加得1,…,共有44组,和为44,剩下sin 245°=12,则sin 21°+sin 22°+sin 23°+…+sin 289°=892.答案:8926.已知tan ()3π+α=2,则sin (α-3π)+cos (π-α)+sin ⎝ ⎛⎭⎪⎫π2-α-2cos ⎝ ⎛⎭⎪⎫π2+α-sin (-α)+cos (π+α)=________.解析:由tan(3π+α)=2,得tan α=2, 则原式=sin (α-π)-cos α+cos α+2sin αsin α-cos α=-sin α+2sin αsin α-cos α =sin αsin α-cos α =tan αtan α-1=22-1=2. 答案:27.已知sin α是方程5x 2-7x -6=0的根,且α是第三象限角,求sin ⎝⎛⎭⎪⎫-α-3π2cos ⎝ ⎛⎭⎪⎫3π2-αcos ⎝ ⎛⎭⎪⎫π2-αsin ⎝ ⎛⎭⎪⎫π2+α·tan 2(π-α)的值. 解:原式=-sin ⎝ ⎛⎭⎪⎫π+π2+αcos ⎝ ⎛⎭⎪⎫π+π2-αsin αcos α·tan 2α =-sin ⎝ ⎛⎭⎪⎫π2+αcos ⎝ ⎛⎭⎪⎫π2-αsin αcos α·tan 2α =-cos αsin αsin αcos α·tan 2α=-tan 2α. 方程5x 2-7x -6=0的两根为x 1=-35,x 2=2, 又α是第三象限角,∴sin α=-35,cos α=-45, ∴tan α=34,故原式=-tan 2α=-916. 8.是否存在角α,β,α∈⎝ ⎛⎭⎪⎫-π2,π2,β∈(0,π),使等式sin(3π-α)=2cos ⎝ ⎛⎭⎪⎫π2-β,3cos(-α)=-2cos(π+β)同时成立?若存在,求出α,β的值;若不存在,请说明理由.解:假设存在角α,β满足条件,则⎩⎨⎧sin α=2sin β, ①3cos α=2cos β, ②由①2+②2得sin 2α+3cos 2α=2.∴sin 2α=12,∴sin α=±22. ∵α∈⎝ ⎛⎭⎪⎫-π2,π2,∴α=±π4. 当α=π4时,cos β=32, ∵0<β<π,∴β=π6; 当α=-π4时,cos β=32, ∵0<β<π,∴β=π6,此时①式不成立,故舍去. ∴存在α=π4,β=π6满足条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.3《三角函数的诱导公式》教学案整体设计教学分析本节主要是推导诱导公式二、三、四,并利用它们解决一些求解、化简、证明问题.本小节介绍的五组诱导公式在内容上既是公式一的延续,又是后继学习内容的基础,它们与公式一组成的六组诱导公式,用于解决求任意角的三角函数值的问题以及有关三角函数的化简、证明等问题.在诱导公式的学习中,化归思想贯穿始末,这一典型的数学思想,无论在本节中的分析导入,还是利用诱导公式将求任意角的三角函数值转化为求锐角的三角函数值,均清晰地得到体现,在教学中注意数学思想渗透于知识的传授之中,让学生了解化归思想,形成初步的化归意识,特别是在本课时的三个转化问题引入后,为什么确定180°+α角为第一研究对象,-α角为第二研究对象,正是化归思想的运用.公式二、公式三与公式四中涉及的角在本课的分析导入时为不大于90°的非负角,但是在推导中却把α拓广为任意角,这一思维上的转折使学生难以理解,甚至会导致对其必要性的怀疑,因此它成为本课时的难点所在.课本例题实际上是诱导公式的综合运用,难点在于需要把所求的角看成是一个整体的任意角.学生第一次接触到此题型,思维上有困难,要多加引导分析,另外,诱导公式中角度制亦可转化为弧度制,但必须注意同一个公式中只能采取一种制度,因此要加强角度制与弧度制的转化的练习.三维目标1.通过学生的探究,明了三角函数的诱导公式的来龙去脉,理解诱导公式的推导过程;培养学生的逻辑推理能力及运算能力,渗透转化及分类讨论的思想.2.通过诱导公式的具体运用,熟练正确地运用公式解决一些三角函数的求值、化简和证明问题,体会数式变形在数学中的作用.3.进一步领悟把未知问题化归为已知问题的数学思想,通过一题多解,一题多变,多题归一,提高分析问题和解决问题的能力.重点难点教学重点:五个诱导公式的推导和六组诱导公式的灵活运用,三角函数式的求值、化简和证明等.教学难点:六组诱导公式的灵活运用.课时安排2课时教学过程第1课时导入新课思路1.①利用单位圆表示任意角的正弦值和余弦值.②复习诱导公式一及其用途.思路2.在前面的学习中,我们知道终边相同的角的同名三角函数值相等,即公式一,并且利用公式一可以把绝对值较大的角的三角函数转化为0°到360°(0到2π)内的角的三角函数值,求锐角三角函数值,我们可以通过查表求得,对于90°到360°(2π到2π)范围内的角的三角函数怎样求解,能不能有像公式一那样的公式把它们转化到锐角范围内来求解,这一节就来探讨这个问题.推进新课新知探究提出问题由公式一把任意角α转化为[0°,360°)内的角后,如何进一步求出它的三角函数值?活动:在初中学习了锐角的三角函数值可以在直角三角形中求得,特殊角的三角函数值学生记住了,对非特殊锐角的三角函数值可以通过查数学用表或是用计算器求得.教师可组织学生思考讨论如下问题:0°到90°的角的正弦值、余弦值用何法可以求得?90°到360°的角β能否与锐角α相联系?通过分析β与α的联系,引导学生得出解决设问的一种思路:若能把求[90°,360°)内的角β的三角函数值,转化为求有关锐角α的三角函数值,则问题将得到解决,适时提出,这一思想就是数学的化归思想,教师可借此向学生介绍化归思想.图1讨论结果:通过分析,归纳得出:如图1.β=⎪⎩⎪⎨⎧∈-∈+∈-],360,270[,360],270,180[,180],180,90[,180 βββa a a提出问题①锐角α的终边与180°+α角的终边位置关系如何?②它们与单位圆的交点的位置关系如何?③任意角α与180°+α呢?活动:分α为锐角和任意角作图分析:如图2.图2引导学生充分利用单位圆,并和学生一起讨论探究角的关系.无论α为锐角还是任意角,180°+α的终边都是α的终边的反向延长线,所以先选择180°+α为研究对象.利用图形还可以直观地解决问题②,角的终边与单位圆的交点的位置关系是关于原点对称的,对应点的坐标分别是P(x,y)和P′(-x,-y).指导学生利用单位圆及角的正弦、余弦函数的定义,导出公式二:sin(180°+α)=-sinα,cos(180°+α)=-cosα.并指导学生写出角为弧度时的关系式:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα.引导学生观察公式的特点,明了各个公式的作用.讨论结果:①锐角α的终边与180°+α角的终边互为反向延长线.②它们与单位圆的交点关于原点对称.③任意角α与180°+α角的终边与单位圆的交点关于原点对称.提出问题①有了以上公式,我们下一步的研究对象是什么?②-α角的终边与角α的终边位置关系如何?活动:让学生在单位圆中讨论-α与α的位置关系,这时可通过复习正角和负角的定义,启发学生思考:任意角α和-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二的推导过程,由学生自己完成公式三的推导,即:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα.教师点拨学生注意:无论α是锐角还是任意角,公式均成立.并进一步引导学生观察分析公式三的特点,得出公式三的用途:可将求负角的三角函数值转化为求正角的三角函数值.讨论结果:①根据分析下一步的研究对象是-α的正弦和余弦.②-α角的终边与角α的终边关于x 轴对称,它们与单位圆的交点坐标的关系是横坐标相等,纵坐标互为相反数.提出问题①下一步的研究对象是什么?②π-α角的终边与角α的终边位置关系如何?活动:讨论π-α与α的位置关系,这时可通过复习互补的定义,引导学生思考:任意角α和π-α的终边的位置关系;它们与单位圆的交点的位置关系及其坐标.探索、概括、对照公式二、三的推导过程,由学生自己完成公式四的推导,即:sin (π-α)=sinα,cos (π-α)=-cosα,tan (π-α)=-tanα.强调无论α是锐角还是任意角,公式均成立.引导学生观察分析公式三的特点,得出公式四的用途:可将求π-α角的三角函数值转化为求角α的三角函数值.让学生分析总结诱导公式的结构特点,概括说明,加强记忆.我们可以用下面一段话来概括公式一—四:α+k ·2π(k ∈Z ),-α,π±α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号.进一步简记为:“函数名不变,符号看象限”.点拨、引导学生注意公式中的α是任意角. 讨论结果:①根据分析下一步的研究对象是π-α的三角函数;②π-α角的终边与角α的终边关于y 轴对称,它们与单位圆的交点坐标的关系是纵坐标相等,横坐标互为相反数.示例应用思路1例1 利用公式求下列三角函数值:(1)cos 225°;(2)sin 311π;(3)sin (316π-);(4)cos (-2 040°). 活动:这是直接运用公式的题目类型,让学生熟悉公式,通过练习加深印象,逐步达到熟练、正确地应用.让学生观察题目中的角的范围,对照公式找出哪个公式适合解决这个问题.解:(1)cos 225°=cos (180°+45°)=-cos 45°=22-; (2)sin 311π=sin (4π3π-)=-sin 3π=23-;(3)sin (316π-)=-sin 316π=-sin (5π+3π) =-(-sin 3π)=23; (4)cos (-2 040°)=cos 2 040°=cos (6×360°-120°)=cos 120°=cos (180°-60°)=-cos 60°=21-. 点评:利用公式一—四把任意角的三角函数转化为锐角的三角函数,一般可按下列步骤进行:上述步骤体现了由未知转化为已知的转化与化归的思想方法.变式训练利用公式求下列三角函数值:(1)cos (-510°15′);(2)sin (317-π). 解:(1)cos (-510°15′)=cos 510°15′ =cos (360°+150°15′) =cos 150°15′=cos (180°-29°45′) =-cos 29°45′=-0.868 2; (2)sin (317-π)=sin (3π-3×2π)=sin 3π=23. 例2 2007全国高考,1cos 330°等于( )A .21B .21-C .23D .23- 答案:C变式训练化简: 790cos 250sin 430cos 290sin 21++解: 790cos 250sin 430cos 290sin 21++ =)70720cos()70180sin()70360cos()70360sin(21 ++++-+ =70sin 70cos |70sin 70cos |70cos 70sin 70cos 70sin 21--=+-- =170sin 70cos 70cos 70sin -=--. 例3 化简cos 315°+sin (-30°)+sin 225°+cos 480°.活动:这是要求学生灵活运用诱导公式进行变形、求值与证明的题目.利用诱导公式将有关角的三角函数化为锐角的三角函数,再求值、合并、约分.解:cos 315°+sin (-30°)+sin 225°+cos 480°=cos (360°-45°)-sin 30°+sin (180°+45°)+cos (360°+120°)=cos (-45°)21--sin 45°+cos 120° =cos 45°21-22-+cos (180°-60°) =2221-22--cos 60°=-1. 点评:利用诱导公式化简,是进行角的转化,最终达到统一角或求值的目的.变式训练求证:θθπθθπθπθπtan )5sin()cos ()6cos()2sin()2tan(=+----. 分析:利用诱导公式化简较繁的一边,使之等于另一边.证明:左边=)5sin()cos ()6cos()2sin()2tan(θπθθπθπθπ+---- =)sin()cos ()cos()sin()tan(θπθθθθ+---- =θθθθθsin cos cos sin tan =tanθ=右边. 所以原式成立.规律总结:证明恒等式,一般是化繁为简,可以化简一边,也可以两边都化简.知能训练课本本节练习1—3.解答:1.(1)-cos 94π;(2)-sin 1;(3)-sin 5π;(4)cos 70°6′. 点评:利用诱导公式转化为锐角三角函数.2.(1)21;(2)21;(3)0.642 8;(4)23-. 点评:先利用诱导公式转化为锐角三角函数,再求值.3.(1)-sin 2αcosα;(2)sin 4α.点评:先利用诱导公式变形为角α的三角函数,再进一步化简.课堂小结本节课我们学习了公式二、公式三、公式四三组公式,这三组公式在求三角函数值、化简三角函数式及证明三角恒等式时是经常用到的,为了记牢公式,我们总结了“函数名不变,符号看象限”的简便记法,同学们要正确理解这句话的含义,不过更重要的还是应用,我们要多加练习,切实掌握由未知向已知转化的化归思想.作业课本习题1.3 A 组2、3、4.设计感想一、有关角的终边的对称性(1)角α的终边与角π+α的终边关于原点对称.(2)角α的终边与角-α的终边关于x 轴对称.(3)角α的终边与角π-α的终边关于y 轴对称.二、三角函数的诱导公式应注意的问题(1)α+k ·2π(k ∈Z ),-α,π±α的三角函数值等于α的同名函数值,前面加上一个把α看成锐角时原函数的符号;可简单记忆为:“函数名不变,符号看象限.”(2)公式中的α是任意角.(3)利用诱导公式一、二、三、四,可以把任意角的三角函数值转化为锐角的三角函数值.基本步骤是:任意负角的三角函数−−−→−公式三或一相应的正角的三角函数−−→−公式一0到2π角的三角函数−−−→−四公式二、锐角的三角函数−−→−查表三角函数.即负化正,大化小,化为锐角再查表.第2课时导入新课上一节课我们研究了诱导公式二、三、四.现在请同学们回忆一下相应的公式.提问多名学生上黑板默写公式.在此基础上,我们今天继续探究别的诱导公式,揭示课题.推进新课新知探究提出问题终边与角α的终边关于直线y =x 对称的角有何数量关系?活动:我们借助单位圆探究终边与角α的终边关于直线y =x 对称的角的数量关系. 教师充分让学生探究,启发学生借助单位圆,点拨学生从终边关于直线y =x 对称的两个角之间的数量关系,关于直线y =x 对称的两个点的坐标之间的关系进行引导.图3讨论结果:如图3,设任意角α的终边与单位圆的交点P 1的坐标为(x ,y ),由于角2π-α的终边与角α的终边关于直线y =x 对称,角2π-α的终边与单位圆的交点P 2与点P 1关于直线y =x 对称,因此点P 2的坐标是(y ,x ),于是,我们有sinα=y ,cosα=x ,cos (2π-α)=y ,sin (2π-α)=x . 从而得到公式五:能否用已有公式得出2π+α的正弦、余弦与α的正弦、余弦之间的关系式? 活动:教师点拨学生将2π+α转化为π-(2π-α),从而利用公式四和公式五达到我们的目的.因为2π+α可以转化为π-(2π-α),所以求2π+α角的正余弦问题就转化为利用公式四接着转化为利用公式五,这时可以让学生独立推导公式六.讨论结果:公式六提出问题你能概括一下公式五、六吗?活动:结合上一堂课研究公式一—四的共同特征引导学生寻求公式五、六的共同特征,指导学生用类比的方法即可将公式五和公式六进行概括.讨论结果:2π±α的正弦(余弦)函数值,分别等于α的余弦(正弦)函数值,前面加上一个把α看成锐角时原函数值的符号.进一步可以简记为:函数名改变,符号看象限.利用公式五或公式六,可以实现正弦函数与余弦函数的相互转化.公式一—六都叫做诱导公式.提出问题学了六组诱导公式及上例的结果后,能否进一步归纳概括诱导公式,怎样概括? 讨论结果:诱导公式一—四,函数名称不改变,这些公式左边的角分别是2kπ+α(k ∈Z ),π±α,-α(可看作0-α).其中2kπ,π,0是横坐标轴上的角,因此,上述公式可归结为横坐标轴上的角±α,函数名称不改变.而公式五、六及上面的例1,这些公式左边的角分别是2π±α,23π-α.其中2π,23π是纵坐标轴上的角,因此这些公式可归结为纵坐标上的角±α,函数名称要改变.两类诱导公式的符号的考查是一致的,故而所有的诱导公式可用十个字来概括:纵变横不变,符号看象限.教师指点学习方法:如果我们孤立地记忆这么多诱导公式,那么我们的学习将十分苦累,且效率低下.学习过程中,能挖掘各个公式的本质特征,寻求它们之间的共性,那么我们对数学公式的记忆就不再是负担了.因此,要求大家多做这方面的工作,以后数学的学习就不再是枯燥无味的了.示例应用思路1例1 证明(1)sin (23π-α)=-cos α;(2)cos (23π-α)=-sinα. 活动:直接应用公式五、六或者通过转化后利用公式五、六解决化简、证明问题. 证明:(1)sin (23π-α)=sin [π+(2π-α)]=-sin (2π-α)=-cosα; (2)cos (23π-α)=cos [π+(2π-α)]=-cos (2π-α)=-sinα. 点评:由公式五及六推得23π±α的三角函数值与角α的三角函数值之间的关系,从而进一步可以推广到212+k π(k ∈Z )的情形.本例的结果可以直接作为诱导公式直接使用. 例2 化简.)29sin()sin()3sin()cos()211cos()2cos()cos()2sin(a a a a a a a a +-----++-ππππππππ 活动:仔细观察题目中的角,哪些是可以利用公式二—四的,哪些是可以利用公式五、六的.认真应用诱导公式,达到化简的目的.解:原式=)]2(4sin[)]sin()[sin()cos ()]2(5cos[)sin )(cos )(sin (a a a a a a a a +++----+---ππππππ =)2sin()]sin ([sin )cos ()]2cos([cos sin 2a a a a a a a +------ππ=aa cos sin -=-tanα. 思路2例1 (1)已知f (cosx )=cos 17x ,求证:f (sinx )=sin 17x ;(2)对于怎样的整数n ,才能由f (sinx )=sinnx 推出f (cosx )=cosnx ?活动:对诱导公式的应用需要较多的思维空间,善于观察题目特点,要灵活变形.观察本例条件与结论在结构上类似,差别在于一个含余弦,一个含正弦,注意到正弦、余弦转化可借助sinx =cos (2π-x )或cosx =sin (2π-x ).要善于观察条件和结论的结构特征,找出它们的共性与差异;要注意诱导公式可实现角的形式之间及互余函数名称之间的转移. 证明:(1)f (sinx )=f [cos (2π-x )]=cos [17(2π-x )]=cos (8π+2π-17x )=cos (2π-17x )=sin 17x ,即f (sinx )=sin 17x .(2)f (cosx )=f [sin (2π-x )]=sin [n (2π-x )]=sin (2πn -nx )=⎪⎪⎩⎪⎪⎨⎧∈+=-∈+=∈+=∈=-,,34,cos ,,24,sin ,,14,cos ,,4,sin Z k k n nx Z k k n nx Z k k n nx Z k k n x故所求的整数n =4k +1(k ∈Z ).点评:正确合理地运用公式是解决问题的关键所在.变式训练已知cos (6π-α)=m (m ≤1),求sin (32π-α)的值. 解:∵32π-α-(6π-α)=2π,∴32π-α=2π+(6π-α). ∴sin (32π-α)=sin [2π+(6π-α)]=cos (6π-α)=m . 点评:(1)当两个角的和或差是2π的整数倍时,它们的三角函数值可通过诱导公式联系起来.(2)化简已知与所求,然后探求联系,这是解决问题的重要思想方法.例2 已知sinα是方程5x 2-7x -6=0的根,且α为第三象限角,求)2cos()2cos()tan()2(tan )23sin()23sin(2a a a a a a +∙--∙-∙-∙+ππππππ的值.活动:教师引导学生先确定sinα的值再化简待求式,从而架起已知与未知的桥梁.解:∵5x 2-7x -6=0的两根x =2或x =53-, ∵-1≤x ≤1,∴sinα=53-. 又∵α为第三象限角,∴cosα=2sin -1-=54-. ∴tanα=43. ∴原式=)sin (sin )tan (tan )cos ()cos (2a a a a a a -∙-∙∙-∙-=tana =43点评:综合运用相关知识解决综合问题.变式训练若函数f (n )=sin6πn (n ∈Z ),则f (1)+f (2)+f (3)+…+f (102)=____________________. 解:∵=sin6πn (6πn +2π)=sin 6)12(π+n , ∴f (n )=f (n +12).从而有f (1)+f (2)+f (3)+…+f (12)=0, ∴f (1)+f (2)+f (3)+…+f (102) =f (1)+f (2)+f (3)+f (4)+f (5)+(6) =2[f (1)+ f (2)+f (3)] =2+3.例3 已知函数f (x )=asin (πx +α)+bcos (πx +β).其中a ,b ,α,β都是非零实数,又知f (2 003)=-1,求f (2 004)的值.活动:寻求f (2 003)=-1与f (2 004)之间的联系,这个联系就是我们解答问题的关键和要害.解:f (2 003)=asin (2 003π+α)+bcos (2 003π+β) =asin (2 002π+π+α)+bcos (2 002π+π+β) =asin (π+α)+bcos (π+β) =-asinα-bcosβ =-(asinα+bcosβ), ∵f (2 003)=-1, ∴asinα+bcosβ=1.∴f (2 004)=asin (2 004π+α)+bcos (2 004π+β) =asinα+bcosβ=1.点评:解决问题的实质就是由未知向已知转化的过程,在这个过程中一定要抓住关键和要害,注意“整体代入”这一思想的应用.解答本题的关键和要害就是求得式子asinα+b cosβ=1,它是联系已知和未知的纽带.知能训练课本练习4—7. 4.5.(1)-tan5;(2)-tan 79°39′;(3)-tan 36;(4)-tan 35°28′. 6.(1)23(2)22-;(3)-0.2116;(4)-0.758 7(5)3;(6)-0.647 5. 7.(1)sin 2α;(2)cos 2α+acos 1课堂小结本节课同学们自己导出了公式五、公式六,完成了教材中诱导公式的学习任务,为求任意角的三角函数值“铺平了道路”.公式一至六可用一句话“纵变横不变,符号看象限”来记忆,简单方便,不会遗忘.利用这些公式,可把任意角的三角函数转化为锐角三角函数,为求值带来很大的方便,这种转化的思想方法,是我们经常用到的一种策略,要细心去体会、去把握.利用这些公式,还可以化简三角函数式,证明简单的三角恒等式,我们要多练习,在应用中达到熟练掌握的程度.作业1.课本习题1.3 B 组2.2.求值:sin 21°+sin 22°+sin 23°+…+sin 288°+sin 289°.答案:44.5.设计感想1.本节设计指导思想是:在教师引导下放手让学生自主探究.因为公式多,学生容易记混,所以在学生的主动探究中明了公式的来龙去脉,在应用公式解决问题中灵活熟练掌握公式.通过学生的自主探究、推导公式,培养学生独立思考、知难而上的科学态度,更进一步地体会数学的奇特美、对称美.激发学生强烈的探究欲望,培养学生会学习的良好品质.2.用口诀记忆公式:①π±α,-α,2kπ+α的三角函数公式为:“函数名不变,符号看象限.” ②2π±α,23π±α的三角函数公式为:“函数名改变,符号看象限.”其中α看成锐角.3.用类比的方法学习本节课的基础知识,用化归的数学思想指导三角函数的求值、化简与证明.。

相关文档
最新文档