2018届高三数学一轮复习 第十章 概率与统计 第二节 古典概型与几何概型夯基提能作业本 文
2018年 高三数学概率复习(2)古典概率
2018年 高三数学概率复习(2)古典概型【知识点】 若是从考查的内容来分析,集中考查一些常见的概率模型,如摸球模型、分配模型、取数模型,从题的难度来看,一般是中低档题,由于随机事件的概率与实际生活密切相关,在高考中自然受到重视. 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件(除不可能事件)都可以表示成基本事件的和. 古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1)试验中所有可能出现的基本事件只有有限个. (2)每个基本事件出现的可能性相等.如果一次试验中可能出现的结果有n 个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1n ;如果某个事件A 包括的结果有m 个,那么事件A 的概率P(A)=mn .古典概型的概率公式P(A)=A 包含的基本事件的个数基本事件的总数.例1 袋中有大小相同的5个白球,3个黑球和3个红球,每球有一个区别于其他球的编号,从中摸出一个球.(1)有多少种不同的摸法?如果把每个球的编号看作一个基本事件建立概率模型,该模型是不是古典概型?(2)若按球的颜色为划分基本事件的依据,有多少个基本事件?以这些基本事件建立概率模型,该模型是不是古典概型?【解析】 (1)由于共有11个球,且每个球有不同的编号,故共有11种不同的摸法. 又因为所有球大小相同,因此每个球被摸中的可能性相等,故以球的编号为基本事件的概率模型为古典概型.(2)由于11个球共有3种颜色,因此共有3个基本事件,分别记为A :“摸到白球”,B :“摸到黑球”,C :“摸到红球”,又因为所有球大小相同,所以一次摸球每个球被摸中的可能性均为111,而白球有5个.故一次摸球摸到的白球的可能性为511,同理可知摸到黑球、红球的可能性均为311,显然这三个基本事件出现的可能性不相等,所以以颜色为划分基本事件的依据的概率模型不是古典概型. 【答案】 (1)11种,是古典概型 (2)3个,不是古典概型探究1 古典概型需满足两个条件:①对于每次随机试验来说,只可能出现有限个不同的试验结果;②对于所有不同的试验结果而言,它们出现的可能性是相等的.思考题1 下列问题中是古典概型的是( ) A .种下一粒杨树种子,求其能长成大树的概率 B .掷一颗质地不均匀的骰子,求出现1点的概率 C .在区间[1,4]上任取一数,求这个数大于1.5的概率 D .同时掷两颗骰子,求向上的点数之和是5的概率【解析】 A ,B 两项中的基本事件的发生不是等可能的;C 项中基本事件的个数是无限多个;D 项中基本事件的发生是等可能的,且是有限个.【答案】 D例2 (1)将一颗骰子先后抛掷2次,观察向上的点数,求: ①两数之和为5的概率;②两数中至少有一个奇数的概率.【解析】 将一颗骰子先后抛掷2次,此问题中含有36个等可能基本事件. ①记“两数之和为5”为事件A ,则事件A 中含有4个基本事件,所以P(A)=436=19.∴两数之和为5的概率为19.②设“两数中至少有一个奇数”为事件B ,则事件B 中含有27个基本事件.所以P(B)=2736=34. ∴两数中至少有一个奇数的概率为34.(2)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.①若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;②若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.【解析】 ①甲校两男教师分别用A ,B 表示,女教师用C 表示;乙校男教师用D 表示,两女教师分别用E ,F 表示.从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D),(A ,E),(A ,F),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F)共9种.从中选出两名教师性别相同的结果有:(A ,D),(B ,D),(C ,E),(C ,F)共4种,选出的两名教师性别相同的概率为P =49.②从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B),(A ,C),(A ,D),(A ,E),(A ,F),(B ,C),(B ,D),(B ,E),(B ,F),(C ,D),(C ,E),(C ,F),(D ,E),(D ,F),(E ,F)共15种,从中选出两名教师来自同一学校的结果有:(A ,B),(A ,C),(B ,C),(D ,E),(D ,F),(E ,F)共6种,选出的两名教师来自同一学校的概率为P =615=25.探究2 求古典概型的概率可分三步: (1)算出基本事件的总个数n.(2)求出事件A 包含的基本事件个数m. (3)代入公式P(A)=mn,求出P(A).思考题2 (1)(2015·广东文)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( )A .0.4B .0.6C .0.8D .1【解析】 设5件产品中合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,则从5件产品中任取2件的所有基本事件为A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2,共10个,其中恰有一件次品的所有基本事件为:A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2,共6个.故所求概率为P =610=0.6.【答案】 B (2)(2014·广东理)从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.【解析】 利用排列组合知识求出基本事件的总数和事件“七个数的中位数是6”包含的基本事件的个数,再利用古典概型的概率公式求解.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,基本事件共有C 107=120(个),记事件“七个数的中位数为6”为事件A ,则事件A 包含的基本事件的个数为C 63C 33=20,故所求概率P(A)=20120=16.例3 (2013·辽宁卷改编)甲、乙两人参加法律知识竞答,共有10道不同的题目,其中选择题6道,判断题4道,甲、乙两人依次各抽一题.(1)甲抽到选择题,乙抽到判断题的概率是多少 ? (2)甲、乙两人中至少有一人抽到选择题的概率是多少?【思路】 这是一个古典概型的概率问题,关键是计算出公式中的m ,n ,然后直接应用公式P(A)=事件A 包含的基本事件数试验基本事件总数=m n 进行求解.【解析】 甲、乙两人从10道题中不放回地各抽一道题,先抽的有10种抽法,后抽的有9种抽法,故所有可能的抽法是10×9=90种,即基本事件总数是90.(1)记“甲抽到选择题,乙抽到判断题”为事件A ,下面求事件A 包含的基本事件数: 甲抽选择题有6种抽法,乙抽判断题有4种抽法,所以事件A 的基本事件数为6×4=24.∴P(A)=m n =2490=415.(2)先考虑问题的对立面:“甲、乙两人中至少有一人抽到选择题”的对立事件是“甲、乙两人都未抽到选择题”,即都抽到判断题.记“甲、乙两人都抽到判断题”为事件B ,“至少一人抽到选择题”为事件C ,则B 包含的基本事件数为4×3=12.∴由古典概型概率公式,得P(B)=1290=215.由对立事件的性质可得P(C)=1-P(B)=1-215=1315. 【答案】 (1)415 (2)1315探究3 含有“至多”、“至少”等类型的概率问题,从正面求解比较困难或者比较繁琐时,可考虑其反面,即对立事件,然后应用对立事件的性质P(A)=1-P(A -)进一步求解.思考题3 盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意抽取3张,每张卡片被抽出的可能性相等,求:(1)抽出的3张卡片上最大的数字是4的概率; (2)抽出的3张中有2张卡片上的数字是3的概率; (3)抽出的3张卡片上的数字互不相同的概率.【分析】 本题是等可能抽取,且与组合有关,可用等可能性事件的概率公式求解. 【解析】 (1)“抽出的3张卡片上最大的数字是4”的事件记为A ,由题意P(A)=C 21C 62+C 22C 61C 83=914.(2)“抽出的3张中有2张卡片上的数字是3”的事件记为B ,则P(B)=C 22C 61C 83=328.(3)“抽出的3张卡片数字互不相同”的事件记为C ,则P(C)=C 43C 21C 21C 21C 83=47.【答案】 (1)914 (2)328 (3)47例4 有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为五组,各组的人数如下:(1)其中从B 组中抽取了6人.请将其余各组抽取的人数填入下表.的评委中分别任选1人,求这2人都支持1号歌手的概率.【解析】 (1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:(2)记从A 组抽到的3个评委为a 1,a 2,a 3,其中a 1,a 2支持1号歌手;从B 组抽到的6个评委为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手,从{a 1,a 2,a 3}和{b 1,b 2,b 3,b 4,b 5,b 6}中各抽取1人的所有结果为由以上树状图知所有结果共有18种,其中2人都支持1号歌手的有a 1b 1,a 1b 2,a 2b 1,a 2b 2共4种,故所求概率P =418=29.【答案】 (1)3,9,9,3 (2)29探究4 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用概率分布表、分布直方图、茎叶图等给出信息,只需要能够从题中提炼出需要的信息,则此类问题即可解决.思考题4 (2015·山东文)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A 1,A 2,A 3,A 4,A 5,3名女同学B 1,B 2,B 3,现从这5名男同学和3名女同学中各随机选1人,求A 1被选中且B 1未被选中的概率.【解析】 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,故至少参加上述一个社团的共有45-30=15(人),所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P =1545=13.(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的基本事件有:{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 2,B 1},{A 2,B 2}, {A 2,B 3},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 4,B 1}, {A 4,B 2},{A 4,B 3},{A 5,B 1},{A 5,B 2},{A 5,B 3}, 共15个.3.(2016·武汉调研)同时抛掷两颗均匀的骰子,则向上的点数之差的绝对值为4的概率为( )A.118B.112C.19D.16答案 C解析 同时抛掷两颗骰子,基本事件总数为36,记“向上的点数之差的绝对值为4”为事件A ,则事件A 包含的基本事件有(1,5),(2,6),(5,1),(6,2),共4种,故P(A)=436=19. 4.(2016·合肥二模)从2名男生和2名女生中任意选择两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名男生、星期日安排一名女生的概率为( )A.13B.512C.12D.712 答案 A解析 设2名男生记为A 1,A 2,2名女生记为B 1,B 2,任意选择两个在星期六、星期日参加某公益活动,共有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1 12种情况,而星期六安排一名男生、星期日安排一名女生共有A 1B 1,A 1B 2,A 2B 1,A 2B 2 4种情况,则发生概率为P =412=13,故选A.【自主训练】1.(2015·新课标全国Ⅰ文)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A.310 B.15 C.110 D.120答案 C解析 基本事件的总数为10,其中能构成一组勾股数的只有{3,4,5},∴所求概率为110,选C.2.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B.14 C.34 D .0 答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.3.从1,2,…,9这9个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A.59B.49C.1121D.1021 答案 C解析 基本事件总数为C 93,设抽取3个数,和为偶数为事件A ,则A 事件包括两类:抽取3个数全是偶数,或抽取3个数中2个奇数1个偶数,前者有C 43种,后者有C 41C 52种,所以A 中基本事件数为C 43+C 41C 52,所以符合要求的概率为C 43+C 41C 52C 93=1121.故选C.4.(2015·广东理)袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取2个球,所取的2个球中恰有1个白球,1个红球的概率为( ) A.521 B.1021 C.1121 D .1答案 B解析 由题意得基本事件的总数为C 152,恰有1个白球与1个红球的基本事件个数为C 101C 51,所以所求概率P =C 101C 51C 152=1021.5.(2016·衡水调研卷)一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个,某人在银行自动提款机上取钱时,忘记了密码的最后一位数字,若他记得密码的最后一位是偶数,则他不超过2次就按对的概率是( ) A.45 B.35 C.25 D.15答案 C解析 只按一次就按对的概率是15.按两次就按对的概率是4×15×4=15,所以不超过2次就按对的概率是15+15=25,选C.6.(2016·孝感二模)某天下课以后,教室里还剩下2位男同学和2位女同学.若他们依次走出教室,则第2位走出的是男同学的概率是( ) A.12 B.13 C.14 D.15 答案 A解析 已知2位女同学和2位男同学走出的所有可能顺序有(女,女,男,男),(女,男,女,男),(女,男,男,女),(男,男,女,女),(男,女,男,女),(男,女,女,男),所以第2位走出的是男同学的概率P =36=12.7.(2016·甘肃模拟)投掷两颗骰子,其向上的点数分别为m 和n ,则复数(m +ni)2为纯虚数的概率为( ) A.13 B.14 C.16 D.112答案 C解析 投掷两颗骰子共有36种结果,因为(m +ni)2=m 2-n 2+2mni ,所以要使复数(m +ni)2为纯虚数,则有m 2-n 2=0,即m =n ,共有6种结果,所以复数为纯虚数的概率为636=16,故选C. 8.(2016·广西南宁测试)某高校要从6名短跑运动员中选出4人参加全省大学生运动会中的4×100 m 接力赛,其中甲不能跑第一棒,乙不能跑第四棒,则甲跑第二棒的概率为( ) A.415 B.215 C.421 D.15 答案 C解析 从6名短跑运动员中任选4人参加4×100 m 接力赛,其中甲不跑第一棒且乙不跑第四棒的方法共有A 64-2A 53+A 42=252种,在这252种方法中甲跑第二棒的方法共有C 41·A 42=48种,因此所求的概率为48252=421,故选C.9.(2016·云南统考)在1,2,3,4,5,6,7,8这组数据中,随机取出五个不同的数,则数字5是取出的五个不同数的中位数的概率为( ) A.956 B.928 C.914 D.59 答案 B解析 分析可知,要满足题意,则抽取的除5以外的四个数字中,有两个比5小,有两个比5大,故所求概率P =C 42·C 32C 85=928.10.(2016·惠州调研)设A ,B 两名学生均从两位数学教师和两位英语教师中选择一位教师给自己来补课,若A ,B 不选同一位教师,则学生A 选择数学教师,学生B 选择英语教师的概率为( )A.13B.512C.12D.712答案 A 解析 设两位数学教师用1,2表示,两位英语教师用3,4表示,不妨让A 先选,B 后选(不重复),则他们所有的选择结果如下:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3),共12种情况,其中学生A 选择数学教师,学生B 选择英语教师(数学在前,英语在后)的结果有(1,3),(1,4),(2,3),(2,4),共4种情况,所以所求概率P =13. 11.从集合{a ,b ,c ,d ,e}的所有子集中任取一个,则该子集恰是集合{a ,b ,c}的子集的概率是________.答案 1412.(2014·新课标全国Ⅱ文)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.答案 13解析 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13. 13.盒中有3张分别标有1,2,3的卡片,从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为________.答案 59解析 对立事件为:两次抽的卡片号码中都为奇数,共有2×2=4种抽法.而有放回的两次抽了卡片共有3×3=9种基本事件,因此所求事件概率为1-49=59. 14.如图所示是某市2016年2月1日至14日的空气质量指数趋势图,空气质量指数(AQI)小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择2月1日至2月12日中的某一天到达该市,并停留3天.(1)求此人到达当日空气质量优良的概率;(2)求此人停留期间至多有1天空气重度污染的概率.答案 (1)16 (2)23解析 (1)在2月1日至今2月12日这12天中,只有5日,8日共2天的空气质量优良,所以此人到达当时空气质量优良的概率P =212=16. (2)根据题意,事件“此人在该市停留期间至多有1天空气重度污染”,即“此人到达该市停留期间0天空气重度污染或仅有1天空气重度污染”.“此人在该市停留期间0天空气重度污染”等价于“此人到达该市的日期是4日或8日或9日”,其概率为312=14. “此人在该市停留期间仅有1天空气重度污染”等价于“此人到达该市的日期是3日或5日或6日或7日或10日”,其概率为512. 所以此人停留期间至多有1天空气重度污染的概率为P =14+512=23. 15.(2015·天津文)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A 1, A 2, A 3, A 4, A 5, A 6, 现从这6名运动员中随机抽取2人参加双打比赛.①用所给编号列出所有可能的结果;②设A 为事件“编号为A 5和A 6的两名运动员中至少有1人被抽到”,求事件A 发生的概率.答案 (1)3,1,2 (2)①略 ②35解析 (1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)①从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共15种.②编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)=915=3 5.16.(2015·安徽文)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为:[40,50),[50,60),…,[80,90),[90,100).(1)求频率分布直方图中a的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在[40,60)的受访职工中,随机抽取2人,求此2人的评分都在[40,50)的概率.答案(1)0.006(2)0.4(3)110解析(1)因为(0.004+a+0.018+0.022+0.022+0.028)×10=1,所以a=0.006.(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为(0.022+0.018)×10=0.4,所以估计该企业的职工对该部门评分不低于80的概率为0.4.(3)受访职工中评分在[50,60)的有:50×0.006×10=3(人),记为A1,A2,A3;受访职工中评分在[40,50)的有:50×0.004×10=2(人),记为B1,B2.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A2,A3},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B 2},又因为所抽取2人的评分都在[40,50)的结果有1种,即{B 1,B 2},故所求的概率为110.1.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b>a 的概率是( )A.45B.35C.25D.15答案 D解析 基本事件的个数有5×3=15,其中满足b>a 的有3种,所以b>a 的概率为315=15. 2.从正六边形的6个顶点中随机选择4个顶点,则以它们作为顶点的四边形是矩形的概率等于( )A.110B.18C.16D.15 答案 D解析 在正六边形中,6个顶点选取4个,种数为15.选取的4点能构成矩形的,只有对边的4个顶点(例如AB 与DE),共有3种,∴所求概率为315=15.3.甲乙两人一起去某地旅游,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A.136B.19C.536D.16答案 D解析 甲乙两人任选4个景点共有方法A 64A 64种,而最后一小时他们在同一个景点的情况有C 61A 53A 53种,所求概率为P =C 61A 53A 53A 64A 64=16,故选D.4.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( ) A.49B.13C.29D.19答案 D解析 由个位数与十位数之和为奇数,则个位数与十位数分别为一奇一偶.若个位数为奇数时,这样的两位数共有C 51C 41=20个;若个位数为偶数时,这样的两位数共有C 51C 51=25个;于是,个位数与十位数之和为奇数的两位数共有20+25=45个.其中,个位数是0的有C 51×1=5个.于是,所求概率为545=19. 5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,若每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34 答案 A解析 由题意得,甲、乙两位同学参加小组的所有可能的情况共3×3=9种.又两位同学参加同一个兴趣小组的种数为3,故概率为39=13. 6.一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332D.364 答案 D解析 基本事件为(1,1),(1,2),…,(1,8),(2,1),(2,2),…,(8,8),共64种.两球编号之和不小于15的情况有三种,分别为(7,8),(8,7),(8,8),∴所求概率为364. 7.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( ) A.34B.56C.16D.13 答案 B解析 该试验中会出现(白1,白2),(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共6种等可能的结果,事件“至少摸出1个黑球”所含有的基本事件为(白1,黑1),(白1,黑2),(白2,黑1),(白2,黑2)和(黑1,黑2)共5种,据古典概型概率公式,得事件“至少摸出1个黑球”的概率是56. 8.(2016·合肥调研)我国古代“五行”学说认为:“物质分金、木、土、水、火五种属性,金克木,木克土,土克水,水克火,火克金.”将这五种不同属性的物质任意排成一排,设事件A 表示“排列中属性相克的两种物质均不相邻”,则事件A 发生的概率为( ) A.16B.112C.512D.124答案 B解析 由题意知,五种不同属性的物质任意排成一列有A 55=120种排法,事件A 表示“排列中属性相克的两种物质均不相邻”可看作五个位置排列五个元素,第一位置有五种排列方法,不妨假设是金,则第二步只能从土与水两者中选一种排放,有两种选择,不妨假设排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故总的排列方法种数为5×2×1×1×1=10,所以事件A 发生的概率为P(A)=10120=112,故选B. 9.(2016·洛阳统考)安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( )A.115B.15C.14D.12 答案 B解析 由题意分析可得,甲连续三天参加活动的所有情况为:第1~3天,第2~4天,第3~5天,第4~6天,共四种情况,∴所求概率P =4·A 33C 63·A 33=15. 10.(2013·江苏)现有某类病毒记作X m Y n ,其中正整数m ,n(m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案 2063解析 从正整数m ,n(m ≤7,n ≤9)中任取两数的所有可能结果有C 71C 91=63个,其中m ,n 都取奇数的结果有C 41C 51=20个,故所求概率为2063. 11.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.答案 35解析 从5个小球中任选两个小球的方法数为C 52=10,其中不同色的方法数为C 31C 21=6,所以所求概率为P =610=35. 12.高三某班有两个数学课外兴趣小组,第一组有2名男生,2名女生,第二组有3名男生,2名女生.现在班主任老师要从第一组选2人,从第二组选出1人,请他们在班会上和全班同学分享学习心得.(1)求选出的3人均是男生的概率;(2)求选出的3人中有男生也有女生的概率.解析 (1)记第一组的4人分别为A 1,A 2,a 1,a 2;第二组的5人分别为B 1,B 2,B 3,b 1,b 2.设“从第一组选出2人,从第二组选出1人”组成的基本事件空间为Ω,则Ω={(A 1,A 2,B 1),(A 1,A 2,B 2),(A 1,A 2,B 3),(A 1,A 2,b 1),(A 1,A 2,b 2),(A 1,a 2,B 1),(A 1,a 2,B 2),(A 1,a 2,B 3),(A 1,a 1,b 1),(A 1,a 2,b 2),(A 1,a 2,B 1),(A 1,a 2,B 2),(A 1,a 2,B 3),(A 1,a 2,b 1),(A 1,a 2,b 2),(A 2,a 1,B 1),(A 2,a 1,B 2),(A 2,a 1,B 3),(A 2,a 1,b 1),(A 2,a 1,b 2),(A 2,a 2,B 1),(A 2,a 2,B 2),(A 2,a 2,B 3),(A 2,a 2,b 1),(A 2,a 2,b 2),(a 1,a 2,B 1),(a 1,a 2,B 2),(a 1,a 2,B 3),(a 1,a 2,b 1),(a 1,a 2,b 2)},共有30个. 设“选出的3人均是男生”为事件A ,则事件A 含有3个基本事件.∴P(A)=330=110,∴选出的3人均是男生的概率为110. (2)设“选出的3个人有男生也有女生”为事件B ,则事件B 含有25个基本事件,∴P(B)=2530=56,∴选出的3人中有男生也有女生的概率为56. 13.甲、乙两人进行两种游戏,两种游戏规则如下:游戏Ⅰ:口袋中有质地、大小完全相同的5个球,编号分别为1,2,3,4,5,甲先摸出一个球,记下编号,放回后乙再摸一个球,记下编号,如果两个编号的和为偶数算甲赢,否则算乙赢.游戏Ⅱ:口袋中有质地、大小完全相同的6个球,其中4个白球,2个红球,由裁判有放回地摸两次球,即第一次。
2018高考数学文科一轮复习讲义 7.2 第二节 古典概型
第二节 古典概型【考点点知】知己知彼,百战不殆古典概型是新课标概率知识中最重要的内容,高考对这一部分的考查,主要是利用古典概型的概率公式解决一些古典概型的应用题,是考查的重点.复习时,应先加强对基本事件的定义及古典概型定义的理解,从而更好地利用古典概型的概率公式求解古典概型问题. 考点一: 基本事件1.在试验中不能再分的最简单的随机事件,其他事件可以用它们来表示,这样的事件称为基本事件. 所有基本事件构成的集合称为基本事件空间.2.古典概型,都具有两个特征:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同.我们把具有这两个特征的随机试验的数学模型称为古典概型(古典的概率模型),试验的每一个可能结果称为基本事件.考点二: 有放回抽样与无放回抽样1.在随机试验中有两种重要的概率模型,即有放回抽样与无放回抽样.(1)有放回的抽样:每次摸出一只后,仍放回袋中,然后再摸一只,这种摸球的方法称为有放回的抽样.显然,对于有放回的抽样,依次摸出的球可以重复,且摸球可无限地进行下去.(2)无放回的抽样:每次摸出一只后,不放回原袋中,在剩下的球中再摸一只,这种摸球的方法称为无放回的抽样. 显然,对于无放回的抽样,每次摸出的球不会重复出现,且摸球只能进行有限次.2.由此可见有放回的抽样不是古典概型,无放回的抽样是古典概型.考点三: 古典概型的概率公式对于古典概型,通常试验中的某一事件A 是由几个基本事件组成,如果试验的所有可能结果(基本事件)数为n ,随机事件A 包含的基本事件数为m ,那么事件A 的概率规定为P (A )=nm .由此规定可知,在古典概型中,计算事件A 的概率,关键是计算试验的所有可能结果(基本事件)数n 和事件A 包含的可能结果(基本事件)数m .【考题点评】分析原因,醍醐灌顶例1.(基础·2007江西文,6)一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132 B.164 C.332 D.364思路透析:两个球的编号和不小于...15, 则两球号码可以为7,8; 8,7; 8,8三种可能, 其概率为338864P ==⨯, 故应选D. 点评:应用枚举法列出基本事件的个数,再利用公式求概率,求解中有不少考生遗漏了8,8这一可能性.例2.(基础·2007上海春季)在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目.若选到男教师的概率为920,则参加联欢会的教师共有 人.思路透析:设男教师有x 人,则女教师有12x +人,则随机挑选一人是男教师的概率1112912220xx x C x C x ++==+,解之得54x =, ∴参加联欢会的教师共有122120x +=人.点评:本题考查了随机事件的概率事件的分析与实际应用, 概率与方程思想相交汇的综合考查. 不可能事件和必然事件虽然是两类不同的事件,但它们可以看作是随机事件的两个极端情况,用这种既对立又统一的观点去看待它们,有利于认识它们的内在联系.例3.(综合·2007山东卷文科12)设集合{12}{123}A B ==,,,,,分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点()P a b ,,记“点()P a b ,落在直线x y n +=上”为事件(25)n C n n ∈N ≤≤,,若事件n C 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4思路透析:当2x =时, 211()236P C ==⨯; 当3x =时, 321()233P C ==⨯; 当4x =时, 421()233P C ==⨯; 当5x =时, 511()236P C ==⨯, 综上可得事件n C 的概率最大时, n 的所有可能值为3或4,故应选D.点评:考生在求解不同的赋值情况下的概率时,对于点在直线上的点坐标的对号选择有部分错误,导致结论出解中出现错误,也有部分考生对于得到的两个值持怀疑态度,进行二次概率求解,试图比较其两者的大小而出现延时现象.高考概率试题的求解,对概率事件的分析过程一要细心,二要清楚的理解该事件所有可能发生的情况,作出正确的判断后再进行求解.例 4.(综合·2007山东临沂期中,17)已知△ABC ,向量ABC k AB AC k BC ∆∈≤=-=求且,,4||),4,2(),3,2(Z 为直角三角形的概率.思路透析:).1,(),3,2()3,2(k CB AC AB k CB k BC =+=∴--=∴-=又.1515,15,161,4||22≤≤-∴≤≤+∴≤k k k又.3,2,1,0,±±±=∴∈k k Z若△ABC 为直角三角形,则(i )2,042,0-=∴=+∴=⋅k k ;(ii )13,32,02-=∴--∴=⋅或k k k ;(iii )8,012)2(2,0=∴=+-∴=⋅k k (舍去).∴△ABC 为直角三角形的k 的值为-1,-2,3,而基本事件总数为7.由古典概型知,.73=P 即△ABC 为直角三角形的概率为.73点评:本题以平面向量的坐标运算与点坐标间的相互联性定义进行命题,通过直角三角形的个数作为事件,考查了古典概型及其概率计算公式,属于一道综合题,考查了考生对复杂的概率事件的分析与推理论证的能力.例 5.(创新探究·2008如东、启东期中,18)已知函数:c bx x x f ++=2)(,其中:40,40≤≤≤≤c b ,且,b c Z ∈,记函数)(x f 满足条件:⎩⎨⎧≤-≤3)1(12)2(f f 的事件为A ,求事件A 发生的概率.思路透析:由 ⎩⎨⎧≤-≤3)1(12)2(f f 得:282b c b c +≤⎧⎨-+≤⎩ 且 04,04b c ≤≤≤≤,b c Z ∈ . 当b=0时c=0,1,2 ; 当b=1时c=0,1,2,3 ; 当b=2时c=0,1,2,3,4 ;当b=3时c=0,1,2 ; 当b=4时c=0以上共16种情形 .故事件A 发生的概率为16()25P A = . 点评:古典概型是近几年高考考查的热点内容.在计算其基本事件的个数以及事件A 所包含的基本事件的个数时,既可以直接列举,也可借用平面直角坐标系、有序实数对(有序实数组或有序元素等)、树枝状图等方法来列举. 本例中是通过有序实数对来计数的.例6.(创新探究·2007湖北八校联考)箱中装有15张大小、重量一样的卡片,每张卡片正面分别标有1到15中的一个号码,正面号码为n 的卡片反面标的数字是21240n n -+.(卡片正反面用颜色区分)(1)如果任意取出一张卡片,试求正面数字大于反面数字的概率;(2)如果同时取出两张卡片,试求他们反面数字相同的概率.思路透析:(1)由不等式21240n n n >-+,得58n <<.由题意知6,7n =,即共有2张卡片正面数字大于反面数字,故所求的概率为215. 答:所求的概率为215. (2)设取出的是第m 号卡片和n 号卡片(m n ≠), 则有2212401240m m n n -+=-+.即2212()n m n m -=-,由m n ≠得12m n +=.故符合条件的取法为1,11;2,10;3,9;4,8;5,7. 故所求的概率为2155121C =. 答:故所求的概率为121. 点评:本题为一个不等式与概率问题的交汇考题,通过解不等式得出符合条件的基本事件数,也可以用列举法列出所有的基本事件(当基本事件个数较少时适用),然后分别求得符合条件的概率值.【画龙点睛】探索规律,豁然开朗1.规律总结:(1)一般地,对于古典概型,如果试验的n 个基本事件组成基本事件集合(称为基本事件空间),随机事件A 含有m 个基本事件,这m 个基本事件构成集合A,则集合A 中元素的个数m 与基本事件的个数n 的比值,就是事件A 的概率,即P (A )=n m . (2) P (A )=nm ,既是概率的古典定义又是求古典概型的概率的基本方法. 求P(A)时,首先要判断是否是古典概型,它的计算步骤是: ①判断事件A 是否为古典概型; ②算出基本事件的总个数n ;③算出事件A 包含的基本事件的个数m ;④算出事件A 的概率P (A )=A 事件所包含的基本事件数试验的所有可能的基本事件总数=nm . 2.学以致用:(1)将一个骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为A .91B .121C .151D .181 (2)将一枚硬币连掷3次,出现“2个正面,1个反面”的概率是 A.31 B.81 C.83 D.32 (3)在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率 是 (结果用数值表示).(4)豌豆的高矮性态的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d,第一子代的一对基因为D d ,若第一子代的D ,d 基因的遗传是等可能的,求第二子代为高茎的概率.(只要有基因D,则茎就是高茎,只有两个基因全是d 时,才显现矮茎)答案:(1)D 解析: 设骰子连续抛掷三次向上的对应的点数所成等差数列的公差为d ,若0d =,则该等差数列有6个; 若1d =,则该等差数列有4个; 若2d =,则该等差数列有2个; 若3d ≥,则该等差数列不存在; 若1d =-,则该等差数列有4个; 若2d =-,则该等差数列有2个; 若3d ≤-,则该等差数列不存在.由此可得点数依次成等差数列的概率3642421618P ++++==, 故应选D. (2)C 解析:用“×”表示反面向上,“√”表示正面向上,所有的可能结果有“√√√”“√√×”“√×√”“×√√”“√××”“×√×”“××√”“×××”共8种;其中“2个正面,1个反面”的有3种,概率为83. 故应选C.(3)3.0解析:从5个数中任取3个共有10种方法,而取出三个数字后剩下的两个数字都是奇数,则取出的三个数中必有一个是奇数,两个是偶数,共有3种取法,∴剩下两个数字都是奇数的概率30.310P ==. (4)解析:由于第一子代的D ,d 基因的遗传是等可能的,可以将各种可能的遗传情形都列举出来. 如图所示,Dd 与Dd 的组合有4种:DD ,Dd ,d D ,dd , 其中只有第四种表现为矮茎,故第二子代为高茎的概率为375%4=. 3.易错分析:(1)在运用公式时,关键在于求出m 、n. 在求n 时,必须注意几种结果必须是等可能的,这一点比较容易出错.(2)利用图表的形象直观性,可以清晰地分析基本事件空间,确定随机事件中所含的基本事件的个数,进而利用古典概型的概率公式来求其概率.【能力训练】学练结合,融会贯通一、选择题:1.先后抛掷两枚均匀的正方体骰子(它们的六个面分别标有点数1、2、3、4、5、6),骰子朝上的面的点数分别为x 、y ,则2log 1x y =的概率为 ( )A .61B .365 C .121 D .21 2.从1,2,…,9共9个数字中任取一个数字,取出数字为偶数的概率为 ( ) A.0 B.1C.95D.94 3.一个口袋里装有2个白球和2个黑球,这4个球除颜色外完全相同,从中摸出2个球,则1个是白球,1个是黑球的概率是( ) A.21 B.31 C.41 D.32 4.若书架上放有数学、物理、化学书分别是5本、3本、2本,则随机抽出一本是物理书的概率为( ) A.51 B.103 C.53 D.21 5.从集合{a ,b ,c ,d ,e }的所有子集中任取一个,这个集合恰是集合{a ,b ,c }的子集的概率是 ( ) A .53 B.52 C.41 D.81 6.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为( )A .17B .27C .37D .47二、填空题:7.若10把钥匙中只有2把能打开某锁,则从中任取1把能将该锁打开的概率为 .8.从含有两件正品a 1、a 2和一件次品b 1的3件产品中每次任取1件,每次取出后不放回,连续取两次,取出的两件产品中恰有一件次品的概率为 .9.某号码锁有6个拨盘,每个拨盘上有从0到9共十个数字,当6个拨盘上的数字组成某一个六位数字号码(开锁号码)时,锁才能打开.如果不知道开锁号码,试开一次就把锁打开的概率是 ?10.有100张卡片(从1号到100号),从中任取1张,取到的卡片是7的倍数的概率是_______.三、解答题:11.抛掷两粒均匀的骰子,求:(Ⅰ)点数和为7的概率;(Ⅱ)出现两个5点的概率.12.某校举行运动会,高三(一)班有男乒乓球运动员4名,女乒乓球运动员3名,现要选一男一女运动员组成混合双打组合代表本班参赛,试列出全部可能结果,若某女乒乓球运动员为国家一级运动员,则她参赛的概率是多少?13.某城市的电话号码是8位数,如果从电话号码中任指一个电话号码,求(Ⅰ)头两位号码都是8的概率;(Ⅱ)头两位号码都不超过8的概率;(Ⅲ)头两位号码不相同的概率.14.已知袋中有编号为1~9的小球各一个,它们的大小相同,从中任取三个小球.求:(Ⅰ)恰好有一球编号是3的倍数的概率;(Ⅱ)至少有一球编号是3的倍数的概率;(Ⅲ)三个小球编号之和是3的倍数的概率.【能力训练】参考答案一、选择题:1. C2. D3. D4. B5. C6. C二、填空题:7. 15 8. 32 9. 11000000 10. 0.14 三、解答题:11.解析:用有序实数对(x ,y )表示基本事件,其中x 、y 分别表示两粒骰子的点数,易知所有基本事件数为36.(Ⅰ)用A 表示事件“点数之和为7”,则事件A 所含有的基本事件数为6.所以P (A )=61366=. (Ⅱ)用B 表示事件“出现两个5点”,则事件B 所含有的基本事件数为1.所以P (B )=361. 12.解析:由于男生从四人中任意选取,女生从3人中任意选取,为了得到试验的全部结果,我们设男生为A,B,C,D,女生为1,2,3,我们可以用一个“有序数对”来表示随机选取的结果如(A ,1)表示:第一次随机选取中从男生中选的是男生A ,从女生中选取的是女生1, 可用列举法列出所有可能的结果. 如下表所示:由表可知,可能结果总数是12个.设该国家一级运动员为编号1,她参赛的可能事件有4个,故她参赛的概率为41123P == 13.解析:电话号码的第一位可以是0~9中的任一个数字.第二位也是0~9中的任一个数字,我们把前2位号码用(,x y )表示,试验的所有结果如下表:从表中可以看出,头两位号码的所有可能的结果共有100个,由于是随机抽取,每个号码是等可能出现的,这个试验属于古典概型.(Ⅰ)记A 为“头两位号码都是8”,事件A 包含的基本事件只有1个(8,8),∴事件A 的概率1()0.01100P A ==. (Ⅱ)记B 为“头两位号码都不超过8”,则事件B 包含的基本事件由表可知共有81个, ∴事件B 的概率81()0.81100P B ==. (Ⅲ)记C 为头两位号码不相同,则事件C 包含的基本事件数由表可以数出共90个, ∴事件C 的概率90()0.9100P C ==. 14.解析:(Ⅰ)从九个小球中任取三个共有39C 种取法,它们是等可能的.设恰好有一球编号是3的倍数的事件为A , 则2815)(392613=⋅=C C C A P . (Ⅱ)设至少有一球编号是3的倍数的事件为B , 则2116)(21161)(3926131623333936=++==-=C C C C C C B P C C B P 或 . (Ⅲ)设三个小球编号之和是3的倍数的事件为C ,设集合}7,4,1{},9,6,3{21==S S ,}8,5,2{3=S ,则取出三个小球编号之和为3的倍数的取法共有131313333C C C C ⋅⋅+种,则1453)(3913131333=⋅⋅+=C C C C C C P .。
2018届高三数学一轮复习第十章概率与统计第二节古典概型与几何概型课件文
所以P(C)= 5 .因为3 >5 , 所以小亮获1 得6 水杯8的概1 6 率大于获得饮料的概率.
规律总结 解决关于古典概型的概率问题的关键是正确求出基本事件总数和所求 事件中包含的基本事件数. (1)基本事件总数较少时,可用列举法把所有基本事件一一列出,但要做 到不重复、不遗漏. (2)当所求事件含有“至少”“至多”或分类情况较多时,通常考虑用 对立事件的概率公式P(A)=1-P( A )求解.
文数
课标版
第二节 古典概型与几何概型
教材研读
1.基本事件的特点 (1)任何两个基本事件是① 互斥 的. (2)任何事件(除不可能事件外)都可以表示成②
基本事件
的和.
2.古典概型 (1)具有以下两个特点的概率模型称为古典概率模型,简称为古典概型.
(i)试验中所有可能出现的基本事件③ 只有有限个 .
(ii)每个基本事件出现的可能性④ 相等 . (2)古典概型的概率公式:
A. 7
B.5
C3 .
D3 .
10
8
8
10
答案 B 行人在红灯亮起的25秒内到达该路口,即满足至少需要等待
15秒才出现绿灯,根据几何概型的概率公式知所求事件的概率P= 2 5 = 5 ,
40 8
故选B.
4.(2016课标全国Ⅲ,5,5分)小敏打开计算机时,忘记了开机密码的前两 位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数 字,则小敏输入一次密码能够成功开机的概率是 ( )
(4)从区间[1,10]内任取一个数,取到1的概率是P= 1 . (×)
9
1.甲、乙、丙三名同学站成一排,甲站在中间的概率是 ( )
A. 1
B1 .
古典概型与几何概型
古典概型与几何概型古典概型和几何概型是概率论中的两个重要概念,它们被广泛应用于统计学、数学和其他科学领域。
本文将从古典概型和几何概型的定义、特点和应用等方面进行阐述,以帮助读者更好地理解和应用这两个概念。
1. 古典概型古典概型是指在确定试验中,每个基本事件发生的概率相等的情况。
简单来说,就是试验的结果可以列举出来,并且每个结果发生的可能性相同。
比如,投掷一个均匀的骰子,每个点数出现的概率都是1/6,这就是一个典型的古典概型。
古典概型的特点是简单明确,适用于具有确定结果的试验。
它可以用于求解事件的概率、计算期望值等问题。
古典概型在实际应用中有着广泛的应用,比如扑克牌、硬币、骰子等常见的游戏和赌博问题都可以用古典概型进行分析和计算。
2. 几何概型几何概型是指试验的结果在几何空间中的分布情况。
与古典概型不同的是,几何概型中的基本事件并不一定具有相等的概率。
几何概型常用于描述连续型随机变量的分布情况,比如长度、面积、体积等。
几何概型的特点是可以用几何图形来表示,更加直观直观形象。
在几何概型中,我们可以通过计算几何形状的面积、体积等来求解概率和期望值。
几何概型在实际应用中有着广泛的应用,比如连续型随机变量的概率密度函数和分布函数的计算等。
3. 古典概型与几何概型的联系与区别古典概型和几何概型都是概率论中常用的概念,它们都可以用于描述试验结果的概率分布情况。
但是古典概型强调的是试验结果具有相等的概率,而几何概型则不一定具有相等的概率。
古典概型适用于离散型随机变量的分析,一般用于计算排列组合、事件概率等问题。
而几何概型适用于连续型随机变量的分析,一般用于计算几何空间的面积、体积等问题。
古典概型和几何概型在实际应用中常常结合使用。
例如,在计算连续型随机变量的概率时,可以先用几何概型计算几何形状的面积或体积,然后再根据总体积或面积计算概率。
4. 古典概型与几何概型的应用举例古典概型和几何概型在实际应用中有着广泛的应用。
高考数学一轮复习专题训练—古典概型与几何概型
古典概型与几何概型考纲要求1.理解古典概型及其概率计算公式;2.会计算一些随机事件所包含的基本事件数及事件发生的概率;3.了解随机数的意义,能运用模拟方法估计概率;4.了解几何概型的意义.知识梳理1.古典概型 (1)基本事件的特点①任何两个基本事件是互斥的.②任何事件(除不可能事件)都可以表示成基本事件的和. (2)古典概型的定义具有以下两个特点的概率模型称为古典概率模型,简称古典概型.(3)古典概型的概率公式 P (A )=A 包含的基本事件的个数基本事件的总数.2.几何概型 (1)几何概型的定义如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,那么称这样的概率模型为几何概率模型,简称几何概型. (2)几何概型的两个基本特点(3)几何概型的概率公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积.1.古典概型中的基本事件都是互斥的,确定基本事件的方法主要有列举法、列表法与树状图法.2.概率的一般加法公式P(A∪B)=P(A)+P(B)-P(A∩B)中,易忽视只有当A∩B=∅,即A,B互斥时,P(A∪B)=P(A)+P(B),此时P(A∩B)=0.3.几何概型的基本事件的个数是无限的,古典概型中基本事件的个数是有限的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.()(2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件.()(3)随机模拟方法是以事件发生的频率估计概率.()(4)概率为0的事件一定是不可能事件.()答案(1)×(2)×(3)√(4)×解析对于(1),发芽与不发芽不一定是等可能,所以(1)不正确;对于(2),三个事件不是等可能,其中“一正一反”应包括正反与反正两个基本事件,所以(2)不正确;对于(4),概率为0的事件有可能发生,所以(4)不正确.2.袋中装有6个白球,5个黄球,4个红球,从中任取一球抽到白球的概率为( ) A.25 B .415C .35D .非以上答案答案 A解析 从袋中任取一球,有15种取法,其中抽到白球的取法有6种,则所求概率为p =615=25. 3.如图,正方形的边长为2,向正方形ABCD 内随机投掷200个点,有30个点落入图形M 中,则图形M 的面积的估计值为____________.答案 0.6解析 由题意可得正方形面积为4,设不规则图形的面积为S ,由几何概型概率公式可得S4≈30200,∴S ≈0.6.4.(2020·全国Ⅰ卷)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B .25C .12D .45答案 A解析 从O ,A ,B ,C ,D 这5个点中任取3点,取法有{O ,A ,B },{O ,A ,C },{O ,A ,D },{O ,B ,C },{O ,B ,D },{O ,C ,D },{A ,B ,C },{A ,B ,D },{A ,C ,D },{B ,C ,D },共10种,其中取到的3点共线的只有{O ,A ,C },{O ,B ,D }这2种取法,所以所求概率为210=15.故选A.5.(2019·全国Ⅲ卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.16 B .14C.13 D .12答案 D解析 设两位男同学分别为A ,B ,两位女同学分别为a ,b ,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为1224=12.6. (2021·郑州模拟)公元前5世纪下半叶,希波克拉底解决了与化圆为方有关的化月牙形为方.如图,以O 为圆心的大圆直径为4,以AB 为直径的半圆面积等于AO 与BO 所夹四分之一大圆的面积,由此可知,月牙形区域的面积与△AOB 的面积相等.现在在两个圆所覆盖的区域内随机取一点,则该点来自阴影部分的概率是________.答案π+68π+4解析 上方阴影部分的面积等于△AOB 的面积,S △AOB =12×2×2=2,下方阴影部分面积等于14×π×22-⎣⎡⎦⎤14×π×22-12×2×2=π2+1,所以根据几何概型概率公式得所求概率P =2+π2+14π+2=π+68π+4.考点一 古典概型的简单计算1.生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B .35C .25D .15答案 B解析 设5只兔子中测量过某项指标的3只为a 1,a 2,a 3,未测量过这项指标的2只为b 1,b 2,则从5只兔子中随机取出3只的所有可能情况为(a 1,a 2,a 3),(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 1,b 1,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),(a 2,b 1,b 2),(a 3,b 1,b 2),共10种可能.其中恰有2只测量过该指标的情况为(a 1,a 2,b 1),(a 1,a 2,b 2),(a 1,a 3,b 1),(a 1,a 3,b 2),(a 2,a 3,b 1),(a 2,a 3,b 2),共6种可能.故恰有2只测量过该指标的概率为610=35.2.(2021·安徽江南十校质量检测)“哥德巴赫猜想”是近代三大数学难题之一,其内容是:一个大于2的偶数都可以写成两个质数(素数)之和,也就是我们所谓的“1+1”问题.它是1742年由数学家哥德巴赫提出的,我国数学家潘承洞、王元、陈景润等在哥德巴赫猜想的证明中做出相当好的成绩.若将6拆成两个正整数的和,则拆成的和式中,加数全部为质数的概率为( ) A.15 B .13C .35D .23答案 A解析 6拆成两个正整数的和的所有基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),而加数全为质数的为(3,3),所以所求概率为15,故选A.3.(2020·江苏卷)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________. 答案 19解析 列表如下:1 2 3 4 5 61 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6789101112点数的和共有点数和为5的概率P =436=19.感悟升华 古典概型中基本事件个数的探求方法:(1)枚举法:适合于给定的基本事件个数较少且易一一列举出的问题.(2)树状图法:适合于较为复杂的问题,注意在确定基本事件时(x ,y )可看成是有序的,如(1,2)与(2,1)不同,有时也可看成是无序的,如(1,2)与(2,1)相同. 考点二 古典概型与其他知识的简单交汇【例1】 (1)(2020·郑州一模)已知集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任取k ∈A ,则幂函数f (x )=x k 为偶函数的概率为________(结果用数值表示).(2)(2021·河北七校联考)若m 是集合{1,3,5,7,9,11}中任意选取的一个元素,则椭圆x 2m +y 22=1的焦距为整数的概率为________. 答案 (1)14 (2)12解析 (1)集合A =⎩⎨⎧⎭⎬⎫-2,-1,-12,13,12,1,2,3,任意k ∈A 的基本事件总数为8,当k =±2时,幂函数f (x )=x k 为偶函数,从而幂函数f (x )=x k 为偶函数包含的基本事件个数为2,∴幂函数f (x )=x k 为偶函数的概率p =14.(2)∵m 是集合{1,3,5,7,9,11}中任意选取的一个元素,∴基本事件总数为6,又满足椭圆x 2m +y 22=1的焦距为整数的m 的取值有1,3,11,共有3个,∴椭圆x 2m +y 22=1的焦距为整数的概率p=36=12. 感悟升华 求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,一般步骤为:(1)将题目条件中的相关知识转化为事件; (2)判断事件是否为古典概型; (3)选用合适的方法确定基本事件个数; (4)代入古典概型的概率公式求解.【训练1】 设平面向量a =(m,1),b =(2,n ),其中m ,n ∈{1,2,3,4},记“a ⊥(a -b )”为事件A ,则事件A 发生的概率为( ) A.18 B .14C .13D .12答案 A解析 有序数对(m ,n )的所有可能情况为4×4=16个,由a ⊥(a -b )得m 2-2m +1-n =0,即n =(m -1)2.由于m ,n ∈{1,2,3,4},故事件A 包含的基本事件为(2,1)和(3,4),共2个,所以P (A )=216=18.考点三 古典概型与统计的综合应用【例2】 某城市100户居民的月平均用电量(单位:千瓦时)以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中x 的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为[240,260),[260,280),[280,300]的三组用户中,用分层抽样的方法抽取6户居民,并从抽取的6户中任选2户参加一个访谈节目,求参加节目的2户来自不同组的概率.解 (1)由(0.002 0+0.009 5+0.011 0+0.012 5+x +0.005 0+0.002 5)×20=1得x =0.007 5, 所以直方图中x 的值是0.007 5.(2)月平均用电量的众数是220+2402=230.因为(0.002 0+0.009 5+0.011 0)×20=0.45<0.5, 且(0.002 0+0.009 5+0.011 0+0.012 5)×20=0.7>0.5,所以月平均用电量的中位数在[220,240)内,设中位数为a ,由(0.002 0+0.009 5+0.011 0)×20+0.012 5×(a -220)=0.5,解得a =224, 所以月平均用电量的中位数是224.(3)月平均用电量为[240,260)的用户有0.007 5×20×100=15(户), 月平均用电量为[260,280)的用户有0.005×20×100=10(户), 月平均用电量在[280,300]的用户有0.002 5×20×100=5(户).抽样方法为分层抽样,在[240,260),[260,280),[280,300]中的用户比为3∶2∶1, 所以在[240,260),[260,280),[280,300]中分别抽取3户、2户和1户.设参加节目的2户来自不同组为事件A ,将来自[240,260)的用户记为a 1,a 2,a 3,来自[260,280)的用户记为b 1,b 2,来自[280,300]的用户记为c 1,在6户中随机抽取2户有(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,c 1),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,c 1),(a 3,b 1),(a 3,b 2),(a3,c1),(b1,b2),(b1,c1),(b2,c1),共15种取法,其中满足条件的有(a1,b1),(a1,b2),(a1,c1),(a2,b1),(a2,b2),(a2,c1),(a3,b1),(a3,b2),(a3,c1),(b1,c1),(b2,c1),共11种,故参加节目的2户来自不同组的概率P(A)=1115.感悟升华有关古典概型与统计结合的题型是高考考查概率的一个重要题型.概率与统计的结合题,无论是直接描述还是利用频率分布表、频率分布直方图、茎叶图等给出的信息,准确从题中提炼信息是解题的关键.【训练2】海关对同时从A,B,C三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示.工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A,B(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率.解(1)A,B,C三个地区商品的总数量为50+150+100=300,抽样比为6300=1 50,所以样本中包含三个地区的个体数量分别是50×150=1,150×150=3,100×150=2.所以A,B,C三个地区的商品被选取的件数分别是1,3,2.(2)设6件来自A,B,C三个地区的样品分别为:A;B1,B2,B3;C1,C2.则从6件样品中抽取的这2件商品构成的所有基本事件为:{A,B1},{A,B2},{A,B3},{A,C1},{A,C2},{B1,B2},{B1,B3},{B1,C1},{B1,C2},{B2,B3},{B2,C1},{B2,C2},{B3,C1},{B3,C2},{C1,C2},共15个.每个样品被抽到的机会均等,因此这些基本事件的出现是等可能的.记事件D:“抽取的这2件商品来自相同地区”,则事件D包含的基本事件有:{B1,B2},{B1,B 3},{B 2,B 3},{C 1,C 2},共4个. 所以P (D )=415.即这2件商品来自相同地区的概率为415.考点四 几何概型角度1 与长度(角度)有关的几何概型【例3】 (1)在[-6,9]内任取一个实数m ,设f (x )=-x 2+mx +m ,则函数f (x )的图象与x 轴有公共点的概率等于( ) A.215B .715C .35D .1115(2)如图所示,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部任作一条射线CM ,与AB 交于点M ,则AM <AC 的概率为________.答案 (1)D (2)34解析 (1)因为f (x )=-x 2+mx +m 的图象与x 轴有公共点,所以Δ=m 2+4m ≥0,所以m ≤-4或m ≥0,所以在[-6,9]内取一个实数m ,函数f (x )的图象与x 轴有公共点的概率p =[-4--6]+9-09--6=1115. (2)过点C 作CN 交AB 于点N ,使AN =AC ,如图所示.显然当射线CM 处在∠ACN 内时,AM <AC ,又∠A =45°,所以∠ACN =67.5°,故所求概率为p =67.5°90°=34.感悟升华 1.解答几何概型问题的关键在于弄清题中的考查对象和对象的活动范围,当考查对象为点,且点的活动范围在线段上时,用“线段长度”为测度计算概率,求解的核心是确定点的边界位置.2.当涉及射线的转动,扇形中有关落点区域问题时,应以角对应的弧长的大小作为区域度量来计算概率.事实上,当半径一定时,曲线弧长之比等于其所对应的圆心角的弧度数之比. 角度2 与面积有关的几何概型【例4】 在区间(0,1)上任取两个数,则两个数之和小于65的概率是( )A.1225 B .1625C .1725D .1825答案 C解析 设这两个数是x ,y ,则试验所有的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1确定的平面区域,满足条件的事件包含的基本事件构成的区域即⎩⎪⎨⎪⎧0<x <1,0<y <1,x +y <65确定的平面区域,如图所示,阴影部分的面积是1-12×⎝⎛⎭⎫452=1725,所以这两个数之和小于65的概率是1725.感悟升华 几何概型与平面几何的交汇问题:要利用平面几何的相关知识,先确定基本事件对应区域的形状,再选择恰当的方法和公式,计算出其面积,进而代入公式求概率. 角度3 与体积有关的几何概型【例5】 有一个底面半径为1、高为2的圆柱,点O 为这个圆柱底面圆的圆心,在这个圆柱内随机取一点P ,则点P 到点O 的距离大于1的概率为________. 答案 23解析 由题意得该圆柱的体积V =π×12×2=2π.圆柱内满足点P 到点O 的距离小于等于1的几何体为以圆柱底面圆心为球心的半球,且此半球的体积V 1=12×43π×13=23π,所以所求概率p =V -V 1V =23.感悟升华 对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间),对于某些较复杂的也可利用其对立事件去求.【训练3】 (1)(2021·西安一模)在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为( ) A.12B .13C .24D .23(2) (2020·新疆一模)剪纸艺术是最古老的中国民间艺术之一,作为一种镂空艺术,它能给人以视觉上透空的感觉和艺术享受.剪纸艺术通过一把剪刀、一张纸就可以表达生活中的各种喜怒哀乐.如图是一边长为1的正方形剪纸图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为( )A.π64B .π32C .π16D .π8答案 (1)C (2)D解析 (1)圆x 2+y 2=1的圆心为(0,0), 圆心到直线y =k (x +3)的距离为|3k |k 2+1, 要使直线y =k (x +3)与圆x 2+y 2=1相交,则|3k |k 2+1<1,解得-24<k <24. ∴在区间[-1,1]上随机取一个数k ,使直线y =k (x +3)与圆x 2+y 2=1相交的概率为24-⎝⎛⎭⎫-242=24. (2)设黑色小圆的半径为r .由题意得2r +2r +2×2r =1,解得r =18,所以白色区域的面积为π·⎝⎛⎭⎫122-4×π·⎝⎛⎭⎫182-π·⎝⎛⎭⎫142=π8.所以在正方形图案上随机取一点,该点取自白色区域的概率为π81×1=π8.故选D. 基础巩固一、选择题1.一枚硬币连掷2次,恰好出现1次正面的概率是( ) A.12 B .14C .34D .0答案 A解析 列举出所有基本事件,找出“只有1次正面”包含的结果.一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而只有1次出现正面的包括(正,反),(反,正)2个,故其概率为24=12.故选A.2.袋子中有大小、形状完全相同的四个小球,分别写有“和”“谐”“校”“园”四个字,有放回地从中任意摸出一个小球,直到“和”“谐”两个字都摸到就停止摸球,用随机模拟的方法估计恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“和”“谐”“校”“园”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下18组随机数: 343 432 341 342 234 142 243 331 112 342 241 244 431 233 214 344 142 134 由此可以估计,恰好第三次就停止摸球的概率为( ) A.19 B .16C .29D .518答案 C解析 由18组随机数得,恰好在第三次停止摸球的随机数是142,112,241,142,共4组,所以恰好第三次就停止摸球的概率约为418=29.故选C.3. (2021·河北六校联考)《周髀算经》中提出了“方属地,圆属天”,也就是人们常说的“天圆地方”.我国古代铜钱的铸造也蕴含了这种“外圆内方”“天地合一”的哲学思想.现将铜钱抽象成如图所示的图形,其中圆的半径为r ,正方形的边长为a (0<a <r ),若在圆内随机取点,得到点取自阴影部分的概率是p ,则圆周率π的值为( )A.a 21-p r 2B .a 21+p r 2C.a1-p rD .a1+p r答案 A解析 由几何概型的概率计算公式,得πr 2-a 2πr 2=p ,化简得π=a 21-p r 2.故选A.4.在集合A ={2,3}中随机取一个元素m ,在集合B ={1,2,3}中随机取一个元素n ,得到点P (m ,n ),则点P 在圆x 2+y 2=9内部的概率为( ) A.12 B .13C .34D .25答案 B解析 点P (m ,n )共有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),6种情况,只有(2,1),(2,2)这2个点在圆x 2+y 2=9的内部,所求概率为26=13.5.某单位试行上班刷卡制度,规定每天8:30上班,有15分钟的有效刷卡时间(即8:15—8:30),一名职工在7:50到8:30之间到达单位且到达单位的时刻是随机的,则他能有效刷卡上班的概率是( )A.23 B .58C .13D .38答案 D解析 该职工在7:50至8:30之间到达单位且到达单位的时刻是随机的,设其构成的区域为线段AB ,且AB =40,职工的有效刷卡时间是8:15到8:30之间,设其构成的区域为线段CB ,且CB =15,如图,所以该职工有效刷卡上班的概率p =1540=38.故选D.6.(2021·合肥质检)已知三棱锥S -ABC ,在该三棱锥内任取一点P ,则使V P -ABC ≤13V S -ABC的概率为( ) A.13 B .49C .827D .1927答案 D解析 作出S 在底面△ABC 的射影为O ,若V P -ABC =13V S -ABC ,则三棱锥P -ABC 的高等于13SO ,P 点落在平面EFD 上,且SE SA =SD SB =SF SC =23,所以S △EFD S △ABC =49,故V S -EFD =827V S -ABC, ∴V P -ABC ≤13V S -ABC 的概率p =1-827=1927.二、填空题7.(2020·太原模拟)下课以后,教室里还剩下2位男同学和1位女同学,若他们依次随机走出教室,则第2位走出的是女同学的概率是________.答案 13解析 2位男同学记为男1,男2,则三位同学依次走出教室包含的基本事件有:男1男2女,男1女男2,女男1男2,男2男1女,男2女男1,女男2男1,共6种,其中第2位走出的是女同学包含的基本事件有2种.故第2位走出的是女同学的概率是p =26=13.8.在等腰Rt △ABC 中,∠C =90°,在直角边BC 上任取一点M ,则∠CAM <30°的概率是________. 答案33解析 ∵点M 在直角边BC 上是等可能出现的, ∴“测度”是长度.设直角边长为a , 则所求概率为33a a =33.9.(2021·郑州质量预测改编)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则log a b 为整数的概率是________. 答案 16解析 从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则有(2,3),(2,8),(2,9),(3,8),(3,9),(8,9),(3,2),(8,2),(9,2),(8,3),(9,3),(9,8),共12种取法,其中log a b 为整数的有(2,8),(3,9)两种,故p =212=16.三、解答题10.(2020·成都诊断)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(1)求图中实数a的值;(2)若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,求这2名学生的数学成绩之差的绝对值不大于10的概率.解(1)由已知,得10×(0.005+0.010+0.020+a+0.025+0.010)=1,解得a=0.030.(2)易知成绩在[40,50)分数段内的人数为40×0.05=2,这2人分别记为A,B;成绩在[90,100]分数段内的人数为40×0.1=4,这4人分别记为C,D,E,F.若从数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,则所有的基本事件有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15个.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10.如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.记“这2名学生的数学成绩之差的绝对值不大于10”为事件M,则事件M包含的基本事件有(A,B),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共7个,故所求概率P(M)=715.11.(2019·天津卷)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(1)应从老、中、青员工中分别抽取多少人?(2)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.②设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.解(1)由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.(2)①从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.②由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.所以事件M发生的概率P(M)=1115.能力提升12.(2021·长春质检)我国古人认为宇宙万物是由金、木、水、火、土这五种元素构成的,历史文献《尚书·洪范》提出了五行的说法,到战国晚期,五行相生相克的思想被正式提出.这五种物质属性的相生相克关系如图所示,若从这五种物质中随机选取三种,则取出的三种物质中,彼此间恰好有一个相生关系和两个相克关系的概率为()A.35 B .12C .25D .13答案 B解析 (列举法)依题意,三种物质间相生相克关系如下表,金木水 金木火 金木土 金水火 金水土 金火土 木水火 木水土 木火土 水火土 × √√√×××√×√所以彼此间恰好有一个相生关系和两个相克关系的概率p =510=12,故选B.13.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,由不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,若在Ω1中随机取一点,则该点恰好在Ω2内的概率为________. 答案 78解析 如图,平面区域Ω1就是三角形区域OAB ,平面区域Ω2与平面区域Ω1的重叠部分就是区域OACD ,易知C ⎝⎛⎭⎫-12,32.由几何概型的概率公式,所求概率p =S 四边形OACDS △OAB =2-142=78.14.如图所示的茎叶图记录了甲、乙两组各四名同学的植树棵数,其中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.解 (1)当X =8时,由茎叶图可知,乙组四名同学的植树棵数分别是8,8,9,10,故x =8+8+9+104=354,s 2=14×⎣⎡⎦⎤⎝⎛⎭⎫8-3542×2+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)当X =9时,记甲组四名同学分别为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学分别为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,其包含的基本事件为{A 1,B 1},{A 1,B 2},{A 1,B 3},{A 1,B 4},{A 2,B 1},{A 2,B 2},{A 2,B 3},{A 2,B 4},{A 3,B 1},{A 3,B 2},{A 3,B 3},{A 3,B 4},{A 4,B 1},{A 4,B 2},{A 4,B 3},{A 4,B 4},共16个.设“选出的两名同学的植树总棵数为19”为事件C ,则事件C 中包含的基本事件为{A 1,B 4},{A 2,B 4},{A 3,B 2},{A 4,B 2},共4个.故P (C )=416=14.。
高三数学一轮总结复习目录
高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
2018版高考数学一轮总复习第10章概率10.3几何概型课件
如图易知区域 D 是边长为 2 的正方形,到原点
的距离大于 2 的点在以原点为圆心,以 2 为半径的圆的外 部,所以所求事件的概率为 P= 1 2×2- ·π·22 4-π 4 = .选 D. 4 2×2
3.欧阳修的《卖油翁》中写到:“(翁 )乃取一葫芦, 置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不 湿”, 可见“行行出状元”, 卖油翁的技艺让人叹为观止. 若 铜钱是直径为 3 cm 的圆,中间有边长为 1 cm 的正方形孔, 若随机向铜钱上滴一滴油(油滴的直径忽略不计),则正好落
P(M)= =
V三棱锥A1-ABD V长方体ABCD-A1B1C1D1 1 AA · S 3 1 △ABD
1 1 AA ·S 3 1 2 矩形ABCD 1 = = = . 6 V长方体ABCD-A1B1C1D1 AA1· S矩形ABCD
板块二 典例探究· 考向突破
考向 例1
与长度有关的几何概型
(1)[2016· 全国卷Ⅰ]某公司的班车在 7: 30, 8: 00,8:
4 入孔中的概率是________ . 9π
解析
12 4 依题意,所求概率为 P= = . 9π 32 π·2
4.[课本改编]某路公共汽车每 5 分钟发车一次,某乘 客到乘车点的时刻是随机的, 则他候车时间不超过 3 分钟的
3 概率是________ . 5
解析 此题可以看成向区间 [0,5]内均匀投点,设 A= 3 分 钟 } , 则 P(A) =
{ 某乘 客候车 时间 不超 过 区间[2,5]的长度 3 = . 区间[0,5]的长度 5
5.[2017· 济南模拟]如图,长方体 ABCD-A1B1C1D1 中, 有一动点在此长方体内随机运动,则此动点在三棱锥 A-
第十章 统计与概率10-5古典概型与几何概型
x 2 y 解析:(1)由题意可得,18=36=54,所以x=1,y=3. (2)记从高校B抽取的2人为b1,b2,从高校C抽取的3人为 c1,c2,c3,则从高校B,C抽取的5人中选2人作专题发言的基 本事件有 (b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2, c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3)共10种. 设选中的2人都来自高校C的事件为X,则X包含的基本事 3 件有(c1,c2),(c1,c3),(c2,c3)共3种.因此P(X)= . 10 3 故选中的2人都来自高校C的概率为10.
根据几何概型的计算公式可知
2 2 - --1+1- 3 3
P=
1--1
1 =3,故选A.
答案:A
(文)(2010·青岛市质检)已知区域Ω={(x, y)|x+y≤10,x≥0,y≥0},A={(x,y)|x- y≥0,x≤5,y≥0},若向区域Ω内随机投1个 点,则这个点落入区域A内的概率P(A)= ________.
[例4] (09·天津)为了了解某市工厂开展群 众体育活动的情况,拟采用分层抽样的方法 从A、B、C三个区中抽取7个工厂进行调 查.已知A、B、C区中分别有18、27、18 个工厂. (1)求从A、B、C区中应分别抽取的工厂个 数; (2)若从抽得的7个工厂中随机地抽取2个进 行调查结果的对比,用列举法计算这2个工 厂中至少有1个来自A区的概率.
2.古典概型 满足以下两个条件的随机试验的概率模型称 为古典概型: (1)有限性:在一次试验中,可能出现的不 同的基本事件只有有限个; (2)等可能性:每个基本事件的发生都是等 可能的. 古典概型中事件的概率计算
古典概型和几何概型(一轮复习数学)
(2)先后掷两枚相同的骰 子,则向上的点数之和 为5的概率为
1 A. 18 1 B. 9 1 C. 6 1 D. 12
(3)某种饮料每箱装 6听,其中2听不合格,质检人员从 中随机抽取 2听,检测出都是合格产 品的概率为
1 A. 5 2 B. 5 3 C. 5 4 D. 5
类型二:古典概型的求 法
类型三:几何概型的求 法(与面积有关问题) 例1. 一只受伤的丹顶鹤在如 图所示(直角梯形)的 草原上空飞过,
其中AD 2,DC 2,BC 1,它可能随机落在草原 上 任何一处(点)。若落 在扇形区域ADE以外丹顶鹤能生 还,该丹顶鹤生还的概 率是 10 10
例2. 如图,圆C内切于扇形AOB,AOB
1 A. 5 2 B. 5 3 C. 5 4 D. 5
例4.如图所示,边长为 2的正方形中有一封闭曲 线围成的阴影 区域。在正方形中随机 撒一粒豆子,它落在阴 影区域内的概率 2 为 ,则阴影区域的面积为 3
4 A. 3
8 B. 3
2 C. 3
D.无法计算
类型二:几何概型的求 法(与长度、角度有关 问题) 例1. 如图所示,在直角坐标 系内,射线 OT落在30角的终边上,
3 C. 10 2 D. 5
(2)袋中有五张卡片,其 中红色卡片三张,标号 分别为 1,2 3;蓝色卡片两张,标号 分别为 1,2. .从以上五张卡片中任取 2两张,求这两张卡片不 同且标号
之和小于4的概率. .向袋中再放入一张标号 为0的绿色卡片,从这六张 卡片中
任取两张,求这两张卡 片颜色不同且标号之和 小于4的概率.
类型一:古典概型基本 概念 例1( . 1 )判断正误:
“在适宜条件下种下一 粒种子观察它是否发芽 ”属于古典概型, 其基本事件是“发芽与 不发芽”
高三数学一轮复习 第十章《统计与概率》105精品课件
1 解析:(1)依题意知,直线l1的斜率k1= 2 ,直线l2的斜 a 率k2=b. • 设事件 A为“直线l1∥l2”. • a,b∈{1,2,3,4,5,6}的基本事件记作(a,b),有(1,1), (1,2),…,(1,6),(2,1),(2,2),…,(2,6),…,(6,5), (6,6),共36种. • 若l1∥l2,则b=2a. • 满足条件的实数对(a,b)有(1,2)、(2,4)、(3,6),共3 种.
可得出x的取值范围A,即在[-
1,1]中任取一个数x,求x∈A的概率,这是长度型几何概型.
π 1 π π π π 解析:∵0≤cos x≤ ,-1≤x≤1,∴ ≤ x≤ 或- 2 2 3 2 2 2 π π 2 2 ≤2x≤-3,∴3≤x≤1或-1≤x≤-3,
2 2 即x∈-1,-3∪3,1内,
6 1 所以P(B)= = . 36 6 1 ∴直线l1与l2的交点位于第一象限的概率为 . 6
1 1 答案:(1)12 (2)6
[例3]
(09· 山东)在区间[-1,1]上随机取一个数x, )
πx 1 cos 的值介于0到 之间的概率为( 2 2 1 A. 3 1 C.2 2 B. π
2 D.3 πx 1 0≤cos ≤ 2 2 分析:由 -1≤x≤1
• “抽得黄粉笔”,它们是彼此互斥事件,不是等可能事 件. ②李明从分别标有1,2,…,10标号的同样的小球 中,任取一球,“取得1号球”,“取得2号球”,…, “取得10号球”. 它们是彼此互斥事件,又是等可能事 件. ③一周七天中,“周一晴天”,“周二晴天”,…, “周六晴天”,“星期天晴天”. 它们是等可能事件, 不是彼此互斥事件.
1 解析:如图区域Ω的面积S= 2 ×10×10=50,区域A 1 12.5 1 面积S1=2×5×5=12.5,∴P= 50 =4.
近年高考数学一轮复习 第10章 概率 第2节 古典概型课时分层训练 文 北师大版(2021年整理)
2018高考数学一轮复习第10章概率第2节古典概型课时分层训练文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第10章概率第2节古典概型课时分层训练文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第10章概率第2节古典概型课时分层训练文北师大版的全部内容。
课时分层训练(五十三)古典概型A组基础达标(建议用时:30分钟)一、选择题1.(2014·全国卷Ⅰ改编)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为()【导学号:66482464】A。
错误!B.错误!C.错误!D.错误!C[设两本不同的数学书为a1,a2,1本语文书为b。
则在书架上的摆放方法有a1a2b,a1ba2,a 2a1b,a2ba1,ba1a2,ba2a1,共6种,其中数学书相邻的有4种.因此2本数学书相邻的概率P=错误!=错误!.]2.(2016·北京高考)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A。
错误!B.错误!C.错误!D.错误!B[设另外三名学生分别为丙、丁、戊.从5名学生中随机选出2人,有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共10种情形,其中甲被选中的有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种情形,故甲被选中的概率P=410=错误!.]3.在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为( )A.12B.错误!C。
2018高考数学文全国大一轮复习课件:第十篇 概率 第2
5.下列说法正确的是
.
①“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本
事件是“发芽与不发芽”;
②掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个 结果是等可能事件; ③从市场上出售的标准为500±5 g的袋装食盐中任取一袋,测其重量,属于 古典概型; ④有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各 个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ⑤从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0.2;
1 ; 3
⑥在古典概型中,如果事件A中基本事件构成集合A,且集合A中的元素个数为 n,所有的基本事件构成集合I,且集合I中元素个数为m,则事件A的概率为 n .
m
答案:④⑤⑥
考点专项突破
考点一 事件的构成
在讲练中理解知识
【例题】 一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的 数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次 记为a,b,c.试写出: (1)试验的基本事件; (2)事件“抽取的卡片上的数字满足a+b=c”所含的基本事件; (3)事件“抽取的卡片上的数字a,b,c不完全相同”所含的基本事件. 解:(1)由题意,试验的基本事件即(a,b,c)的所有可能:(1,1,1),(1,1,2),(1,1,3), (1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3), (2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3), (3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种. (2)设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括的基本事件有(1,1, 2),(1,2,3),(2,1,3),共3种. (3)设“抽取的卡片上的数字不完全相同”为事件B,则事件B包含的基本事件有:(1, 1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1), (2,1,2),(2,1,3),(2,2,1),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2), (3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),共24个.
高考数学一轮复习第十篇概率第2节古典概型与几何概型课件文新人教A版
返回导航
返回导航
【反思归纳】 解答几何概型试题要善于根据这些特点寻找基本 事件所在线、面、体,寻找随机事件所在的线、面、体,把几何概 型的计算转化为相应的长度、面积和体积的比值的计算.
返回导航
【即时训练】 在等腰直角三角形 ABC 中,直角顶点为 C. (1)在斜边 AB 上任取一点 M,求 AM<AC 的概率; (2)在∠ACB 的内部,以 C 为端点任作一条射线 CM,与线段 AB 交于点 M,求 AM<AC 的概率.
②若 a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的 一个数,求上述方程有实根的概率.
返回导航
(2)小李从网上购买了一件商品,快递员计划在 5:00-6:00 之 间送货上门.已知小李下班到家的时间为下午 5:30-6:00.快递员 到小李家时,如果小李未到家,就将商品存放到快递柜中,则小李 需要去快递柜收取商品的概率等于________.
返回导航
(A)p1=p2 (C)p2=p3
返回导航
(B)p1=p3 (D)p1=p2+p3
A 解析:∵ S△ABC=12AB·AC,以 AB 为直径的半圆的面积为12 π·A2B2=π8 AB2,
以 AC 为直径的半圆的面积为12π·A2C2=π8 AC2, 以 BC 为直径的半圆的面积为12π·B2C2=π8 BC2,
返回导航
②试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}, 构成事件 A 的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b},所以所求的 概率为 P(A)=3×23-×122×22=23.
(浙江版)2018年高考数学一轮复习 专题10.4 随机事件的概率与古典概型(讲)
专题10.4 随机事件的概率与古典概型【考纲解读】【知识清单】1. 随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件. (1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示.2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()An n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率. 3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(AB φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件. 4.事件的关系与运算B或A B +)B (或AB )B 为不可能事件,那么称事件B φ=B 为不可能事件,B 为必然事件,B 互为对立事件B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A .由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0. 5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤. (2)必然事件的概率:()1p A =. (3)不可能事件的概率:()0p A =. (4)互斥事件的概率加法公式: ①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-. 对点练习:1.从装有3个红球、2个白球的袋中任取3个球,若事件A = “所取的3个球中至少有1个白球”,则事件A 的对立事件是( )A. 1个白球2个红球B. 2个白球1个红球C. 3个都是红球D. 至少有一个红球 【答案】C2.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二节古典概型与几何概型A组基础题组1.(2016北京,6,5分)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为( )A. B. C. D.2.设p在[0,5]上随机地取值,则关于x的方程x2+px+1=0有实数根的概率为( )A. B. C. D.3.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )A. B.1- C. D.1-4.(2015课标Ⅰ,4,5分)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A. B. C. D.5.一个质地均匀的正四面体玩具的四个面上分别标有1、2、3、4这四个数字,若连续两次抛掷这个玩具,则两次向下的面上的数字之积为偶数的概率是( )A. B. C. D.6.(2014课标Ⅱ,13,5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.7.某同学同时掷两颗骰子,得到的点数分别为a,b,则双曲线-=1的离心率e>的概率是.8.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足PH<的概率为.9.(2015天津,15,13分)设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18.现采用分层抽样的方法从这三个协会中抽取6名运动员组队参加比赛.(1)求应从这三个协会中分别抽取的运动员的人数;(2)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6.现从这6名运动员中随机抽取2人参加双打比赛.(i)用所给编号列出所有可能的结果;(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.10.某超市为了促销,举行了抽奖活动:在一个不透明的抽奖箱中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)顾客甲从抽奖箱中一次性随机取出两个球,求取出的球的编号之和不大于4的概率;(2)顾客甲从抽奖箱中随机取一个球,记下编号后放回,再从抽奖箱中随机取一个球,记下编号放回.设这两次取出的球的编号之和为M.超市奖项设置:若M=8,则为一等奖;若M=7,则为二等奖;若5≤M≤6,则为三等奖;其他情况无奖.求顾客甲中奖的概率.B组提升题组11.从区间[0,1]随机抽取2n个数x1,x2,…,x n,y1,y2,…,y n,构成n个数对(x1,y1),(x2,y2),…,(x n,y n),其中两数的平方和小于1的数对共有m个,则用随机模拟的方法得到的圆周率π的近似值为( )A. B. C. D.12.(2016河南商丘模拟)已知P是△ABC所在平面内一点,++2=0,现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC内的概率是( )A. B. C. D.13.(2016广东七校联考)如图,已知圆的半径为10,其内接三角形ABC的内角A,B分别为60°和45°,现向圆内随机撒一粒豆子,则豆子落在三角形ABC内的概率为( )A. B. C. D.14.一个三位数的百位,十位,个位上的数字依次为a,b,c,当且仅当a>b,b<c时称为“凹数”(如213,312等),若a,b,c∈{1,2,3,4},且a,b,c互不相同,则这个三位数为“凹数”的概率是( )A. B. C. D.15.(2016河南郑州模拟)若不等式x2+y2≤2所表示的平面区域为M,不等式组所表示的平面区域为N,现随机向区域N内抛一粒豆子,则豆子落在区域M内的概率为.16.一个不透明的袋中装有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.17.(2015福建,18,12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如下表所示.(1)现从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.答案全解全析A组基础题组1.B 设其他3名学生为丙、丁、戊,从中任选2人的所有情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),(乙,丙),(乙,丁),(乙,戊),(丙,丁),(丙,戊),(丁,戊),共4+3+2+1=10种.其中甲被选中的情况有(甲,乙),(甲,丙),(甲,丁),(甲,戊),共4种,故甲被选中的概率为=.故选B.2.C 方程x2+px+1=0有实根,则Δ=p2-4≥0,解得p≥2或p≤-2(舍去).由几何概型的概率计算公式可知所求的概率为=.3.B 如图,依题意可知所求概率为图中阴影部分的面积与长方形的面积之比,即所求概率P===1-.4.C 从1,2,3,4,5中任取3个不同的数有10种取法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),其中能构成一组勾股数的有1种:(3,4,5),故所求事件的概率P=,故选C.5.D 连续两次抛掷该玩具共有16种情况:(1,1),(1,2),(1,3),(1,4),(2,1),…,(4,4).其中乘积是偶数的有12种情况:(1,2),(1,4),(2,1),(2,2),(2,3),(2,4),(3,2),(3,4),(4,1),(4,2),(4,3),(4,4),所以两次向下的面上的数字之积为偶数的概率P==.6.答案解析甲、乙的选择方案有红红、红白、红蓝、白红、白白、白蓝、蓝红、蓝白、蓝蓝9种,其中颜色相同的有3种,所以所求概率为=.7.答案解析由e=>,得b>2a.当a=1时,有b=3,4,5,6四种情况;当a=2时,有b=5,6两种情况,总共有6种情况.而同时掷两颗骰子,得到的点数(a,b)共有36种情况,∴所求事件的概率P==.8.答案+解析如图,设E、F分别为边AB、CD的中点,则满足PH<的点P在阴影区域内(不包括弧EF),由几何概型的概率计算公式知,所求概率为=+.9.解析(1)应从甲、乙、丙三个协会中抽取的运动员人数分别为3,1,2.(2)(i)从6名运动员中随机抽取2人参加双打比赛的所有可能结果为{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5 },{A4,A6},{A5,A6},共15种.(ii)编号为A5和A6的两名运动员中至少有1人被抽到的所有可能结果为{A1,A5},{A1,A6},{A2,A5},{A2,A6},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共9种.因此,事件A发生的概率P(A)==.10.解析(1)从抽奖箱中一次性随机取出两个球,其基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个.设“从抽奖箱中一次性随机取出两个球的编号之和不大于4”为事件A,则事件A包含的事件有(1,2),(1,3),共2个.因此P(A)==.(2)先从抽奖箱中随机取一个球,记下编号,为a,放回后,再从抽奖箱中随机取一个球,记下编号,为b,其所有可能的结果(a,b)有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4 ,3),(4,4),共16个.设“顾客甲中奖”为事件B,则事件B包含的事件有(1,4),(2,3),(2,4),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共10个.所以P(B)==.B组提升题组11.C 如图,数对(x i,y i)(i=1,2,…,n)表示的点落在边长为1的正方形OABC内(包括边界),两数的平方和小于1的数对表示的点落在半径为1的四分之一圆(阴影部分,不包括弧AC)内,则由几何概型的概率公式可得=⇒π=.故选C.12.C 如图所示,设点M是BC边的中点,因为++2=0,所以点P是中线AM的中点,所以黄豆落在△PBC内的概率P==,故选C.13.B 由正弦定理知==2R(R为△ABC外接圆的半径)⇒⇒那么S△ABC=×10×10sin 75°=×10×10×=25(3+).于是,豆子落在三角形ABC内的概率为==.14.C 由1,2,3组成的三位数有123,132,213,231,312,321,共6个;由1,2,4组成的三位数有124,142,214,241,412,421,共6个;由1,3,4组成的三位数有134,143,314,341,413,431,共6个;由2,3,4组成的三位数有234,243,324,342,432,423,共6个.所以共有6+6+6+6=24个三位数.当b=1时,有214,213,314,412,312,413,共6个“凹数”;当b=2时,有324,423,共2个“凹数”.∴这个三位数为“凹数”的概率P==.15.答案解析作出不等式组与不等式x2+y2≤2所表示的可行域如图所示,易求得A(6,6),B(2,-2),C(3,0),平面区域N的面积为×3×(6+2)=12,区域M在区域N内的面积为π()2=,故所求概率P==.16.解析(1)将标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E.从五张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(2)将标号为0的绿色卡片记为F.从六张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(A,F),(B,D),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.17.解析(1)解法一:融合指数在[7,8]内的“省级卫视新闻台”记为A 1,A2,A3;融合指数在[4,5)内的“省级卫视新闻台”记为B1,B2.从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.其中,至少有1家融合指数在[7,8]内的基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},共9个.所以所求的概率P=.解法二:融合指数在[7,8]内的“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的“省级卫视新闻台”记为B1,B2.从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家的所有的基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},{B1,B2},共10个.其中,没有1家融合指数在[7,8]内的基本事件是:{B1,B2},共1个.所以所求的概率P=1-=.(2)这20家“省级卫视新闻台”的融合指数平均数等于4.5×+5.5×+6.5×+7.5×=6.05.。