初一数学知识点初一数学知识点下册初一数学知识点:相交线与平行线
七年级相交线平行线知识点
七年级相交线平行线知识点在数学学科中,相交线和平行线是非常基础的知识点。
在七年级学生学习中,这个知识点也占有非常重要的地位。
本文将着重介绍七年级相交线平行线知识点,以期能够让同学们更好地掌握这个知识点,并且在考试中获得高分。
一、相交线和平行线的定义相交线是指在同一平面内,两条直线交叉成交的情况。
而平行线则是指在同一平面内,两条直线永不相交的情况。
二、相交线和平行线的性质1.同侧内角相加定理同侧内角指的是两条平行线被一条相交线所穿过后,位于两条平行线同侧的两个角。
同侧内角相加定理指的是,两个同侧内角之和等于180度。
2.同侧外角相等定理同侧外角指的是两条平行线被一条相交线所穿过后,位于两条平行线同侧的两个角。
同侧外角相等定理指的是,在平行线上,同侧外角的度数相等。
3.对顶角相等定理对顶角指的是,一条直线穿过两条平行线所形成的角对称角之间的角。
对顶角相等定理指的是,在两条平行线相交的情况下,对顶角的度数相等。
三、相交线和平行线的判定方法1. 同线测量法同线测量法是指,在已知两个角相等或者加起来等于180度的前提下,用直尺量出另外两条线段,并且测量它们的长度是否相等。
如果相等,则这两条线段构成的两条直线是平行的。
2. 画辅助线法画辅助线法是指,在有一条直线上已知两个角,想要判定与这条直线平行的另一条直线,可以画一条相交于原直线的辅助线,从而形成三角形或者四边形,在结合一些定理进行推导,从而得到所需要的结论。
3. 角平分线法角平分线法是指,在一个角内,构造一条角平分线,使得这条角平分线将原角分成两个相等的角,则这两个角所在的直线互相垂直。
四、练习题1.已知图中AB // CD,AC与BD相交于点O,则∠AOC+∠BOD=2.在图中的平行线AB和CD交于点P,∠APD=110°,则∠CPD=3.在图中的平行线AB和CD交于点P,AP:PB=3:2,则CP:PD=答案:1.180度2.70度3.4:3总结:相交线和平行线是基础知识,但是在数学学习中非常重要,同学们一定要认真学习、掌握相关知识点,并且多做练习题来加深对知识的理解。
初一数学下册《相交线与平行线》知识点归纳
相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
初一下册数学知识点:相交线与平行线
初一下册数学知识点:相交线与平行线初一下册数学知识点:相交线与平行线平行线与相交线是初一数学内容,主要讲述了相交线、平行线及其判定、平行线的性质等,通过对本篇的学习,相信同学们会更进一步的了解在平面内不重合的两条相交与平行的两种位置的关系,运用平移设计一些优美的图案。
初一下册数学知识点:相交线与平行线篇1一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
初一数学下册相交线与平行线基础知识点
初一数学下册相交线与平行线基础知识点
相交线与平行线基础知识点
一、关于相交线
1. 相交线是指两个不同的直线在一个面上产生交叉;
2. 交叉点就是两条直线之间的公共点,表示相交的位置;
3. 相交的角的性质:(1)相交的角是对角线;(2)两个交叉点连接形成的夹角,称之为"夹角";(3)两条相交线各自交叉点形成的夹角是相等的,称为"交叉角";
4. 直角定理是建立在相交线上的,它讲的是,在三角形中,两边为直角时,斜边的平方等于两边相加的平方;
二、关于平行线
1. 平行线指的是两条以上的不同线段,他们没有交叉点;
2. 两条平行线之间形成的夹角就是“平行角”,这个夹角的大小一般都是0°;
3. 对行定理:两条平行直线与一条横线所包围的锐角几何体,对边之和等于邻边之和;
4. 三角形相似定理也是建立在平行线这一基础上的,两个三角形的定义有两个平行直线,这时三角形的边长相等,那么两个三角形也是相似的。
初中数学知识归纳平行线与相交线
初中数学知识归纳平行线与相交线平行线与相交线是初中数学中的基础概念,它们在几何学和代数学中都有重要应用。
了解这些概念,对于学习几何学和解决与直线相关的问题非常有帮助。
本文将对平行线和相交线的概念、性质和应用进行归纳总结。
一、平行线的定义和性质平行线指在同一个平面内,永远不相交的两条直线。
平行线的定义可以从两个方面进行解释:点线距离相等和夹角相等。
1.1 点线距离相等如果两条直线上的任意一点到另一条直线的距离都相等,那么这两条直线是平行线。
1.2 夹角相等如果两条直线之间的夹角相等,那么这两条直线是平行线。
平行线的性质包括以下几点:1.3 平行线不会相交由于平行线的定义,它们在同一个平面内永远不会相交,即使无限延长也不会相交。
1.4 平行线与平面的关系在一个平面上,与给定直线平行的直线存在无数条。
1.5 平行线的判定常用的判定方法包括:点线距离相等、夹角相等、平行线的等价定义等。
二、相交线的定义和性质相交线指在同一个平面内相交的两条直线。
相交线的性质如下:2.1 直线交于一点根据直线的定义,一条直线与另一条直线一定相交于一个点。
2.2 夹角的特性两条相交直线之间会形成两对相对的夹角:相邻角和对顶角。
相邻角指的是两条直线之间有一个公共点,并且在该公共点上有一条共同的边的角,它们是相互独立的。
对顶角指的是两条直线之间有一个公共点,并且在该公共点上没有共同的边的角,它们是相等的。
2.3 相交线的性质相交线的性质还包括垂直线和角平分线。
垂直线是指两条直线的夹角为90度,垂直于另一条直线。
角平分线是指将一个角分成两个相等角的直线。
三、平行线与相交线的应用平行线与相交线的概念在数学中有广泛的应用,特别是在几何学和代数学中。
3.1 平行线的应用在几何学中,平行线的性质用于证明和构造各种定理。
例如,平行线截割同一直线上的两个平行线段,可以得到相似三角形。
基于这一原理,我们可以用相似三角形的性质来解决各种问题。
此外,平行线还与平行四边形和直角梯形等特殊四边形的性质相关。
七年级下册数学第五章相交线与平行线
七年级下册数学第五章相交线与平行线
以下是七年级下册数学第五章相交线与平行线的知识点:
1. 相交线:相交线是指两条直线在同一个平面内交于一点。
在相交线中,我们主要研究的是对顶角和邻补角。
对顶角相等,邻补角互补。
同时,我们还学习到了垂线,即直线与给定直线垂直,且交于一点。
2. 平行线:平行线是指两条直线在同一平面内,且不相交。
平行线具有传递性,即如果a平行于b且b平行于c,那么a平行于c。
此外,我们还学习了平行线的性质和判定方法。
3. 平行线的性质:平行线的性质包括同位角相等、内错角相等、同旁内角互补等。
这些性质是平行线的基本性质,也是解决相关问题的关键。
4. 平行线的判定方法:平行线的判定方法包括同位角相等、内错角相等、同旁内角互补等。
通过这些判定方法,我们可以确定两条直线是否平行。
5. 平行线的应用:平行线在几何学中有着广泛的应用,如证明两个三角形相似或全等、解决角度和距离的问题等。
同时,在现实生活中,平行线也有很多应用,如建筑、道路规划等。
以上是关于七年级下册数学第五章相交线与平行线的主要知识点,掌握这些知识点有助于更好地理解几何学中的基本概念和性质,提高解决问题的能力。
七年级下册数学相交线与平行线知识点归纳
七年级下册数学相交线与平行线知识点归纳相交线与平行线1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
2、三线八角:对顶角(成正比),邻补角(优势互补),同位角,内错角,同旁内角。
3、两条直线被第三条直线所截:同位角f(在两条直线的同一旁,第三条直线的同一侧)内错角z(在两条直线内部,位于第三条直线两侧)同旁内角u(在两条直线内部,坐落于第三条直线同侧)4、两条直线相交所成的四个角中,如果有一个角为90度,则称这两条直线互相垂直。
其中一条直线叫做另外一条直线的垂线,他们的交点称为垂足。
5、横向三要素:横向关系,横向记号,像距6、垂直公理:过一点有且只有一条直线与已知直线垂直。
7、垂线段最长。
8、点到直线的距离:直线外一点到这条直线的垂线段的长度。
9、平行公理:经过直线外一点,存有且只有一条直线与这条直线平行。
推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
如果b//a,c//a,那么b//c10、平行线的认定:①同位角相等,两直线平行。
②内错角成正比,两直线平行。
③同旁内角互补,两直线平行。
11、推断:在同一平面内,如果两条直线都旋转轴同一条直线,那么这两条直线平行。
(一)正负数1.正数:大于0的数。
2.负数:小于0的数。
3.0即不是正数也不是负数。
4.正数大于0,负数小于0,正数大于负数。
(二)有理数1.有理数:由整数和分数组成的数。
包括:正整数、0、负整数,正分数、负分数。
可以写成两个整之比的形式。
(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。
如:π)2.整数:正整数、0、正数整数,泛称整数。
3.分数:正分数、负分数。
(三)数轴1.数轴:用直线上的点表示数,这条直线叫做数轴。
(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。
初一下册数学知识点:相交线与平行线
平行线与相交线是初一数学下学期学习的第二章内容,主要讲述了相交线、平行线及其判定、平行线的性质等,通过对本篇的学习,相信同学们会更进一步的了解在平面内不重合的两条相交与平行的两种位置的关系,运用平移设计一些优美的图案。
初一下册数学知识点:相交线与平行线第五章相交线与平行线一、目标与要求1.理解对顶角和邻补角的概念,能在图形中辨认;2.掌握对顶角相等的性质和它的推证过程;3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质;能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架五、知识点、概念总结1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
初一(七年级)下册数学相交线与平行线的知识点
七下数学“相交线与平行线”的知识点开学已经有几天了,新的第一章知识掌握的怎么样了呢?这一单元主要是概念和性质定理一定要理解清楚,可以在这篇文章梳理一下,一定能帮到你!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
如图,PO⊥AB,同P 到直线AB 的距离是PO 的长。
PO 是垂线段。
PO 是点P 到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
最新初一(七年级)下册数学相交线与平行线的知识点
七下数学“相交线与平行线”的知识点开学已经有几天了,新的第一章知识掌握的怎么样了呢?这一单元主要是概念和性质定理一定要理解清楚,可以在这篇文章梳理一下,一定能帮到你!一、相交线1.邻补角与对顶角两直线相交所成的四个角中存在几种不同关系的角,它们的概念及性质如下表:注意点:⑴对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;⑵如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角⑶如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。
⑶两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。
2.垂线⑴定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
符号语言记作:如图所示:AB⊥CD,垂足为O⑵垂线性质1:过一点有且只有一条直线与已知直线垂直(与平行公理相比较记)⑶垂线性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
简称:垂线段最短。
3.垂线的画法:⑴过直线上一点画已知直线的垂线;⑵过直线外一点画已知直线的垂线。
注意:①画一条线段或射线的垂线,就是画它们所在直线的垂线;②过一点作线段的垂线,垂足可在线段上,也可以在线段的延长线上。
画法:⑴一靠:用三角尺一条直角边靠在已知直线上,⑵二移:移动三角尺使一点落在它的另一边直角边上,⑶三画:沿着这条直角边画线,不要画成给人的印象是线段的线。
4.点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
应该结合图形进行记忆。
如图,PO⊥AB,同P 到直线AB 的距离是PO 的长。
PO 是垂线段。
PO 是点P 到直线AB所有线段中最短的一条。
现实生活中开沟引水,牵牛喝水都是“垂线段最短”性质的应用。
5.如何理解“垂线”、“垂线段”、“两点间距离”、“点到直线的距离”这些相近而又相异的概念。
平行线与相交线初中数学知识点之平行线与相交线的性质与判断
平行线与相交线初中数学知识点之平行线与相交线的性质与判断在初中数学中,平行线与相交线是一个重要的知识点。
学生需要掌握平行线与相交线的性质以及判断方法。
本文将针对这一主题进行详细的介绍和讲解。
一、平行线的性质和判断1. 定义:平行线是指在同一平面上,永远不会相交的两条直线。
2. 性质一:如果两条直线分别与一条第三条直线相交,使得同侧内角之和为180度,则这两条直线是平行线。
这一性质被称为同位角对应定理。
例如,在图1中,直线AB与直线CD分别与直线EF相交,且∠A+∠D=180度,则可以判断线AB和线CD是平行线。
3. 性质二:如果两条直线被一组平行线所截断,则被截断的对应线段成比例。
这一性质被称为等角定理。
例如,在图2中,直线AB与直线CD被平行线EF截断,那么AB/CD = AE/CF = BE/DE。
4. 判断方法一:通过角度判断行线。
例如,在图3中,∠A = ∠D,则可以判断线AB与线CD是平行线。
5. 判断方法二:通过辅助线判断如果可以找到一条辅助线将两条直线划分为两组内角和为180度的情况,那么可以判断这两条直线是平行线。
例如,在图4中,引入直线EF,并且∠A + ∠D = 180度,则可以判断线AB与线CD是平行线。
二、相交线的性质和判断1. 定义:相交线是指在同一平面上,会相交的两条直线。
2. 性质一:相交线的对应角相等。
这一性质被称为对应角定理。
例如,在图5中,∠A = ∠D,∠B = ∠C,则可以判断线AB与线CD是相交线。
3. 性质二:相交线的内错角互补,即内错角之和等于180度。
这一性质被称为内错角互补定理。
例如,在图5中,∠A + ∠D = 180度,∠B + ∠C = 180度。
4. 判断方法一:通过角度判断交线。
例如,在图5中,∠A = ∠D,则可以判断线AB与线CD是相交线。
5. 判断方法二:通过辅助线判断如果可以找到一条辅助线将两条直线划分为内错角和等于180度的情况,那么可以判断这两条直线是相交线。
相交线与平行线最全知识点
相交线与平行线最全知识点1.平行线的定义:在平面上,如果两条直线在平面内没有交点,那么它们就是平行线。
记作AB,CD。
2.平行线性质:-平行线朝向差:平行线的两个方向向量相等。
-平行线对应角相等:如果两条平行线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-平行线的内错性:如果一条直线与一对平行线相交,那么对这两条平行线上的任意一点A及其在第一条直线上的任意一点B,有AB,CD。
-平行线的传递性:如果两条直线都与第三条直线平行,那么这两条直线也平行。
3.相交线的定义:在平面上,如果两条直线的方向向量不相等,那么它们就是相交线。
4.相交线性质:-相交线对应角相等:如果两条相交线被截取为若干对应的交线段,那么这些交线段的对应角相等。
-相交线的交点:两条相交线的交点是它们的唯一交点。
-相交线的截距恒等:如果两条相交线与同一直线相交,那么它们在这条直线上的截距相等。
5.平行线与垂直线:-平行线与垂直线的性质:平行线与同一直线的垂线垂直;平行线的两个垂线方向向量相等。
-平行线的判定:如果两条直线的垂直方向向量相等,那么它们是平行线。
-直线倾斜角度和斜率:平行线的倾斜角度相等,斜率(如果存在)相等;垂直线的倾斜角度之和为90度,其中一个倾斜角度为负倾斜角度的倒数。
6.平行线的判定:-两条直线判定法:如果两条直线的倾斜角度相等,那么它们是平行线。
-点斜式判定法:如果一条直线的斜率k和一点在直线上,那么直线的方程为y-y1=k(x-x1);如果两条直线的斜率相等且截距不相等,那么它们是平行线。
- 截距式判定法:如果一条直线的方程为y = kx + b,那么它与直线y = kx + b1平行当且仅当b = b17.平行线的应用:-常见图形的平行线特性:矩形的对边平行,对角线相等;平行四边形的对边平行且相等,对角线互相平分。
-平行线在解题中的应用:根据平行线的性质,可以解决一些几何问题,如求证两条线段平行、证明一个四边形是平行四边形等。
初一数学下册《相交线与平行线》的知识点归纳
初一数学下册《相交线与平行线》的知识点归纳一、目标与要求同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质对顶角的性质:对顶角相等。
17.垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
21.命题的扩展三种命题(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的.结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
初一数学知识点初一数学知识点下册初一数学知识点相交线与平行线
知识点:相交线与平行线平行线与相交线是初一数学下学期学习的第二章内容,主要讲述了相交线、平行线及其判定、平行线的性质等。
一、目标与要求1. 理解对顶角和邻补角的概念,能在图形中辨认;2. 掌握对顶角相等的性质和它的推证过程;3. 通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点在较复杂的图形中准确辨认对顶角和邻补角;两条直线互相垂直的概念、性质和画法;同位角、内错角、同旁内角的概念与识别。
三、难点在较复杂的图形中准确辨认对顶角和邻补角;对点到直线的距离的概念的理解;对平行线本质属性的理解,用几何语言描述图形的性质能区分平行线的性质和判定,平行线的性质与判定的混合应用四、知识框架五、知识点、概念总结1. 邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2. 对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3. 对顶角和邻补角的关系角的名称特征性质相同点不同点对顶角①两条直线相交面成的第②有一^公共顶点.③没育公共边对顶角相等都是两直鏡相交而成的;® 9都有—个公共顶点,它们都是成对出现.对顶甬没有公共边而邻补:ffi有共邻补角①两条直建相交面庶的角②有一个公共顶点③有一条公共边邻补角互补边;两条直线相交时,T 有的肘顶角有_个,而—b角的邻补角机交两个。
4. 垂直:两条直线、两个平面相交,或一条直线与一个平面相交, 如果交角成直角,叫做互相垂直。
5. 垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6. 垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7. 垂线性质(1) 在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2) 连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3) 点到直线的距离:直线外一点到这条直线的垂线段的长度, 叫做点到直线的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识点:相交线与平行线
平行线与相交线是初一数学下学期学习的第二章内容,主要讲述了相交线、平行线及其判定、平行线的性质等。
一、目标与要求
1.理解对顶角和邻补角的概念,能在图形中辨认。
2.掌握对顶角相等的性质和它的推证过程。
3.通过在图形中辨认对顶角和邻补角,培养学生的识图能力。
二、重点
在较复杂的图形中准确辨认对顶角和邻补角。
两条直线互相垂直的概念、性质和画法。
同位角、内错角、同旁内角的概念与识别。
三、难点
在较复杂的图形中准确辨认对顶角和邻补角。
对点到直线的距离的概念的理解。
对平行线本质属性的理解,用几何语言描述图形的性质。
能区分平行线的性质和判定,平行线的性质与判定的混合应用。
四、知识框架
五、知识点、概念总结
1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。
2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。
3.对顶角和邻补角的关系
4.垂直:两条直线、两个平面相交,或一条直线与一个平面相交,如果交角成直角,叫做互相垂直。
5.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。
6.垂足:如果两直线的夹角为直角,那么就说这两条直线互相垂直,它们的交点叫做垂足。
7.垂线性质
(1)在同一平面内,过一点有且只有一条直线与已知直线垂直。
(2)连接直线外一点与直线上各点的所有线段中,垂线段最短。
简单说成:垂线段最短。
(3)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
8.同位角、内错角、同旁内角:
同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。
内错角:∠2与∠6像这样的一对角叫做内错角。
同旁内角:∠2与∠5像这样的一对角叫做同旁内角。
9.平行:在平面上两条直线、空间的两个平面或空间的一条直线与一平面之间没有任何公共点时,称它们平行。
10.平行线:在同一平面内,不相交的两条直线叫做平行线。
11.命题:判断一件事情的语句叫命题。
12.真命题:正确的命题,即如果命题的题设成立,那么结论一定成立。
13.假命题:条件和结果相矛盾的命题是假命题。
14.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。
15.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。
16.定理与性质
对顶角的性质:对顶角相等。
17.垂线的性质:
性质1:过一点有且只有一条直线与已知直线垂直。
性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。
18.平行公理:经过直线外一点有且只有一条直线与已知直线平行。
平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
19.平行线的性质:
性质1:两直线平行,同位角相等。
性质2:两直线平行,内错角相等。
性质3:两直线平行,同旁内角互补。
20.平行线的判定:
判定1:同位角相等,两直线平行。
判定2:内错角相等,两直线平行。
判定3:同旁内角相等,两直线平行。
21.命题的扩展
三种命题
(1)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
(2)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
(3)对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
四种命题的相互关系
(1)四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
(2)四种命题的真假关系:
两个命题互为逆否命题,它们有相同的真假性。
两个命题为互逆命题或互否命题,它们的真假性没有关系
命题之间的关系
(1)能够判断真假的陈述句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题。
(2)“若p,则q”形式的命题中p叫做命题的条件,q叫做命题的结论。
(3)命题的分类:
A:原命题:一个命题的本身称之为原命题,如:若x>1,则
f(x)=(x-1)2单调递增。
B:逆命题:将原命题的条件和结论颠倒的新命题,如:若
f(x)=(x-1)2单调递增,则x>1.
C:否命题:将原命题的条件和结论全否定的新命题,但不改变条件和结论的顺序,
如:若x小于1,则f(x)=(x-1)2不单调递增。
D:逆否命题:将原命题的条件和结论颠倒,然后再将条件和结论全否定的新命题,
如:若f(x)=(x-1)2不单调递增,则x小于1.
(4)命题的否定
命题的否定是只将命题的结论否定的新命题,这与否命题不同。
(5)4种命题及命题的否定的真假性关系
原命题和逆否命题等价,否命题和逆命题等价,命题的否定与原命题的真假性相反。
充分条件与必要条件
(1)“若p,则q”为真命题,叫做由p推出q,记作p=>q,并且说p是q的充分条件,q是p的必要条件。
(2)“若p,则q”为假命题,叫做由p推不出q,记作p≠>q,并且说p不是q的充分条件(或p是q的非充分条件),q不是p的必要条件(或q是p的非必要条件)。
充要条件
如果既有p=>q,又有q=>p,就记作p<=>q,并且说p是q的充分必要条件(或q是p的充分必要条件),简称充要条件。
本文档由中国最大型的数学教师培训集团深本数学提供。