《两角差的余弦公式》教案3

合集下载

高中数学《两角差的余弦公式》教案和教案说明

高中数学《两角差的余弦公式》教案和教案说明

高中数学《两角差的余弦公式》教案和教案说明教案说明:本教案旨在帮助学生理解和掌握两角差的余弦公式,并能运用该公式解决相关问题。

通过本节课的学习,学生将能够:1. 理解两角差的余弦公式的定义和意义;2. 熟练掌握两角差的余弦公式的推导过程;3. 能够运用两角差的余弦公式解决实际问题。

教案内容:一、教学目标1. 理解两角差的余弦公式的定义和意义;2. 掌握两角差的余弦公式的推导过程;3. 能够运用两角差的余弦公式解决实际问题。

二、教学重点与难点1. 教学重点:两角差的余弦公式的定义和意义,推导过程;2. 教学难点:两角差的余弦公式的运用。

三、教学准备1. 教师准备:教材、教案、PPT、黑板、粉笔;2. 学生准备:课本、笔记本、文具。

四、教学过程1. 导入:引导学生回顾已学过的三角函数知识,为新课的学习做好铺垫;2. 讲解:讲解两角差的余弦公式的定义和意义,通过示例让学生理解公式的应用;3. 推导:引导学生通过图形和逻辑推理,推导出两角差的余弦公式;4. 练习:布置一些练习题,让学生运用两角差的余弦公式解决问题;五、课后作业1. 复习本节课所学内容,巩固两角差的余弦公式的理解和运用;2. 完成课后练习题,提高运用两角差的余弦公式解决问题的能力。

教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高学生对两角差的余弦公式的理解和运用能力。

关注学生的学习反馈,及时解答学生的疑问,提高教学质量。

六、教学评价1. 课堂讲解:评价学生对两角差的余弦公式的理解程度,观察学生是否能清晰地解释公式的含义和应用;2. 练习题目:评估学生运用两角差的余弦公式解决问题的能力,检查解答的准确性;3. 课后作业:检查学生完成作业的情况,观察是否能正确运用公式并解决实际问题。

七、教学拓展1. 引导学生思考:两角差的余弦公式在实际生活中的应用,例如测量角度、建筑设计等;2. 介绍进一步的研究:引导学生探索更多关于三角函数的性质和公式,激发学生的学习兴趣。

3.1《两角差的余弦公式》教学设计

3.1《两角差的余弦公式》教学设计

3.1.1 两角差的余弦公式 (名师:郑莹莹)一、教学目标 (一)核心素养掌握用向量方法建立两角差的余弦公式. 在探究公式的过程中,逐步培养学生学会分析问题、解决问题的能力,培养学生学会合作交流的能力. (二)学习目标1.通过探索完成两角差余弦公式的推导2.通过公式的简单应用,使学生初步理解公式的结构及其功能,并为建立其他和(差)角公式打好基础. (三)学习重点通过探索得到两角差的余弦公式 (四)学习难点探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题等等. 二、教学设计 (一)课前设计 1.预习任务 已知2cos 45=,3cos30=,由此我们能否得到()cos15cos 4530?=-=是不是等于cos 45cos30-呢?如果不是,那cos15?=o2.预习自测(1)下列式子中正确的个数是( )①cos(α-β)=cos α-cos β;②cos(α-β)=cos αcos β-sin αsin β; ③cos(π2-α)=cos α;④cos(π2+α)=cos α. A .0 B .1C .2D .3 答案:A .解析:【知识点】两角差的余弦公式 【解题过程】①②③④都错点拨:每个都配凑成标准两角差的余弦公式型. (2)计算12sin 60°+32cos 60°=________.答案:32 解析:【知识点】特殊角的三角函数值,两角差的余弦公式 【解题过程】原式=sin 30°sin 60°+cos 30°cos 60° =cos(60°-30°)=cos 30°=32.点拨:先将常值换成三角函数型,在结合公式.(3)设α∈⎝ ⎛⎭⎪⎫0,π2,若sin α=35,则2cos ⎝ ⎛⎭⎪⎫α-π4=( )A.75 B.15 C .-75 D .-15 答案:A .解析:【知识点】两角差公式的展开形式【解题过程】∵α∈⎝ ⎛⎭⎪⎫0,π2,sin α=35,∴cos α=45. ∴2cos ⎝ ⎛⎭⎪⎫α-π4=2⎝ ⎛⎭⎪⎫cos αcos π4+sin αsin π4=cos α+sin α=45+35=75.点拨:先求出需要的三角函数值,再套用公式.(二)课堂设计 1.知识回顾(1)三角函数的定义 (2)两个向量的数量积公式 2.问题探究 探究一 ●活动1在预习任务中我们提出的cos15?=o ,同学们发现它并不是直接将cos 45-cos30︒o.下面我们一起来探究一下两角差的余弦公式()cos ?αβ-=在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为p ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.) 【设计意图】通过已经学习过的三角函数线的基本定义,运用数形结合的思想,和学生一起探索出两角差的几何位置. ●活动2我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的? 2、怎样利用向量的数量积的概念的计算公式得到探索结果? 在证明公式之前先引导学生结合三角函数知识写出点A 、点B 的坐标.证明:在平面直角坐标系xOy 内作单位圆O ,以Ox 为 始边作角αβ、,其中,且[]0,αβ∈、πβα≥,它们的终边与单位圆O 的交点分别为A 、B ,则(cos ,sin ),(cos ,sin )OA OB ααββ==由向量数量积的坐标表示,有:βαβαββααsin sin cos cos )sin ,(cos )sin ,(cos +=∙=∙由[]π,0,∈βα,且βα≥知[]πβα,0∈-,那么向量OA 的夹角就是βα-,由数量积的定义,有cos()cos()OA OB OA OB αβαβ∙=-=-于是βαβαβαsin sin cos cos )cos(+=- (1) 由于我们前面的推导均是在[]0,αβ∈、π,且βα≥的条件下进行的,因此(1)式还不具备一般性.事实上,只要[]πβα,0∈-,βα-所表示的就是向量,OA OB 的夹角.(这一点可以结合图形作出说明.)但是,若[]πβα,0∉-,(1)式是否依然成立呢? 当[]πβα,0∉-时,设与的夹角为θ,则cos cos OA OB OA OB θθ∙==βαβαsin sin cos cos +=另一方面,θβπα++=k 2,于是,,2Z k k ∈+=-θπβα所以θβαcos )cos(=-也有βαβαβαsin sin cos cos )cos(+=-【设计意图】在探究公式的过程中,教材不要求学生做到一步到位.首先对角选择较为特殊的范围来进行探究,能让学生从整体上感知本节课所要探究的途径与目的,让大部分学生都参与到探究中来,避免部分学生一开始就感觉到困难,提不起向下探究的兴趣. 探究二 ●活动①对任意的()cos cos cos sin sin αβαβαβαβ-=+、 ,注:1.公式中两边的符号正好相反(一正一负);2.式子右边同名三角函数相乘再加减,且余弦在前正弦在后;3.式子中α、β是任意的.【设计意图】和学生一起记忆新公式,并强调如何能准确熟练的记住. 探究三 ●活动1例1利用差角余弦公式求︒15cos 【知识点】两角差的余弦公式 【解题过程】方法一:cos15cos(4530)cos 45cos30sin 45sin 30︒=︒-︒=︒︒+︒︒=方法二:cos15cos(6045)cos 60cos 45sin 60sin 45︒=︒-︒=︒︒+︒︒=【思路点拨】先找到与15°相关的特殊角,而它的配凑有几种不同形式,都可以尝试用公式计算..同类型训练题:如何求︒75sin ?解析:【知识点】两角差的余弦,诱导公式. 【数学思想】类比【解题过程】sin 75cos15︒=︒=点拨:把没有学过的形式向已经学习过的转化,当然这个题同时也提出了两角和正弦公式.例2化简求值︒︒+︒︒20sin 80sin 20cos 80cos 1)(︒+︒15sin 2315cos 212)(【知识点】两角差的余弦公式的逆用【解题过程】︒︒+︒︒20sin 80sin 20cos 80cos 1)(2160cos )2080cos(=︒=︒-︒=(2)1=cos60sin 602︒=︒所以原式cos60cos15sin 60sin15cos(6015)︒︒+︒︒=︒-︒=点拨:根据结构形式,把公式灵活应用,逆用公式,能将特殊值转化成角的三角函数值形式.答案:(1)12(2同类型训练题:化简求值(1)cos cos(15)sin sin(15)x x x x +︒++︒(2)cos32cos77sin 32cos167︒︒-︒︒答案:(1(2解析:【知识点】两角差的余弦公式的逆用 【解题过程】cos cos(15)sin sin(15)cos(15)cos15x x x x x x +︒++︒=+︒-=︒(1)cos32cos77sin 32cos13cos32cos77sin 32sin 77=cos45︒︒+︒︒=︒︒+︒︒︒(2) 点拨:根据结构形式,把公式灵活应用,逆用公式,能将特殊值转化成角的三角函数值形式. ●活动2例345sin ,(,),cos ,cos()5213πααπββαβ=∈=--已知是第三象限角,求的值 答案:3365-解析:【知识点】同角三角函数关系,两角差的余弦公式 【解题过程】由⎪⎭⎫⎝⎛∈=ππαα,2,54sin ,得53sin 1cos 2-=--=αα又由ββ,135cos -=是第三象限角,得12sin 13β==-所以βαβαβαsin sin cos cos )cos(+=-所以原式=354123351351365⎛⎫⎛⎫⎛⎫-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭点拨:先把公式中需要的单角的正弦和余弦值都求出来,此时要注意正负号的象限问题. 再套用两角差的余弦公式就可以了. 同类型训练题:已知αβ、都是锐角,1411)cos(,71cos -=+=βαα,求 βcos 的值.答案:1cos 2β=解析:【知识点】两角差的余弦公式,两角和的余弦公式,同角三角函数的关系 【数学思想】类比归纳【解题过程】法一:由1cos ,0,72παα⎛⎫=∈ ⎪⎝⎭,得sin α=又由11cos()cos(())cos cos sin sin()=-14αβαβαβαβ+=--=+-所以111cos sin 714ββ⨯=-,同时22cos +sin 1ββ=联立得 1cos 2β=法二:由题知2παβπ⎛⎫+∈ ⎪⎝⎭,,所以sin()sin αβα+== 1cos cos[()]cos()cos sin()sin =2βαβααβααβα∴=+-=+++点拨:此题是对公式的活用,由学生讨论解决.此题一般有两种方法可以求解.一种方法是把)cos(βα+分解,此公式还没推导,但部分学生可能会把βα+看作βα)(--,然后用两角差的余弦公式分解,再结合同角三角函数的基本关系求解.这种方法虽然较繁,但却让学生在无意当中发现了两角和的余弦公式.另一种方法是把β看做两角差,即αβαβ-+=)(,这种方法显然计算要简单得多.通过不同方法的讲解,鼓励学生从不同的角度思考问题,并指引学生在考试中选择较为简便的方法解题.【设计意图】此题理解公式的基础练习,解此题需要思考使用公式前应作出的必要准备,要作出这些必要的准备,需要运用到同角三角函数的知识.解题时必须强调解决三角变换问题的基本要求:思维的有序性和表述的条理性. 3.课堂总结知识梳理(1)了解两角差的余弦公式的推导过程;(2)熟练记忆公式和逆用形式; (3)能利用公式进行简单的化简和求值.重难点归纳(1)了解两角差的余弦公式的推导过程;(2)对公式的简单应用. (三)课后作业基础型 自主突破1.设(0,)2απ∈,若3sin 5α=,)4απ+=( )A.15B.75C.75-D.15-答案:A解析:【知识点】两角差的余弦公式【解题过程】∵(0,)2απ∈,3sin 5α=,∴4cos 5α=,原式cos cos -+sin sin -44ααππ⎤⎥⎦()()=431cos sin 555αα-=-= 点拨:应用公式展开,将对应的函数值代入 2.sin110sin 40cos 40cos 70+等于( )A.12-C.1 2D.答案:B解析:【知识点】两角差的余弦公式的逆用,诱导公式【解题过程】原式cos40cos70sin40sin(18070)=+-cos40cos70sin40sin70 =+=3 cos(4070)cos(30)-=-=点拨:先统一角的形式,使其与两角差的余弦公式形式一致,再用公式化简. 3.1sin10-的值是( )A.1B.2C.4D.14答案:C解析:【知识点】两角差的余弦公式,诱导公式【解题过程】()()()()()32cos10sin102cos103sin10=2cos60cos10sin60sin10=1cos80cos10sin80sin1022cos6010=41cos80102⎫-⎪-⎝⎡⎤-+-⎣⎦+--=-原式点拨:先将特殊值化为具体三角函数,再将公式结构配凑成标准型4.sin1212ππ-的值是( )B.D.-12答案:B解析:【知识点】特殊角的三角函数值,两角差的余弦公式【解题过程】原式=12sin 12212⎫ππ--⎪⎪⎭=2cos 2cos 1264πππ⎛⎫-+=-= ⎪⎝⎭ 点拨:先将常数配凑成特殊角的三角函数值,并让整体符合两角差的余弦公式,再化简.5.已知3sin 5α=-,α是第四象限角,则sin 4πα⎛⎫- ⎪⎝⎭=____________.解析:【知识点】同角三角函数关系,两角差的余弦公式,诱导公式【解题过程】由3sin 5α=-,α是第四象限角,得4cos 5α===,于是有sin cos()cos cos sin sin 4444ππππαααα⎛⎫-=+=- ⎪⎝⎭4355⎛⎫=-- ⎪⎝⎭ 点拨:先求出需要的三角函数值,将正弦化成余弦形式,再结合两角差的余弦公式.能培养将未知的转化成已经学习过的知识的迁移能力. 6.不满足sin αsin β=22-cos αcos β的一组α,β值是( ) A .α=π2,β=π4 B .α=2π3,β=5π12C .α=2π3,β=π12D .α=π4,β=π2答案:C解析:【知识点】两角差的余弦公式【解题过程】因为sin αsin β=22-cos αcos β,所以cos(α-β)=22,经检验C中的α,β不满足点拨:应用公式展开注意逆用.能力型 师生共研7.已知锐角αβ、满足4cos 5α=,1tan(=3αβ--),求cos β.解析:【知识点】同角的三角函数值的关系,两角差的余弦公式【解题过程】αQ 为锐角,且4cos 5α=,得3sin 5α= 40,0,cos 225ππαβα<<<<=Q ∴22ππαβ-<-<又∵1tan(3αβ-=-) ∴cos()αβ-= 从而sin()tan()cos()αβαβαβ-=--=43cos cos[()]cos cos()+sin sin()(55βααβααβααβ=--=--=+⨯点拨:先求出单角的三角函数值,关键是能将所求角β利用已知的两个整体角αβα-、表示,在求角的时候注意角所在的象限及符号.8.若α为锐角,且cos α=255,则cos ⎝ ⎛⎭⎪⎫π4-α=________.答案:31010解析:【知识点】两角差的余弦公式【解题过程】由α为锐角,且cos α=255,可得sin α=55.于是cos ⎝ ⎛⎭⎪⎫π4-α=cos π4cos α+sin αsin π4=22×255+22×55=31010 点拨:应用公式展开注意逆用.探究型 多维突破9.已知sin sin sin 0,cos cos cos 0.αβγαβγ++=++=(1)求cos()αβ-的值;(2)若[0,3αβγ4π∈]、、,求sin()αβγ++的值. 答案:sin()sin 2αβγ++=π=0解析:【知识点】同角三角函数的关系,两角差的余弦公式【解题过程】(1)sin sin sin ,cos cos cos ,αβγαβγ+=-+=-22(sin sin )(cos cos )1,αβαβ+++=22cos()1,αβ+-=∴1cos()2αβ-=-. (2)由(1)同理得11cos(),cos()22βγαγ-=--=-, ∵[0,3αβγ4π∈]、、,由对称性,不防设03αβγ4π≥>>≥, 则03αβ4π<-<,03βγ4π<-<,03αγ4π<-≤, 又由(1)知3αβ2π-=,3βγ2π-=,3αγ4π-=,若0γ>,则33αγ4π4π=+>矛盾! ∴0γ=,有3β2π=,3α4π=, ∴sin()sin 2αβγ++=π=0.点拨:本着消元的思想,消掉γ进一步配凑出αβ-的整体角的余弦.利用对称思想构造已知角的表示形式,进一步推出矛盾.10.若cos(α-β)=55,cos 2α=1010,并且α、β均为锐角,且α<β,则α+β的值为( )A.π6B.π4C.3π4D.5π6答案:C解析:【知识点】两角差的余弦公式,配角【解题过程】∵0<α<β<π2,∴-π2<α-β<0,0<2α<π,∴由cos(α-β)=55,得sin (α-β)=-255,由cos 2α=1010,得sin 2α=31010.∴cos(α+β)=()cos 2ααβ--⎡⎤⎣⎦=cos 2αcos(α-β)+sin 2αsin(α-β)=1010×55+31010×⎝⎛⎭⎪⎫-255=-22. 又α+β∈(0,π),∴α+β=3π4.点拨:公式形式牢记,利用已知角配凑α+β自助餐 1.cos 110°cos 20°+sin 110°sin 20°= ( )A.122C.0答案:C解析:【知识点】两角差的余弦公式【解题过程】cos(11020)cos900︒-︒=︒=点拨:公式形式牢记,逆用. 2.2cos10sin 20cos 20-的值是( )C.1D.12答案:A解析:【知识点】两角差的余弦公式【解题过程】2cos10sin 20cos 20-2cos 3020sin 20=cos 20--o o o o () 点拨:角的拆分,要尽量统一角的形式结合特殊角三角函数值.3.已知A 、B 均为钝角,sin A =sin B =则A +B 的值为( ) A.74π B.54π4D.4π答案:A解析:【知识点】两角差的余弦公式,两角和的余弦公式.【解题过程】,,cos 22A B A B ππ<<π<<π∴==cos()cos cos sin sin =(A B A B A B +=-=724A B A B ππ<+<π∴+= 点拨:将两角和的余弦配成[]cos cos cos sin sin A B A B A B -=-(-)由此题也就推导出了两角和的余弦公式4.函数22sincos()336x x y π=++的图象中相邻两对称轴的距离是________. 答案:32π 解析:【知识点】两角差的余弦公式,三角函数图形性质.【解题过程】22222sincos cos sin sin cos cos sin sin 336363636x x x x x y ππππ=+-=+ 22cos(),3362/3x T ππ=-==π,相邻两对称轴的距离是周期的一半 点拨:先将函数式化简,要先用到两角和的余弦公式,学生可以通过上面的问题总结出公式,或者也可以将“和”转化为“差”在理解.再逆用两角差的公式收拢.5.若,22sin sin =+βα则cos cos αβ+的取值范围.答案:cos cos αβ≤+≤ 解析:【知识点】同角的三角函数关系,两角差的余弦公式【解题过程】令cos cos t αβ+=,则2221(sin sin )(cos cos ),2t αβαβ+++=+ 221322cos(),2cos()22t t αβαβ+-=+-=-2231722,,222t t t -≤-≤-≤≤≤≤点拨:整体换元的思想,利用同角三角函数的关系,构造两角差的余弦公式,结合函数思想将cos()αβ-表示成t 的函数,通过值域求出t 的范围.6.已知α,β∈[3π4,π],sin ()α+β=-35,sin (β-π4)=1213,则cos (α+π4)=________.答案:-5665解析:【知识点】同角的三角函数关系,两角差的余弦公式【解题过程】∵α,β∈[3π4,π].∴α+β∈[3π2,2π],β-π4∈[π2,3π4],又sin(α+β)=-35,sin (β-π4)=1213,∴cos(α+β)=1-sin 2(α+β)=45,cos (β-π4)=-1-sin 2(β-π4)=-513.∴cos (α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)cos (β-π4)+sin(α+β)sin (β-π4)=45×(-513 )+(-35 )×1213=-5665. 点拨:整体换元的思想,利用同角三角函数的关系,构造两角差的余弦公式.。

3.1.1《两角差的余弦公式》教学设计

3.1.1《两角差的余弦公式》教学设计

3.1.1《两角差的余弦公式》教学设计本节课中心任务是通过已知的平面向量和三角函数的知识,探索推导出两角差的余弦公式。

并通过简单的运用,使学生初步理解公式的由来、结构、功能及其运用,分一课时完成。

三角恒等变换处于三角函数与数学变换的结合点和交汇点上,两角差的余弦公式是《三角恒等变换》这一章的基础和出发点,是前面所学三角函数知识的继续与发展,是培养学生推理能力和运算能力的重要素材。

所以,从知识的结构和内容上看都具有承上启下的作用。

二、教学实录1.教学目标掌握用向量方法建立两角差的余弦公式。

通过简单运用,使学生初步理解公式的结构及其功能,为建立其他和(差)公式打好基础。

2.教学重、难点(1)教学重点:通过探索得到两角差的余弦公式。

(2)教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等。

3.学法与教学用具(1)学法:启发式教学。

(2)教学用具:多媒体。

导入:我们在初中时就知道cos45°=,cos30°=,由此我们能否得到cos15°=cos(45°-30°)=?大家可以猜想,是不是等于cos45°-cos30°呢?根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式cos(a-β)=?探讨过程:在第一章三角函数的学习当中我们知道,在设角a的终边与单位圆的交点为P1,cosa等于角a与单位圆交点的横坐标,也可以用角a的余弦线来表示,大家思考:怎样构造角β和角a-β?(注意:要与它们的正弦线、余弦线联系起来。

)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索cos(a-β)与cosa、cosβ、sina、sinβ之间的关系,由此得到cos(a-β)=cosacosβ+sinasinβ,认识两角差余弦公式的结构。

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式教案
目标:学生能够理解和应用两角差的余弦公式解决相关问题。

教学步骤:
一、导入(5分钟)
1. 使用举例的方式引起学生对两角差的兴趣,并引导他们思考两角差的概念。

2. 提问学生:你们知道两角差的余弦公式是什么吗?有什么用途?
二、理论介绍(15分钟)
1. 介绍两角差的概念和符号表示。

2. 说明两角差的余弦公式的推导过程。

3. 引导学生理解公式的意义,并提供实际应用案例。

三、示范与实践(20分钟)
1. 通过具体的示范问题,展示如何使用两角差的余弦公式。

2. 导引学生解决练习题,巩固所学知识。

3. 现场纠正学生的错误答案,并让他们讲解正确答案的解题方法。

四、归纳总结(10分钟)
2. 与学生讨论公式的实际应用,并回答他们的问题。

五、拓展延伸(10分钟)
1. 提供更具挑战性的问题,让学生思考扩展形式。

六、作业布置(5分钟)
1. 布置相关练习题作为课后作业。

评估方法:
1. 课堂参与度:观察学生在课堂上的积极参与程度和回答问题的准确性。

2. 作业完成度:检查学生完成的作业,看是否能正确运用两角差的余弦公式。

教学资源:
1. 投影仪或白板,用于展示教学内容。

2. 复印的练习题和答案。

注意事项:
1. 确保教学步骤的顺序和时长合理,以确保学生的学习效果和兴趣。

2. 鼓励学生互动与讨论,以促进他们的思考和理解。

两角差的余弦公式教学设计及点评定稿版

两角差的余弦公式教学设计及点评定稿版

两角差的余弦公式教学设计及点评定稿版教学设计:两角差的余弦公式一、教学目标1.了解两角差的余弦公式的含义和应用背景。

2.掌握两角差的余弦公式的表达方式和解题方法。

3.能够运用两角差的余弦公式解决实际问题。

二、教学内容1.两角差的余弦公式的概念和导出过程。

2.应用例题分析和解答。

三、教学过程1.导入新知识(10分钟)介绍两角差的余弦公式的应用背景和重要性,引起学生对该内容的兴趣和好奇心。

2.概念讲解(15分钟)解释两角差的余弦公式的概念和含义,包括公式的表达方式和在几何图形中的意义。

通过几个简单的例子帮助学生理解公式的实际应用。

3.导出过程(20分钟)4.应用例题演练(30分钟)解答一些简单的例题,让学生动手计算两角差的余弦值,加深对公式的理解。

适当选择一些实际问题的例题,让学生看到公式在实际问题中的应用价值。

5.拓展应用(15分钟)给学生一些更复杂的应用题,让他们运用所学知识解决这些问题。

鼓励学生多思考,发散思维,寻找不同的解题方法。

6.归纳总结(10分钟)总结两角差的余弦公式的应用范围和解题方法,并强化公式的记忆和理解。

鼓励学生用自己的话表达公式的含义,加深对公式的理解。

四、教学点评在拓展应用环节,教师给学生一些更复杂的应用题,让学生运用所学知识解决这些问题。

这是一个很重要的环节,能够培养学生的思考能力和解决问题的能力。

同时,教师鼓励学生多思考,发散思维,寻找不同的解题方法,培养学生的创造力和创新意识。

在总结归纳环节中,教师引导学生用自己的话表达公式的含义,加深对公式的理解。

这种方式能够增强学生对知识的理解和记忆,并培养学生表达能力和思维能力。

同时,教师还进行了复习巩固,加深学生对公式的记忆和理解。

总之,这个教学设计环环相扣,层层深入,既加强了学生对两角差的余弦公式的理解,又培养了学生解决问题的能力和思考能力。

必修4教案3.1两角差的余弦公式

必修4教案3.1两角差的余弦公式
3 3 3
例 4、化简① sin sin 3 cos cos3 ( cos 2 ) ②
1 sin cos ( tan ) 1 sin cos 2
例 5、已知 tan tan
3 求 (2 cos 2 )(2 cos 2 ) 的值(3) 3

= sin cos cos sin ② sin( ) sin cos cos sin ③ tan( )
sin( ) sin cos cos sin cos( ) cos cos sin sin
cos( ) cos cos sin sin sin( ) sin cos cos sin sin( ) sin cos cos sin
tan( )
tan tan 1 tan tan tan tan 1 tan tan

4
)
4 3 且 求 cos ( 2 10 ) 5 4 4
5 10 , cos 求 的值( 4 ) 5 10
例2、
、 均为锐角,且 sin
例3、 ①已知 sin sin
2 4 且 cos cos 求 cos( ) ( 1 9 ) 3 3 1 1 ②已知 、 (0, ) , sin sin , cos cos 2 2 2
求 cos2 的值( 7 25 )
例 2、已知 sin 3sin(2 ) 求证: tan( ) 2 tan 0 例 3、①求值
2sin 500 sin100 ( 3) cos100

两角差的余弦公式详细教案

两角差的余弦公式详细教案

两角差的余弦公式详细教案§3.1.1 《两角差的余弦公式》教学设计主讲教师:卫金娟教学目标1、知识目标:通过两角差的余弦公式的探究,让学生在初步理解公式的结构及其功能的基础上记忆公式,并用其解决简单的数学问题,为后面推导其他和(差)角公式打好基础。

2、能力目标:通过利用同角三角函数变换及向量推导两角差的余弦公式,让学生体会利用联系的观点来分析问题、解决问题,提高学生逻辑推理能力和合作学习能力3、情感目标:使学生经历数学知识的发现、创造的过程,体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识以及努力分析问题、解决问题的激情。

学情分析:1、知识分析:必修4前两章刚学习了《平面向量》和《三角函数》的知识,学生对前两章知识尚记忆深刻,为第三章第一节“两角差的余弦公式”的学习做了充足的知识准备;但”两角差的余弦公式”中所涉及的用三角函数线推导公式部分比较难,学生独立探究有一定的困难,需要老师合理引导、并让学生小组讨论合作学习来完成.2、能力分析:从平时的课堂教学中,我已经培养学生具备了一定的小组讨论和探究合作学习的能力,但由于部分学生学习基础薄弱,课堂参与程度不高,所以我合理分组,让学习基础较好且课堂积极活跃的学生带动小组内其他学生一起完成新课学习;从学生的归纳总结和语言表达能力来看,学生具有了一定的归纳总结的能力,但对数学中逻辑严密的一般结论,还不能用严格的数学语言来表达.3、学习习惯与态度:所带班级属于文科班,学习纪律性比较好,听课认真,动笔演算等能力比较好,但作为文科班女生胆子小,回答问题方面不是很活跃,需要合理分组合作学习. 教学重点:通过探究得到两角差的余弦公式。

教学难点:两次探究过程的组织和引导。

教学方法:讲授法与讨论法相结合,探究学习与合作学习相结合知识准备:平面向量的数量积、三角函数线、诱导公式教学准备:多媒体、圆规,三角板教学流程:引入问题,提出探究明确途径,组织和引导学生自主探究例题、练习讲解,深化公式的理解与运用小结问题5:夹角θαβ与、有什么关系?(2分钟)(1)(2)-=,-=-,αβθαβθ由图(1)知,由图(2)知根据终边相同的角的性质有:2+k ,k Z αβθπ-=±∈所以,cos()cos(+2)cos()cos .k αβθπθθ-=±=±=结论:对任意角α、β有cos()cos cos sin sin αβαβαβ-=+探究2:借助三角函数线来推导cos()αβ-公式(10-11分钟)首先,我们从最简单的情况进行讨论:.αβαβ>设、都为锐角,且作单位圆O ,(在这里我们取单位圆的四分之一)设角α的终边与单位圆O 交于点1P , 即1xOP α∠=,作1POP β∠=,则xOP αβ∠=-.PM x ⊥作轴,垂足为M . 问题1:那么cos()αβ-表示哪条线段长?问题2:如何用线段分别表示sin β和cos β?问题3:cos cos =cos OA βαα,它表示哪条线段长?sin sin =sin AP βαα,它表示哪条线段长?问题4:利用OM OB BM OB CP =+=+,你能得到什么结论?探究过程:①PM x ⊥作轴,垂足为M ,则OM =cos()αβ-。

3.1.1两角差的余弦公式(教学设计)

3.1.1两角差的余弦公式(教学设计)

3.1.1两角差的余弦公式(教学设计)[教学目标]1、知识与能力:(1) 掌握两角差的余弦公式的推导。

(2)掌握两角差的余弦公式的应用。

并能利用该公式进行简单的证明与计算.2、过程与方法:(1). 经历用向量的数量积推导两角差的余弦公式的过程,进一步体会向量方法的作用.(2).体会“由一般到特殊”的思维过程.3、情感、态度与价值观:通过积极参与数学学习和问题解决的活动,逐步增强批判思维,养成一丝不苟的作风和锲而不舍的精神.[教学重点]两角差的余弦公式的应用。

[教学难点]用向量的数量积推导两角差的余弦公式的过程。

一、 复习回顾1. 任意角三角函数的定义sin ,cos ,tan ,cot yxy xr r x y αααα====2. 同角三角比的关系22tan cot 1sin cos tan ,cot ;cos sin sin cos 1αααααααααα⋅===+=二、师生互动,新课讲解1. 探究:()cos αβαβ-如何用任意角、的正弦、余弦来表示?猜测()cos cos cos αβαβ-=-.()()30cos60cos30c cos cos cos os 60αβαβαβ︒-︒≠︒-︒-=-,因此显对任意角、,然不成立.2. 利用向量探究在平面直角坐标系xOy 内作单位圆O ,以Ox 为始边作角α、β,它们的终边与单位圆O 的交点分别为A 、B . ()()()()()()()cos ,sin cos ,sin .cos cos .cos ,sin cos ,sin cos cos sin sin cos cos cos sin sin .OA OB OA OB OA OB OA OB ααββαβαβααββαβαβαβαβαβ==⋅=⋅-=-⋅=⋅=+-=+ ,由向量数量积的定义,有由向量数量积的坐标表示,有于是则思考:以上推导是否有不严谨之处?若有,请作出补充.[)()[)()[)(]()()()()0,2cos cos .0,cos cos ,20,cos cos cos .cos cos cos sin sin ..OA OB OA OB C αβαβθπθαβθπθαβθπππθππθθαβαβαβαβαβ--∈=-∈==-∈∈===--=+ 当是任意角时,由诱导公式,总可以找到一个角,使若,则;若,则2-,且2-于是,对于任意角、都有简记作3.利用单位圆中的三角函数线探讨两角差的余弦公式(课本P125)在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明? 提示:1)、结合图形,明确应该选择哪几个向量,它们是怎样表示的?2)、怎样利用向量的数量积的概念的计算公式得到探索结果?展示多媒体课件比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.4.两角差的余弦公式cos()cos cos sin sin αβαβαβ-=+三、公式运用例1、(课本P126例1)利用差角余弦公式求cos15的值. 解:()1cos15cos 4530cos 45cos30sin 45sin302=-=+== 点评:把一个具体角构造成两个角的差形式,有很多种构造方法,例如:()cos15cos 6045=- ,要学会灵活运用. 变式训练1:求cos 105°+sin 195°的值.解析:cos 105°+sin 195°=cos 105°+sin(90°+105°)=cos 105°+cos 105°=2cos 105°=2cos(135°-30°)=2(cos 135°cos 30°+sin 135°sin 30°)=2-62()4sin 5,,cos ,cos .21,53ππββαααβ⎛⎫∈=-- ⎪⎝=⎭是第三象限角课本例已,求知的值例2(P1272)()43sin ,,cos ,525512cos sin 1313cos cos cos sin sin 3541251351333.65πααπαβββαβαβαβ⎛⎫=∈=- ⎪⎝⎭=-=--=+⎛⎫⎛⎫⎛⎫=-⨯-+⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-由,得又由,是第三象限角,得,所以解:变式训练2:已知sin θ=45,θ∈(0,π2),求cos(2π3-θ).解析:由sin θ=45,且θ∈(0,π2),得cos θ=35, ∴cos(2π3-θ)=cos 2π3·cos θ+sin 2π3·sin θ=-12×35+32×45=43-310.13cos cos()0,252cos .παα+β<αβ<β例3 已知=,=-,, 求变式训练3:已知sin ⎝⎛⎭⎫α+π4=45,且π4<α<3π4,求cos α的值.【解析】 ∵sin ⎝⎛⎭⎫α+π4=45,且π4<α<3π4,∴π2<α+π4<π,∴cos ⎝⎛⎭⎫α+π4=-1-⎝⎛⎭⎫452=-35.∴cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π4=cos ⎝⎛⎭⎫α+π4cos π4+sin ⎝⎛⎭⎫α+π4sin π4=-35×22+45×22=210.【互动探究】 在本例中,若把α的范围改为:“54π<α<74π”,其他条件不变,又如何求cos α的值?【解析】 ∵sin ⎝⎛⎭⎫α+π4=45且5π4<α<74π.∴32π<α+π4<2π.∴cos ⎝⎛⎭⎫α+π4=1-sin 2⎝⎛⎭⎫α+π4=1-⎝⎛⎭⎫452=35.∴cos α=cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π4-π4=cos ⎝⎛⎭⎫α+π4·cos π4+sin ⎝⎛⎭⎫α+π4·sin π4=35×22+45×22=7210.课堂练习(课本P127练习NO :1;2;3;4)三、课堂小结,巩固反思:1. 利用向量方法探究推导两角差的余弦公式;2. ()():cos cos cos sin sin .C αβαβαβαβ--=+四、课时必记:1、公式记忆:()():cos cos cos sin sin .C αβαβαβαβ--=+五、【课时作业】一、选择题1.化简cos(45°-α)cos(α+15°)-sin(45°-α)sin(α+15°)的结果为( )A.12 B.-12C.32 D.-32答案 A解析 原式=cos(α-45°)cos(α+15°)+sin(α-45°)sin(α+15°)=cos [(α-45°)-(α+15°)]=cos(-60°)=12.2.若sin αsin β=1,则cos(α-β)的值为( )A.0B.1C.±1D.-1答案 B 解析 由sin αsin β=1,得cos αcos β=0,cos(α-β)=cos αcos β+sin αsin β=1.3.已知点P (1,2)是角α终边上一点,则cos(π6-α)等于( )A 3+66 B.3-66C.-3+66 D.6-36答案 Acos ⎝⎛⎭⎫π6-α=cos π6cos α+sin π6sin α =32×33+12×63=3+66.4.已知cos ⎝⎛⎭⎫θ+π6=513,0<θ<π3,则cos θ等于( )A.53+1226 B.12-5313C.5+12326 D.5+5313答案 A解析 ∵θ∈⎝⎛⎭⎫0,π3,∴θ+π6∈⎝⎛⎭⎫π6,π2,∴sin ⎝⎛⎭⎫θ+π6= 1-cos 2⎝⎛⎭⎫θ+π6=1213.cos θ=cos ⎣⎡⎦⎤⎝⎛⎭⎫θ+π6-π6=cos ⎝⎛⎭⎫θ+π6cos π6+sin ⎝⎛⎭⎫θ+π6sin π6=513×32+1213×12=53+1226.5.若12sin x +32cos x =cos(x +φ),则φ的一个可能值为( )A.-π6B.-π3 C.π6 D.π3答案 A 解析 12sin x +32cos x =cos x cos π6+sin x sin π6=cos ⎝⎛⎭⎫x -π6,故φ的一个可能值为-π6.6.若x ∈[0,π],sin x 3sin 2x 3=cos x 3cos 2x3,则x 的值是( )A.π6B.π4C.π3D.π2答案 D解析 由已知得,cos x 3cos 2x 3-sin x 3sin 2x3=cos x =0.∵x ∈[0,π],∴x =π2.7.已知点A (cos 80°,sin 80°),B (cos 20°,sin 20°),则|AB →|等于( )A.12B.22C.32D.1 答案 D解析 |AB →|=(cos 80°-cos 20°)2+(sin 80°-sin 20°)2=2-2(cos 80°cos 20°+sin 80°sin 20°)=2-2cos 60°= 2-2×12=1. 二、填空题8.已知cos(α-β)cos α+sin(α-β)sin α=m ,且β为第三象限角,则sin β=________.答案 -1-m 2解析 cos (α-β)cos α+sin (α-β)sin α=cos [(α-β)-α]=m .即cos β=m ,∵β为第三象限角,∴sin β=-1-cos 2β=-1-m 2.9.设A ,B 为锐角△ABC 的两个内角,向量a =(2cos A ,2sin A ),b =(3cos B,3sin B ).若a ,b 的夹角的弧度数为π3,则A -B =________ .答案 ±π3 解析 cos π3=a ·b |a |·|b |=6(cos A cos B +sin A sin B )2×3=cos A cos B +sin A sin B =cos(A -B ).又-π2<A -B <π2, ∴A -B =±π3. 10.如图,在平面直角坐标系中,锐角α,β的终边分别与单位圆交于A ,B 两点,如果点A 的纵坐标为35,点B 的横坐标为513,则cos (α-β)=________.答案 5665解析 由三角函数的定义可得,sin α=35,cos β=513,∴cos α=1-(35)2=45,sin β=1213.cos (α-β)=cos αcos β+sin αsin β=45×513+35×1213=5665.三、解答题::11、(课本P137习题3.1 A 组 NO :2)12、(课本P137习题3.1 A 组 NO :3)13、(课本P137习题3.1 A 组 NO :4)参考答案:。

高中数学四 3.1. 1 两角差的余弦公式 【教案】

高中数学四 3.1. 1 两角差的余弦公式 【教案】

必修四第三章 3。

1。

1 两角差的余弦公式【教学目标】
1.知识与技能:
通过两角差的余弦公式的探究及简单应用,使学生初步理解公式的结构及其功能。

并为建立其他和(差)角公式打好基础。

2。

过程与方法:
通过利用同角三角函数变换及向量推导两角差的余弦公式,让学生体会利用联系的观点来分析问题,提高学生分析问题、解决问题的能力。

3。

情感态度价值观:
使学生经历数学知识的发现、创造的过程。

体验成功探索新知的乐趣,获得对数学应用价值的认识,激发学生提出问题的意识、努力分析问题、解决问题的激情。

【重点难点】
1.教学重点:两角和与差的余弦公式的理解与灵活运用.
2。

教学难点:两角和与差的余弦公式的推导。

【教学策略与方法】
1。

教学方法:合作探究、启发诱导,学生动手尝试相结合.
2。

教具准备:多媒体【教学过程】
() =-或
cos4530
()
=-
cos15cos6045
3sin 5cos αβ==)54(cos(⨯-=-∴α课堂练习:。

两角差的余弦公式详细教案

两角差的余弦公式详细教案

两角差的余弦公式详细教案第一章:两角差的余弦公式的引入1.1 教学目标理解两角差的余弦公式的概念和意义。

掌握两角差的余弦公式的推导过程。

1.2 教学内容引入两角差的余弦公式的概念,即对于任意实数α和β,两角差的余弦公式可以表示为cos(αβ) = cosαcosβ+ sinαsinβ。

解释两角差的余弦公式的意义,即求两个角的差的余弦值可以通过求两个角的余弦值和正弦值的乘积来计算。

1.3 教学方法通过举例和实际问题引入两角差的余弦公式,让学生感受到公式的实际应用。

通过图形和几何解释两角差的余弦公式的推导过程,让学生直观地理解公式。

1.4 教学活动举例说明两角差的余弦公式的应用,如计算一个角度与参考角度的差的余弦值。

引导学生通过图形和几何推理来推导两角差的余弦公式。

第二章:两角差的余弦公式的推导2.1 教学目标掌握两角差的余弦公式的推导过程。

理解两角差的余弦公式的几何意义。

2.2 教学内容推导两角差的余弦公式,通过构造一个直角三角形,利用三角形的边长关系和余弦定理。

解释两角差的余弦公式的几何意义,即两个角的差的余弦值等于这两个角的余弦值的乘积加上这两个角的正弦值的乘积。

2.3 教学方法通过图形和几何推理推导两角差的余弦公式,让学生直观地理解公式的推导过程。

通过实际例子和计算,让学生巩固两角差的余弦公式的应用。

2.4 教学活动引导学生通过构造直角三角形,利用三角形的边长关系和余弦定理推导两角差的余弦公式。

让学生通过实际例子和计算,运用两角差的余弦公式计算角度的差的余弦值。

第三章:两角差的余弦公式的应用3.1 教学目标掌握两角差的余弦公式的应用。

能够灵活运用两角差的余弦公式解决实际问题。

3.2 教学内容介绍两角差的余弦公式的应用,包括解决三角函数的和差问题、计算向量的夹角余弦值等。

通过实际例子和计算,展示两角差的余弦公式的应用方法和步骤。

3.3 教学方法通过实际例子和计算,让学生掌握两角差的余弦公式的应用方法。

两角差的余弦公式教案

两角差的余弦公式教案

两角差的余弦公式教案教案:余弦公式的两角差1.教学目标:-学生能够理解两角差的概念和性质;-学生能够运用余弦公式求解两角差的值;-学生能够应用余弦公式解决实际问题。

2.教学重点:-余弦公式的概念和性质;-余弦公式的推导和运用;-实际问题的解答方法。

3.教学准备:-教学用书或其他参考资料;-教学投影仪或黑板;-纸板和彩色粉笔。

4.教学流程:步骤一:引入本课-通过举例,引导学生思考什么是两个角的差。

步骤二:讲解两角差的概念-在黑板上绘制一个平面直角坐标系,标出角A和角B。

-通过示意图,解释角A和角B的差是指从角A逆时针旋转到角B所需的旋转角度。

-引导学生观察并总结出两角差的概念。

步骤三:引入余弦公式-提问:“如何计算两个角的差?”-引导学生回顾正弦定理和余弦定理的内容。

-提醒学生可以通过推导余弦公式,来计算两个角的差。

步骤四:推导余弦公式-在黑板上绘制一个平面直角坐标系,标出角A和角B。

-让学生观察并总结出余弦公式的推导过程。

-引导学生将角A和角B的余弦用三角函数表示,并使用三角函数的定义进行推导。

步骤五:运用余弦公式-在黑板上绘制几个示意图,引导学生计算两个角的差。

-指导学生使用余弦公式计算两个角的差,并解释计算步骤。

步骤六:解决实际问题-提供一些实际问题,要求学生运用余弦公式进行求解。

-指导学生分析问题,建立数学模型,并通过计算求解问题。

步骤七:总结与归纳-从概念、推导、运用和实际问题的角度总结两角差的余弦公式。

-引导学生发现两角差的余弦公式的应用领域和重要性。

5.巩固练习:-在课后布置练习题,要求学生独立完成,并在下一堂课上进行讲解和答疑。

6.拓展延伸:-引导学生思考如何应用余弦公式计算多个角的差;-提出一些复杂的实际问题,让学生独立运用余弦公式解决。

7.课堂小结:-回顾本堂课的重点内容和难点;-强调同学们在课后复习并完成练习题。

8.参考资料:-教材或参考书中关于两角差的内容;-有关余弦公式和应用的相关资料和习题。

两角差的余弦公式详细教案

两角差的余弦公式详细教案

两角差的余弦公式详细教案一、教学目标1.理解余弦公式的基本概念和原理;2.掌握利用余弦公式解决两角差问题的方法;3.能够灵活运用余弦公式解决实际问题;4.培养学生分析问题和解决问题的能力。

二、教学重点1.余弦公式的概念和原理;2.掌握利用余弦公式解决两角差问题的方法。

三、教学难点1.理解余弦公式的原理和推导过程;2.能够灵活运用余弦公式解决实际问题。

四、教学过程步骤一:导入新知识1.引入:通过一个例子引入余弦公式的概念和应用,例如:已知三角形的两边长度和它们夹角的余弦值,求第三边的长度。

2.提问:学过正弦定理的同学,你们能说说余弦公式和正弦定理有什么区别吗?步骤二:讲解余弦公式的原理和推导过程1.从图形的角度解释余弦公式的原理:已知三角形的三个边长度a、b、c,求它们对应的角A、B、C的余弦值。

2.利用余弦定理,推导出两角差的余弦公式。

步骤三:讲解应用举例1.通过具体的例子和计算过程,讲解如何利用余弦公式解决两角差问题。

例如:已知两角和一条边的长度,求另一条边的长度。

2.提供更多的练习题,让学生通过练习提高运用余弦公式的能力。

步骤四:梳理归纳知识点1.整理余弦公式的公式表达;2.归纳余弦公式的适用条件和注意事项。

步骤五:拓展延伸1.提供更多的实际问题让学生运用余弦公式解决;2.引导学生思考如何利用余弦公式解决更复杂的问题。

步骤六:小结概括1.总结余弦公式的基本原理和应用方法;2.强调学生在实际问题中的应用能力和解决问题的思维方式。

五、教学反思通过引入例子、讲解原理、举例解题等多种教学方法,能够帮助学生更好地理解和应用余弦公式。

同时,在教学中提供大量的练习题和实际问题,可以提高学生运用余弦公式解决问题的能力。

在讲解过程中,要注重对学生的巩固和拓展,引导学生提高解决问题的思维方式和能力。

《两角差的余弦公式》教案

《两角差的余弦公式》教案

高一数学必修4第三章第1节《两角差的余弦公式》教案作者:何源麟一、教材分析本小节教材以本章开头的电视塔为实际问题引出关于两角角和、差的三角函数值的计算,首先从差角余弦公式开始,引用第一章中借助单位圆探究三角函数的想法,在单位圆中建立两角差,并寻找它的余弦线,用数形结合的方式探究两角差的余弦公式,然后,又应用刚刚学习的向量知识探究任意角的两角差的余弦公式,让同学们体会向量的在数学其他领域上的作用,最后以两个例题的求解过程展现两角差的余弦公式的实际应用价值。

二、教学目标1.知识与技能(1)掌握运用单位圆上三角函数基本知识和向量知识推出两角差的余弦公式的探索过程。

(2)了解两角差的余弦公式的意义,并能应用与简单计算。

2.过程与方法(1)通过参与运用向量知识和三角函数基本知识推出差角余弦公式的过程,进一步理解函数与向量的内在联系。

(2)通过运用两角差的余弦公式技巧性的计算常见角度的余弦值,理解两角差的余弦公式在实际问题中的应用广度,为学习其余三角函数公式打下根基。

3.情感态度与价值观经过本节课的学习,对该公式有个全面透彻的了解,进一步感受三角函数与其他函数的区别,并通过实例,体会三角函数的应用价值。

三、教学重难点1.教学重点:差角余弦公式在实例运算中的应用。

2.教学难点:差角余弦公式的推导过程与方法。

四、教学过程(一)导入新课问题1:我们已经学习了cos60°=12,cos30°=√32,cos45°=√22,但没有学习其他角的余弦值,比如:cos15°,cos75°那么,我们能否用学过的60°,30°,45°的余弦、正弦去表示cos15°,cos75°呢?通过学生自主探究,板书cos15°=cos(60°−45°),cos75°= cos(120°−45°)。

两角差的余弦公式详细教案

两角差的余弦公式详细教案

两角差的余弦公式详细教案第一章:两角差的余弦公式的引入1.1 教学目标理解两角差的余弦公式的概念掌握两角差的余弦公式的推导过程1.2 教学内容回顾角度的概念和单位引入两角差的概念引导学生思考如何表示两角差的余弦值1.3 教学方法使用图形和实例来引导学生理解两角差的余弦公式的概念通过推导过程培养学生的逻辑思维能力1.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度第二章:两角差的余弦公式的推导2.1 教学目标掌握两角差的余弦公式的推导过程能够应用两角差的余弦公式进行计算2.2 教学内容介绍两角差的余弦公式的推导过程引导学生通过图形和实例理解两角差的余弦公式的推导过程2.3 教学方法使用图形和实例引导学生理解两角差的余弦公式的推导过程通过练习题培养学生的计算能力2.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的推导过程的理解程度通过练习题评估学生的计算能力第三章:两角差的余弦公式的应用3.1 教学目标能够应用两角差的余弦公式解决实际问题能够应用两角差的余弦公式进行角度计算3.2 教学内容介绍两角差的余弦公式的应用方法引导学生通过实例理解两角差的余弦公式的应用方法3.3 教学方法使用实例引导学生理解两角差的余弦公式的应用方法通过练习题培养学生的应用能力3.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的应用方法的理解程度通过练习题评估学生的应用能力第四章:两角差的余弦公式的拓展4.1 教学目标理解两角差的余弦公式的拓展内容能够应用两角差的余弦公式的拓展内容解决实际问题介绍两角差的余弦公式的拓展内容引导学生通过实例理解两角差的余弦公式的拓展内容4.3 教学方法使用实例引导学生理解两角差的余弦公式的拓展内容通过练习题培养学生的应用能力4.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的拓展内容的理解程度通过练习题评估学生的应用能力第五章:总结与复习5.1 教学目标总结两角差的余弦公式的知识点巩固学生对两角差的余弦公式的理解和应用能力5.2 教学内容回顾两角差的余弦公式的概念、推导过程和应用方法通过练习题巩固学生的理解和应用能力5.3 教学方法使用练习题和讨论的方式巩固学生的理解和应用能力5.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度通过练习题评估学生的应用能力第六章:两角差的余弦公式的图形解释理解两角差的余弦公式可以通过图形来解释学会使用图形来帮助记忆和理解两角差的余弦公式6.2 教学内容介绍两角差的余弦公式的图形解释方法通过图形展示两角差的余弦公式的推导过程6.3 教学方法使用图形和实例引导学生理解两角差的余弦公式的图形解释方法通过观察和分析图形,加深学生对两角差的余弦公式的理解6.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的图形解释方法的理解程度第七章:两角差的余弦公式在不同角度下的应用7.1 教学目标学会在不同角度下应用两角差的余弦公式进行计算理解在不同角度下应用两角差的余弦公式时的注意事项7.2 教学内容介绍在不同角度下应用两角差的余弦公式的方法通过实例展示在不同角度下应用两角差的余弦公式进行计算的步骤7.3 教学方法使用实例引导学生理解在不同角度下应用两角差的余弦公式的方法通过练习题培养学生的计算能力通过提问和讨论的方式检查学生对在不同角度下应用两角差的余弦公式的理解程度通过练习题评估学生的计算能力第八章:两角差的余弦公式在实际问题中的应用8.1 教学目标学会将两角差的余弦公式应用于实际问题中培养学生的实际问题解决能力8.2 教学内容介绍两角差的余弦公式在实际问题中的应用方法通过实例展示两角差的余弦公式在实际问题中的解题步骤8.3 教学方法使用实例引导学生理解两角差的余弦公式在实际问题中的应用方法通过练习题培养学生的实际问题解决能力8.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式在实际问题中的应用程度通过练习题评估学生的实际问题解决能力第九章:两角差的余弦公式的推广9.1 教学目标理解两角差的余弦公式可以进行推广学会应用推广后的两角差的余弦公式解决问题9.2 教学内容介绍两角差的余弦公式的推广形式通过实例展示如何应用推广后的两角差的余弦公式解决问题9.3 教学方法使用实例引导学生理解两角差的余弦公式的推广形式通过练习题培养学生的应用能力9.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的推广形式的理解程度通过练习题评估学生的应用能力第十章:总结与复习10.1 教学目标总结本节课所学的主要知识点巩固学生对两角差的余弦公式的理解和应用能力10.2 教学内容回顾本节课所学的两角差的余弦公式的概念、推导过程、应用和推广通过练习题巩固学生的理解和应用能力10.3 教学方法使用练习题和讨论的方式巩固学生的理解和应用能力10.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度通过练习题评估学生的应用能力第十一章:两角差的余弦公式的综合应用11.1 教学目标能够综合运用两角差的余弦公式解决复杂角度问题培养学生的综合分析和解决问题的能力11.2 教学内容介绍两角差的余弦公式在解决复杂角度问题时的综合应用通过实例展示如何综合运用两角差的余弦公式解决实际问题11.3 教学方法使用实例引导学生综合运用两角差的余弦公式解决复杂角度问题通过练习题培养学生的综合应用能力11.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式综合应用的理解程度通过练习题评估学生的综合应用能力第十二章:两角差的余弦公式的逆用12.1 教学目标理解两角差的余弦公式可以进行逆用学会应用逆用后的两角差的余弦公式解决问题12.2 教学内容介绍两角差的余弦公式的逆用方法通过实例展示如何应用逆用后的两角差的余弦公式解决问题12.3 教学方法使用实例引导学生理解两角差的余弦公式的逆用方法通过练习题培养学生的应用能力12.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的逆用方法的理解程度通过练习题评估学生的应用能力第十三章:两角差的余弦公式在三角函数变换中的应用13.1 教学目标理解两角差的余弦公式在三角函数变换中的应用学会应用两角差的余弦公式进行三角函数的变换13.2 教学内容介绍两角差的余弦公式在三角函数变换中的应用方法通过实例展示如何应用两角差的余弦公式进行三角函数的变换13.3 教学方法使用实例引导学生理解两角差的余弦公式在三角函数变换中的应用方法通过练习题培养学生的应用能力13.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式在三角函数变换中的应用程度通过练习题评估学生的应用能力第十四章:两角差的余弦公式在工程和科学计算中的应用14.1 教学目标理解两角差的余弦公式在工程和科学计算中的应用学会应用两角差的余弦公式解决工程和科学计算问题14.2 教学内容介绍两角差的余弦公式在工程和科学计算中的应用方法通过实例展示如何应用两角差的余弦公式解决工程和科学计算问题14.3 教学方法使用实例引导学生理解两角差的余弦公式在工程和科学计算中的应用方法通过练习题培养学生的应用能力14.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式在工程和科学计算中的应用程度通过练习题评估学生的应用能力第十五章:总结与复习15.1 教学目标总结本节课所学的主要知识点巩固学生对两角差的余弦公式的理解和应用能力15.2 教学内容回顾本节课所学的两角差的余弦公式的概念、推导过程、应用和拓展通过练习题巩固学生的理解和应用能力15.3 教学方法使用练习题和讨论的方式巩固学生的理解和应用能力15.4 教学评估通过提问和讨论的方式检查学生对两角差的余弦公式的理解程度通过练习题评估学生的应用能力重点和难点解析重点:掌握两角差的余弦公式的概念、推导过程、应用方法和拓展内容。

《两角差的余弦公式教案》及说明

《两角差的余弦公式教案》及说明
cos 120 cos 30 sin 120 sin 30
依据特殊情 况进行猜想往往 是人们探索问题
1 2
3 2
3 2
1 2
的第一步.
学生再举特例进行验证. (各抒己见) 利用几何画板,对更多的情况加以验证。 三、提出猜想: cos( ) cos cos sin sin 师:要让猜想更有说服力,我们还要进行理论证明. 四、理论证明: 引导探究:研究三角函数问题,我们常用的一种方法就是利用单位圆, 在单位圆中,角的余弦值可用余弦线来表示. 我们先来讨论最简单的情况: 鼓励学生对 各种可能的情况 进行探索,培养 他们的交流合作 意识,在探索的 过程中获得成就 感.

2
, 则: cos( ) cos(

2
) sin
分析:可见,我们的公式的形式应该与 cos cos 和sin sin 均有关 题、挑战困难的 系?他们之间存在怎样的代数关系呢?会不会是 “+” 、 “-” 、 “” 、 “÷” ? 勇气. 请同学们根据下表中数据,相互交流讨论,提出你的猜想. 用具体值检验猜想的合理性. 令 120, 30 则 cos( ) cos(120 30) cos90 = 0 三角函数 三角函数值
引入:同学们,在第一章我们学习了同角三角函数式的变换,今天我们
将一起探究一种包含两个角的三角函数式的变换: 两角差的余弦公式。 先让 入,体现数学与 我们走入生活,看一个例子: 实际生活的联
例: 如图所示,一个斜坡的高为 6m,斜坡的水平长度为 8m,已知作用在物 系,增强学生的 体上的力 F 与水平方向的夹角为 60°,且大小为 10N ,在力 F 的作用下物体 应用意识,激发 沿斜坡运动了3m,求力 F 作用在物体上的功 W. 解: W = F S F S cos(60 ) = 30 cos(60 ) . 提问:1、解决问题需要求什么? 2、你能找到哪些与 有关的条件?

《两角差的余弦公式》的教学案

《两角差的余弦公式》的教学案

两角差的余弦公式说课稿教材分析1、教材所处的地位和作用:《两角差的余弦公式》是新课标人教版数学必修四第三章第一课时的教学内容,是本模块第一章《三角函数》和第二章《平面向量》相关知识的延续和拓展。

其中心任务是通过已学知识,探索建立两角差的余弦公式。

它不仅是前面已学的诱导公式的推广,也是后面其它和(差)角公式推导的基础和核心,具有承前启后的作用,是本章的重点内容之一。

2、重点,难点以及确定的依据:对本节课来说,学生最大的困惑在于如何得到公式.所以,本节课的教学重点是:两角差的余弦公式的探究和应用;教学难点是:两角差的余弦公式的由来及证明;引导学生通过主动参与,独立探索。

教学目标设计(1)知识与技能:本节课的知识技能目标定位在公式的向量法证明和应用上;学会运用分类讨论思想完善证明;学会正用、逆用、变用公式;学会运用整体思想,抓住公式的本质.在新旧知识的冲撞过程中,让学生自主地对知识进行重组、构建,形成属于自己的知识结构体系.(2)过程与方法:创设问题情景,调动学生已有的认知结构,激发学生的问题意识,展开提出问题、分析问题、解决问题的学习活动,让学生体会从“特殊”到“一般”的探究过程;在探究过程中体会化归、数形结合等数学思想;在公式的证明过程中,培养学生反思的好习惯;在公式的理解记忆过程中,让学生发现数学中的简洁、对称美;在公式的运用过程中,培养学生严谨的思维习惯和自我纠错能力.(3)情感、态度与价值观:体验科学探索的过程,鼓励学生大胆质疑、大胆猜想,培养学生的“问题意识”,使学生感受科学探索的乐趣,激励勇气,培养创新精神和良好的团队合作意识.通过对猜想的验证,对公式证明的完善,培养学生实事求是的科学态度和科学精神.教法设计1、学情分析:学生刚刚学习了同角三角函数的变换及平面向量的知识,对用举反例推翻猜想、运用单位圆、用向量解决三角问题已经有了一定的基础,但还远未达到综合运用这些方法自主探究和证明的水平. 2、教学手段:(1)从知识的认知程序上看,老师看问题从整体到局部,而学生却是从局部到整体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1.1 两角差的余弦公式
一、教学目标
掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.
二、教学重、难点
1. 教学重点:通过探索得到两角差的余弦公式;
2. 教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.
三、学法与教学用具
1. 学法:启发式教学
2. 教学用具:多媒体
四、教学设想:
(一)导入:我们在初中时就知道?2cos 452
=,3cos302=,由此我们能否得到()cos15cos 4530?=-=大家可以猜想,是不是等于cos 45cos30-呢?
根据我们在第一章所学的知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式()cos ?αβ-=
(二)探讨过程:
在第一章三角函数的学习当中我们知道,在设角α的终边与单位圆的交点为1P ,cos α等于角α与单位圆交点的横坐标,也可以用角α的余弦线来表示,大家思考:怎样构造角β和角αβ-?(注意:要与它们的正弦线、余弦线联系起来.)
展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索()cos αβ-与cos α、cos β、sin α、sin β之间的关系,由此得到cos()cos cos sin sin αβαβαβ-=+,认识两角差余弦公式的结构.
思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?
提示:1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?
2、怎样利用向量的数量积的概念的计算公式得到探索结果?
展示多媒体课件
比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处. 思考:()cos ?αβ+=,()()cos cos αβαβ+=--⎡⎤⎣⎦,再利用两角差的余弦公式得出
(三)例题讲解
例1、利用和、差角余弦公式求cos 75、cos15的值.
解:分析:把75、15构造成两个特殊角的和、差.
点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:()cos15cos 6045=-,要学会灵活运用.
例2、已知4sin 5α=,5,,cos ,213παπββ⎛⎫∈=- ⎪⎝⎭
是第三象限角,求()cos αβ-的值.
解:因为,2παπ⎛⎫∈ ⎪⎝⎭,4sin 5α=由此得3cos 5α===-
又因为5cos ,13ββ=-是第三象限角,所以12sin 13β===- 所以3541233cos()cos cos sin sin 51351365αβαβαβ⎛⎫⎛⎫⎛⎫-=+=-⨯-+⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
点评:注意角α、β的象限,也就是符号问题.
(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角α、β的象限,也就是符号问题,学会灵活运用.
(五)作业:
15012.P T T -。

相关文档
最新文档