矩形判定经典习题
矩形的判定专项练习题
矩形的判定专项练习30题(有答案)1.如图,在四边形ABCD中,AD∥BC,E、F为AB上两点,且△DAF≌△CBE.求证:(1)∠A=90°;(2)四边形ABCD是矩形.2.如图,已知平行四边形ABCD,∠ABC,∠BCD的平分线BE、CF分别交AD于E、F,BE、CF交于点G,点H为BC的中点,GH的延长线交GB的平行线CM于点M.(1)试说明:∠BGC=90°;(2)连接BM,判断四边形GBMC的形状并说明理由.3.如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E.(1)四边形OCDE是矩形吗?说说你的理由;(2)请你将上述条件中的菱形改为另一种四边形,其它条件都不变,你能得出什么结论?根据改编后的题目画出图形,并说明理由.4.△ABC中,AD⊥BC于D,点E、F分别是△ABC中AB、AC中点,当△ABC满足什么条件时,四边形AEDF 是矩形?说明理由.5.如图,菱形ABCD的对角线AC、BD交于点O.(1)用尺规作图的方法,作出△AOB平移后的△DEC,其中平移的方向为射线AD的方向,平移的距离为线段AD 的长;(要求:用尺规作图,保留作图痕迹,不写作法.)(2)观察图形,判断四边形DOCE是什么特殊四边形,并证明.6.如图,平行四边形ABCD中,对角线AC、BD相交于点O,延长OA到N,ON=OB,再延长OC至M,使CM=AN,求证:四边形NDMB为矩形.7.如图,点O是菱形ABCD对角线的交点,过点C作BD的平行线CE,过点D作AC的平行线DE,CE与DE 相交于点E,试说明四边形OCED是矩形.8.如图,已知梯形ABCD中,AD∥BC,AB⊥BC,点E、F分别是边BC、CD的中点,直线EF交边AD的延长线于点M,连接BD.(1)求证:四边形DBEM是平行四边形;(2)若BD=DC,连接CM,求证:四边形ABCM为矩形.9.如图,在△ABC中,点O是AC边上的中点,过点O的直线MN∥BC,且MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,点P是BC延长线上一点.求证:四边形AECF是矩形.10.如图,在梯形ABCD中,AD∥BC,BC=2AD,点E是BC的中点,连接AC、DE相交于点O.(1)试说明:△AOD≌△COE;(2)若∠B=∠AOE,试说明四边形AECD是矩形的理由.11.如图,以△ABC的各边为一边向BC的同侧作正△ABD、正△BCF、正△ACE,若∠BAC=150°,求证:四边形AEFD为矩形.12.(1)在等腰三角形ABC中AB=BC,∠ABC=90°,BD⊥AC,过D点作DE⊥DF,交AB于E,交BC于F.若AE=4,FC=3,求EF长.(2)如图,将?ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.①求证:△ABF≌△ECF;②若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.13.如图,AD是△ABC的中线,过点A作AE∥BC,过点B作BE∥AD交AE于点E,(1)求证:AE=CD;(2)当△ABC满足什么条件时,四边形ADBE是矩形?请说明理由.14.如图,已知梯形ABCD中,AD∥BC,E、F分别是AB、CD的中点,点G在边BC上,且CG=(AD+BC).(1)求证:四边形DEGF是平行四边形;(2)连接DG,若∠ADG=2∠ADE,求证:四边形DEGF是矩形.15.已知,如图在△ABC中,AB=AC,点D是AC的中点,直线AE∥BC,过D点作直线EF∥AB分别交AE、BC于点E、F,求证:四边形AECF是矩形.16.已知:如图,在△ABC中,D、E、F分别是AC、AB、BC的中点,且CE=AB.求证:四边形CFED是矩形.17.如图,平行四边形ABCD中,EF过AC的中点O,与边AD、BC分别相交于点E、F;(1)试说明四边形AECF是平行四边形.(2)若EF过AC的中点,且与AC垂直时,试说明四边形AECF是菱形.(3)当EF与AC有怎样的关系时,四边形AECF是矩形.18.如图,在Rt△ABC中,∠A=90°,AB=AC,D是斜边BC上一点,DE⊥AC,DF⊥AB,垂足分别为E、F.(1)说明四边形AEDF是矩形.(2)试问:当点D位于BC边的什么位置时,四边形AEDF是正方形?并说明你的理由.19.如图,△ABC中,D为边AC的中点,过点D作MN∥BC,CE平分∠ACB交MN于E,CF平分∠ACG交MN于F,求证:(1)ED=DF;(2)四边形AECF为矩形.20.如图,菱形ABCD的对角线AC、BC相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.21.如图,在△ABC中,O是AC上的任意一点,(不与点A,C重合),过点O作直线l∥BC,直线l与∠BCA的平分线相交于点E,与∠DCA的平分线相交于点F.(1)OE与OF相等吗?为什么?(2)探索:当点O在何处时,四边形AECF为矩形?为什么?22.(2013?沙湾区模拟)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE 的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点.(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.23.如图,四边形ABCD是平行四边形,对角线AC、BD交于点O,∠OBC=∠OCB,求证:四边形ABCD是矩形.24.如图M、N分别是平行四边形ABCD的对边AD、BC的中点,且AD=2AB,AN,BM相交于P,DN,CM相交于Q.求证:PMQN为矩形.25.在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形.26.如图,在△ABC中,D是AC的中点,E是线段BC延长线上的一点,过点A作AF∥BE,交ED的延长线于点F,连接AE,CF.(1)求证:AF=CE;(2)如果AC=EF,则四边形AFCE是矩形.27.如图,DB∥AC,且DB=AC,E是AC的中点,(1)求证:BC=DE;(2)连接AD、BE,探究:当△ABC满足什么条件时,四边形DBEA是矩形?并说明理由.28.如图,O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?说说你的理由.29.已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形.求证:四边形ABCD是矩形.30.如图,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCED为矩形.矩形的判定专项练习30题参考答案:1.(1)∵AD∥BC,∴∠A+∠B=180°,∵△DAF≌△CBE,∴∠A=∠B,∴2∠A=180°,∴∠A=90°;(2)∵AD∥BC,AD=BC,∴四边形ABCD为平行四边形,又∵∠A=90°,∴四边形ABCD是矩形2.(1)∵∠ABC+∠BCD=180°,BE、CF平分∠ABC,∠BCD,∴∠GBC+∠GCB=90°,∴∠BGC=90°;(2)∵点H为BC的中点,∴BH=CH=GH,∵GB∥CM,∴∠BGH=∠CMH,∵∠HBG=∠HGB,∴∠HCM=∠HMC,∴MH=BH=CH=GH,∴四边形GBMC为矩形3.(1)四边形OCDE是矩形.证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又∵AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.(2)任意改变四边形ABCD的形状,四边形OCED都是平行四边形(答案不唯一).理由如下:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.4.满足△ABC是等腰直角三角形,∠BAC=90°.∵△ABC是等腰直角三角形,∠BAC=90°,AD⊥BC于D,∴BD=CD,∵点E、F分别是△ABC中AB、AC中点,∴DF∥AB,ED∥AC,∴四边形AEDF是平行四边形,∵∠BAC=90°∴AEDF是矩形.5.(1)所作图形如图所示:(2)四边形DOCE是矩形.∵△DCE是由△AOB平移后的图形,∴DE∥AC,CE∥BD.∴四边形DOCE是平行四边形.又∵四边形ABCD是菱形,∴AC⊥BD.即∠DOC=90°∴四边形DOCE为矩形.6.∵四边形ABCD为平行四边形,∴AO=OC,OD=OB,∵AN=CM ON=OB,∴ON=OM=OD=OB,∴四边形NDMB为平行四边形,∵MN=BD,∴平行四边形NDMB为矩形7.∵DE∥AC,CE∥BD,∴DE∥OC,CE∥OD∴四边形OCED是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCED是矩形8.(1)证明:∵梯形ABCD中,AD∥BC,即DM∥BE,∵E、F分别是边BC、CD的中点∴EF∥BD,∴四边形DBEM是平行四边形.(2)证明:连接DE,∵DB=DC,且E是BC中点,∴DE⊥BC,∴DE∥AB.又∵AB⊥BC,∴AB∥DE∵由(1)知四边形DBEM是平行四边形,∴DM∥BE且DM=BE,∴DM∥EC且DM=EC,∴四边形DMCE是平行四边形,∴CM∥DE,∴AB∥CM.又AM∥BC∴四边形ABCM是平行四边形,∵AB⊥BC,∴四边形ABCM是矩形.9.∵CE平分∠ACB,∴∠ACE=∠BCE,∵MN∥BC,∴∠OEC=∠ECB,∴∠OEC=∠OCE,∴OE=OC,同理,OC=OF,∴OE=OF.∵AO=CO,EO=FO,∴四边形AECF为平行四边形,∵CE平分∠ACB,∴∠ACE=∠ACB,同理,∠ACF=∠ACP,∴∠ECF=∠ACE+∠ACF=(∠ACB+∠ACP)=×180°=90°,∴四边形AECF是矩形.10.(1)∵BC=2AD,点E是BC的中点,∴EC=AD.∵AD∥BC,∴∠ADO=∠CEO,∠DAO=∠ECO.在△AOD和△COE 中,∴△AOD≌△COE(ASA);(2)∵AD=BE,AD∥BE,∴四边形ABED是平行四边形;同理可得:四边形AECD是平行四边形.∴∠ADO=∠B.∵∠B=∠AOE,∴∠AOE=2∠B.∴∠AOE=2∠ADO.∵∠AOE=∠ADO+∠DAO,∴∠OAD=∠ODA.∴OA=OD.∴AC=DE.∴四边形AECD是矩形.11.:∵△ABD和△FBC都是等边三角形,∴∠DBF+∠FBA=∠ABC+∠ABF=60°,∴∠DBF=∠ABC.又∵BD=BA,BF=BC,∴△ABC≌△DBF,∴AC=DF=AE,同理可证△ABC≌△EFC,∴AB=EF=AD,∴四边形DAFEF是平行四边形(两组对边分别相等的四边形是平行四边形)∵∠BAC=150°,∴∠DAE=150°﹣∠DAB﹣∠EAC=90°,∴四边形AEFD为矩形.12.1)解:∵ABC中AB=BC,∠ABC=90°,BD⊥AC,∴∠A=∠C=45°,CD=AD,∴BD=CD=AD,BD平分∠ABC,∴∠EBD=45°=∠C,∵BD⊥AC,DE⊥DF,∴∠BDC=∠EDF=90°,∴∠BDC﹣∠BDF=∠EDF﹣∠BDF,∴∠EDB=∠FDC,∵在△EDB和△FDC中∴△EDB≌△FDC(ASA),∴FC=DE=3,同理△AED≌△BFD,∴DF=AE=4,在Rt△EDF中,由勾股定理得:EF==5;(2)①证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵CD=CE,∴AB∥CE,AB=CE,∴四边形ABEC是平行四边形,∴AF=FE,BF=FC,∵在△ABF和△ECF中∴△ABF≌△ECF(SSS);②证明:∵四边形ABCD是平行四边形,∴∠ABC=∠D,∵∠AFC=2∠D,∴∠AFC=2∠ABC,∵∠AFC=∠ABC+∠FAB,∵∠ABC=∠FAB,∴AF=FB,∵四边形ABCD是平行四边形,∴AE=2AF,BC=2BF,∴AE=BC,∵四边形ABEC是平行四边形,∴四边形ABEC是矩形.13.(1)∵AE∥BC,BE∥AD,∴四边形ADBE是平行四边形,∴AE=BD,∵AD是△ABC的中线,∴BD=CD,∴AE=CD.(2)当AB=AC时,四边形ADBE是矩形,理由是:∵AB=AC,BD=CD,∴AD⊥BC,即∠ADB=90°,又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形14.1)证明:如图,连接EF.∵四边形ABCD是梯形,AD∥BC,E、F分别是AB、CD的中点,∴,EF∥AD∥BC.∵,∴EF=CG.∴四边形EGCF是平行四边形.∴EG=FC且EG∥FC.∵F是CD的中点,∴FC=DF.∴EG=DF且EG∥DF.∴四边形DEGF是平行四边形.(2)证明:连接EF,将EF与DG的交点记为点O.∵∠ADG=2∠ADE,∴∠ADE=∠EDG.∵EF∥AD,∴∠ADE=∠DEO.∴∠EDG=∠DEO.∴EO=DO.∵四边形DEGF是平行四边形,∴,.∴EF=DG,∴平行四边形DEGF是矩形.即四边形DEGF是矩形.15.∵点D是AC的中点,∴DA=DC,∵AE∥BC,∴∠AED=∠CFD,在△ADE和△CDF 中,,∴△ADE≌△CDF(AAS),∴AE=CF,又∵AE∥BC,∴四边形AECF是平行四边形,∵AE∥BC,EF∥AB,∴四边形ABFE是平行四边形,∴AB=EF,∵AB=AC,∴AC=EF,∴四边形AECF是矩形.16.∵D、E、F分别是AC、AB、BC的中点,∴DE∥BC,且DE=BC,DF=AB,CF=BC,∴DE=CF,∴四边形CFED平行四边形,又∵CE=AB,∴CE=DF,∴平行四边形CFED是矩形,故四边形CFED是矩形.17.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴△AEO∽△CFO,∴=,∵OA=CO,∴OE=OF,∴四边形AECF是平行四边形;(2)证明:∵四边形AECF是平行四边形,又∵EF⊥AC,∴平行四边形AECF是菱形;(3)解:当EF=AC时,四边形AECF是矩形,理由是:由(1)知:四边形AECF是平行四边形,∵AC=EF,∴平行四边形AECF是矩形18.(1)∵DE⊥AC,DF⊥AB,∴∠AFD=∠AED=∠A=90°,∴四边形AEDF是矩形;(2)当D时BC的中点时,四边形AEDF是正方形;JU理由:∵D是BC的中点,∴BD=DC∵AB=AC∴∠B=∠C又∵DF⊥AB,DE⊥AC,∴∠BDF=∠DEC∴△BFD≌△DCE,∴DF=DE,∴矩形AEDF是正方形.19.(1)∵CE平分∠ACB,CF平分∠ACG,∴∠ACE=∠ECB,∠ACF=∠FCG,又∵MN∥BG,∴∠DEC=∠ECB,∠DFC=∠FCG,∴∠DEC=∠DCE,∠DFC=∠DCF,∴DE=DC,DF=DC,∴DE=DF.(2)∵D为AC的中点,∴AD=DC,又DE=DF,∴四边形AECF为平行四边形,∵∠ACE=∠ECB,∠ACF=∠FCG,∴∠ECF=90°,∴平行四边形AECF为矩形20.∵BE∥AC,CE∥DB,∴四边形OBEC是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOB=90°,∴平行四边形OBEC是矩形21.(1)解:OE=OE,理由是:∵直线l∥BC,∴∠OEC=∠ECB,∵CE平分∠ACB,∴∠OCE=∠BCE,∴∠OEC=∠OCE,∴OE=OC,同理OF=OC,∴OE=OF.(2)解:O在AC的中点上时,四边形AECF是矩形,理由是:∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵OE=OF=OC=OA,∴AC=EF,∴平行四边形AECF是矩形22.(1)证明:∵AF∥BC,∴∠AFE=∠DCE(1分)∵E是AD的中点,∴AE=DE.(2分)∵∠AEF=∠DEC,∴△AEF≌△DEC.(3分)∴AF=DC,∵AF=BD∴BD=CD,∴D是BC的中点;(4分)(2)四边形AFBD是矩形,(5分)证明:∵AB=AC,D是BC的中点,∴AD⊥BC,∴∠ADB=90°,(6分)∵AF=BD,AF∥BC,∴四边形AFBD是平行四边形,(7分)∴四边形AFBD是矩形.23.∵∠OBC=∠OCB,∴OB=OC,∵四边形ABCD是平行四边形,∴OC=OA=AC,OB=OD=BD,∴AC=BD,∵四边形ABCD是平行四边形,∴四边形ABCD是矩形,即四边形ABCD是矩形24.∵ABCD为平行四边形,∴AD平行且等于BC,又∵M为AD的中点,N为BC的中点,∴MD平行且等于BN,∴BNDM为平行四边形,∴BM∥ND,同理AN∥MC,∴四边形PMQN为平行四边形,(5分)连接MN,∵AM平行且等于BN,∴四边形ABNM为平行四边形,又∵AD=2AB,M为AD中点,∴BN=AB,∴四边形ABNM为菱形,∴AN⊥BM,∴平行四边形PMQN为矩形.(10分)25.∵四边形ABCD为平行四边形,∴OA=OC,AE∥FC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF,∴AE=CF,∴四边形AECF为平行四边形,又∵AF⊥BC,∴∠AFC=90°,则四边形AECF为矩形.26.(1)证明:∵AF∥BE,∴∠AFD=∠CED,∠FAD=∠DCE,∵D是AC的中点,∴AD=DC,在△FAD和△ECD中,∴△FAD≌△ECD(AAS),∴AF=CE;(2)证明:∵△FAD≌△ECD,∴FD=DE,∵AD=DC,∴四边形AFCE是平行四边形,∵AC=EF,∴平行四边形AFCE是矩形27.(1)证明:∵E是AC的中点,∴EC=AC,∵DB=AC,∴DB=EC,又∵DB∥AC,∴四边形BCED是平行四边形(一组对边平行且相等的四边形是平行四边形),∴BC=DE;(2)解:△ABC满足AB=BC时,四边形DBEA是矩形.理由如下:∵E是AC的中点,∴AE=AC,∵DB=AC,∴DB=AE,又∵DB∥AC,∴四边形DBEA是平行四边形(一组对边平行且相等的四边形是平行四边形),∵AB=BC,E为AC中点,∴∠AEB=90°,∴平行四边形DBEA是矩形,即△ABC满足AB=BC时,四边形DBEA是矩形.28.是矩形.(1分)理由:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴DE⊥CE,∴∠E=90°,∴平行四边形OCED是矩形29.∵BC是等腰△BED底边ED上的高,∴EC=CD,∵四边形ABEC是平行四边形,∴AB∥CD,AB=CE=CD,AC=BE,∴四边形ABCD是平行四边形.∵AC=BE,BE=BD,∴AC=BD,∴四边形ABCD是矩形30.在△ABD和△ACE中,∵AB=AC,AD=AE,∠BAD=∠CAE,∴△ABD≌△ACE(SAS)∴BD=CE又DE=BC.∴四边形BCED为平行四边形.在△ACD和△ABE中,∵AC=AB,AD=AE,∠CAD=∠CAB+∠BAD=∠CAB+∠CAE=∠BAE,∴△ADC≌△AEB(SAS),∴CD=BE.∴四边形BCED为矩形.(对角线相等的平行四边形是矩形)。
矩形的判定相关习题及其详解
矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC 的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB∥CD,使四边形ABCD为矩形.6.如图,矩形ABCD的对角线相交于点O,点E,F,G,H分别是AO,BO,CO,DO的中点,请问四边形EFGH是矩形吗?请说明理由.解:四边形EFGH是矩形.理由:∵四边形ABCD是矩形,∴AC=BD,AO=CO,BO=DO.∴AO=CO=BO=DO.∵点E,F,G,H分别是AO,BO,CO,DO的中点,∴EO=FO=GO=HO.∴OE=OG,OF=OH.∴四边形EFGH是平行四边形.又∵EO+GO=FO+HO,即EG=FH,∴四边形EFGH是矩形.知识点3有三个角是直角的四边形是矩形7.已知O为四边形ABCD对角线的交点,下列条件能使四边形ABCD成为矩形的是(D) A.OA=OC,OB=ODB.AC=BDC.AC⊥BDD.∠ABC=∠BCD=∠CDA=90°8.已知:如图,在▱ABCD中,AF,BH,CH,DF分别是∠BAD,∠ABC,∠BCD,∠ADC的平分线.求证:四边形EFGH为矩形.证明:∵四边形ABCD是平行四边形,∴∠DAB+∠ADC=180°.∵AF,DF分别平分∠DAB,∠ADC,∴∠FAD=∠BAF=12∠DAB,∠ADF=∠CDF=12∠ADC.∴∠FAD+∠ADF=90°.∴∠AFD=90°.同理可得:∠BHC=∠HEF=90°.∴四边形EFGH是矩形.02中档题9.以下条件不能判定四边形ABCD是矩形的是(D)A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC =5;②∠A+∠C=180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A) A.2 3 B.33C.4 D.43第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF 是矩形,∴∠AFC =∠AFD =90°.∴∠DAF =90°-∠D ,∠CGF =90°-∠ECD.∵ED =EC ,∴∠D =∠ECD.∴∠DAF =∠CGF.又∵∠EGA =∠CGF ,∴∠DAF =∠EGA.∴EA =EG.14.如图,将▱ABCD 的边AB 延长至点E ,使AB =BE ,连接BD ,DE ,EC ,DE 交BC 于点O.(1)求证:△ABD ≌△BEC ;(2)若∠BOD =2∠A ,求证:四边形BECD 是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB ,∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形.∴OB =12BC ,OE =12ED. ∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED.∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO.∴OF =OC.同理可证:OC =OE.∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°.∴EF =CE 2+CF 2=122+52=13.又∵OE =OF ,∴OC =12EF =132. (3)当点O 移动到AC 中点时,四边形AECF 为矩形. 理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,又∵OE =OF ,∴四边形AECF 为平行四边形.又∵∠ECF =90°,∴四边形AECF 为矩形.。
矩形的性质与判定练习题
1、矩形具有而一般平行四边形不具有的性质是 ( ) A. 对角相等B. 对边相等C. 对角线相等D. 对角线互相平分2、能够判断一个四边形是矩形的条件是 ( )A .对角线相等B .对角线垂直C .对角线互相平分且相等 D .对角线垂直且相等.3、下列命题中正确的是( ) A .对角线相等的四边形是矩形 B .对角相等且有一个角是直角的四边形是矩形C .有一个角是直角的四边形是矩形 D .内角都相等的四边形是矩形4、下列条件中,不能判定四边形ABCD 为矩形的是( ). A .AB ∥CD ,AB=CD ,AC=BD B .∠A=∠B=∠D=90 C .AB=BC ,AD=CD ,且∠C=90°D .AB=CD ,AD=BC ,∠A=90°5、已知一矩形的周长是24cm ,相邻两边之比是1:2,那么这个矩形的面积是 __________B . 32cm 2C .48cm 26、两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是_________7、若矩形的一条角平分线分一边为3cm 和5cm 两部分,则矩形的周长为( )cm. A .22 B .26 C .22或26 D .28 8、在矩形ABCD 中,∠AOD=130°,则∠ACB=__ _. 9、在矩形ABCD 中,对角线AC ,BD 相交于点O ,若对角线AC=10cm ,•边BC=•8cm ,•则△ABO 的周长为________.10、已知矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,则矩形的周长为______.11、矩形ABCD 的两条对角线相交于O,∠AOB =60o,AB =8,则矩形对角线的长________.12、在矩形ABCD 中, 对角线交于O 点,AB=0.6, BC=0.8, 那么△AOB 的面积为_________; 周长为_________.13、矩形的两条对角线夹角为60°,一条对角线与短边的和为15,则短边的长是 ,对角线长是 . 14、矩形ABCD 的对角线相交于点O ,AC=2AB ,则△COD 为________三角形.15、矩形ABCD 中,S 矩形ABCD =24 cm 2,若BC=6 cm ,则对角线AC 的长是________ cm.16、矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm ,对角线是13cm ,那么矩形的周长是_________.17、在矩形ABCD 的边AB 上有一点E ,且CE=DE ,若AB=2AD ,则∠ADE= .18、在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为____________.19、已知直角三角形的周长为14,斜边上的中线长为3.则直角三角形的面积为 .20、一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为___________.21、直角三角形斜边上的高与中线分别是5cm 和6cm ,则它的面积为 .22、在Rt △ABC 中,BD 为斜边AC 上的中线,若∠A=35°,那么∠DBC= .23、若一直角三角形斜边上的中线与斜边上的高所夹锐角为34°,则这个直角三角形的较小内角是 度. 24、如图,在矩形ABCD 中,M 是BC 中点,且MA ⊥MD .•若矩形ABCD•的周长为48cm ,•则矩形ABCD 的面积为_______cm 2.第24题 第27题 第22题25、如果一个矩形较短的边长为5cm .两条对角线所夹的角为60°,则这个矩形的面积是_____cm 2.26、矩形一个角的平分线分矩形一边成2cm 和3cm ,则这个矩形的面积为 .27、如图,在矩形ABCD 中,已知AB=8cm ,BC=10cm ,折叠矩形的一边AD ,使点D 落在BC 边的点F 处,折痕为AE ,则CE 的长为 .28、已知:如图,矩形ABCD 中,E 在DC 上,AB=AE=2BC ,则 ∠EBC= .29、如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F.求证:BE=CF.30、已知,如图,矩形ABCD 的对角线AC 、BD 相交于点O ,E 、F 、G 、H 分别是OA 、OB 、OC 、OD 的中点,顺次连结E、F 、G 、H 所得的四边形EFGH 是矩形吗?说明理由.31、如图,矩形ABCD 中,AB=2 cm , BC=3 cm . M 是BC 的中点,求D 点到AM 的距离.32、已知,如图,□ABCD 中,AC ,BD 交于O ,AE ⊥BC 于E ,EO 交AD 于F .求证:四边形AECF 是矩形.33、已知,如图,△ABC 中,∠C=90°,AC=BC ,AD=DB ,PE ⊥AC ,PF⊥BC .求证:DE=DF .34、已知,如图,矩形ABCD 中,BE 平分∠ABC 交DC 于E ,EF ⊥AE 交BC 于F .求证:AE=EF .35、如图,将矩形纸片折叠,先折出折痕(对角线)BD ,再折使AD 边与对角线BD 重合,A 点落到A ’处,得折痕DG ,若AB=2,BC=1,求AG 的长.36、已知,如图,矩形ABCD 中,E 是BC 上一点,DF ⊥AE 于F .若AE=BC ,求证:CE=FE .37、如图,矩形ABCD 的两边AB=3,BC=4,P 是AD 上任一点,PE ⊥AC 于点E ,PF ⊥BD 于点F 。
矩形的性质与判定习题及答案
由题意得:AE=CF=t
AE=CF=t
∵点G、H分别是矩形ABCD的边AB、 EF=5﹣2(5﹣t)=2t-5
DC的中点,
∴ BG 1 AB,CH 1 CD
2
2
∴2t-5=4 ∴t=4.5
又∵AB=CD,AB∥CD
综上,当t为0.5秒或4.5秒时,
∴BG∥CH,BG=CH
四边形EGFH为矩形
∴四边形BCHG为平行四边形
2
2
4
∴ 13 PE PF 15
4
∴ PE PF 60 13
(1)矩形的面积公式是S=长×宽(两邻边的乘积)
(2)过矩形对角线交点O的任一直线平分矩形ABCD的面积
(3)矩形ABCD对角线AC、BD相交于点O,则
①△ABO≌△CDO,△AOD≌△COB
△ABO,△CDO,△AOD,△COB都是等腰三角形
1
2
证明:(1)∵四边形ABCD是矩形, 在△AEG与△CFH中
∴AB=CD,AB∥CD,AD∥BC, ∠B=90°
∴∠1=∠2 ∵G、H分别是AB、DC的中点 ∴AG=BG,CH=DH ∴AG=CH
AG CH
1
2
AE CF
∴△AEG≌△CFH(SAS)
∴EG=FH
∵AE=CF
又∵GF=HE
②△ABD≌△CDB≌△BAC≌△DCA
△ABD,△CDB,△BAC,△DCA都是直角三角形
③S△ABO
=S△BCO
=S△CDO
=S△AOD
=
1 4
S矩形ABCD
例4.如图,O是矩形ABCD的对角线的交点,E、F、G、 H分别是OA、OB、OC、OD上的点,且AE=BF=CG =DH. (1)求证:四边形EFGH是矩形; (2)若E、F、G、H分别是OA、OB、OC、OD的中点 ,且DG⊥AC,OF=2cm,求矩形ABCD的面积.
九年级数学矩形的判定练习题
M Q P CB A 矩形的判定练习题1.判定一个四边形是矩形,可以先判定它是__________,再判定这个四边形有一个__________或再判定这个四边形的两条对角线__________.2.下列说法错误的是( )A.有一个内角是直角的平行四边形是矩形B.矩形的四个角都是直角,并且对角线相等C.对角线相等的平行四边形是矩形D.有两个角是直角的四边形是矩形3.如图,过矩形ABCD 的顶点A 作对角线BD 的平行线交CD 的延长线于E ,则△AEC 是( )A.等边三角形B.等腰三角形C.不等边三角形D.等腰直角三角形4.如图,把两个大小完全相同的矩形拼成“L ”型图案,则∠FAC= ,∠FCA= 。
5.如图,矩形ABCD 中,AC 、BD 交于点0,点M 、N 、P 、Q 分别为OA 、OB 、OC 、OD 的中点,试判断四边形MNPQ 的形状,并证明。
6.如图,平行四边形ABCD 中,点M 为AD 的中点,BM=CM求证:四边形ABCD 是矩形.7.如图,平行四边形ABCD 中,AD=2AB ,点M 、N 分别为AD 、BC 的中点,连接BM 、AN 交于点P ,连接CM 、DN 交于点Q 。
求证:四边形PNQM 是矩形.8.如图,△ABC 中,D 为AB 上一点,且AD=BD=CD ,DE 、DF 分别平分∠ADC 、∠BDC 求证:四边形DECF 是矩形.E B C D A GF 4题图3题图9.已知:如图,BC是等腰△BED底边ED上的高,四边形ABEC是平行四边形.求证:四边形ABCD是矩形.10.如图,四边形ABCD中,BE=DF,AC、EF互相平分于点O,∠B=90°求证:四边形ABCD是矩形.11.如图,P为平行四边形ABCD外一点,且PA=PB,PC=PD求证:四边形ABCD是矩形.12.已知点E为平行四边形ABCD的边AB的中点,且ED=EC,求证:四边形ABCD为矩形。
矩形性质与判定练习题
18.2.1《矩形》矩形的判定和性质1如图,在矩形ABCD 中,E 是BC 的中点,AE=AD=2,则AC 的长是( )A .B .4C . D2如图(1),把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n -B .m n -C .2mD .2n 3如图3,矩形纸片ABCD 中,AB =4,AD =3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( )A .1B .34C .23 D .2 4如图4,EF 过矩形ABCD 对角线的交点O ,交AB 、CD 于E 、F ,则阴影部分的面积是矩形面积的( )。
A 、51 B 、41 C 、31 D 、1035如图5,矩形ABCD 中,AB=8㎝,把矩形沿直线AC 折叠,使点B 落在点E 处,AE 交DC 于F ,若AF=425㎝,则AD 长为( )。
A 、4㎝ B 、5㎝ C 、6㎝ D 、7㎝ 6如图6,长方形ABCD 中,E 点在BC 上,且AE平分∠BAC 。
若BE=4,AC =15,则 AEC 面积为( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 。
7矩形ABCD 的周长为56,对角线AC ,BD 交于点O ,△ABO 与△BCO 的周长差为4,•则AB 的长是( ) A .12 B .22 C .16 D .26 8、矩形的三个顶点坐标分别是(-2,-3),(1,-3),(-2,-4),那么第四个顶点坐标是( )A .(1,-4)B .(-8,-4)C .(1,-3)D .(3,-4)O D C B A O E D C B A E D C B A F ED CB A9一个矩形周长是12cm, 对角线长是5cm, 那么它的面积为__________________.10在△ABC 中, AM 是中线, ∠BAC=90︒, AB=6cm, AC=8cm, 那么AM 的长为_____________________.11在矩形ABCD 中, AB=3, BC=4, P 为形内一点, 那么PA+PB+PC+PD 的最小值为__________________.12在矩形ABCD 内有一点Q, 满足QA=1, QB=2, QC=3, 那么QD 的长为____________________. 13如图, 矩形ABCD 的对角线交于O 点, 若OA=1, BC=, 那么∠BOC 的大小为________________. 14 15 14如图,在矩形ABCD 中 AE 平分∠BAD, ∠CAE=15︒, 那么∠BOE 的度数为__________________. 15如图, 在矩形ABCD 中,DE ⊥AC 于点E,BC=那么BE=_______________________.16如图, 矩形ABCD 的周长为16cm, DE=2cm, 若△CEF 是等腰直角三角形,那么这个三角形的面积为______________. 17如图7,先把矩形ABCD 对折,折痕为MN ,再把B 点折叠在折痕MN 上,折痕为AE ,点B在MN 上对应点为B 1,则∠DAB 1等于 。
第五讲 矩形的性质和判定习题精选
第五讲 矩形的性质和判定习题精选一、性质1、下列性质中,矩形具有而平行四边形不一定具有的是( )A 、对边相等B 、对角相等C 、对角线相等D 、对边平行2.在矩形ABCD 中,∠AOD=130°,则∠ACB=__ _3.已知矩形的一条对角线长是8cm ,两条对角线的一个交角为60°,则矩形的周长为______4.矩形ABCD 被两条对角线分成四个小三角形,如果四个小三角形的周长的和是86cm , 对角线是13cm ,那么矩形的周长是____________5.如图所示,矩形ABCD 中,AE ⊥BD 于E ,∠BAE=30°,BE=1cm ,那么DE 的长为_____6、直角三角形斜边上的高与中线分别是5cm 和6cm ,则它的面积为___7、已知,在Rt △ABC 中,BD 为斜边AC 上的中线,若∠A=35°,那么∠DBC= 。
8、如图,矩形ABCD 中,AC 与BD 交于O 点,BE ⊥AC 于E ,CF ⊥BD 于F ,求证:BE=CF.9.如图,△ABC 中,∠ACB=90 ,点D 、E 分别为AC 、AB 的中点,点F 在BC 延长线上,且∠CDF=∠A ,求证:四边形DECF 是平行四边形;10.已知:如图,在△ABC 中,∠BAC ≠90° ∠ABC=2∠C ,AD ⊥AC ,交BC 或CB 的延长线D 。
试说明:DC=2AB.11、在△ABC 中,∠C=90 ,AC=BC ,AD=BD ,PE ⊥AC 于点E , PF ⊥BC 于点F 。
求证:DE=DF二、判定1、下列检查一个门框是否为矩形的方法中正确的是()A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分C.用曲尺测量门框的三个角,是否都是直角D.用曲尺测量对角线,是否互相垂直2、中,E是CD的中点,△ABE是等边三角形,求证:四边形ABCD是矩形3、在平行四边形ABCD中,对角线AC、BD相交于O,EF过点O,且AF⊥BC,求证:四边形AFCE是矩形4、平行四边形ABCD中,对角线AC、BD相交于点O,点P是四边形外一点,且PA⊥PC,PB⊥PD,垂足为P。
初二数学矩形的判定作业练习题(含答案)
初二数学矩形的判定作业练习题一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是( )A .两条对角线互相平分B .一组邻边相等C .两条对角线相等D .两条对角线互相垂直2.四边形ABCD 的对角线AC 、BD 互相平分,要使它成为矩形,需要添加的条件是( )A .AB CD = B .AC BD = C .AB BC = D .AC BD ⊥3.平行四边形的四个内角平分线相交所构成的四边形一定是( )A .一般平行四边形B .一般四边形C .对角线垂直的四边形D .矩形4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是( )A .测量其中三个角是否都为直角B .测量对角线是否相等C .测量两组对边是否分别相等D .测量对角线是否相互平分5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 .8.如图,在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 (填写一个即可).9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 .10.对角线 的四边形是矩形.三.解答题(共3小题)11.在平行四边形ABCD中,6AD=.求证:平行四边形ABCD是矩形.AC=,8AB=,1012.如图,AC是ABCD=,连接DEY的对角线,延长BA至点E,使AE AB(1)求证:四边形ACDE是平行四边形;(2)连接EC交AD于点O,若2∠=∠,求证:四边形ACDE是矩形.EOD B13.如图,AD是ABC=.AE BC,BE交AD于点F,且AF DF∆的中线,//(1)求证:AFE DFB∆≅∆;(2)求证:四边形ADCE是平行四边形;(3)当AB、AC之间满足条件_______________时,四边形ADCE是矩形.答案与解析一.选择题(共5小题)1.能判定一个平行四边形是矩形的条件是()A.两条对角线互相平分B.一组邻边相等C.两条对角线相等D.两条对角线互相垂直【分析】根据平行四边形的判定(对角线互相平分),矩形的判定(对角线互相平分且相等),菱形的判定(对角线互相平分且垂直或一组邻边相等的平行四边形)判断即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项错误;B、一组邻边相等的平行四边形是菱形,菱形不一定是矩形,故本选项错误;C、根据矩形的判定定理:对角线相等的平行四边形是矩形,故本选项正确;D、两条对角线互相垂直的平行四边形是菱形,故本选项错误.故选:C.2.四边形ABCD的对角线AC、BD互相平分,要使它成为矩形,需要添加的条件是() A.AB CD⊥=D.AC BD=B.AC BD=C.AB BC【分析】由平行四边形的判定方法得出四边形ABCD是平行四边形,再由矩形的判定方法即可得出结论.【解答】解:需要添加的条件是AC BD=;理由如下:Q四边形ABCD的对角线AC、BD互相平分,∴四边形ABCD是平行四边形,AC BDQ,=∴四边形ABCD是矩形(对角线相等的平行四边形是矩形);故选:B.3.平行四边形的四个内角平分线相交所构成的四边形一定是()A.一般平行四边形B.一般四边形C.对角线垂直的四边形D.矩形【分析】由于平行四边形的邻角互补,那么每两条相邻的内角平分线都互相垂直,则围成四边形就有4个直角,因此这个四边形一定是矩形.【解答】解:如图;Q四边形ABCD是平行四边形,∴∠+∠=︒;DAB ADC180Q、DH平分DABAH∠、ADC∠,EHG∠=︒;∴∠+∠=︒,即90HAD HDA90同理可证得:90∠=∠=∠=︒;HEF EFG FGH故四边形EFGH是矩形.故选:D.4.在数学活动课上,老师要求同学们判断一个四边形的门框是否为矩形,下而是某合作学习小组的四位同学拟定的方案,其中正确的是()A.测量其中三个角是否都为直角B.测量对角线是否相等C.测量两组对边是否分别相等D.测量对角线是否相互平分【分析】由矩形的判定定理和平行四边形的判定定理即可得出答案.【解答】解:A、测量其中三个角是否都为直角,能判定矩形;B 、测量对角线是否相等,不能判定平行四边形;C 、测量两组对边是否分别相等,能判定平行四边形;D 、对角线是否相互平分,能判定平行四边形;故选:A .5.如图所示,在平行四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定平行四边形ABCD 为矩形的是( )A .90ABC ∠=︒B .AC BD = C .AD AB = D .BAD ADC ∠=∠【分析】本题考查的是矩形的判定,平行四边形的性质有关知识,利用矩形的判定,平行四边形的性质对选项进行逐一判断即可解答.【解答】解:A .根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;B .根据对角线相等的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意;C .不能判定平行四边形ABCD 为矩形,故此选项符合题意;D .平行四边形ABCD 中,//AB CD ,180BAD ADC ∴∠+∠=︒,又BAD ADC ∠=∠Q ,90BAD ADC ∴∠=∠=︒,根据有一个角是直角的平行四边形是矩形能判定平行四边形ABCD 为矩形,故此选项不符合题意. 故选:C .二.填空题(共5小题)6.要使ABCD Y 为矩形,则可以添加一个条件为 对角线相等或有一个直角;【分析】根据矩形的判断方法即可解决问题;【解答】解:因为有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形,故答案为对角线相等或有一个直角;7.用一把刻度尺来判定一个零件是矩形的方法是先测量两组对边是否分别相等,然后测量两条对角线是否相等,这样做的依据是 对角线相等的平行四边形是矩形 .【分析】根据矩形和平行四边形的判定方法填空即可.【解答】解:先测量两组对边是否分别相等,可判定是否是平行四边形,然后测量两条对角线是否相等可判定是否是矩形,所以这样做的依据是:对角线相等的平行四边形是矩形,故答案为:对角线相等的平行四边形是矩形.8.在四边形ABCD 中,对角线AC ,BD 交于点O 且AC ,BD 互相平分,若添加一个条件使得四边形ABCD 是矩形,则这个条件可以是 AC BD =或有个内角等于90度 (填写一个即可).【分析】因为在四边形ABCD 中,对角线AC 与BD 互相平分,所以四边形ABCD 是平行四边形,根据矩形的判定条件,可得在不添加任何辅助线的前提下,要使四边形ABCD 成为矩形,还需添加一个条件,这个条件可以是一个角是直角或者对角线相等,从而得出答案.【解答】解:Q 对角线AC 与BD 互相平分,∴四边形ABCD 是平行四边形,要使四边形ABCD 成为矩形,需添加一个条件是:AC BD =或有个内角等于90度.故答案为:AC BD =或有个内角等于90度.9.如图,在ABC ∆,AB AC =,点D 为BC 的中点,AE 是BAC ∠外角的平分线,//DE AB 交AE 于E ,则四边形ADCE 的形状是 矩形 .【分析】首先利用外角性质得出B ACB FAE EAC ∠=∠=∠=∠,进而得到//AE CD ,即可求出四边形AEDB 是平行四边形,再利用平行四边形的性质求出四边形ADCE 是平行四边形,即可求出四边形ADCE 是矩形.【解答】证明:AB AC =Q ,B ACB ∴∠=∠,Q 点D 为BC 的中点,90ADC ∴∠=︒,AE Q 是BAC ∠的外角平分线,FAE EAC ∴∠=∠,B ACB FAE EAC ∠+∠=∠+∠Q ,B ACB FAE EAC ∴∠=∠=∠=∠,//AE CD ∴,又//DE AB Q ,∴四边形AEDB 是平行四边形,AE ∴平行且等于BD ,又BD DC =Q ,AE ∴平行且等于DC ,故四边形ADCE 是平行四边形,又90ADC ∠=︒Q ,∴平行四边形ADCE 是矩形.即四边形ADCE 是矩形.故答案为矩形.10.对角线 互相平分且相等 四边形是矩形.【分析】根据矩形的判定可得对角线互相平分且相等的四边形为矩形.【解答】解:由对角线互相平分且相等的四边形为矩形可知,故填:互相平分且相等.三.解答题(共3小题)11.在平行四边形ABCD 中,6AB =,10AC =,8AD =.求证:平行四边形ABCD 是矩形.【分析】根据勾股定理的逆定理得到90ABC ∠=︒,从而判定矩形.【解答】解:10AC =Q ,10BD AC ∴==,6AB =Q ,8AD =,222AC AB BC ∴=+,90ABD ∴∠=︒,∴平行四边形ABCD 是矩形.12.如图,AC 是ABCD Y 的对角线,延长BA 至点E ,使AE AB =,连接DE(1)求证:四边形ACDE 是平行四边形;(2)连接EC 交AD 于点O ,若2EOD B ∠=∠,求证:四边形ACDE 是矩形.【分析】(1)由平行四边形的性质可得AB CD =,//AB CD ,由一组对边平行且相等的四边形是平行四边形可证四边形ACDE 是平行四边形;(2)由三角形的外角可证ADC OCD ∠=∠,可得OC OD =,即可得AD EC =,可证四边形ACDE 是矩形.【解答】证明:(1)Q 四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,AE AB =Q ,AE CD ∴=,且//AB CD ,∴四边形ACDE 是平行四边形;(2)Q 四边形ABCD 是平行四边形,B ADC ∴∠=∠,2EOD B ∠=∠Q2EOD ADC ∴∠=∠,且EOD ADC OCD ∠=∠+∠, ADC OCD ∴∠=∠,OC OD ∴=,Q 四边形ACDE 是平行四边形;AO DO ∴=,EO CO =,且OC OD =, AD CE ∴=,∴四边形ACDE 是矩形.13.如图,AD 是ABC ∆的中线,//AE BC ,BE 交AD 于点F ,且AF DF =.(1)求证:AFE DFB ∆≅∆;(2)求证:四边形ADCE 是平行四边形;(3)当AB 、AC 之间满足什么条件时,四边形ADCE 是矩形.【分析】(1)由“AAS ”可证AFE DFB ∆≅∆;(2)由全等三角形的性质和中线性质可得AE CD =,且//AE BC ,可证四边形ADCE 是平行四边形;(3)由等腰三角形的性质可得AD BC ⊥,即可得四边形ADCE 是矩形.【解答】证明:(1)//AE BC Q ,AEF DBF ∴∠=∠,且AFE DFB ∠=∠,AF DF = ()AFE DFB AAS ∴∆≅∆(2)AFE DFB ∆≅∆Q ,AE BD ∴=,AD Q 是ABC ∆的中线,BD CD ∴=AE CD ∴=//AE BC Q∴四边形ADCE 是平行四边形;(3)当AB AC =时,四边形ADCE 是矩形; AB AC =Q ,AD 是ABC ∆的中线,AD BC ∴⊥,90ADC ∴∠=︒Q 四边形ADCE 是平行四边形∴四边形ADCE 是矩形∴当AB AC =时,四边形ADCE 是矩形.。
矩形的判定习题
矩形的判定习题
1.下列给出的条件中,不能判定一个四边形是矩形的是 ( ) A. 一组对边平行且相等,一个角是直角 B. 对角线互相平分且相等 C. 有三个角是直角
D. 一组对边平行,另一组对边相等,且对角线相等
2.如图,要使平行四边形ABCD 成为矩形,可以添加的条件是 ( )
C. ∠1=∠2
D.AC ⊥BD
3.如图所示,在四边形ABCD 中,点E,F,G,H 分别是边AB,BC,CD,DA
的中点,若四边形EFGH 是矩形,则下列说法正确的是 ( )
A.四边形ABCD 是矩形
B.四边形ABCD 一定是平行四边形
C. AC ⊥BD
D.AC=BD
4.如图,在平行四边形ABCD 中,延长AD 到点E ,使DE=AD ,连接EB,EC,DB 。
请你添加一个条件: ,使四边形DBCE 是矩形。
4.如图所示,四边形ABCD 中,AB=2cm,△AOB 为等边三角形,则BC=
A B
E
Cm.
XC6.如图所示,在四边形ABCD
中,对角线AC,BD 相交于点O ,延长OA 到点N,使ON=OB,再延长OC 到点M,
使CM=AN,求证:四边形NDMB 为矩形。
7.
如图,平行四边形ABCD 中,对角线AC,BD 相交于点O ,BE ∥AC 交DC 的延长线于点E ,BD=BE. (1)求证:四边形ABCD 是矩形;
(2)若∠AOB=60°,AB=4,求四边形ABED 的面积。
A
B
C
D
N
D
B
M A
B
C
D
E。
矩形的性质与判定习题
1、如图,在菱形ABCD中,AB=5,∠BCD=120°,则△ABC的周长等于()A.20 B.15 C.10 D. 52、顺次连接矩形四边中点得到的四边形一定是()A.正方形B.矩形C.菱形 D.平行四边形3、如图,菱形ABCD中,AB=2,∠A=120º,点P、Q、K分别为线段BC、CD、BD上任意一点,则PK+QK的最小值为………………………………………………()A.1 B. C.2 D.+14、如图,将一个长为,宽为的矩形纸片先按照从左向右对折,再按照从下向上的方向对折,沿所得矩形两邻边中点的连线(虚线)剪下(如图(1)),再打开,得到如图(2)所示的小菱形的面积为()A. B. C. D.(1)(2)5、如图,在菱形中,,∠,则对角线等于()A.20B.15C.10D.56、从菱形的钝角顶点向对角的两条边作垂线,垂足恰好是该边的中点,则菱形的内角中钝角的度数是()A.150°B. 135°C. 120°D. 100°7、如图5所示,有一个利用四边形的不稳定性制作的菱形晾衣架.已知其中每个菱形的边长为20cm,墙上悬挂晾衣架的两个铁钉A、B之间的距离为20cm,则∠1等于( )A.90°B.60°C.45°D.30°8、菱形的周长为4,两个相邻的内角的度数之比为1:2,则较短的对角线长为()A.2 B. C.1 D.9、如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是(3,4),则顶点M、N的坐标分别是()A.M(5,0),N(8,4) B.M(4,0),N(8,4)C.M(5,0),N(7,4) D.M(4,0),N(7,4)10、如图,在平面直角坐标系中,菱形ABCD的顶点C的坐标为(-1,0),点B的坐标为(0,2),点A在第二象限.直线与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位,当点D落在△MON的内部时(不包括三角形的边),则m的值可能是()A.1B.2C.4D.811、如右上图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求。
矩形的判定专题练习题
矩形的判定专题小练矩形的判定定理:1.定义:有一个角是直角的平行四边形叫做矩形.2.对角线相等的平行四边形是矩形.3.有三个角是直角的四边形是矩形.例1.如图,四边形ABCD是平行四边形,AC,BD交于点O,∠1=∠2,求证:四边形ABCD是矩形。
例2.如图,在△ABC中,AB=BC,BD平分∠ABC,四边形ABED是平行四边形,DE交BC于点F,连接CE。
求证:四边形BECD是平行四边形。
专题小练1.如图,在四边形ABCD中,//AB CD,∠BAD=90°,AB=5,BC=12,AC=13.求证:四边形ABCD是矩形.2.如图,在△ABC中,AB=AC,D为BC边的中点,以AB、BD为邻边作□ABCD,连接AD,EC.求证:四边形ADCE是矩形.3.已知:如图,在△ABC中,AB=AC,点D为BC中点,AN是△ABC外角∠CAM的平分线,CE ⊥AN,垂足为点E.求证:四边形ADCE为矩形.4.如图,在△ABC中,AB=AC,D为BC中点,四边形ABDE是平行四边形.求证:四边形ADCE 是矩形.5.如图,△ABC的中线AD、BE、CF相交于点G,H、I分别是BG、CG的中点.(1)求证:四边形EFHI是平行四边形;(2)当AD与BC满足条件时,四边形EFHI是矩形;6.如图所示,已知AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCED是矩形.7.已知:平行四边形ABCD中,E、F分别是AB、CD的中点,连接AF、CE.(1)求证:△BEC≌△DFA;(2)连接AC,若CA=CB,判断四边形AECF是什么特殊四边形?并证明你的结论.8.如图,将□ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.。
矩形的判定练习题
矩形的判定【基础诊断】1.如图18-2-16,在平行四边形ABCD 中,请添加一个条件:________(不再添加其他字母和辅助线),使得平行四边形ABCD 成为矩形.图18-2-162.②如图18-2-17,工人师傅砌门时,要想检验门框ABCD 是否符合设计要求(即门框是不是矩形),在确保两组对边分别平行的前提下,只要测量出对角线AC ,BD 的长度,然后看它们是否相等就可以判断了.图18-2-17(1)当AC ________(填“等于”或“不等于”)BD 时,门框符合要求; (2)这种做法的根据是________________________.3.已知:如图18-2-18,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,∠1=∠2.求证:平行四边形ABCD 是矩形.图18-2-18命题点 1 有一个角是直角的平行四边形是矩形4.如图18-2-19,在△ABC 中,AC =BC ,CD 平分∠ACB 交AB 于点D ,CE ∥AB ,且CE =12AB .求证:四边形CDBE 是矩形.图18-2-19命题点 2 有三个角是直角的四边形是矩形5.如图18-2-20,在四边形ABCD 中,AB ∥CD ,∠BAD =90°,AB =5,BC =12,AC =13.求证:四边形ABCD 是矩形.图18-2-206.已知:如图18-2-21所示,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC的外角∠CAM的平分线,CE⊥AN,垂足为E,猜想四边形ADCE的形状,并给予证明.图18-2-21命题点 3 对角线相等的平行四边形是矩形7.如图18-2-22,四边形ABCD的对角线互相平分,要使它成为矩形,那么可以添加的条件是( )图18-2-22A.AB=CD B.AD=BCC.AB=BC D.AC=BD8.如图8-2-23,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件:________,使四边形ABCD为矩形.图18-2-239.如图18-2-24,已知平行四边形ABCD中,E是BC的中点,连接AE并延长,交DC的延长线于点F,且AF=AD,连接BF,求证:四边形ABFC是矩形.图18-2-2410.如图18-2-25,平行四边形ABCD中,延长边AB到点E,使BE=AB,连接DE,BD和EC,设DE交BC于点O,∠BOD=2∠A.求证:四边形BECD是矩形.图18-2-25命题点 4 矩形的性质与判定11.如图18-2-26,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,M为EF的中点,则AM的最小值为( )图18-2-2612.矩形ABCD中,AB=2 cm,BC=5 cm,P,Q分别为AD,BC上的动点,点P从点D出发向点A运动,运动到点A时停止,点Q同时从点B出发向点C运动,运动到点C时停止,点P,Q的速度都是1 cm/s,设点P,Q运动的时间为t s.(1)如图18-2-27①,连接PQ,AQ,CP,当t=________时,四边形ABQP是矩形;⑧(2)如图18-2-27②,当点P,Q运动1 s时,连接AQ,CP,BP,DQ,AQ交BP于点H,CP 交DQ于点F,得到四边形HPFQ.求证:四边形HPFQ是矩形.图18-2-2713.如图18-2-28,以△ABC(∠BAC≠60°)的三边为边在BC的同一侧分别作三个等边三角形,即△ABD,△BCE,△ACF,请回答下列问题:(1)四边形ADEF是什么特殊形状的四边形(2)当△ABC满足什么条件时,四边形ADEF是矩形(3)为什么题中有条件∠BAC≠60°图18-2-28答案1.答案不唯一,如∠A =90°2.(1)等于 (2)对角线相等的平行四边形是矩形 3.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD . ∵∠1=∠2,∴OA =OB ,∴OA =OB =OC =OD ,即AC =BD ,∴平行四边形ABCD 是矩形. 4.证明:∵AC =BC ,CD 平分∠ACB 交AB 于点D , ∴CD ⊥AB ,AD =BD =12AB ,∴∠CDB =90°.∵CE =12AB ,∴CE =BD .∵CE ∥AB ,∴CE ∥BD , ∴四边形CDBE 是平行四边形. 又∵∠CDB =90°, ∴四边形CDBE 是矩形.5.证明:∵四边形ABCD 中,AB ∥CD ,∠BAD =90°,∴∠ADC =90°. 又∵△ABC 中,AB =5,BC =12,AC =13,满足132=52+122, ∴△ABC 是直角三角形,且∠B =90°, ∴四边形ABCD 是矩形. 6.解:四边形ADCE 是矩形. 证明:∵AB =AC ,AD ⊥BC , ∴AD 平分∠BAC ,即∠BAD =∠CAD . ∵AN 是△ABC 的外角∠CAM 的平分线, ∴∠MAN =∠CAN ,∴∠DAN =12∠BAC +12∠CAM =90°.又∵CE ⊥AN ,AD ⊥BC ,∴∠ADC =∠AEC =90°,∴四边形ADCE 是矩形.7.D [解析] 因为四边形ABCD 的对角线互相平分,所以四边形ABCD 是平行四边形,所以只需添加对角线相等即AC =BD ,即可得四边形ABCD 是矩形.8.答案不唯一,如AD =BC 等 [解析] 四边形ABCD 的对角线AC =BD ,所以只需添加条件使四边形ABCD 是平行四边形即可.因为AD ∥BC ,所以可以添加AD =BC ,即一组对边平行且相等的四边形是平行四边形.9.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AD =BC ,∴∠BAE =∠CFE ,∠ABE =∠FCE . ∵E 为BC 的中点,∴EB =EC ,∴△ABE ≌△FCE ,∴AB =CF . ∵AB ∥CF ,∴四边形ABFC 是平行四边形. ∵AF =AD ,∴BC =AF , ∴四边形ABFC 是矩形.10.证明:在平行四边形ABCD 中,∠A =∠BCD ,AB =CD ,AB ∥CD ,则BE ∥CD .又∵AB =BE ,∴BE =CD ,∴四边形BECD 为平行四边形,∴OD =OE ,OC =OB . ∵∠BOD =2∠A ,∠A =∠BCD ,∠BOD =∠OCD +∠ODC ,∴∠OCD =∠ODC , ∴OC =OD ,∴OC +OB =OD +OE ,即BC =ED , ∴四边形BECD 是矩形.11.D [解析] 连接AP .∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2, ∴∠BAC =90°.又∵PE ⊥AB 于点E ,PF ⊥AC 于点F ,∴四边形AEPF 是矩形,∴EF =AP . ∵M 是EF 的中点,∴AM =12EF =12AP .∵AP 的最小值为直角三角形ABC 斜边上的高,等于125,∴AM 的最小值是65.12.解:(1)52[解析] ∵四边形ABCD 是矩形,∴AD =BC =5 cm ,AD ∥BC ,∠B =90°.当AP =BQ 时,四边形ABQP 是矩形,即5-t =t ,解得t =52.(2)证明:在矩形ABCD 中,AD =BC ,AD ∥BC .∵当t =1时,PD =BQ =1 cm ,∴四边形DPBQ 是平行四边形,∴BP ∥DQ .∵AD =BC ,AD ∥BC ,DP =BQ ,∴AP =CQ ,AP ∥CQ ,∴四边形APCQ 是平行四边形,∴AQ ∥CP ,∴四边形HPFQ 是平行四边形.∵在矩形ABCD 中,∠ADC =∠ABQ =90°,AD =BC =5 cm ,AB =CD =2 cm ,由勾股定理得:CP = 5 cm ,BP =2 5 cm ,∴BP 2+CP 2=BC 2,∴∠BPC =90°,∴四边形HPFQ 是矩形.13.解:(1)四边形ADEF 是平行四边形. 理由:∵△ABD ,△EBC 都是等边三角形, ∴AD =BD =BA ,BC =BE =EC ,∠DBA =∠EBC =60°,∴∠DBE +∠EBA =∠ABC +∠EBA ,∴∠DBE =∠ABC . 在△DBE 和△ABC 中,∵BD =BA ,∠DBE =∠ABC ,BE =BC ,∴△DBE ≌△ABC , ∴DE =AC .又∵△ACF 是等边三角形, ∴AC =AF ,∴DE =AF . 同理可证:AD =EF ,∴四边形ADEF 是平行四边形.(2)∵四边形ADEF 是矩形,∴∠DAF =90°,∴∠BAC =360°-∠DAF -∠DAB -∠FAC =360°-90°-60°-60°=150°, ∴当∠BAC =150°时,四边形ADEF 是矩形.(3)当∠BAC =60°时,以A ,D ,E ,F 为顶点的四边形不存在.理由如下:若∠BAC=60°,则∠DAF=360°-∠BAC-∠DAB-∠FAC=360°-60°-60°-60°=180°.此时,A,D,E,F四点共线,∴此时以A,D,E,F为顶点的四边形不存在.。
人教版数学八年级下册:《18.2.2矩形的判定》练习含答案
《矩形的判定》练习题一、选择——基础知识运用1.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是()A.AB=CD,AD=BC,AC=BDB.AO=CO,BO=DO,∠A=90°C.∠A=∠C,∠B+∠C=180°,AC⊥BDD.∠A=∠B=90°,AC=BD2.检查一个门框是否为矩形,下列方法中正确的是()A.测量两条对角线,是否相等B.测量两条对角线,是否互相平分C.测量门框的三个角,是否都是直角D.测量两条对角线,是否互相垂直3.在四边形ABCD中,AC与BD相交于点O,且OA=OC,OB=OD.如果再增加条件AC=BD,此四边形一定是()A.正方形B.矩形C.菱形D.都有可能4.有下列说法:①四个角都相等的四边形是矩形;②有一组对边平行,有两个角为直角的四边形是矩形;③两组对边分别相等且有一个角为直角的四边形是矩形;④对角线相等且有一个角是直角的四边形是矩形;⑤对角线互相平分且相等的四边形是矩形;⑥一组对边平行,另一组对边相等且有一角为直角的四边形是矩形.其中,正确的个数是()A.2个B.3个C.4个D.5个5.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:对于两人的作业,下列说法正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对)二、解答——知识提高运用6.已知,平行四边形ABCD中,AB=5,AD=12,BD=13.求证:平行四边形ABCD是矩形。
7.如图所示,在□ABCD中,E为AD的中点,△CBE是等边三角形,求证:□ABCD是矩形。
8.已知:在△ABC中,∠A=90°,D,E分别是AB,AC上任意一点,M,N,P,Q分别是DE,BE,BC,CD的中点,求证:四边形PQMN是矩形。
9.如图,□ABCD与□ABEF中,BC=BE,∠ABC=∠ABE,求证:四边形EFDC是矩形。
矩形的判定练习题
矩形的判定练习题一、选择题1. 一个四边形的对边相等,它可能是以下哪种图形?A. 正方形B. 矩形C. 菱形D. 梯形2. 一个四边形的对角线相等,且互相平分,它是什么形状?A. 平行四边形B. 矩形C. 菱形D. 梯形3. 一个四边形的对角线垂直相交,且互相平分,它是什么形状?A. 平行四边形B. 矩形C. 菱形D. 正方形4. 一个四边形的对角线相等,且互相垂直,它是什么形状?A. 平行四边形B. 矩形C. 菱形D. 正方形二、填空题5. 矩形的四个角都是________度。
6. 如果一个四边形的对角线互相平分,那么它一定是________。
7. 一个四边形的对边相等,且对角线相等,那么它可能是________或________。
8. 一个四边形的对边平行且相等,那么它一定是________。
三、判断题9. 一个四边形的对边相等,它一定是矩形。
()10. 一个四边形的对角线相等,它一定是矩形。
()11. 一个四边形的对角线互相垂直,它一定是矩形。
()12. 一个四边形的对角线互相垂直且相等,它一定是正方形。
()四、简答题13. 请描述矩形的四个判定定理。
14. 矩形和正方形有哪些共同点和不同点?五、计算题15. 已知矩形ABCD的对角线AC和BD相交于点O,且AB=3cm,BC=4cm,求对角线AC的长度。
六、证明题16. 已知四边形ABCD是矩形,E是AD上的一点,F是BC上的一点,且AE=CF。
求证:BF=DE。
七、应用题17. 在矩形ABCD中,AB=6cm,BC=8cm,点P是AD上的一点,且AP=2cm。
求点P到BC的距离。
八、作图题18. 根据题目要求,作一个矩形,使其长为10cm,宽为5cm,并画出其对角线。
九、探索题19. 探索矩形的面积和周长与对角线的关系。
十、综合题20. 在矩形ABCD中,AB=4cm,BC=6cm,点E在AD上,点F在CD上,且AE=DF。
求矩形ABCD的面积。
矩形练习题及答案
矩形练习题及答案练习题1:在一个矩形中,如果长是宽的两倍,且矩形的周长为24厘米,求矩形的长和宽。
答案:设矩形的宽为x厘米,那么长为2x厘米。
根据周长公式:周长 = 2 * (长 + 宽),我们有:24 = 2 * (2x + x)24 = 6xx = 4所以,矩形的宽为4厘米,长为2 * 4 = 8厘米。
练习题2:如果一个矩形的面积为48平方厘米,且长比宽多6厘米,求矩形的长和宽。
答案:设矩形的宽为y厘米,那么长为y + 6厘米。
根据面积公式:面积 = 长 * 宽,我们有:48 = y * (y + 6)48 = y^2 + 6yy^2 + 6y - 48 = 0解这个二次方程,我们得到y = 6 或 y = -8(舍去负数解,因为宽度不能为负数)。
所以,矩形的宽为6厘米,长为6 + 6 = 12厘米。
练习题3:一个矩形的长是15厘米,宽是10厘米,求这个矩形的对角线长度。
答案:根据勾股定理,矩形的对角线长度可以通过以下公式计算:对角线长度= √(长^2 + 宽^2)= √(15^2 + 10^2)= √(225 + 100)= √325= 18.03厘米(保留两位小数)。
练习题4:一个矩形的长是20厘米,宽是16厘米,求这个矩形的外接圆半径。
答案:矩形的外接圆半径等于对角线的一半。
首先计算对角线长度:对角线长度= √(长^2 + 宽^2)= √(20^2 + 16^2)= √(400 + 256)= √656= 25.61厘米(保留两位小数)。
外接圆半径 = 对角线长度 / 2= 25.61 / 2= 12.805厘米(保留三位小数)。
练习题5:在一个矩形的四个角上各剪去一个边长为3厘米的正方形,求剩余部分的面积。
答案:设原矩形的长为L厘米,宽为W厘米。
剪去四个角后,剩余部分的长为L - 2 * 3厘米,宽为W - 2 * 3厘米。
剩余部分的面积 = (L - 6) * (W - 6)如果原矩形的长和宽未知,我们无法计算具体数值,但公式已经给出。
矩形的性质与判定习题
矩形性质及判定练习一、基础练习 1.矩形的对边___________,对角线__________ 且 __________,四个角都是_________。
2.平行四边形没有而矩形具有的性质是( )A 、对角线相等B 、对角线互相垂直C 、对角线互相平分D 、对角相等3、下列叙述错误的是( )A.平行四边形的对角线互相平分。
B.平行四边形的四个内角相等。
C.矩形的对角线相等。
D.有一个角时90º的平行四边形是矩形4.矩形ABCD 的对角线相交于点O ,如果ABC ∆的周长比AOB ∆的周长大10cm ,则AD 的长是( )A 、5cmB 、7.5cmC 、10cmD 、12.5cm5、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形6.下列命题中正确的是( )A .对角线相等的四边形是矩形B .对角相等且有一个角是直角的四边形是矩形C .有一个角是直角的四边形是矩形D .内角都相等的四边形是矩形7.下列条件中,能判断一个四边形是矩形的是( )A. 对角相等B. 对角线互相垂直C. 对角线互相垂直且相等D. 对角线互相平分且相等8.下列给出的条件中,不能判断一个四边形是矩形的是( )A.一组对边平行,另一组对边相等.且两条对角线相等B. 有三个角都是直角C. 两条对角线把四边形分成两对全等的等腰三角形D. 一组对边平行且相等,有一个内角是直角9.四边形ABCD 的对角线交于点O ,在下列条件中,不能说明它是矩形的是 ( )A. AB=CD ,AD=BC ,∠BAD =90°B.∠BAD=∠ABC =90°,∠BAD+∠ADC=180°C .∠BAD=∠BCD,∠ABC+∠ADC=180° D. AO=CO,BO=DO,AC=BD10.若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( )A .一般平行四边形B .对角线互相垂直的四边形C .对角线相等的四边形D .矩形11.下列条件中,不能判定四边形ABCD 为矩形的是( ).A .AB ∥CD ,AB=CD ,AC=BD B .∠A=∠B=∠D=90°C .AB=BC ,AD=CD ,且∠C=90° D .AB=CD ,AD=BC ,∠A=90°二、解答题1.如图,已知矩形ABCD 的两条对角线相交于O ,︒=∠120AOD ,AD=8cm ,AC=4cm ,求此矩形的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
A D
1.下列命题中正确的是( )
A .对角线相等的四边形是矩形
B .对角相等且有一个角是直角的四边形是矩形
C .有一个角是直角的四边形是矩形
D .内角都相等的四边形是矩形 2.下列条件中,能判断一个四边形是矩形的是( ) A. 对角相等 B. 对角线互相垂直
C. 对角线互相垂直且相等
D. 对角线互相平分且相等 3.下列给出的条件中,不能判断一个四边形是矩形的是( ) A.一组对边平行,另一组对边相等.且两条对角线相等 B. 有三个角都是直角
C. 两条对角线把四边形分成两对全等的等腰三角形
D. 一组对边平行且相等,有一个内角是直角
4.四边形ABCD 的对角线交于点O ,在下列条件中,不能说明它是矩形的是 ( ) A. AB=CD ,AD=BC ,∠BAD =90° B.∠BAD=∠ABC =90°,∠BAD+∠ADC=180° C.∠BAD=∠BCD,∠ABC+∠ADC=180° D. AO=CO,BO=DO,AC=BD
5.若顺次连结一个四边形的四边中点所组成的四边形是矩形,则原四边形一定是( ) A .一般平行四边形 B .对角线互相垂直的四边形 C .对角线相等的四边形 D .矩形 6.下列条件中,不能判定四边形ABCD 为矩形的是( ). A .AB ∥CD ,AB=CD ,AC=BD B .∠A=∠B=∠D=90° C .AB=BC ,AD=CD ,且∠C=90° D .AB=CD ,AD=BC ,∠A=90°
7.如图,在扇形中,∠AOB =90度,OA=5,C 是弧AB 上一点,且CD ⊥
OB ,CE ⊥OA ,垂足分别为点D 、E ,则DE = .
8.如图,两张宽为1cm 的矩形纸条交叉叠放,其中重叠部分部分是四边形 ABCD,已知∠BAD=60°则重叠部分的面积是 cm 2
.
1. 如图,矩形ABCD 的对角线相交于点O ,OF ⊥BC ,CE ⊥BD ,
OE :BE=1:3,OF=4,求∠ADB 的度数和BD 的长。
O
F
E
D
C
B
A
2. 如图所示,矩形ABCD 中,M 是BC 的中点,且MA ⊥MD ,
若矩形的周长为36cm ,求此矩形的面积。
3. 折叠矩形纸片ABCD ,先折出折痕BD ,再折叠使AD 边与对
角线BD 重合,得折痕DG ,如图,若AB=2,BC=1,求AG 。
4. 已知:如图,平行四边形ABCD 的四个内角的平分线分
别相交于点E ,F ,G ,H ,求证:四边形EFGH 是矩形。
G
E
D
C
B
A
N
M D
C
B
A
5. 如图,在矩形ABCD 中,E 是AD 上一点,F 是AB
上一点,EF CE =,且,2EF CE DE cm ⊥=,矩形ABCD 的周长为16cm ,求AE 与CF 的长.
6. 已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上 的点,且EF =ED ,EF ⊥ED .求证:AE 平分∠BAD .
7.已知:如图,四边形ABCD 是由两个全等的正三角形ABD 和BCD 组 成的,M 、N•分别为BC 、AD 的中点.求证:四边形BMDN 是矩形.
F E B A O
D
A C
B 8.已知:如图,AB=A
C ,AE=AF ,且∠EAB=∠FAC ,EF=BC .求证:四边形EBCF 是矩形.
9.如图,已知平行四边形ABCD 的对角线AC 、BD 相交于点O ,△AOB 是等边三角形, AB=4cm.
(1)平行四边形ABCD 是矩形吗?说明理由。
(2)求平行四边形ABCD 的面积。
10.如图,在梯形ABCD 中,AD BC AB DE AF DC E F ∥,∥,∥,、两点在边BC 上,且四边形AEFD 是平行四边形.
(1)AD 与BC 有何等量关系?请说明理由;
(2)当AB DC 时,求证:□AEFD 是矩形.
A
D C B。