高等数学利用柱面坐标和球面坐标计算三重积分
三重积分在柱面及球坐标系下的计算
= ∫ dθ ∫
0
2π
R
0
1 2 1 4 2 ( R − ρ ) ρdρ = πR . 2 4
思考: 思考:是否可考虑用切片法来求解?
例2 计算三重积分I = ∫∫∫ ( x + y )dv,
2 2 (V )
z
其中(V )由z = x 2 + y 2 , z = h所围.
解 (V )在xoy面投影域(σ )为圆 : 0 ≤ ρ ≤ h , xy
π
4
θ
y
,0 ≤ ρ ≤ R.
x
∴ I = ∫ dθ
0
2π
∫
π /4
0
dϕ
∫
R
0
ρ 2 ⋅ ρ 2sinϕ dρ
2− 2 5 = πR . 5
练习 试用三种坐标系分别计算三重积分
z
2
σz
I = ∫∫∫ zdv, 其中(V ) : x 2 + y 2 + z 2 ≤ 2 z.
(V )
解法1 解法 直角坐标系(切片法)
1
= 2π ∫ ρ ⋅ 2 1 − ρ 2 dρ
1
4π = . 3
0
解法3 解法 球面坐标系计算
∫∫∫ zdv
(V )
z
2
x2 + y2 + z2 = 2z
球面为 : ρ = 2 cos ϕ , 其中
0 ≤ θ ≤ 2π ,0 ≤ ϕ ≤
ϕ
o
π
2
,0 ≤ ρ ≤ 2 cos ϕ .
θ
ρ cos ϕ ⋅ ρ 2 sin ϕdρ
z
• •
其中(V )由z = R 2 − x 2 − y 2 与 z = 0所围.
柱面坐标系和球面坐标系求三重积分
z x2 y2所围 .
分析 (V )为由半球面与锥面所围,
故可用球面坐标,
y
此 ,0 时 2 ,0 ,0R . x
4
2
I d
/4
d
R22sind
0
0
0
2 2 R5.
5
练习 试用三种坐标系算 分三 别重 计积分
I zdv,其中(V): x2 y2 z2 2z. (V)
解法1 直角坐标(切 系片法 )
x
则 (V )f(c o,s si,n z)d d dz ,
]d d
[ z2(,)f(co ,ssin,z)dz
( ) z1(,)
例1 计算三重积I分 (Vz)dv,
其中(V)由z R2 x2 y2与 z 0所围.
解 (V )向 xo 面 y 投 (x)y 为 影 :0 圆 R , 02 x
I d d
zdz
0
0 1 1 2
x
2012 12d
4 . 3
•1
xy
解法3 球面坐标系计算zdv (V) x2y2z22z
z
2
球面 : 为 2co,s其中
02 ,0,02co .s
2
o
y
I 2d /2d 2coscos2sxind
0
0
0
2/24co5ssind 4 .
0
3
z
h•
此,时 2zh.
I [ h 2dz ]dd ( xy ) 2
•
o•
x
y
( xy )
2d h(3h5)d
0
0
1 h3.
6
思考:本题是否也可考虑用切片法来求解?
4-2-2 球面坐标系下三重积分的计算
柱面坐标求三重积分
柱面坐标求三重积分引言积分在数学和科学中起着非常重要的作用,它可以帮助我们求解曲线、曲面和体积等问题。
在三维空间中,我们经常遇到需要求解三重积分的情况。
本文将介绍柱面坐标系下求解三重积分的方法和步骤。
什么是柱面坐标系柱面坐标系是一种常用的三维坐标系,它使用极径r、极角θ和z轴坐标z来描述空间中的点。
在柱面坐标系中,一个点的坐标可以表示为(r,θ,z),其中r表示点到z轴的距离,θ表示点在x-y平面上的极角,z表示点在z轴上的高度。
柱面坐标系下的坐标变换在求解柱面坐标系下的三重积分之前,我们需要了解柱面坐标系和直角坐标系之间的坐标变换关系。
根据几何关系可以得到以下变换公式:•x=rcos(θ)•y=rsin(θ)•z=z这些公式可以帮助我们将直角坐标系下的积分问题转换为柱面坐标系下的积分问题。
柱面坐标系下的积分元素在柱面坐标系下,积分元素可以表示为dV=r dr dθ dz,其中r表示点到z轴的距离,dr表示r的微小变化量,θ表示点在平面上的极角,dθ表示θ的微小变化量,dz表示z轴坐标的微小变化量。
柱面坐标系下的三重积分使用柱面坐标系求解三重积分的步骤如下:1.确定积分区域:首先需要确定积分区域,可以通过图形来确定。
在柱面坐标系下,积分区域可以使用极坐标和直角坐标的关系来表示。
2.写出被积函数:根据问题的具体要求,将被积函数用柱面坐标系下的变量表示。
3.确定积分限:根据积分区域的几何性质,确定积分区域的上下限。
4.变量代换:根据柱面坐标系和直角坐标系之间的坐标变换关系,将被积函数和积分元素用柱面坐标表示。
5.进行积分计算:根据确定的积分限和变量代换,进行积分计算。
柱面坐标系下的应用举例例子1:求解柱面体的体积柱面体是由一个半径为R的圆在z轴上从z=a到z=b旋转一周形成的立体。
我们希望求解柱面体的体积。
1.积分区域:由于柱面体是由圆旋转形成的,因此积分区域可以用圆的极坐标来表示:0≤r≤R,0≤θ≤2π,a≤z≤b。
利用柱面坐标计算三重积分x^2+y^2dv
利用柱面坐标计算三重积分 x^2 + y^2 dv在数学中,三重积分是一种计算多变量函数在三维空间内某个区域上的积分的方法。
本文将探讨如何利用柱面坐标系统来计算三重积分x2+y2。
首先,让我们回顾一下柱面坐标。
在三维空间中,柱面坐标由极径r、极角$\\theta$ 和高度z来描述一个点的位置。
其中,$x = r\\cos(\\theta)$,$y =r\\sin(\\theta)$,z保持不变。
假设我们需要计算的三重积分为:$$ \\iiint_D x^2 + y^2 \\, dV $$其中D为一个柱面和平面z=0所围成的区域。
我们可以通过柱面坐标来简化这个积分。
首先,将x和y换成柱面坐标表示:$x = r\\cos(\\theta)$,$y = r\\sin(\\theta)$。
然后,计算体积元素dV。
在柱面坐标下,体积元素dV可表示为:$dV = r\\, dr\\, d\\theta\\, dz$。
将x和y用柱面坐标表示,将dV替换为 $r\\, dr\\, d\\theta\\, dz$,我们可以将原积分转换为柱面坐标下的积分形式:$$ \\iiint_D (r^2\\cos^2(\\theta) + r^2\\sin^2(\\theta)) \\, r\\, dr\\,d\\theta\\, dz $$即$$ \\iiint_D r^3\\, dr\\, d\\theta\\, dz $$接下来,我们可以按照柱面坐标系下的积分计算方法进行计算:$$ \\int_0^{2\\pi} \\int_0^R \\int_0^H r^3\\, dr\\, dz\\, d\\theta $$,其中R代表柱面的半径,H代表柱面的高度。
继续计算得到$$ \\int_0^{2\\pi} \\int_0^R \\left. \\frac{1}{4}r^4 \\right|_0^H dz\\,d\\theta \\\\ = \\int_0^{2\\pi} \\int_0^R \\frac{1}{4}H^4 dz\\, d\\theta \\\\ =\\int_0^{2\\pi} \\frac{1}{4}H^4R d\\theta \\\\ = \\frac{1}{4}H^4R\\int_0^{2\\pi} d\\theta \\\\ = 2\\pi \\cdot \\frac{1}{4}H^4R \\\\ =\\frac{1}{2}\\pi H^4R $$因此,利用柱面坐标计算三重积分 $\\iiint_D x^2 + y^2 \\, dV$ 的结果为$\\frac{1}{2}\\pi H^4R$。
柱坐标、球坐标下的三重积分
解:由图知:直角系:
D
y
x
2
4 x2
6x2 y2
I dx
dy
f (x, y, z)dz
2
4x2
x2 y2
柱标系: I
2
d
2
rdr
6r 2
f (r cos , r sin , z)dz
0
0
r
杂例
在三种坐标系下化三重积分 f (x, y, z)dv为三次积分,
z
其中:z 6 x2 y2, z x2 y2 z 6 x2 y2 6
四、柱坐标、球坐标下的三重积分
1. 柱坐标:(θ,r,z)
zz
变换为:x r cos , y r sin , z z
即:(x, y, z) (r cos , r sin , z),其中:
0 r ,0 2 ,| J || (x, y, z) | r ( , r, z)
x
注:柱坐标— 极坐标平面竖起一根Z轴。x
上顶: z 1 x2 y2
下底: z = 0
z
Dxy: x 2 y 2 1
x y
I dxdy
zdz
Dxy
用哪种坐标? 柱面坐标 .
.
2π
1
1r 2
I = 0 dθ 0 rdr0 zdz
Dxy 0
1
4
x
z0
1y
注:用柱坐标求 fdv分成两个步骤:
第一步:先一后二,对z积分后将二重积分化为极坐 标下的二重积分;
元素区域由六个坐标面围成:
半平面及+d ;
半径为r及 r+dr的园柱面;
平面 z及 z+dz;
dz
柱面坐标和球面坐标计算定积分
设 M ( x, y, z) 为空间内一点,并设点M 在
xoy 面上的投影 P 的极坐标为r,,则这样的三 个数 r, , z 就叫点 M 的柱面坐标.
z
规定: 0 r ,
0 2,
z .
• M(x, y,z)
or
•
y
P(r, )
x
如图,三坐标面分别为
r 为常数
三个有次序的数r,, 来确定,其中r 为原 点 O 与点 M 间的距离, 为有向线段 OM与 z 轴正向所夹的角, 为从正 z 轴来看自 x 轴按
逆时针方向转到有向线段 OP 的角,这里 P 为
点 M 在 xoy 面上的投影,这样的三个数 r,, 就叫做点 M 的球面坐标.
规定: 0 r , 0 , 0 2.
y
r
sin
sin
,
z r cos .
如图,
z
球面坐标系中的体积元素为
dv r2 sindrdd ,
f ( x, y, z)dxdydz
dr
d r sin
r
o
d
x
r sind rd
d
y
f (r sin cos ,r sin sin ,r cos )r2 sindrdd .
例 3 计算 I ( x2 y2 )dxdydz,其中 是锥面
1 8
I1 rdrd r2 fdz
D1
2
2
d
0
2
4
dr
0
8
r2
r
r
2dz
2
45 3
,
2
I2 rdrd r2 fdz
D2
2
利用柱面坐标和球面坐标计算三重积分
2
D2 : x2 y 2 4, 2 :
D1 D2
0 2
0 r 2
r
2
z
. 2
2
I I1 I2
( x2 y2 )dxdydz ( x2 y2 )dxdydz,
1 8
I1 rdrd r2 fdz
D1
2
2
d
0
2
4
dr
0
8
r2
r
r
2dz
2
45 3
,
2
3.5 利用柱面坐标和球面坐标 计算三重积分
一、利用柱面坐标计算三重积分 二、利用球面坐标计算三重积分
三、小结
一、利用柱面坐标计算三重积分
设 M ( x, y, z) 为空间内一点,并设点M 在
xoy 面上的投影 P 的极坐标为r,,则这样的三 个数 r, , z 就叫点 M 的柱面坐标.
z
规定: 0 r ,
0 2,
z .
• M(x, y,z)
or
•
y
P(r, )
x
如图,三坐标面分别为
r 为常数
圆柱面;
z
为常数
z 为常数
半平面; 平 面.
• M (x, y, z)
z
柱面坐标与直角坐 标的关系为
or
• P(r, )
y
x r cos ,
y
r
sin
,
x
z z.
如图,柱面坐标系 中的体积元素为
x2 y2 z2, 与平面z a (a 0) 所围的立体.
解: 采用球面坐标
za r a , cos
x2 y2 z2 ,
4
: 0 r a , 0 , 0 2,
利用柱面坐标计算三重积分
z
j r
zdv
dvΒιβλιοθήκη zdvO
dv
a 2 0 2
.
q
x
a y
dv 2 dj dq
2
0
0
2a 3 , r sin jdr 3
a
1 a4 , zdv 2 dj dq r cos j r 2 sin jdr 2 0 0 0 2 4 3a 3a 因此`z .重心为(0,0, ). 8 8
§9.5 利用柱面坐标和球面坐标计算三重积分
一、利用柱面坐标计算三重积分
柱面坐标、 柱面坐标系的坐标面 直角坐标与柱面坐标的关系、柱面坐标系中的体积元素
柱面坐标系中的三重积分
二、利用球面坐标计算三重积分
球面坐标、球面坐标系的坐标面 直角坐标与球面坐标的关系、球面坐标系中的体积元素 球面坐标系中的三重积分
,r sin q ,z) rdrdqdz.
例1 例1 利用柱面坐标计算三重积分 zdxdydz,其中是由曲
面 zx2y2 与平面 z4 所围成的闭区域.
z 4 zx2y2 或 zr2
解 闭区域可表示为:
r 2z4,0r2,0q2. 于是
zdxdydz zrdrdqdz
2 r sin jdrdjdq dq sin j dj r 4 dr a 2 M , 0 0 0 5
4 3
2
3
a
4 3 其中 M a 为球体的质量. 3
一、利用柱面坐标计算三重积分
设M(x, y, z)为空间内一点,则点M与数 r、q 、z相对应, 其中P(r, q )为点M在xOy面上的投影的极坐标. 三个数 r、q 、z 叫做点M 的柱面坐标. z 这里规定r、q 、z的变化范围为: 0 r<, 0 q 2 , < z<. O x r y P(r, q ) y z
谈谈三重积分的定限方法
谈谈三重积分的定限方法计算三重积分的基本方法是将三重积分化为三次积分来计算,而这里的一个关键问题是如何根据积分区域Ω来定限,下面分别介绍一下利用直角坐标,柱面坐标,球面坐标计算三重积分时如何定限的方法。
一、利用直角坐标计算三重积分时如何定限? 教材中将积分区域Ω表示为:}),()(:),(),,(),(),,{(2121b x a x y x y x y x z y x z y x yy D zz xy ≤≤≤≤∈≤≤=Ω(1)从而将三重积分化为三次积分为:⎰⎰⎰⎰⎰⎰Ω=D z z dz z y x f dxdy dv z y x f xyy x y x ),(),(21),,(),,(=dz y y z z z y x f dy dx x x y x y x ba ⎰⎰⎰)()(),(),(2121),,(这个公式也称为“先一后二”积分公式。
(上述公式是将Ω向xoy 平面投影得到的,将Ω向其他坐标平面投影可得到类似的公式)当积分区域的几何形体较简单时,容易写出Ω的集合表达式(1),但积分的区域的立方图形通常难以画出,因此确定Ω的集合表达式(1)较困难。
为了解决这个困难。
下面介绍一个所谓“求围定顶”的定限法:称(1)式中),(1y x z ,),(2y x z 分别为区域Ω的下顶和上顶,以D xy 的边界曲线为准线,母线平行于Z 轴的柱面,位于下顶和上顶之间的部分称为Ω的“围墙”,Dxy的边界曲线称为“围线”,(它是投影柱面与xoy 平面的交线),下面分三种情况来介绍“求围定顶”的定限法。
1.设Ω由曲面),(y x h z =与),(y x g z =围成,不出现“围墙”,此时两曲面的交线在xoy 平面上的投影即为“围线”。
例 1.化三重积分⎰⎰⎰Ωυd z y x f ),,(为三次积分,其中Ω为由曲面2222,2x z y x z -=+=围成的闭区域例:“求围” 由方程组{22222xz y x z -=+=消去z 得两曲面交线在xoy 平面上的投影,即“围线”:122=+y x ,因此1:22≤+y x D xy ,即 .11,11:22≤≤--≤≤--x x y x D xy“定顶” 在Dxy内任取一点代入两曲面方程),(y x h z =,),(y x g z =得到两个z 的值,大者为上顶,小者为下顶。
柱面坐标计算三重积分
柱面坐标计算三重积分三重积分是在三维空间中对一个三变量函数进行积分的数学工具,用于计算复杂空间内的体积、质量等物理量。
柱面坐标是一种常用于处理旋转对称问题的坐标系,利用柱面坐标可以简化三维空间中的积分计算问题。
本文将介绍如何使用柱面坐标系来计算三重积分的具体方法。
柱面坐标系简介在三维空间中,柱面坐标系由极径(ρ)、极角(θ)、高度(z)这三个坐标轴来描述一个点的位置。
其中,极径ρ表示从原点到点的距离,极角θ表示点在xy平面上的投影与x轴正半轴的夹角,高度z则表示点在z轴上的位置。
柱面坐标系下,点的坐标表达为(ρ, θ, z)。
三重积分概述对于一个三变量函数f(x, y, z),其在柱面坐标系下的三重积分计算公式如下所示:∭f(x, y, z)dV = ∬∫f(ρsinθ, ρcosθ, z)ρdρdθdz其中,dV = ρdρdθdz表示三维空间中的微元体积,f(ρsinθ, ρcosθ, z)表示函数在柱面坐标系下的具体形式。
柱面坐标计算三重积分步骤1.确定积分区域:首先需要确定积分区域在柱面坐标系下的表示方式,即确定极径、极角和高度的取值范围。
2.建立积分限:在确定积分区域后,建立对应的积分限,极径、极角和高度的取值范围即为积分限。
3.变量替换:将函数f(x, y, z)中的x、y、z用极径ρ、极角θ、高度z表示,并将dx dy dz替换为ρdρdθdz。
4.进行积分:根据以上步骤,将被积函数替换为柱面坐标系下的形式,然后进行对应的积分计算。
通过以上步骤,即可利用柱面坐标系来计算三重积分,求解复杂空间内的体积、质量等物理量。
总结本文介绍了柱面坐标系下计算三重积分的基本方法和步骤,通过建立合适的积分区域、确定积分限、进行变量替换和积分计算,可以简化复杂空间内的计算问题。
利用柱面坐标系进行三重积分的计算,有助于解决旋转对称问题和提高计算效率,是一种常用且有效的数学工具。
希望本文能够对读者理解柱面坐标计算三重积分提供帮助,进一步掌握在三维空间中的积分计算方法。
利用柱面坐标和球面坐标
o
y
为常数 半平
面.
x
球面坐标与直角坐标的关系为
x r sin cos ,
y
r
sin
sin
,
z r cos .
z
r M(x,y,z)
z
o
x
A
y
x
P
y
如图, 球面坐标系中的体积元素为
d vr2sin dd r d,
z
dr
d
rsin
r
rsin d
例3 计算三重积分 (x2y2)dv, 其中 是由曲
面 z x2y2与平 zH 面 (H0)所围成
z
解 将 向 xoy 面投影,得
D: x2y2H2
HH
或
D:
0 2,
0rH.
过 (r, )∈D 做平行于 z 轴
的直线,得
rzH .
o(r,)
r sin cos , r sin sin , r cos.
02d0 co2ssinr551 0d d vr2sin drd d
1 50 2 d0 co 2sin d
1 50 2d0 co 2s d(co ) s
例4 用球面坐标计算 z2dv . 其中
z
: x2y2z21.
解 画 图。
o
y
确定 r, , 的上下限。 x
(1) 将 向 xoy 面投影,得
0 2 .
(2) 任取一 [0,2],过 z 轴作半平面,得
0.
(3) 在半平面上,任取一 [0,], 过原点作
rd
d
高等数学利用球坐标计算三重积分
D
xD
y
17
例1. 求由曲面 z x2 y2 与 z 2 ( x2 y2 )
所围立体 的体积 V .
提示: 先求曲面的交线在 xoy 面上的投影域 D.
由
z x2 y2
z 2 ( x2 y2 )
z2 2 ( x2 y2 ) 2 z
消去 z 得D 的边界 x2 y2 1
和
所围成的体积 V 和表面积 S .
解: (1) 易求出
利用二重积分,得
30
(2)
31
所截
A
D
1
zx2
z
2 y
dxd y
D 1 x2 y2 dxdy
2
d
R
1 r 2 r dr
0
0
2
[ (1
R
2
)
3 2
1) ]
3
26
例2 求球面 x2 y2 z2 a2,含在圆柱体 x2 y2 ax内部的那部分面积.
解 由对称性知 A 4A1,
D1: x2 y2 ax ( x, y 0)
z0
V (z2 z1)d D (2 r2 r2)rdrd
z1 x2 y2 o
1y
x
D
2
d
2
2
1r3dr 0
2
18
D
例2. 求球体 x2 y 2 z 2 R2与 x2 y 2 z 2 2Rz
公共部分体积.
解:求两球交线的投影. 由
x2 y2 z2 R2
x2 y2 z2 2Rz 消去 z 得 x2 y2 3 R2 D
dv r2 sin drd d
5
5
例3. 设由锥面
和球面
三重积分柱面球面坐标
0
d
.
y
rcos ) r 2 sin drdd
x
19
目录 上页 下页 返回 结束
f ( x, y, z)dxd ydz
F (r , , ) r 2 sin d r d d
其中 F (r , , ) f (r sin cos , r sin sin , r cos )
第三节 三重积分
一、三重积分的概念 二、三重积分的计算
第十章
1
目录 上页 下页 返回 结束
利用柱面坐标计算 三重积分。
2
目录 上页 下页 返回 结束
2. 利用柱面坐标计算三重积分。
回忆用投影法(先一后二)计算三重积分
z2 ( x , y )
1
f ( x, y, z)dV dxdyz ( x, y )
球面坐标下的体积元素
z
元素区域由六个坐标面围成: 半平面 及+d ; 半径为r及r+dr的球面; 圆锥面及+d
rsind
dV = r 2 sin drdd
dV
r
f ( x , y, z )dxdydz
f (r sin cos , r sin sin ,
适用范围:
1) 积分域表面用球面坐标表示时方程简单; 2) 被积函数用球面坐标表示时变量互相分离.
20
目录 上页 下页 返回 结束
下面介绍一些区域的球面 坐标的描述
21
目录 上页 下页 返回 结束
直角坐标 球体
球面坐标
: x 2 y 2 z 2 R2
: 0 2 0 0r R
齐民友高数下册上课第10章05柱面坐标与求面坐标系中三重积分的计算(1)
第5节 柱面坐标与球面坐标系下三重积分的计算5.1 利用柱面坐标计算三重积分我们不按课本上的讲法,换一种讲法。
用柱面坐标计算三重积分的步骤: (1)把三重积分写成二套一:将往xOy 平面投影得xy D,设的小z 边界1(,)zz x y 大z 边界2(,)zz x y ,则21(,)(,)(,,)d (,,)xyz x y z x y D f x y z vdxdyf xy z dz(2)用极坐标计算外层的二重积分: 设12(,)|()(),xyD则212211(,)(,)()(cos ,sin )()(cos ,sin )(,,)d (,,) (cos ,sin ,)xyz x y z x y D z z f x y z vdxdyf x y z dzd df zdz注意:用极坐标计算外层二重积分时,总是先对后对积分;用坐标关系cos x ,sin y 代入被积函数和里层定积分的上下限,z不动,并且外层面积元素多一个因子,即dxdyd d ,或说体积元素dxdydzd d dz .当然,当投影区域xy D 的边界有圆弧或被积函数有22x y 时用柱面坐标计算简单。
离 散数 学【例5.1】 计算三重积分22()d xy v ,其中是由曲线220y z x绕z轴旋转一周而成的曲面与平面2z所围成的区域.解 旋转面的方程为:222x yz .如图5.1所示,将积分区域投影到xOy 面,得投影区域为:22(,)|4xyD x y x y .的小z 边界222x y z 大z 边界2z 。
积分区域为:222212(,,)|()2,4x y z x y zx y ,所以2222222222222100222220246()d () 1 d(2)d 211162()2123xy x y D xy vdxdy x y dz d ddz图5.1我们看到,上面计算方法中,用,,z 作坐标(变量)。
设空间有一点(,,)M x y z .并设M 在xOy 面上的投影点P 的极坐标为,,则这样三个数,,z 就叫做点M 的柱面坐标.一般地,,z 的取值范围为: 0,02,z .容易看出,所谓柱面坐标,就是:z 不变还是z ,而,x y 换成极坐标。
高数讲义第三节三重积分(二)
Dxy : 0 2 , 0 a
x2 y2 z2 z ,
4
o
y
: 0 2 , 0 a, z a, x
Dxy
I ( x2 y2 )dxdydz 02 d 0ad a 2dz
2 0a 3(a )d
a5. 10
解 由锥面和球面围成, 采用球面坐标,
: 0 2 , 0 2, 2 z 4,
例 5 计算 I zdxdydz,其中 是抛物面
z x2 y2及平面 z = 4 所围的立体. z
解
Dxy {(x, y) | x2 y2 4}
{(, ) | 0 2 , 0 1}
z1 x2 y2 2, z2 4,
3
z2 2
4 2
d
2
3
二、利用球面坐标计算三重积分
球面坐标:设 M ( x, y, z) 为空间内一点, 点 M 到原点的距离记为 r ,
有向线段 OM 与 z 轴正向的夹角记为 ,
点 M 在xoy 面上的投影 为P ( x, y)
自x 轴按逆时针方向旋转到有向线段 z
OP 的角度记为
则三元有序数组( r, , )
例 5 计算I zdxdydz,其中 是抛物面.
z x2 y2及平面 z = 4 所围的立体. z
解
由
z
x2
y2 ,
z 4
知曲面与平面的交线为
x2
y2
4,
z4
o
y
x
Dxy {(x, y) | x2 y2 4} {(, ) | 0 2 , 0 2}
z1 x2 y2 2, z2 4,
y
sin
,
z z.
o
• P(, )
极坐标与球面坐标计算三重积分
3 a
2π
π
4 其中 M = πa 3 ρ 为球体的质量. 3
0
2πa 3 , r 2 sin ϕdr = 3
a
1 a4 zdv = ∫ 2 dϕ ∫ dθ ∫ r cos ϕ ⋅ r 2 sin ϕdr = ⋅ 2π ⋅ , ∫∫∫ 0 0 0 2 4 Ω 3a 3a 因此z= .重心为(0,0, ). 8 8
2π
π
例4 求均匀球体对于过球心的一条轴l 的转动惯量. 解 取球心为坐标原点,z轴与轴l重合,又设球的半径为a, z 则球体所占空间闭区域Ω可用不等式 x2+y2+z2≤a 2 来表示. 所求转动惯量为
θ =θ 0
y
θ0
直角坐标与柱面坐标的关系:
z z M(x, y, z)
x = r cos θ , y = r sin θ , z = z.
柱面坐标系中的体积元素: dv =rdrdθdz. 柱面坐标系中的三重积分: x
Ω
O x
θ
r
y P(r, θ )
y
∫∫∫ f (x,y,z)dxdydz = ∫∫∫ f (r cos θ
V= ∫∫∫ dxdydz = ∫∫∫ r2 sinϕ drdϕdθ
Ω Ω
= ∫ dθ ∫ dϕ ∫
0 0
2π
α
2 a cos ϕ
0
r 2 sin ϕdr
= 2π ∫ sin ϕdϕ ∫
0
α
2 a cos ϕ
ϕ r α O x y
0
r 2 dr
16πa 3 α = cos 3 ϕ sin ϕdϕ 3 ∫0 4πa 3 = (1 − cos 4 a) . 3
利用柱面坐标与球面坐标计算三重积分
f ( r cos , r sin , z )rdrddz.
rdrd
Dr
z2 ( r , ) z1 ( r , )
f ( r cos , r sin , z )dz .
通常化为先对 z、再对 r、后对θ 的三次积分.
先将Ω在xOy面上的投影域用极坐标不等式表示
设M(x, y, z)为空间内一点,记向量OM来自长为r , OM与z轴z
r
M ( x, y, z )
z
正方向间的夹角为 , 再将OM
A x
x
O
y
y
P
向xOy平面投影, 记投影向量与x轴正方向的 夹角为 , 称 ( r , , ) 为点M的球面坐标. 规定 0 r , 0 , 0 2 .
=常数: 半平面P
0
y
x
直角坐标与柱面坐标的关系为
x r cos , y r sin , z z.
在柱面坐标下 1. 若被积函数形如
x y r . 因此
2 2 2
f (x y ) ;
2 2
2. 积分区域Ω是由柱面、锥面、旋转抛物面、平 面或球面所围成.
y
球面坐标下的体积元素
z
元素区域由六个坐标面围成:
圆锥面
球面r+d r
半平面 及+d ; 圆锥面及+d
rsind
半径为r及r+dr的球面;
r
圆锥面+d
1
1
2 1dr 2 0 1 r
1
1 r
Dxy
0
1
y
极坐标与球面坐标计算三重积分
2
dq
a
dj
2a cosj r 2 sin jdr
0
0
0
jr
2
a
s in jdj
2a cosj r 2 dr
0
0
a
16a3 a cos3 j sinjdj 30
O
y
4a3 (1 cos4 a) .
x
3
例3 求均匀半球体的重心.
z
解 取半球体的对称轴为 z 轴, 原点取在球心上,又设球半径为a.
§9.5 利用柱面坐标和球面坐标计算三重积分
一、利用柱面坐标计算三重积分
柱面坐标、 柱面坐标系的坐标面
直角坐标与柱面坐标的关系、
柱面坐标系中的体积元素
柱面坐标系中的三重积分
二、利用球面坐标计算三重积分
球面坐标、 球面坐标系的坐标面
直角坐标与球面坐标的关系、
球面坐标系中的体积元素
球面坐标系中的三重积分
一、利用柱面坐标计算三重积分
设M(x, y, z)为空间内一点,则点M与数 r、q 、z相对应, 其中P(r, q )为点M在xOy面上的投影的极坐标.
三个数 r、q 、z 叫做点M 的柱面坐标.
这里规定r、q 、z的变化范围为: 0 r<, 0 q 2 , < z<.
z z
M(x, y, z)
O
r4 sin 3 jdrdjdq
2
dq
sin 3 j dj
a r4dr 2 a2M ,
0
0
0
5
其中 M 4 a3 为球体的质量.
3
8
8
例4 求均匀球体对于过球心的一条轴l 的转动惯量.
解 取球心为坐标原点,z轴与轴l重合,又设球的半径为a,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 (
2 1)a3 .
0
3
3
补充:利用对称性化简三重积分计算
使用对称性时应注意: 1、积分区域关于坐标面的对称性;
2、被积函数在积分区域上的关于三个坐标轴 的 奇偶性.
一般地,当积分区域关于 xoy平面对称,且 被积函数 f ( x, y, z)是关于z的奇函数,则三重积分 为零,若被积函数 f ( x, y, z)是关于z的偶函数,则 三重积分为在 xoy平面上方的半个闭区域的三重 积分的两倍.
D1
8
2 fdz
2
2
d
0
2
4
d
0
8
2 2
2dz
45 3
,
I2 dd
D2
2
2 fdz
2
2
d
0
2
d
0
2
r2
2dz
2
25 , 6
原式I 45 25 336 . 36
二、利用球面坐标计算三重积分
设 M(x, y, z) 为空间内一点,则点M 可用
三个有次序的数r,, 来确定,其中r 为原 点 O 与点 M 间的距离, 为有向线段 OM与 z 轴正向所夹的角, 为从正 z 轴来看自 x 轴按
所围成立体的投影区域如图,
D1 : x2 y2 16,
0 2
1 :
0 4
,
2
2
z
8
D2 : x2 y2 4, 2 :
D1 D2
0 2
0 2
.
2
2
z
2
I I1 I2
( x2 y2 )dxdydz ( x2 y2 )dxdydz,
1
I1 d d
I
2
d
0
3
d
0
4 2
2 zdz
3
13 . 4
例2 计算 I ( x2 y2 )dxdydz, 其中
是曲线 y2 2z ,x 0 绕oz 轴旋转一周而成
的曲面与两平面z 2,z 8 所围的立体.
解
由
y
2
2z
绕 oz
轴旋转得,
x0
旋转面方程为 x2 y2 2z,
所围成的立体如图,
例1 计算I zdxdydz,其中 是球面
x2 y2 z2 4与抛物面 x2 y2 3z
所围的立体.
x cos
解
由
y
sin
,
z z
知交线为
2 z2 4
2 3z
z 1, r 3,
把闭区域 投影到 xoy 面上,如图,
:
2
z
4 2,
3
0 3,
0 2 .
dxdydz
0.
例 6 计算 ( x y z)2dxdydz其中 是由抛物
面 z x2 y2和球面x2 y2 z2 2所围成的空 间闭区域.
解 ( x y z)2
x2 y2 z2 2( xy yz zx)
其中 xy yz 是关于y 的奇函数,
且 关于zox 面对称, ( xy yz)dv 0,
§3.3 利用柱面坐标计算三重积分
设 M ( x, y, z) 为空间内一点,并设点M 在
xoy 面上的投影 P 的极坐标为r,,,则这样的三
个数 r, , z 就叫点 M 的柱面坐标.
z
规定: 0 ,
0 2 , ( )
z .
• M(x, y,z)
o
•
y
P(, )
x
如图,三坐标面分别为
r • M(x, y,z)
点 P 在 x 轴上的投影为 A,
z
o
则 OA x, AP y, PM z.
x
A
xy
•
P
y
球面坐标与直角坐标的关系为
x r sin cos ,
y
r
sin
sin
,
z r cos
如图,
z
球面坐标系中的体积元素为
dv r2 sindrdd ,
f ( x, y, z)dxdydz
dr
d r sin
r
o
d
x
r sin d rd
d
y
f (r sin cos ,r sin sin ,r cos )r 2 sin drd d .
例 3 计算 I ( x2 y2 )dxdydz,其中 是锥面
x2 y2 z2, 与平面z a (a 0) 所围的立体.
解 1 采用球面坐标
逆时针方向转到有向线段 OP 的角,这里 P 为
点 M 在 xoy 面上的投影,这样的三个数 r,, 就叫做点 M 的球面坐标.
规定:
0 r , 0 , 0 2 .
如图,三坐标面分别为
r 为常数 为常数 为常数
球 面; 圆锥面; 半平面.
如图,
z
设点 M 在 xoy 面上的投影为P,
为常数 为常数
圆柱面; 半平面;
z 为常数
平 面.
柱面坐标与直角坐 标的关系为
x cos ,
y
sin
,
x
z z.
z
• M (x, y, z)
z
o
• P(, )
y
如图,柱面坐标系 中的体积元素为
dv d ddz,
z
d
d
dz
o
f ( x, y, z)dxdydz
y
d
x
f ( cos , sin , z)d ddz.
x2 y2 z2 z r, D : x2 y2 a2,
: r z a, 0 r a, 0 2,
I
( x2 y2 )dxdydz
2
a
d rdr
a r 2dz
0
0
r
2 a r 3(a r)dr 2[a a4 a5 ] a5 .
0
4 5 10
例 4 求曲面 x2 y2 z2 2a2与z x2 y2 所围 成的立体体积.
同理 zx 是关于x 的奇函数,
za r a , cos
x2 y2 z2 ,
4
: 0 r a , 0 , 0 2,
cos
4
I ( x2 y2 )dxdydz
2
d
4 d
a
cos r 4 0
sin
3
1 5
(
a5 cos5
0)d
a5. 10
解 2 采用柱面坐标
解 由锥面和球面围成, 采用球面坐标,
由 x 2 y2 z 2 2a 2
r 2a,
z x2 y2 ,
4 : 0 r 2a, 0 ,
4
0 2,
由三重积分的性质知 V dxdydz,
V
2
d
4 d
2a r 2 sin dr
0
0
0
2
4
sin
(
2a )3 d
例5 利用对称性简化计算
z ln( x2 y2 z2 1)
x2 y2 z2 1 dxdydz 其中积分区域 {( x, y, z) | x2 y2 z2 1}.
解 积分域关于三个坐标面都对称,
被积函数是 z 的奇函数,
z
ln( x2 x2
y
y2 2
z2 z2
1
1)