高考必备湖北省黄冈中学高考数学压轴题精编精解三 新人教版
(高考必备)湖北省黄冈中学高考数学压轴题精编精解十 新人教版
(2011年高考必备)湖北省黄冈中学高考数学压轴题精编精解十91.已知定义在R上的函数,对于任意的实数a,b都有,且(1)求的值(2)求的解析式()92.设函数(1)求证:为奇函数的充要条件是(2)设常数<,且对任意x,<0恒成立,求实数的取值范围93.已知函数(a为常数).(1)如果对任意恒成立,求实数a的取值范围;(2)设实数满足:中的某一个数恰好等于a,且另两个恰为方程的两实根,判断①,②,③是否为定值?若是定值请求出:若不是定值,请把不是定值的表示为函数,并求的最小值;(3)对于(2)中的,设,数列满足,且,试判断与的大小,并证明.94.如图,以A1,A2为焦点的双曲线E与半径为c的圆O相交于C,D,C 1,D1,连接CC1与OB交于点H,且有:。
其中A1,A2,B是圆O与坐标轴的交点,c为双曲线的半焦距。
(1)当c=1时,求双曲线E的方程;(2)试证:对任意正实数c,双曲线E的离心率为常数。
(3)连接A1C与双曲线E交于F,是否存在实数恒成立,若存在,试求出的值;若不存在,请说明理由.95.设函数处的切线的斜率分别为0,-a. (1)求证:;(2)若函数f(x)的递增区间为[s,t],求|s-t|的取值范围.(3)若当x≥k时,(k是a,b,c无关的常数),恒有,试求k的最小值96.设函数(1)若且对任意实数均有成立,求表达式;(2)在(1)在条件下,当是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0且为偶函数,证明97.在平面直角坐标系内有两个定点和动点P,坐标分别为、,动点满足,动点的轨迹为曲线,曲线关于直线的对称曲线为曲线,直线与曲线交于A、B两点,O是坐标原点,△ABO的面积为,(1)求曲线C的方程;(2)求的值。
98.数列,⑴是否存在常数、,使得数列是等比数列,若存在,求出、的值,若不存在,说明理由。
⑵设,证明:当时,.99、数列的前项和为。
2023年新高考数学选填压轴题汇编(三)(解析版)
2023年新高考地区数学选填压轴题汇编(三)一、单选题1.(2022·湖北·宜昌市夷陵中学模拟预测)已知双曲线C 1:x 2a 2-y 2b2=1a >0,b >0 与抛物线C 2:y 2=2px p >0 有公共焦点F ,过F 作双曲线一条渐近线的垂线,垂足为点A ,延长FA 与抛物线C 2相交于点B ,若点A 为线段FB 的中点,双曲线C 1的离心率为e ,则e 2=( )A.3+12B.5+12C.5+13D.5+23【答案】B 【解析】根据题意,作图如下:因为双曲线C 1和抛物线C 2共焦点,故可得a 2+b 2=p 24,又F c ,0 到y =b a x 的距离d =bca 2+b 2=b ,即AF =b ,又A 为BF 中点,则BF =2b ,设点B x ,y ,则2b =x +p 2,解得x =2b -p 2;由a 2+b 2=p 24可得OA =a ,则由等面积可知:12×BF ×OA =12×OF ×y ,解得y =4abp,则B 2b -p 2,4abp ,则x A =b ,y A =2ab p ,又点A 在渐近线y =b a x 上,即b 2a =2abp,即2a 2=pb ,又p 2=4a 2+4b 2,联立得a 4-a 2b 2-b 4=0,即b 2a 2-a 2b 2+1=0,解得b 2a2=5-12,故e 2=1+b 2a2=5+12.故选:B .2.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f (x )是定义在R 上的奇函数,若对任意的x 1,x 2∈0,+∞) ,且x 1≠x 2,都有x 1f x 1 -x 2f x 2x 1-x 2<0成立,则不等式mf m -2m -1 f 2m -1 >0的解集为( )A.13,1 B.(-∞,1)C.1,∞D.-∞,13∪1,+∞ 【答案】D【解析】∵函数f (x )是定义在R 上的奇函数∴g x =xf x 为定义在R 上的偶函数又∵x 1f x 1 -x 2f x 2 x 1-x 2<0∴g x =xf x 在0,+∞) 上递减,则g x 在-∞,0 上递增mf m -2m -1 f 2m -1 >0即mf m >2m -1 f 2m -1则m <2m -1 解得:m ∈-∞,13∪1,+∞ .故选:D .3.(2022·湖北·黄冈中学模拟预测)十八世纪早期,英国数学家泰勒发现了公式sin x =x -x 33!+x 55!-x 77!+⋯+-1 n -1x 2n -12n -1 !+⋯,(其中x ∈R ,n ∈N *,n !=1×2×3×⋯×n ⋅0!=1),现用上述公式求1-12!+14!-16!+⋯+-1 n -112n -2 !+⋯的值,下列选项中与该值最接近的是( )A.sin30∘ B.sin33∘ C.sin36∘ D.sin39∘【答案】B【解析】(sin x )=cos x =1-x 22!+x 44!-x 66!+⋯+-1 n -1x 2n -22n -2 !+⋯所以cos1=1-12!+14!-16!+⋯+(-1)n -11(2n -2)!+⋯=sin π2-1=sin 90∘-180∘π ,由于90∘-180∘π 与33∘最接近,故选:B 4.(2022·湖北·黄冈中学模拟预测)某旅游景区有如图所示A 至H 共8个停车位,现有2辆不同的白色车和2辆不同的黑色车,要求相同颜色的车不停在同一行也不停在同一列,则不同的停车方法总数为( )A.288B.336C.576D.1680【答案】B【解析】解:第一步:排白车,第一行选一个位置,则第二行有三个位置可选,由于车是不相同的,故白车的停法有4×3×2=24种,第二步,排黑车,若白车选AF ,则黑车有BE ,BG ,BH ,CE ,CH ,DE ,DG 共7种选择,黑车是不相同的,故黑车的停法有2×7=14种,根据分步计数原理,共有24×14=336种,故选:B5.(2022·山东·模拟预测)已知函数f (x )=xe x -2a (ln x +x )有两个零点,则a 的最小整数值为( )A.0 B.1C.2D.3【答案】C【解析】f (x )=xe x -2a (ln x +x )=e x +ln x -2a (ln x +x ),设t =x +ln x (x >0),t =1+1x>0,即函数在0,+∞ 上单调递增,易得t ∈R ,于是问题等价于函数g t =e t -2at 在R 上有两个零点,g t =e t -2a ,若a ≤0,则g t >0,函数g t 在R 上单调递增,至多有1个零点,不合题意,舍去;若a >0,则x ∈-∞,ln2a 时,g t <0,g t 单调递减,x ∈ln2a ,+∞ 时,g t >0,g t 单调递增.因为函数g t 在R 上有两个零点,所以g t min =g ln2a =2a 1-ln2a <0⇒a >e2,而g 0 =1>0,限定t >1 ,记φt =e t -t ,φ t =e t -1>0,即φt 在1,+∞ 上单调递增,于是φt =e t -t >φ1 =试卷第1页,共3页e -1>0⇒e t>t ,则t >2时 ,e t2>t 2⇒e t>t 24,此时g t >t 24-2at =t 4t -8a ,因为a >e 2,所以8a>4e >1,于是t >8a 时,g t >0.综上:当a >e2时,有两个交点,a 的最小整数值为2.故选:C .6.(2022·山东·模拟预测)已知函数f (x )=A sin (ωx +φ)(ω>0,0<φ<π)为偶函数,在0,π3单调递减,且在该区间上没有零点,则ω的取值范围为( )A.32,2 B.1,32C.32,52D.0,32【答案】D【解析】因为函数为偶函数,且在0,π3 单调递减,所以φ=π2+k πk ∈Z ,而0<φ<π,则φ=π2,于是f (x )=A cos ωx (ω>0),函数在0,π3 单调递减,且在该区间上没有零点,所以0<π3ω≤π2⇒ω∈0,32 .故选:D .7.(2022·江苏·南京市雨花台中学模拟预测)直线x -y +1=0经过椭圆x 2a 2+y 2b2=1a >b >0 的左焦点F ,交椭圆于A 、B 两点,交y 轴于C 点,若FC=2AC ,则该椭圆的离心率是( )A.10-22B.3-12C.22-2D.2-1【答案】A【解析】由题意可知,点F -c ,0 在直线x -y +1=0上,即1-c =0,可得c =1,直线x -y +1=0交y 轴于点C 0,1 ,设点A m ,n ,FC=1,1 ,AC =-m ,1-n ,由FC =2AC 可得-2m =121-n =1 ,解得m =-12n =12,椭圆x 2a 2+y 2b2=1a >b >0 的右焦点为E 1,0 ,则AE =1+12 2+0-12 2=102,又AF =-1+12 2+0-12 2=22,∴2a =AE +AF =10+22,因此,该椭圆的离心率为e =2c 2a =210+22=410+2=410-2 8=10-22.故选:A .8.(2022·江苏·南京市雨花台中学模拟预测)已知△OAB ,OA =1,OB =2,OA ⋅OB=-1,过点O 作OD 垂直AB 于点D ,点E 满足OE =12ED ,则EO ⋅EA的值为( )A.-328B.-121C.-29D.-221【答案】D【解析】由题意,作出图形,如图,∵OA =1,OB =2,OA ⋅OB=-1∴OA ⋅OB =1×2cos ∠AOB =2cos ∠AOB =-1,∴cos ∠AOB =-12,由∠AOB ∈0,π 可得∠AOB =2π3,∴AB =OA 2+OB 2-2⋅OA ⋅OB ⋅cos ∠AOB =7,又S △AOB =12⋅OA ⋅OB ⋅sin ∠AOB =12⋅OD ⋅AB =32,则OD =37,∴EO ⋅EA =-OE ⋅ED +DA =-2OE 2=-29⋅OD 2=-29×37=-221.故选:D .9.(2022·江苏·南京市雨花台中学模拟预测)若函数f x =e x -2x 图象在点x 0,f x 0 处的切线方程为y =kx +b ,则k -b 的最小值为( )A.-2 B.-2+1eC.-1eD.-2-1e【答案】D【解析】由f x =e x -2x 求导得:f (x )=e x -2,于是得f (x 0)=e x 0-2,函数f (x )=e x -2x 图象在点(x 0,f (x 0))处的切线方程为y -(e x 0-2x 0)=(e x 0-2)(x -x 0),整理得:y =(e x 0-2)x +(1-x 0)e x 0,从而得k =e x 0-2,b =(1-x 0)e x 0,k -b =x 0e x 0-2,令g (x )=xe x -2,则g (x )=(x +1)e x ,当x <-1时,g (x )<0,当x >-1时,g (x )>0,于是得g (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,则g (x )min =g (-1)=-2-1e,所以k -b 的最小值为-2-1e.故选:D10.(2023·江苏·南京市第一中学模拟预测)已知定义域是R 的函数f x 满足:∀x ∈R ,f 4+x +f -x =0,f 1+x 为偶函数,f 1 =1,则f 2023 =( )A.1 B.-1C.2D.-3【答案】B【解析】因为f 1+x 为偶函数,所以f x 的图象关于直线x =1对称,所以f 2-x =f x ,又由f 4+x +f -x =0,得f 4+x =-f -x ,所以f 8+x =-f -4-x =-f 6+x ,所以f x +2 =-f x ,所以f x +4 =f x ,故f x 的周期为4,所以f 2023 =f 3 =-f 1 =-1.故选:B .11.(2022·湖南·长沙一中高三阶段练习)蜂巢是由工蜂分泌蜂蜡建成的,从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成,菱形的一个角度是109∘28 ,这样的设计含有深刻的数学原理.我著名数学家华罗庚曾专门研究蜂巢的结构,著有《谈谈与蜂房结构有关的数学问题》一书.用数学的眼光去看蜂巢的结构,如图,在六棱柱ABCDEF -A B C D E F 的三个顶点试卷第1页,共3页A ,C ,E 处分别用平面BFM ,平面BDO ,平面DFN 截掉三个相等的三棱锥M -ABF ,O -BCD ,N -DEF ,平面BFM ,平面BDO ,平面DFN 交于点P ,就形成了蜂巢的结构.如图,设平面PBOD 与正六边形底面所成的二面角的大小为θ,则( )A.tan θ=33tan54∘44 B.sin θ=33tan54∘44 C.cos θ=33tan54∘44D.tan θ=3tan54∘44 【答案】C【解析】先证明一个结论:如图,△ABC 在平面α内的射影为△ABC ,C -AB -C 的平面角为θ,θ∈0,π2 ,则cos θ=S △ABCS △ABC.证明:如图,在平面β内作CE ⊥AB ,垂足为E ,连接EC ,因为△ABC 在平面α内的射影为△ABC ,故CC ⊥α,因为AB ⊂α,故CC ⊥AB ,因为CE ∩AB =E ,故AB ⊥平面ECC .因为EC ⊂平面ECC ,故C E ⊥AB ,所以∠CEC 为二面角的平面角,所以∠CEC =θ.在直角三角形CEC 中,cos ∠CEC =cos θ=ECEC=S △ABCS △ABC .由题设中的第二图可得:cos θ=S △DBCS △DBO.设正六边形的边长为a ,则S △DBC =12a 2×32=34a 2,如图,在△DBO 中,取BD 的中点为W ,连接OW ,则OW ⊥BD ,且BD =3a ,∠BOD =109°28 ,故OW =32a ×1tan54°44,故S △DBO =12×3a ×32a ×1tan54°44 =34a 2×1tan54°44 ,故cos θ=33tan54°44 .故选:C .12.(2022·湖南·长沙市明德中学高三开学考试)已知2021ln a =a +m ,2021ln b =b +m ,其中a ≠b ,若ab <λ恒成立,则实数λ的取值范围为( )A.2021e 2,+∞ B.20212,+∞C.20212,+∞D.2021e 2,+∞【答案】C【解析】令f (x )=ln x -12021x ,则f (x )=1x -12021=2021-x2021x,∴当x ∈(0,2021)时,f (x )>0,当x ∈(2021,+∞)时,f (x )<0,∵f (2021)>0,∴设0<a <2021<b ,则ba=t (t >1),两式相减,得2021ln b a =b -a ,则2021ln t =a (t -1),∴a =2021ln t t -1,b =at =2021t ln tt -1,∴ab =20212⋅t (ln t )2(t -1)2,令g (t )=t (ln t )2-(t -1)2,∴g (t )=(ln t )2+2ln t -2t +2,令h (t )=(ln t )2+2ln t -2t +2,则h (t )=2t(ln t +1-t ),令m (t )=ln t +1-t ,则m (t )=1t-1<0,∴函数m (t )在(1,+∞)上单调递减,∴m (t )<m (1)=0,即h (t )<0,∴h (t )<h 1 =0,∴g (t )<0,∴函数g (t )在(1,+∞)上单调递减,∴g (t )<g 1 =0,∴t (ln t )2-(t -1)2<0,∴t (ln t )2(t -1)2<1,∴ab <20212,∴实数λ的取值范围为20212,+∞ ,故选:C .13.(2022·湖南·长沙市明德中学高三开学考试)己知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1、F 2,过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若F 1A =AB ,F 1B ⋅F 2B=0,则C 的离心率为( )A.2B.5C.3+1D.5+1【答案】A 【解析】如下图示,因为F 1A =AB ,F 1B⋅F 2B =0,O 是F 1F 2中点,所以A 是F 1B 中点且F 1B ⊥F 2B ,则OA ⊥F 1B ,OF 1=OB =c ,因为直线OA 是双曲线x 2a 2-y 2b2=1的渐近线,所以k OA =-b a ,k F 1B =a b ,直线F 1B 的方程为y =ab (x +c ),联立y =a b (x +c )y =b ax,解得B a 2c b 2-a 2,abc b 2-a 2 ,则|OB |2=a 4c 2b 2-a 2 2+试卷第1页,共3页a 2b 2c 2b 2-a 22=c 2,整理得b 2=3a 2,因为c 2-a 2=b 2,所以4a 2=c 2,e =ca=2.故选:A14.(2022·湖南·长沙市明德中学高三开学考试)已知函数f x =cos 2ωx 2+32sin ωx -12ω>0,x ∈R .若函数f x 在区间π,2π 内没有零点,则ω的取值范围是A.0,512 B.0,512 ∪56,1112 C.0,56D.0,512 ∪56,1112【答案】D【解析】 (1)ωπ+π6,2ωπ+π6 ⊆(2k π,2k π+π),k ∈Z ,则{ωx +π6≥2k π2ωπ+π6≤2k π+π ,则{ω≥2k -16ω≤k +512,取k =0 ,∵ω>0, ∴0<k ≤512;(2)ωπ+π6,2ωπ+π6 ⊆(2k π+π,2k π+2π),k ∈Z ,则{ωπ+π6≥2k π+π2ωπ+π6≤2k π+2π ,解得:{ω≥2k +56ω≤k +1112,取k=0 ,∴56≤k ≤1112;综上可知:k 的取值范围是0,512 ∪56,1112,选D .15.(2022·湖南·高三开学考试)已知a =2,b =513,c =(2+e )1e ,则a ,b ,c 的大小关系为( )A.b <c <aB.c <b <aC.b <a <cD.c <a <b【答案】A【解析】由题意,可得a =(2+2)12,b =(2+3)13,c =(2+e )1e ,所以令f x =1x ⋅ln 2+x ,(x >0),则fx =x x +2-ln 2+xx 2,令g x =x x +2-ln 2+x ,(x >0),则g x =-x(x +2)2<0,所以g x 在0,+∞ 上单调递减,g x <g 0 =0,所以f x <0恒成立,所以f x 在0,+∞ 上单调递减,因为2<e <3,所以f 2 >f e >f 3 ,即12ln 2+2 >1e ln 2+e >13ln 2+3 ,所以ln (2+2)12>ln (2+e )1e>ln (2+3)13,所以412>(2+e )1e>513,即b <c <a .故选:A .16.(2022·湖北·高三开学考试)已知a ,b ,c 均为不等于1的正实数,且ln c =a ln b ,ln a =b ln c ,则a ,b ,c 的大小关系是( )A.c >a >b B.b >c >aC.a >b >cD.a >c >b【答案】D【解析】∵ln c =a ln b ,ln a =b ln c 且a 、b 、c 均为不等于1的正实数,则ln c与ln b同号,ln c与ln a同号,从而ln a、ln b、ln c同号.①若a、b、c∈0,1,则ln a、ln b、ln c均为负数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b;②若a、b、c∈1,+∞,则ln a、ln b、ln c均为正数,ln a=b ln c>ln c,可得a>c,ln c=a ln b>ln b,可得c>b,此时a>c>b.综上所述,a>c>b.故选:D.17.(2022·湖北·襄阳五中高三开学考试)设f x 是定义在R上的连续的函数f x 的导函数,f x -f x +2e x<0(e为自然对数的底数),且f2 =4e2,则不等式f x >2xe x的解集为( )A.-2,0∪2,+∞B.e,+∞C.2,+∞D.-∞,-2∪2,+∞【答案】C【解析】设g x =f xe x-2x,则g x =f x -f xe x-2=f x -f x -2e xe x,∵f x -f x +2e x<0,∴g x >0,函数g x 在R上单调递增,又f2 =4e2,∴g2 =f2e2-4=0,由f x >2xe x,可得f xe x-2x>0,即g x >0=g2 ,又函数g x 在R上单调递增,所以x>2,即不等式f x >2xe x的解集为2,+∞.故选:C.18.(2022·湖北·襄阳五中高三开学考试)已知实数α,β满足αeα-3=1,βlnβ-1=e4,其中e是自然对数的底数,则αβ的值为( )A.e3B.2e3C.2e4D.e4【答案】D【解析】因为αeα-3=1,所以αeα=e3,所以α+lnα=3.因为βlnβ-1=e4,所以lnβ+ln lnβ-1=4.联立α+lnα-3=0lnβ-1+ln lnβ-1-3=0 ,所以α与lnβ-1是关于x的方程x+ln x-3=0的两根.构造函数f x =x+ln x-3,该函数的定义域为0,+∞,且该函数为增函数,由于fα =f lnβ-1=0,所以α=lnβ-1,又α+lnα-3=0,所以lnβ-1+lnα-3=0,即lnαβ=4,解得αβ=e4.故选:D.19.(2022·湖北·应城市第一高级中学高三开学考试)已知F c,0(其中c>0)是双曲线x2a2-y2b2=1a>0,b>0的焦点.圆x2+y2-2cx+b2=0与双曲线的一条渐近线l交于A、B两点.已知l的倾斜角为30°.则tan∠AFB=( )A.-2B.-3C.-22D.-23试卷第1页,共3页【答案】C 【解析】如图所示:x 2+y 2-2cx +b 2=0,化为x -c 2+y 2=c 2-b 2=a 2,因为渐近线l 的倾斜角为30°,所以tan30∘=b a =33,圆心F c ,0 到直线y =bax 的距离为:d =bca1+b a2=b ,又AF =BF =a ,所以cos 12∠AFB =b a =33,sin 12∠AFB =63,则tan 12∠AFB =2,所以tan ∠AFB =2tan 12∠AFB1-tan 212∠AFB=2×21-2 2=-22,故选:C20.(2022·湖北·应城市第一高级中学高三开学考试)设函数f x =sin x -1 +e x -1-e 1-x -x +3,则满足f x +f 3-2x <6的x 的取值范围是( )A.3,+∞ B.1,+∞ C.-∞,3 D.-∞,1【答案】B【解析】假设g x =sin x +e x -e -x -x ,x ∈R ,所以g -x =sin -x +e -x -e x +x ,所以g x +g -x =0,所以g x 为奇函数,而f x =sin x -1 +e x -1-e 1-x -x -1 +3是g x 向右平移1个单位长度,向上平移3个单位长度,所以f x 的对称中心为1,3 ,所以6=f x +f 2-x ,由f x =sin x -1 +e x -1-e 1-x -x +4求导得f x =cos x -1 +e x -1+e 1-x -1=e x -1+1ex -1+cos x -1 -1因为e x -1+1e x -1≥2e x -1⋅1e x -1=2,当且仅当e x -1=1e x -1即x =1,取等号,所以f x ≥0,所以f x 在R 上单调递增,因为f x +f 3-2x <6=f x +f 2-x 得f 3-2x <f 2-x 所以3-2x <2-x ,解得x >1,故选:B 二、多选题21.(2022·湖北·宜昌市夷陵中学模拟预测)已知函数f x =log 2x ,(0<x <2)x 2-8x +13,x ≥2,若f x =a 有四个不同的实数解x 1,x 2,x 3,x 4,且满足x 1<x 2<x 3<x 4,则下列命题正确的是( )A.0<a <1B.x 1+2x 2∈22,92C.x 1+x 2+x 3+x 4∈10,212D.2x 1+x 2∈22,3【答案】ACD【解析】在同一坐标系中作出函数y =f x ,y =a 的图象,如图所示:由图象知:若f x =a 有四个不同的实数解,则0<a <1,故A 正确;因为log 2x 1 =log 2x 2 ,即-log 2x 1=log 2x 2,则1x 1=x 2,所以x 1+2x 2=1x 2+2x 2,1<x 2<2,因为y =1x 2+2x 2在1,2 上递增,所以1x 2+2x 2∈3,92,故B 错误;因为x 1+x 2=1x 2+x 2,1<x 2<2,y =1x 2+x 2在1,2 上递增,所以1x 2+x 2∈2,52,而x 3+x 4=8,所以x 1+x 2+x 3+x 4∈10,212 ,故C 正确;因为2x 1+x 2=2x 2+x 2,1<x 2<2,y =1x 2+2x 2在1,2 上递减,在2,2 上递增,则2x 2+x 2∈[22,3),故D 正确;故选:ACD22.(2022·湖北·宜昌市夷陵中学模拟预测)如图,点P 是棱长为2的正方体ABCD -A 1B 1C 1D 1的表面上一个动点,则( )A.当P 在平面BCC 1B 1上运动时,四棱锥P -AA 1D 1D 的体积不变B.当P 在线段AC 上运动时,D 1P 与A 1C 1所成角的取值范围是π3,π2C.使直线AP 与平面ABCD 所成的角为45°的点P 的轨迹长度为π+42D.若F 是A 1B 1的中点,当P 在底面ABCD 上运动,且满足PF ⎳平面B 1CD 1时,PF 长度的最小值是5【答案】ABC【解析】A 选项,底面正方形AA 1D 1D 的面积不变,P 到平面AA 1D 1D 的距离为正方体棱长,故四棱锥P -AA 1D 1D 的体积不变,A 选项正确;B 选项,D 1P 与A 1C 1所成角即D 1P 与A C 所成角,当P 在端点A ,C 时,所成角最小,为π3,当P 在AC 中点时,所成角最大,为π2,故B 选项正确;C 选项,由于P 在正方体表面,P 的轨迹为对角线AB 1,AD 1,以及以A 1为圆心2为半径的14圆弧如图,试卷第1页,共3页故P 的轨迹长度为π+42,C 正确;D 选项,FP 所在的平面为如图所示正六边形,故FP 的最小值为6,D 选项错误.故选:ABC .23.(2022·湖北·黄冈中学模拟预测)已知正数x ,y ,z 满足3x =4y =12z ,则( )A.1x +1y =1zB.6z <3x <4yC.xy <4z 2D.x +y >4z【答案】ABD【解析】设3x =4y =12z =t ,t >1,则x =log 3t ,y =log 4t ,z =log 12t ,所以1x +1y =1log 3t +1log 4t =log t 3+log t 4=log t 12=1z,A 正确;因为6z3x =2log 12t log 3t =2log t 3log t 12=log 129<1,则6z <3x ,因为3x4y =3log 3t 4log 4t =3log t 44log t 3=log t 64log t 81=log 8164<1,则3x <4y ,所以6z <3x <4y ,B 正确;因为x +y -4z =log 3t +log 4t -4log 12t =1log t 3+1log t 4-4log t 12=log t 3+log t 4log t 3log t 4-4log t 3+log t 4=log t 3-log t 42log t 3log t 4log t 3+log t 4 >0,则x +y >4z ,D 正确.因为1z =1x +1y =x +y xy ,则xy z =x +y >4z ,所以xy >4z 2,C 错误.故选:ABD .24.(2022·湖北·黄冈中学模拟预测)高斯是德国著名数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德,牛顿并列为世界三大数学家,用[x ]表示不超过x 的最大整数,则y =[x ]称为高斯函数,例如[-2.1]=-3,[2.1]=2.则下列说法正确的是( )A.函数y =x -[x ]在区间[k ,k +1)(k ∈Z )上单调递增B.若函数f (x )=sin xe x -e -x,则y =[f (x )]的值域为{0}C.若函数f (x )=|1+sin2x -1-sin2x |,则y =[f (x )]的值域为{0,1}D.x ∈R ,x ≥[x ]+1【答案】AC【解析】对于A ,x ∈[k ,k +1),k ∈Z ,有[x ]=k ,则函数y =x -[x ]=x -k 在[k ,k +1)上单调递增,A 正确;对于B ,f 3π2=sin 3π2e 3π2-e -3π2=-1e 3π2-e-3π2∈(-1,0),则f 3π2=-1,B 不正确;对于C ,f (x )=(1+sin2x -1-sin2x )2=2-21-sin 22x =2-2|cos2x |,当0≤|cos2x |≤12时,1≤2-2|cos2x |≤2,1≤f (x )≤2,有[f (x )]=1,当12<|cos2x |≤1时,0≤2-2|cos2x |<1,0≤f (x )<1,有[f (x )]=0,y =[f (x )]的值域为{0,1},C 正确;对于D ,当x =2时,[x ]+1=3,有2<[2]+1,D 不正确.故选:AC25.(2022·湖北·黄冈中学模拟预测)华人数学家李天岩和美国数学家约克给出了“混沌”的数学定义,由此发展的混沌理论在生物学、经济学和社会学领域都有重要作用.在混沌理论中,函数的周期点是一个关键概念,定义如下:设f (x )是定义在R 上的函数,对于x ∈R ,令x n =f (x n -1)(n =1,2,3,⋯),若存在正整数k 使得x k =x 0,且当0<j <k 时,x j ≠x 0,则称x 0是f (x )的一个周期为k 的周期点.若f (x )=2x ,x <122(1-x ),x ≥12,下列各值是f (x )周期为1的周期点的有( )A.0 B.13 C.23D.1【答案】AC【解析】A :x 0=0时,x 1=f 0 =0,周期为1,故A 正确;B :x 0=13时,x 1=f 13 =23,x 2=f 23 =23,x 3=⋯=x n =23,所以13不是f x 的周期点.故B 错误;C :x 0=23时,x 1=x 2=⋯=x n =23,周期为1,故C 正确;D :x 0=1时,x 1=f 1 =0,∴1不是f x 周期为1的周期点,故D 错误.故选:AC .26.(2022·湖北·黄冈中学模拟预测)在数列a n 中,对于任意的n ∈N *都有a n >0,且a 2n +1-a n +1=a n ,则下列结论正确的是( )A.对于任意的n ≥2,都有a n >1B.对于任意的a 1>0,数列a n 不可能为常数列C.若0<a 1<2,则数列a n 为递增数列D.若a 1>2,则当n ≥2时,2<a n <a 1【答案】ACD 【解析】A :由a n +1=a n a n +1+1,对∀n ∈N *有a n >0,则a n +1=an a n +1+1>1,即任意n ≥2都有a n >1,正确;B :由a n +1(a n +1-1)=a n ,若a n 为常数列且a n >0,则a n =2满足a 1>0,错误;C :由an a n +1=a n +1-1且n ∈N *,当1<a n +1<2时0<an a n +1<1,此时a 1=a 2(a 2-1)∈(0,2)且a 1<a 2,数列a n 递增;当a n +1>2时an a n +1>1,此时a 1=a 2(a 2-1)>a 2>2,数列a n 递减;所以0<a 1<2时数列a n 为递增数列,正确;试卷第1页,共3页D:由C分析知:a1>2时a n+1>2且数列a n递减,即n≥2时2<a n<a1,正确.故选:ACD27.(2022·山东·模拟预测)已知点P在棱长为2的正方体ABCD-A1B1C1D1的表面上运动,点Q是CD的中点,点P满足PQ⊥AC1,下列结论正确的是( )A.点P的轨迹的周长为32B.点P的轨迹的周长为62C.三棱锥P-BCQ的体积的最大值为43D.三棱锥P-BCQ的体积的最大值为23【答案】BD【解析】取BC的中点为E,取BB1的中点为F,取A1B1的中点为G,取A1D1的中点为H,取DD1的中点为M,分别连接QE,EF,FG,GH,HM,MQ,由AC1⊥QE,AC1⊥EF,且QE∩EF=E,所以AC1⊥平面EFGHMQ,由题意可得P的轨迹为正六边形EFGHMQ,其中|QE|=|EF|=2,所以点P的轨迹的周长为62,所以A不正确,B正确;当点P在线段HG上运动时,此时点P到平面BCQ的距离取得最大值,此时V P-BCQ有最大值,最大值为V max=13×12×2×1×2=23,所以C不正确,D正确.故选:BD28.(2022·山东·模拟预测)正弦信号是频率成分最为单一的一种信号,因这种信号的波形是数学上的正弦曲线而得名,很多复杂的信号都可以通过多个正弦信号叠加得到,因而正弦信号在实际中作为典型信号或测试信号而获得广泛应用已知某个声音信号的波形可表示为f(x)=2sin x+sin2x,则下列叙述不正确的是( )A.f(x)在[0,2π)内有5个零点B.f(x)的最大值为3C.(2π,0)是f(x)的一个对称中心D.当x∈0,π2时,f(x)单调递增【答案】ABD【解析】对于A,由f(x)=2sin x+sin2x=2sin x(1+cos x),令f(x)=0,则sin x=0或cos x=-1,易知f(x)在[0,2π)上有2个零点,A错误.对于B,因为2sin x≤2,sin2x≤1,由于等号不能同时成立,所以f(x)<3,B错误.对于C,易知f(x)为奇函数,函数关于原点对称,又周期为2π,故(2π,0)是f(x)的一个对称中心.对于D,f (x)=2cos x+2cos2x=2(2cos x-1)(cos x+1),因为cos x+1≥0,所以2cos x-1>0时,即:x∈2kπ-π3,2kπ+π3(k∈Z)时,f(x)单调递增,x∈2kπ+π3,2kπ+5π3(k∈Z)时,f(x)单调递减,故D错误.故选:ABD29.(2022·山东·模拟预测)已知函数f(x)=e x,x≥0-x2-4x,x<0,方程f2(x)-t⋅f(x)=0有四个实数根x1,x2,x3,x4,且满足x1<x2<x3<x4,下列说法正确的是( )A.x1x4∈(-6ln2,0]B.x1+x2+x3+x4的取值范围为[-8,-8+2ln2)C.t的取值范围为[1,4)D.x2x3的最大值为4【答案】BC【解析】f2(x)-t⋅f(x)=0⇒f(x)[f(x)-t]=0⇒f(x)=0或f(x)=t,作出y=f(x)的图象,当f(x)=0时,x1=-4,有一个实根;当t=1时,有三个实数根,∴共四个实根,满足题意;当t=4时,f(x)=t只有两个实数根,所以共三个实根,不满足题意,此时与y=e x的交点坐标为(2ln2,4).要使原方程有四个实根,等价于f(x)=t有三个实根,等价于y=f(x)与y=t图像有三个交点,故t∈[1,4),x4∈[0,2ln2),所以x1x4∈(-8ln2,0],故A错误,C正确;又因为x2+x3=-4,所以x1+x2+x3+x4=-8+x4的取值范围为[-8,-8+2ln2)),B正确;因为x2+x3=-4,x2<x3<0,所以x2x3=-x2⋅-x3<-x2+x322=4,故D错误.故选:BC.30.(2022·江苏·南京市雨花台中学模拟预测)阿基米德是伟大的物理学家,更是伟大的数学家,他曾经对高中教材中的抛物线做过系统而深入的研究,定义了抛物线阿基米德三角形:抛物线的弦与弦的端点处的两条切线围成的三角形称为抛物线阿基米德三角形.设抛物线C:y=x2上两个不同点A,B横坐标分别为x1,x2,以A,B为切点的切线交于P点.则关于阿基米德三角形PAB的说法正确的有( )A.若AB过抛物线的焦点,则P点一定在抛物线的准线上B.若阿基米德三角形PAB为正三角形,则其面积为334C.若阿基米德三角形PAB为直角三角形,则其面积有最小值14D.一般情况下,阿基米德三角形PAB的面积S=|x1-x2|24【答案】ABC【解析】由题意可知:直线AB一定存在斜率,所以设直线AB的方程为:y=kx+m,由题意可知:点A(x1,x21),B(x2,x22),不妨设x1<0<x2,由y=x2⇒y =2x,所以直线切线PA,PB的方程分别为:y-x21=2x1(x-x1),y-x22=2x2(x-x2),两方程联立得:y-x21=2x1(x-x1) y-x22=2x2(x-x2),解得:x=x1+x22 y=x1x2,所以P点坐标为:x1+x22,x1x2,试卷第1页,共3页直线AB 的方程与抛物线方程联立得:y =kx +m y =x 2⇒x 2-kx -m =0⇒x 1+x 2=k ,x 1x 2=-m .A :抛物线C :y =x 2的焦点坐标为0,14 ,准线方程为 y =-14,因为AB 过抛物线的焦点,所以m =14,而x 1x 2=-m =-14,显然P 点一定在抛物线的准线上,故本选项说法正确;B :因为阿基米德三角形PAB 为正三角形,所以有|PA |=|PB |,即x 1+x 22-x 1 2+(x 1x 2-x 21)2=x 1+x 22-x 2 2+(x 1x 2-x 22)2,因为 x 1≠x 2,所以化简得:x 1=-x 2,此时A (x 1,x 21),B (-x 1,x 21), P 点坐标为:(0,-x 21),因为阿基米德三角形PAB 为正三角形,所以有|PA |=|AB |,所以(0-x 1)2+(-x 21-x 21)2=-2x 1⇒x 1=-32,因此正三角形PAB 的边长为3,所以正三角形PAB 的面积为12×3×3⋅sin60°=12×3×3×32=334,故本选项说法正确;C :阿基米德三角形PAB 为直角三角形,当PA ⊥PB 时,所以k PA ⋅k PB =-1⇒x 1+x 22-x 1x 1x 2-x 21⋅x 1+x 22-x 2x 1x 2-x 22=-1⇒x 1x 2=-14,直线AB 的方程为:y =kx +14所以P 点坐标为:k 2,-14 ,点 P 到直线AB 的距离为:k 2⋅k +-14 ×(-1)+14 k 2+(-1)2=12k 2+1,|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=[(x 1+x 2)2-4x 1x 2][1+(x 1+x 2)2],因为x 1+x 2=k ,x 1x 2=-14,所以 AB =(k 2+1)(1+k 2)=1+k 2,因此直角PAB 的面积为:12×12⋅k 2+1⋅(k 2+1)=14(k 2+1)3≥14,当且仅当k =0时,取等号,显然其面积有最小值14,故本说法正确;D :因为x 1+x 2=k ,x 1x 2=-m ,所以|AB |=(x 1-x 2)2+(x 21-x 22)2=(x 1-x 2)2[1+(x 1+x 2)2]=x 1-x 2 k 2+1,点P 到直线AB 的距离为:x 1+x 22⋅k +(-1)⋅x 1⋅x 2+m k 2+(-1)2=x 1+x 22⋅(x 1+x 2)+(-1)⋅x 1⋅x 2-(x 1x 2)k 2+(-1)2=12⋅(x 1-x 2)2k 2+1,所以阿基米德三角形PAB 的面积S =12⋅x 1-x 2 ⋅k 2+1⋅12⋅(x 1-x 2)2k 2+1=x 1-x 2 34,故本选项说法不正确.故选:ABC31.(2023·江苏·南京市第一中学模拟预测)已知函数f (x )=x ln x ,若0<x 1<x 2,则下列结论正确的是( )A.x 2f x 1 <x 1f x 2B.x 1+f x 1 <x 2+f x 2C.f x 1 -f x 2 x 1-x 2<0D.当ln x >-1时,x 1f x 1 +x 2f x 2 >2x 2f x 1 【答案】AD【解析】 对于A 选项,因为令g x =f (x )x=ln x ,在0,+∞ 上是增函数,所以当0<x 1<x 2时,g x 1 <g x 2 ,所以f (x 1)x 1<f (x 2)x 2,即x 2f x 1 <x 1f x 2 .故A 选项正确;对于B 选项,因为令g x =f x +x =x ln x +x ,所以g ′x =ln x +2,所以x ∈e -2,+∞ 时,g ′x >0,g x 单调递增,x ∈0,e -2 时,g ′x <0,g x 单调递减.所以x 1+f x 1 与x 2+f x 2 无法比较大小.故B 选项错误;对于C 选项,令f ′x =ln x +1,所以x ∈0,1e时,f ′x <0,f x 在0,1e 单调递减,x ∈1e ,+∞ 时,f ′x >0,f x 在1e ,+∞ 单调递增,所以当0<x 1<x 2<1e 时,f x 1 >f x 2 ,故f (x 1)-f (x 2)x 1-x 2<0成立,当1e <x 1<x 2时,f x 1 <f x 2 ,f (x 1)-f (x 2)x 1-x 2>0.故C 选项错误;对于D 选项,由C 选项知,当ln x >-1时,f x 单调递增,又因为A 正确,x 2f x 1 <x 1f x 2 成立,所以x 1⋅f x 1 +x 2⋅f x 2 -2x 2f x 1 >x 1⋅f x 1 +x 2⋅f x 2 -x 2f x 1 -x 1f x 2 =x 1f x 1 -f x 2 +x 2f x 2 -f x 1 =x 1-x 2 f x 1 -f x 2 >0,故D 选项正确.故选:AD .32.(2023·江苏·南京市第一中学模拟预测)已知a ,b 为正实数,且ab =32a +b -42,则2a +b 的取值可以为( )A.1 B.4C.9D.32【答案】BD【解析】因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42=ab =2ab 2≤2a +b22,当且仅当2a =b 时等号成立,即32a +b -42≤2a +b22,所以2a +b -622a +b +16≥0,所以2a +b ≥42或2a +b ≤22,因为a ,b 为正实数,ab =32a +b -42,所以32a +b -42>0,所以2a +b ≥42或423<2a +b ≤22.所以2a +b ≥32或329<2a +b ≤8.故选:BD .33.(2023·江苏·南京市第一中学模拟预测)下列不等式正确的是( )A.log 23<log 49B.log 23<lg15C.log 812>log 1215D.log 812>log 636【答案】CD【解析】选项A :log 23=log 2232=log 49,故不正确;设f x =log 2x 3x (x ≥1),因为x ≥1,所以f x =ln 3x ln 2x=3ln 2x 3x -2ln 3x2x ln 22x=试卷第1页,共3页ln 2x -ln 3xx ln 22x <0,所以f x 在[1,+∞)上单调递减,所以选项B :f 1 =log 23>log 1015=lg15=f 5 ,故不正确;选项C :f 4 =log 812>f 5 =log 1015>log 1215,故正确;选项D :f 4 =log 812>f 18 =log 3654=log 636,故正确,故选:CD .34.(2022·湖南·长沙一中高三阶段练习)已知函数f (x )=x ln (1+x ),则( )A.f (x )在(0,+∞)单调递增B.f (x )有两个零点C.曲线y =f (x )在点-12,f -12处切线的斜率为-1-ln2D.f (x )是偶函数【答案】AC【解析】由f (x )=x ln (1+x )知函数的定义域为(-1,+∞),f (x )=ln (1+x )+x1+x,当x ∈(0,+∞)时,ln (1+x )>0,x1+x>0,∴f (x )>0,故f (x )在(0,+∞)单调递增,A 正确;由f (0)=0,当-1<x <0时,ln (1+x )<0,f (x )=x ln (1+x )>0,当ln (1+x )>0,f (x )>0,所以f (x )只有0一个零点,B 错误;令x =-12,f -12 =ln 12-1=-ln2-1,故曲线y =f (x )在点-12,f -12 处切线的斜率为-1-ln2,C 正确;由函数的定义域为(-1,+∞),不关于原点对称知,f (x )不是偶函数,D 错误.故选:AC35.(2022·湖南·长沙一中高三阶段练习)已知函数f x =x ln x ,x >00,x =012f x +1 ,x <0,则下列说法正确的有( )A.当x ∈-3,-2 时,f x =18x +3 ln x +3B.若不等式f x -mx -m <0至少有3个正整数解,则m >ln3C.过点A -e -2,0 作函数y =f x x >0 图象的切线有且只有一条D.设实数a >0,若对任意的x ≥e ,不等式f x ≥a x e ax 恒成立,则a 的最大值是e【答案】ACD【解析】对于A :当x ∈-3,-2 ,∴x +3∈0,1 ,f x +3 =x +3 ln x +3 ,∵f x =18f x +3 ,∴f x =18x +3 ln x +3 ,A 正确;对于B :f x <mx +m ,画出y 1=f x 与y 2=mx +m 的图象,根据函数的图象,要想至少有3个正整数解,要满足f 3 <3m +m ,∴m >34ln3,故B 错;对于C :设切点T x 0,y 0 则k AT =f x 0 ,∴x 0ln x 0x 0+1e2=ln x 0+1,即e 2x 0+ln x 0+1=0,设h x =e 2x +ln x +1,当x >0时,h x >0,∴h x 是单调递增函数,∴h x =0最多只有一个根,又h 1e 2 =e 2⋅1e 2+ln 1e2+1=0,∴x 0=1e 2,由f x 0 =-1得切线方程是x +y +1e2=0,故C 正确;对于D .:由题意e ln x ⋅ln x ≥a xe ax .设g x =x ⋅e x x >0 ,则g x =x +1 e x >0,于是g x 在0,+∞ 上是增函数.因为a x >0,ln x >0,所以ax≤ln x ,即a ≤x ln x 对任意的x ≥e 恒成立,因此只需a ≤x ln x min .设f x =x ln x x ≥e ,f x =ln x +1>0x ≥e ,所以f x 在e ,+∞ 上为增函数,所以f x min =f (e )=e ,所以a ≤e ,即a 的最大值是e ,选项D 正确;故选:ACD .36.(2022·湖南·长沙市明德中学高三开学考试)抛物线有如下光学性质:由其焦点射出的光线经抛物线反射后,沿平行于抛物线对称轴的方向射出;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线C :y 2=2px (p >0),O 为坐标原点,一条平行于x 轴的光线l 1从点M (5,2)射入,经过C 上的点A 反射后,再经C 上另一点B 反射后,沿直线l 2射出,经过点N .下列说法正确的是( )A.若p =2,则|AB |=4 B.若p =2,则MB 平分∠ABN C.若p =4,则|AB |=8D.若p =4,延长AO 交直线x =-2于点D ,则D ,B ,N 三点共线【答案】ABD【解析】若p =2,则抛物线C :y 2=4x ,A (1,2),C 的焦点为F (1,0),直线AF 的方程为:x =1,可得B (1,-2),|AB |=4,选项A 正确;p =2时,因为|AM |=5-1=4=|AB |,所以∠A MB =∠ABM ,又AM ∥BN ,所以∠A MB =∠MB N ,所以MB 平分∠ABN ,选项B 正确;若p =4,则抛物线C :y 2=8x ,A 12,2 ,C 的焦点为F (2,0),直线AF 的方程为y =-43(x -2),联立抛物线方程求解可得B (8,-8),所以|AB |=252,选项C 不正确;若p =4,则抛物线C :y 2=8x ,A 12,2,延长AO 交直线x =-2于点D ,则D (-2,-8),由C 选项可知B试卷第1页,共3页(8,-8),所以D,B,N三点共线,故D正确.故选:ABD.37.(2022·湖南·长沙市明德中学高三开学考试)已知a>1,x1,x2,x3为函数f(x)=a x-x2的零点,x1<x2<x3,下列结论中正确的是( )A.x1>-1B.x1+x2<0C.若2x2=x1+x3,则x3x2=2+1 D.a的取值范围是1,e2e【答案】ACD【解析】∵a>1,f-1=a-1-1=1a-1<0,f0 =a0-0=1>0 ,∴-1<x1<0 ,故A正确;当0≤x≤1 时,1≤a x≤a,0≤x2≤1 ,f x 必无零点,故x2>1 ,∴x1+x2>0 ,故B错误;当2x2=x1+x3 时,即a x1=x21a x2=x22a x3=x23,两边取对数得x1=2log a-x1x2=2log a x2x3=2log a x3,4log a x2=2log a-x1+2log a x3 ,x22=-x1x3 ,联立方程x22=-x1x32x2=x1+x3解得x23-2x2x3-x22=0 ,由于x2>0,x3>0 ,x3x2=2+1 ,故C正确;考虑f x 在第一象限有两个零点:即方程a x=x2 有两个不同的解,两边取自然对数得x ln a=2ln x 有两个不同的解,设函数g x =x ln a-2ln x ,g x =ln a-2x=ln a x-2ln ax ,则x=x0=2ln a 时,g x =0 ,当x>x0 时,g x >0 ,当x<x0 时,g x <0 ,所以g min x =g x0=2-2ln2ln a,要使得g x 有两个零点,则必须g x0<0,即ln2ln a>1 ,解得a<e2e ,故D正确;故选:ACD.38.(2022·湖北·高三开学考试)关于函数f x =ae x+sin x,x∈-π,π,下列结论中正确的有( )A.当a=-1时,f x 的图象与x轴相切B.若f x 在-π,π上有且只有一个零点,则满足条件的a的值有3个C.存在a ,使得f x 存在三个极值点D.当a =1时,f x 存在唯一极小值点x 0,且-1<f x 0 <0【答案】BCD【解析】对于A ,f (x )=-e x +sin x ,f (x )=-e x +cos x =0,即e x =cos x ,由函数y =e x 、y =cos x 的图像可知方程有两个根:x 1∈-π2,0 ,x 2=0,f (x 2)=-1,f (x 1)=sin x 1-e x 1<0,即斜率为0的切线其切点不在x 轴上,故A 错误;对于B ,f (x )=0⇔a =-sin x e x ,令g (x )=-sin xex ,g (x )=sin x -cos x ex ,x ∈-π,-3π4 、x ∈π4,π ,g (x )>0,g (x )单调递增,x ∈-3π4,π4 ,g (x )单调递减,g (-π)=0,g -3π4 =22e 3π4,g π4 =-22e π4,g (π)=0,结合图像可知满足f (x )=0⇔a =-sin xex 在-π,π 上有且只有一个零点的a 的值有3个:0,22e3π4,-22e π4,故B 正确;对于C ,f (x )=ae x +cos x =0⇔a =-cos xex =h (x ),h (x )=2sin x +π4ex ,可知x ∈-π,-π4 ,h (x )<0,h (x )单调递减,x ∈-π4,3π4 ,h (x )>0,h (x )单调递增, x ∈3π4,π ,h (x )<0,h (x )单调递减,h (-π)=e π,h -π4 =-2e π42,h 3π4 =22e 3π4,h (π)=1e π,故a ∈1e π,22e 3π4时,a =-cos xe x =h (x )有三个实数根,f x 存在三个极值点,故C 正确;对于D ,f (x )=e x +cos x =0⇔e x =-cos x ,由图像可知此方程有唯一实根x 0,因为e 3π2>2,所以1e 3π2<12,1e 3π4<22,f -3π4 =1e3π4-22<0,x 0∈-3π4,-π2 ,f (x 0)=e x 0+sin x 0=sin x 0-cos x 0=2sin x 0-π4,可知-1<f (x 0)<0,故D 正确.故选:BCD .39.(2022·湖北·襄阳五中高三开学考试)已知函数f x =x x -1,x <15ln x x ,x ≥1,下列选项正确的是( )A.函数f x 的单调减区间为-∞,1 、e ,+∞B.函数f x 的值域为-∞,1C.若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则实数a 的取值范围是5e ,+∞ D.若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则实数a 的取值范围是1,5e 【答案】ACD试卷第1页,共3页【解析】对于A 选项,当x <1时,f x =x x -1,则f x =-1x -12<0,当x ≥1时,f x =5ln xx ,则f x =51-ln x x2,由f x <0可得x >e ,所以,函数f x 的单调减区间为-∞,1 、e ,+∞ ,A 对;对于B 选项,当x <1时,f x =1+1x -1<1,当x ≥1时,0≤f x =5ln x x ≤f e =5e,因此,函数f x 的值域为-∞,5e,B 错;对于CD 选项,作出函数f x 的图像如下图所示:若a ≤0,由f 2x -a f x =0可得f x =0,则方程f x =0只有两个不等的实根;若a >0,由f 2x -a f x =0可得f x =0或f x =a 或f x =-a ,由图可知,方程f x =0有2个不等的实根,方程f x =-a 只有一个实根,若关于x 的方程f 2x -a f x =0有3个不相等的实数根,则a >5e,C 对;若关于x 的方程f 2x -a f x =0有5个不相等的实数根,则1≤a <5e,D 对.故选:ACD .40.(2022·湖北·应城市第一高级中学高三开学考试)已知函数f (x )=sin 4x +π3 +cos 4x -π6,则下列结论正确的是( )A.f (x )的最大值为2B.f (x )在-π8,π12上单调递增C.f (x )在[0,π]上有4个零点D.把f (x )的图象向右平移π12个单位长度,得到的图象关于直线x =-π8对称【答案】ACD【解析】因为f (x )=sin π2+4x -π6+cos 4x -π6 =2cos 4x -π6,所以A 正确;当x ∈-π8,π12 时,4x -π6∈-2π3,π6 ,函数f (x )=2cos 4x -π6 在-π8,π12上先增后减,无单调性,故B 不正确;令2cos 4x -π6 =0,得4x -π6=π2+k π,k ∈Z ,故x =π6+k π4,k ∈Z ,因为x ∈[0,π],所以k =0,1,2,3,故C 正确;把f (x )=2cos 4x -π6 的图象向右平移π12个单位长度,得到y =2cos 4x -π12 -π6=。
2025届湖北省黄冈市新联考高三压轴卷数学试卷含解析
2025届湖北省黄冈市新联考高三压轴卷数学试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.抛物线23x ay =的准线方程是1y =,则实数a =( )A .34-B .34C .43-D .432.赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的).类比“赵爽弦图”.可类似地构造如下图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成一个大等边三角形.设22DF AF ==,若在大等边三角形中随机取一点,则此点取自小等边三角形(阴影部分)的概率是( )A .413B .21313C .926D .313263.如图,在中,点M 是边的中点,将沿着AM 翻折成,且点不在平面内,点是线段上一点.若二面角与二面角的平面角相等,则直线经过的( )A .重心B .垂心C .内心D .外心4.已知非零向量,a b 满足0a b ⋅=,||3a =,且a 与a b +的夹角为4π,则||b =( ) A .6B .32C .2D .35.已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( ) A .1,2⎛⎫+∞⎪⎝⎭B .()0,1C .1,12⎛⎫⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭6.已知向量a ,b 满足4a =,b 在a 上投影为2-,则3a b -的最小值为( ) A .12B .10C .10D .27.已知集合{}1,0,1,2A =-,{}|lg(1)B x y x ==-,则A B =( )A .{2}B .{1,0}-C .{}1-D .{1,0,1}-8.某几何体的三视图如图所示,图中圆的半径为1,等腰三角形的腰长为3,则该几何体表面积为( )A .7πB .6πC .5πD .4π9.在ABC ∆中,,A B C ∠∠∠所对的边分别是,,a b c ,若3,4,120a b C ︒==∠=,则c =( ) A .37B .13C .13D .3710.若i 为虚数单位,网格纸上小正方形的边长为1,图中复平面内点Z 表示复数z ,则表示复数2iz的点是( )A .EB .FC .GD .H11.已知变量x ,y 满足不等式组210x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最小值为( )A .4-B .2-C .0D .412.集合{2,1,1},{4,6,8},{|,,}A B M x x a b b B x B =--===+∈∈,则集合M 的真子集的个数是 A .1个B .3个C .4个D .7个二、填空题:本题共4小题,每小题5分,共20分。
(2020年高考必备)湖北省黄冈中学高考数学压轴题精编精解九 新人教版 精品
(2020年高考必备)湖北省黄冈中学高考数学压轴题精编精解九81.已知函数的图像过点,且对任意实数都成立,函数与的图像关于原点对称。
(Ⅰ)求与的解析式;(Ⅱ)若—在[-1,1]上是增函数,求实数λ的取值范围;82.设数列满足,且数列是等差数列,数列是等比数列。
(I)求数列和的通项公式;(II)是否存在,使,若存在,求出,若不存在,说明理由。
与a n之间满足83.数列的首项,前n项和Sn(1)求证:数列{}的通项公式;(2)设存在正数k,使对一切都成立,求k的最大值.84.已知F1、F2分别是椭圆的左、右焦点,其左准线与x轴相交于点N,并且满足,设A、B是上半椭圆上满足的两点,其中(1)求此椭圆的方程及直线AB的斜率的取值范围;(2)设A、B两点分别作此椭圆的切线,两切线相交于一点P,求证:点P在一条定直线上,并求点P的纵坐标的取值范围.85.已知函数(1)求函数f(x)是单调区间;(2)如果关于x的方程有实数根,求实数的取值集合;(3)是否存在正数k,使得关于x的方程有两个不相等的实数根?如果存在,求k满足的条件;如果不存在,说明理由.86、已知抛物线的焦点为,直线过点且与抛物线交于两点.并设以弦为直径的圆恒过原点.(Ⅰ)求焦点坐标;(Ⅱ)若,试求动点的轨迹方程.87、已知椭圆上的点到右焦点F的最小距离是,到上顶点的距离为,点是线段上的一个动点.(I)求椭圆的方程;(Ⅱ)是否存在过点且与轴不垂直的直线与椭圆交于、两点,使得,并说明理由.88、椭圆的对称中心在坐标原点,一个顶点为,右焦点与点的距离为。
(1)求椭圆的方程;(2)是否存在斜率的直线:,使直线与椭圆相交于不同的两点满足,若存在,求直线的倾斜角;若不存在,说明理由。
89、已知数列的前n项和为,且对一切正整数n都有。
(1)证明:;(2)求数列的通项公式;(3)设,求证:对一切都成立。
90、已知等差数列的前三项为记前项和为.(Ⅰ)设,求和的值;(Ⅱ)设,求的值.黄冈中学2020年高考数学压轴题汇总详细解答81解:⑴由题意知:,设函数图象上的任意一点关于原点的对称点为P(x,y), 则,……………………4分因为点⑵连续,恒成立……9分即,………………..10分由上为减函数,………………..12分当时取最小值0,………………..13分故另解:,,解得82(1)由已知,公差………1分………2分=………4分由已知………5分所以公比,………6分………7分(2)设…8分所以当时,是增函数。
(高考必备)湖北省黄冈中学高考数学压轴题精编精解四 新人教版
(2011年高考必备)湖北省黄冈中学高考数学压轴题精编精解四31.设函数,其图象在点处的切线的斜率分别为.(Ⅰ)求证:;(Ⅱ)若函数的递增区间为,求的取值范围;(Ⅲ)若当时(k是与无关的常数),恒有,试求k 的最小值.32.如图,转盘游戏.转盘被分成8个均匀的扇形区域.游戏规则:用力旋转转盘,转盘停止时箭头A所指区域的数字就是游戏所得的点数(转盘停留的位置是随机的).假设箭头指到区域分界线的概率为,同时规定所得点数为0.某同学进行了一次游戏,记所得点数为.求的分布列及数学期望.(数学期望结果保留两位有效数字)33.设,分别是椭圆:的左,右焦点.(1)当,且,时,求椭圆C的左,右焦点、.(2)、是(1)中的椭圆的左,右焦点,已知的半径是1,过动点的作切线,使得(是切点),如下图.求动点的轨迹方程.34.已知数列满足, ,.(1)求证:是等比数列;(2)求数列的通项公式;(3)设,且对于恒成立,求的取值范35.已知集合(其中为正常数).(1)设,求的取值范围;(2)求证:当时不等式对任意恒成立;(3)求使不等式对任意恒成立的的范围.36、已知椭圆C:+=1(a>b>0)的离心率为,过右焦点F且斜率为1的直线交椭圆C于A,B两点,N为弦AB的中点。
(1)求直线ON(O为坐标原点)的斜率K ON ;(2)对于椭圆C上任意一点M,试证:总存在角(∈R)使等式:=cos+sin成立。
37、已知曲线C上任意一点M到点F(0,1)的距离比它到直线的距离小1。
(1)求曲线C的方程;(2)过点①当的方程;②当△AOB的面积为时(O为坐标原点),求的值。
38、已知数列的前项和为,对一切正整数,点都在函数的图像上,且过点的切线的斜率为.(1)求数列的通项公式.(2)若,求数列的前项和.(3)设,等差数列的任一项,其中是中的最小数,,求的通项公式.39、已知是数列的前项和,,且,其中.(1)求数列的通项公式;(2)(理科)计算的值. ( 文科) 求.40、函数对任意x∈R都有f(x)+f(1-x)=.(1)求的值;(2)数列的通项公式。
黄冈压轴题1-50
个 个黄冈中学高考数学压轴题精编精解精选100题1——501.设函数()1,121,23x f x x x ≤≤⎧=⎨-<≤⎩,()()[],1,3g x f x ax x =-∈,其中a R ∈,记函数()g x 的最大值与最小值的差为()h a 。
(I )求函数()h a 的解析式;(II )画出函数()y h x =的图象并指出()h x 的最小值。
2.已知函数()()ln 1f x x x =-+,数列{}n a 满足101a <<,()1n n a f a +=; 数列{}n b 满足1111,(1)22n n b b n b +=≥+, *n N ∈.求证:(Ⅰ)101;n n a a +<<<(Ⅱ)21;2n n a a +<(Ⅲ)若1a =则当n ≥2时,!n n b a n >⋅. 3.已知定义在R 上的函数f (x ) 同时满足:(1)21212122()()2()cos24sin f x x f x x f x x a x ++-=+(12,x x ∈R ,a 为常数); (2)(0)()14f f π==;(3)当0,4x π∈[]时,()f x ≤2求:(Ⅰ)函数()f x 的解析式;(Ⅱ)常数a 的取值范围.4.设)0(1),(),,(22222211>>=+b a bx x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点. (1)求椭圆的方程;(2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值; (3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由. 5.已知数列{}n a 中各项为:12、1122、、 (111)⋅⋅⋅⋅⋅⋅222n ⋅⋅⋅⋅⋅⋅ ……(1)证明这个数列中的每一项都是两个相邻整数的积. (2)求这个数列前n 项之和S n .6、设1F 、2F 分别是椭圆22154x y +=的左、右焦点. (Ⅰ)若P 是该椭圆上的一个动点,求21PF PF ⋅的最大值和最小值;(Ⅱ)是否存在过点A (5,0)的直线l 与椭圆交于不同的两点C 、D ,使得|F 2C|=|F 2D|?若存在,求直线l 的方程;若不存在,请说明理由.7、已知动圆过定点P (1,0),且与定直线L:x=-1相切,点C 在l 上. (1)求动圆圆心的轨迹M 的方程;.B ,A M 3,P )2(两点相交于的直线与曲线且斜率为设过点-(i )问:△ABC 能否为正三角形?若能,求点C 的坐标;若不能,说明理由 (ii )当△ABC 为钝角三角形时,求这种点C 的纵坐标的取值范围.8、定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), 1.求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0;(3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
湖北省黄冈市黄冈中学2025届高考数学押题试卷含解析
湖北省黄冈市黄冈中学2025届高考数学押题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图,PA ⊥平面ABCD ,ABCD 为正方形,且PA AD =,E ,F 分别是线段PA ,CD 的中点,则异面直线EF 与BD 所成角的余弦值为( )A .26B .33C 3D .232.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数(即质数)的和”,如16511=+,30723=+.在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是( ) A .114B .112C .328D .以上都不对3.已知13ω>,函数()sin 23f x x πω⎛⎫=- ⎪⎝⎭在区间(,2)ππ内没有最值,给出下列四个结论:①()f x 在(,2)ππ上单调递增; ②511,1224ω⎡⎤∈⎢⎥⎣⎦ ③()f x 在[0,]π上没有零点; ④()f x 在[0,]π上只有一个零点. 其中所有正确结论的编号是( )A .②④B .①③C .②③D .①②④4.已知向量a ,b 夹角为30,()1,2a =,2b = ,则2a b -=( ) A .2B .4C .23D .275.把满足条件(1)x R ∀∈,()()f x f x -=,(2)1x R ∀∈,2x R ∃∈,使得()()12f x f x =-的函数称为“D 函数”,下列函数是“D 函数”的个数为( )①2||y x x =+ ②3y x = ③x x y e e -=+ ④cos y x = ⑤sin y x x = A .1个B .2个C .3个D .4个6.已知椭圆22221(0)x y a b a b+=>>的焦点分别为1F ,2F ,其中焦点2F 与抛物线22y px =的焦点重合,且椭圆与抛物线的两个交点连线正好过点2F ,则椭圆的离心率为( ) A .22B .21-C .322-D .31-7.已知集合{}1A x x =<,{}1xB x e =<,则( ) A .{}1A B x x ⋂=< B .{}A B x x e ⋃=< C .{}1A B x x ⋃=<D .{}01A B x x ⋂=<<8.如图,在平面四边形ABCD 中,,,120,1,AB BC AD CD BAD AB AD ⊥⊥∠=== 若点E 为边CD 上的动点,则AE BE ⋅的最小值为 ( )A .2116B .32C .2516D .39.已知定义在R 上的函数()f x 的周期为4,当[2,2)x ∈-时,1()43xf x x ⎛⎫=-- ⎪⎝⎭,则()()33log 6log 54f f -+=( )A .32B .33log 22- C .12-D .32log 23+ 10.若等差数列{}n a 的前n 项和为n S ,且130S =,3421a a +=,则7S 的值为( ). A .21B .63C .13D .8411.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( )A .21,06e ⎛⎫-⎪⎝⎭B .1,06e ⎛⎫-⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭12.已知,αβ是空间中两个不同的平面,,m n 是空间中两条不同的直线,则下列说法正确的是( ) A .若,m n αβ⊂⊂,且αβ⊥,则 m n ⊥ B .若,m n αα⊂⊂,且//,//m n ββ,则//αβ C .若,//m n αβ⊥,且αβ⊥,则 m n ⊥ D .若,//m n αβ⊥,且//αβ,则m n ⊥二、填空题:本题共4小题,每小题5分,共20分。
湖北省黄石市重点中学2025届高三压轴卷数学试卷含解析
湖北省黄石市重点中学2025届高三压轴卷数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若424log 3,log 7,0.7a b c ===,则实数,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b a c >>D .c b a >> 2.已知函数||()()x x f x x R e =∈,若关于x 的方程()10f x m -+=恰好有3个不相等的实数根,则实数m 的取值范围为( )A .(212),e eB .(20,)2e eC .(11,1)e + D .21,12()e e+ 3.已知函数()ln f x x =,若2()()3F x f x kx =-有2个零点,则实数k 的取值范围为( )A .21,06e ⎛⎫- ⎪⎝⎭B .1,06e ⎛⎫- ⎪⎝⎭C .10,6e ⎛⎫ ⎪⎝⎭D .210,6e ⎛⎫ ⎪⎝⎭4.若复数z 满足i 2i z -=,则z =( )A .2B .3C .2D .5 5.已知数列满足:.若正整数使得成立,则( )A .16B .17C .18D .19 6.已知函数()[]f x x x =-,其中[]x 表示不超过x 的最大正整数,则下列结论正确的是( )A .()f x 的值域是[]0,1B .()f x 是奇函数C .()f x 是周期函数D .()f x 是增函数 7.在复平面内,复数21(1)i i +-对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.将4名大学生分配到3个乡镇去当村官,每个乡镇至少一名,则不同的分配方案种数是( )A .18种B .36种C .54种D .72种9.如图所示,用一边长为2的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为43π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋(球体)离蛋巢底面的最短距离为( ) A .212- B .212+ C .612- D .312- 10.复数12i i--的共轭复数对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.若双曲线E :221x y m n-=(0)mn >绕其对称中心旋转3π后可得某一函数的图象,则E 的离心率等于( ) A .233 B .3C .2或233D .2或3 12.已知函数()12x f x e-=,()ln 12x g x =+,若()()f m g n =成立,则n m -的最小值为( ) A .0 B .4 C .132e - D .5+ln 62二、填空题:本题共4小题,每小题5分,共20分。
湖北省黄冈市(新版)2024高考数学人教版考试(押题卷)完整试卷
湖北省黄冈市(新版)2024高考数学人教版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题抛掷一枚骰子两次,将得到的点数分别记为,则能构成三角形的概率是()A.B.C.D.第(2)题已知x,,且,则()A.0B.C.1D.第(3)题如图,某同学用两根木条钉成十字架,制成一个椭圆仪.木条中间挖一道槽,在另一活动木条的处钻一个小孔,可以容纳笔尖,各在一条槽内移动,可以放松移动以保证与的长度不变,当各在一条槽内移动时,处笔尖就画出一个椭圆.已知,且在右顶点时,恰好在点,则的离心率为()A.B.C.D.第(4)题函数的部分图像大致为()A.B.C.D.第(5)题已知为虚数单位,若复数,则()A.B.C.D.第(6)题已知函数对均满足,其中是的导数,则下列不等式恒成立的是()A.B.C.D.第(7)题已知,,则()A.B.C.D.第(8)题已知,,则的最小值是A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数的定义域为,若,且,则()A.B.无最小值C.D.的图象关于点中心对称第(2)题已知数列满足,,其前项和为,则下列结论中正确的有()A.是递增数列B.是等比数列C.D.第(3)题已知四面体ABCD的棱长均为2,则()A.B.直线AB与平面BCD所成的角的正弦值为C.点A到平面BCD的距离为D.两相邻侧面夹角的余弦值为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题老师排练节目需要4个男生和2个女生,将这六名学生随机排成一排,2个女生不相邻的排法为___________.第(2)题计算的值为________.第(3)题如图,半圆O的直径,C为圆弧上的动点(异于A,B两点),点M,N分别在以线段AC,BC为直径的半圆弧上运动,则的最大值为___________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设数列的前项和为,且,数列为等差数列且,.(1)求数列和的通项公式;(2)设,求的前项和.第(2)题已知抛物线的焦点为,准线为,过的直线与相交于两点.(1)以为直径的圆与轴交两点,若,求;(2)点在上,过点且垂直于轴的直线与分别相交于两点,证明:.第(3)题已知直线为参数),以坐标原点为极点,轴为极轴建立极坐标系,曲线.(1)求曲线的直角坐标方程和直线的普通方程;(2)求与直线平行,且被曲线截得的弦长为的直线的方程.第(4)题对一个量用两种方法分别算一次,由结果相同而构造等式,这种方法称为“算两次”的思想方法.利用这种方法,结合二项式定理,可以得到很多有趣的组合恒等式.(1)根据恒等式两边的系数相同直接写出一个恒等式,其中;(2)设,利用上述恒等式证明:.第(5)题我们认为灯泡寿命的总体密度曲线是正态分布曲线,其中为总体平均数,为总体标准差,某品牌灯泡的总体寿命平均数小时.(1)随机取三个该品牌灯泡,求三个灯泡中恰有两个寿命超过2600小时的概率;(2)该品牌灯泡寿命超过2800小时的概率为.我们通过设计模拟试验的方法解决“随机取三个该品牌灯泡,求三个灯泡中恰有两个寿命超过2800小时的概率”问题.利用计算器可以产生0到9十个随机数,我们用1,2,3,4表示寿命超过2800小时,用5,6,7,8,9,0表示寿命没有超过2800小时.因为是三个灯泡,所以每三个随机数一组.例如,产生20组随机数907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989就相当于做了20次试验.估计三个灯泡中恰有两个寿命超过2800小时的概率.。
黄冈中学高考数学压轴题精选( 六)
26、对于函数()f x ,若存在0x R ∈,使00()f x x =成立,则称0x 为()f x 的不动点.如果函数2()(,*)x a f x b c N bx c +=∈-有且仅有两个不动点0、2,且1(2)2f -<-. (Ⅰ)试求函数()f x 的单调区间;(Ⅱ)已知各项不为零的数列{}n a 满足14()1n n S f a =,求证:1111ln n nn a n a ++-<<-;(Ⅲ)设1n nb a =-,n T 为数列{}n b 的前n 项和,求证:200820071ln 2008T T -<<.27、已知函数f (x )的定义域为{x | x ≠ kπ,k ∈ Z },且对于定义域内的任何x 、y ,有f (x- - y ) =f (x )·f (y )+1f (y )-f (x )成立,且f (a ) = 1(a 为正常数),当0 < x < 2a 时,f (x ) > 0.(I )判断f (x )奇偶性;(II )证明f (x )为周期函数;(III )求f (x )在[2a ,3a ] 上的最小值和最大值.28、已知点R (-3,0),点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上 ,且满足230PM MQ +=,0RP PM ⋅=.(Ⅰ)⑴当点P 在y 轴上移动时,求点M 的轨迹C 的方程;(Ⅱ)设1122(,) (,)A x y B x y 、为轨迹C 上两点,且111, 0x y >>,N(1,0),求实数λ,使AB AN λ=,且163AB ||=29、已知椭圆W 的中心在原点,焦点在x 6. 椭圆W 的左焦点为F ,过左准线与x 轴的交点M 任作一条斜率不为零的直线l 与椭圆W 交于不同的两点A 、B ,点A 关于x 轴的对称点为C . (Ⅰ)求椭圆W 的方程; (Ⅱ)求证:CF FB λ= (λ∈R ); (Ⅲ)求MBC ∆面积S 的最大值.30、已知抛物线2:ax y C =,点P (1,-1)在抛物线C 上,过点P 作斜率为k 1、k 2的两条直线,分别交抛物线C 于异于点P 的两点A (x 1,y 1),B (x 2,y 2),且满足k 1+k 2=0. (I )求抛物线C 的焦点坐标;(II )若点M 满足BM =,求点M 的轨迹方程. 解答26、解:(Ⅰ)设22(1)0(1)x ax b x cx a b bx c+=⇒-++=≠- 201201c ba b ⎧+=-⎪⎪-⇒⎨⎪⨯=⎪-⎩∴012a c b =⎧⎪⎨=+⎪⎩ ∴2()(1)2x f x c x c =+- 由21(2)1312f c c --=<-⇒-<<+又∵,*b c N ∈ ∴2,2c b ==∴2()(1)2(1)x f x x x =≠- …………………… 3分 于是222222(1)22()4(1)2(1)x x x x xf x x x ---'==-- 由()0f x '>得0x <或2x >; 由()0f x '<得01x <<或12x << 故函数()f x 的单调递增区间为(,0)-∞和(2,)+∞,单调减区间为(0,1)和(1,2) ……………………4分(Ⅱ)由已知可得22n n n S a a =-, 当2n ≥时,21112n n n S a a ---=-两式相减得11()(1)0n n n n a a a a --+-+=∴1n n a a -=-或11n n a a --=-当1n =时,2111121a a a a =-⇒=-,若1n n a a -=-,则21a =这与1n a ≠矛盾∴11n n a a --=- ∴n a n =- ……………………6分于是,待证不等式即为111ln 1n n n n+<<+. 为此,我们考虑证明不等式111ln ,01x x x x x+<<>+令11,0,t x x+=>则1t >,11x t =-再令()1ln g t t t =--,1()1g t t'=- 由(1,)t ∈+∞知()0g t '>∴当(1,)t ∈+∞时,()g t 单调递增 ∴()(1)0g t g >= 于是1ln t t ->即11ln ,0x x x x+>> ① 令1()ln 1h t t t =-+,22111()t h t t t t-'=-= 由(1,)t ∈+∞知()0h t '>∴当(1,)t ∈+∞时,()h t 单调递增 ∴()(1)0h t h >= 于是1ln 1t t>-即11ln ,01x x x x +>>+ ② 由①、②可知111ln ,01x x x x x+<<>+ ……………………10分所以,111ln 1n n n n+<<+,即1111lnn n n a n a +-<<- ……11分 (Ⅲ)由(Ⅱ)可知1n b n = 则111123n T n=++++ 在111ln 1n n n n +<<+中令1,2,3,,2007n =,并将各式相加得111232008111ln ln ln 1232008122007232007+++<+++<++++即200820071ln 2008T T -<<27、解:(1)∵定义域{x | x ≠ kπ,k ∈Z }关于原点对称,又f (- x ) = f [(a - x ) - a ]= f (a -x )·f (a )+1f (a )-f (a -x )= 1+f (a -x )1-f (a -x ) = 1+f (a )·f (x )+1f (x )-f (a )1-f (a )·f (x )+1f (x )-f (a ) =1+1+f (x ) f (x )-11-1+f (x ) f (x )-1= 2f (x )-2 = - f (x ),对于定义域内的每个x 值都成立∴ f (x )为奇函数------------------------------------------------------------------------------------(4分)(2)易证:f (x + 4a ) = f (x ),周期为4a .------------------------------------------(8分) (3)f (2a )= f (a + a )= f [a -(- a )]= f (a )·f (-a )+1f (-a )-f (a ) = 1-f 2(a )-2f (a )= 0,f (3a )= f (2a + a )= f [2a -(- a )]=f (2a )·f (-a )+1f (-a )-f (2a )= 1-f (a )= - 1.先证明f (x )在[2a ,3a ]上单调递减为此,必须证明x ∈(2a ,3a )时,f (x ) <0,设2a < x < 3a ,则0 < x - 2a < a ,∴ f (x - 2a )=f (2a )·f (x )+1f (2a )-f (x )= - 1f (x ) > 0,∴ f (x )< 0---------------------(10分)设2a < x 1 < x 2 < 3a ,则0 < x 2 - x 1 < a ,∴ f (x 1)< 0 f (x 2)< 0 f (x 2 - x 1)> 0, ∴ f (x 1)- f (x 2)=f (x 1)·f (x 2)+1f (x 2-x 1)> 0,∴ f (x 1)> f (x 2),∴ f (x )在[2a ,3a ]上单调递减--------------------------------------------------(12分)∴ f (x )在[2a ,3a ]上的最大值为f (2a = 0,最小值为f (3a )= - 128、解:(Ⅰ)设点M(x,y),由230PM MQ +=得P(0,2y -),Q(,03x). 由0,RP PM ⋅=得(3,2y -)·(x ,32y )=0,即x y 42= 又点Q 在x 轴的正半轴上,0>∴x 故点M 的轨迹C 的方程是24(0)y x x =>.……6分(Ⅱ)解法一:由题意可知N 为抛物线C:y 2=4x 的焦点,且A 、B 为过焦点N 的直线与抛物线C 的两个交点。
湖北省黄冈中学高考数学压轴题精编精解(五)复习进程
湖北省黄冈中学高考数学压轴题精编精解五41.已知数列的首项(a是常数,且),(),数列的首项,()。
(1)证明:从第2项起是以2为公比的等比数列;(2)设为数列的前n项和,且是等比数列,求实数a的值;(3)当a>0时,求数列的最小项。
42.已知抛物线C:上任意一点到焦点F的距离比到y轴的距离大1。
(1)求抛物线C的方程;(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体积后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为,求侧棱长”;也可以是“若正四棱锥的体积为,求所有侧面面积之和的最小值”.现有正确命题:过点的直线交抛物线C:于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F。
试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题。
43.已知函数f(x)=,设正项数列满足=l,.(I)写出,的值;(Ⅱ)试比较与的大小,并说明理由;(Ⅲ)设数列满足=-,记Sn=.证明:当n≥2时,Sn<(2n-1).44.已知函数f(x)=x3-3ax(a∈R).(I)当a=l时,求f(x)的极小值;(Ⅱ)若直线菇x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;(Ⅲ)设g(x)=|f(x)|,x∈[-l,1],求g(x)的最大值F(a)的解析式.45.在平面直角坐标系中,已知三个点列{An},{Bn},{Cn},其中,满足向量与向量共线,且点(B,n)在方向向量为(1,6)的线上(1)试用a与n表示;(2)若a6与a7两项中至少有一项是an的最小值,试求a的取值范围。
46.已知,记点P的轨迹为 E.(1)求轨迹E的方程;(2)若直线l过点F2且与轨迹E交于P、Q两点.(i)无论直线l绕点F2怎样转动,在x轴上总存在定点,使恒成立,求实数m的值. (ii)过P、Q作直线的垂线PA、OB,垂足分别为A、B,记,求λ的取值范围. 47.设x1、的两个极值点.(1)若,求函数f(x)的解析式;(2)若的最大值;(3)若,求证:48.已知,若数列{an} 成等差数列.(1)求{an}的通项an;(2)设若{bn}的前n项和是Sn,且49.点P在以为焦点的双曲线上,已知,,O为坐标原点.(Ⅰ)求双曲线的离心率;(Ⅱ)过点P作直线分别与双曲线渐近线相交于两点,且,,求双曲线E的方程;(Ⅲ)若过点(为非零常数)的直线与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(为非零常数),问在轴上是否存在定点G,使?若存在,求出所有这种定点G的坐标;若不存在,请说明理由.50.已知函数,,和直线,又.(Ⅰ)求的值;(Ⅱ)是否存在的值,使直线既是曲线的切线,又是的切线;如果存在,求出的值;如果不存在,说明理由.(Ⅲ)如果对于所有的,都有成立,求的取值范围.黄冈中学2011年高考数学压轴题汇总详细解答41.解:(1)∵∴分(n≥2) …………3由得,,∵,∴,…………4分即从第2项起是以2为公比的等比数列。
湖北省黄冈市2024高三冲刺(高考数学)人教版考试(押题卷)完整试卷
湖北省黄冈市2024高三冲刺(高考数学)人教版考试(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题已知集合,,则()A.B.C.D.第(2)题从正方体的8个顶点中任取3个连接构成三角形,则能构成正三角形的概率为()A.B.C.D.第(3)题双曲线C:的左、右焦点为,,直线l过点且平行于C的一条渐近线,l交C于点P,若,则C的离心率为()A.B.2C.D.3第(4)题已知集合,,则()A.B.C.D.第(5)题设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A B,则集合中的元素共有A.3个B.4个C.5个D.6个第(6)题已知是单位向量,,则与的夹角为()A.B.C.D.第(7)题已知复数,则在复平面上对应的点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限第(8)题下列选项中,所得到的结果为4的是()A.双曲线的焦距B.的值C.函数的最小正周期D.数据的下四分位数二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题设复数,,则()A.的虚部为B.的共轭复数为C.D.在复平面内,复数对应的点位于第四象限第(2)题有五名志愿者参加社区服务,共服务周六、周天两天,每天从中任选两人参加服务,则()A.只有1人未参加服务的选择种数是30种B.恰有1人连续参加两天服务的选择种数是40种C.只有1人未参加服务的选择种数是60种D.恰有1人连续参加两天服务的选择种数是60种第(3)题在三棱锥中,已知,棱AC,BC,AD的中点分别是E,F,G,,则()A.过点E,F,G的平面截三棱锥所得截面是菱形B.平面平面BCDC.异面直线AC,BD互相垂直D.三棱锥外接球的表面积为三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知圆锥的底面半径为2,母线长为4,则圆锥的侧面积为______.第(2)题用总长m的钢条制作一个长方体容器的框架,如果所制容器底面一条边比另一条边长1m,则该容器容积的最大值为________m3(不计损耗).第(3)题已知三棱锥,平面平面,为中点,,则过点的平面截该三棱锥外接球所得截面面积的取值范围为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题设函数.(1)若的解集为,求实数,的值;(2)当,时,若存在,使得成立的的最大值为,且实数,满足,证明:.第(2)题已知函数.(1)求不等式的解集;(2)若在上恒成立,求的取值范围.第(3)题在平面直角坐标系xOy中,曲线C的参数方程为,,点,以坐标原点O为极点,x轴为正半轴为极轴的建立极坐标系.(1)求曲线C的极坐标方程;(2)过坐标原点O任作直线l与曲线C交于E、F两点,求的值.第(4)题如图,在三棱柱ABC-A 1B1C1中,所有棱长均为2,且B1C=,,D是棱BB1的中点.(1)证明:平面ABC⊥平面ABB1A1;(2)求点B到平面ACD的距离.第(5)题已知函数.(1)求函数的最大值;(2)若,且关于的方程在上恰有两个不等的实根,求实数的取值范围;(3)设各项为正数的数列满足,,求证:.。
湖北省黄冈市(新版)2024高考数学人教版考试(提分卷)完整试卷
湖北省黄冈市(新版)2024高考数学人教版考试(提分卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题某工厂利用随机数表对生产的50个零件进行抽样测试,先将50个零件进行编号,编号分别为01,02,…,50,从中抽取5个样本,下面提供随机数表的第1行到第2行:若从表中第1行第9列开始向右依次读取数据,则得到的第4个样本编号是()A.10B.05C.09D.20第(2)题集合,则下列关系正确的是()A.B.C.D.第(3)题设,,,点是线段上的一个动点,,若,则实数的取值范围是A.B.C.D.第(4)题已知集合,,则()A.B.C.D.第(5)题抛物线C:的焦点为F,过F且斜率为的直线l与抛物线C交于M,N两点,点P为抛物线C上的动点,且点P在l的左侧,则面积的最大值为A.B.C.D.第(6)题函数f(x)=x3-7x2+sin(x-4)的图象在点处的切线斜率为()A.﹣5B.﹣6C.﹣7D.﹣8第(7)题执行如图所示的程序框图,则输出的S的值是()A.1B.C.D.4第(8)题已知函数对任意都有,且,当时,.则下列结论正确的是()A.函数的图象关于点对称B.函数的图象关于直线对称C.当时,D.函数的最小正周期为2二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,则正确的是()A.的定义域为RB.是非奇非偶函数C.函数的零点为0D.当时,的最大值为第(2)题正态分布是最重要的一种概率分布,它是由德国的数学家、天文学家Moivre于1733年提出,但由于德国数学家Gauss率先应用于天文学研究,故正态分布又称为高斯分布,记作.当,的正态分布称为标准正态分布,如果令,则可以证明,即任意的正态分布可以通过变换转化为标准正态分布,如果,那么对任意的a,通常记,也就是说,表示对应的正态曲线与x轴在区间内所围的面积,为了解某市高三数学复习备考情况,该市教研机构组织了一次模拟考试、研究发现,本次检测的数学成绩X近似服从正态分布.则下列说法正确的有()参考数据:可供查询的(部分)标准正态分布对应的概率值.a0.240.250.260.350.360.59480.59870.60640.63680.6406A.已知,则B.C.按以往的统计数据,该市数学成绩能达到升一本分数要求的同学约占,据此估计本次检测成绩达到升一本的数学成绩约为108(精确到整数)D.已知该市考生约有10000名,某学生此次检测数学成绩为110分,则该学生在全市排名大概位于名之间第(3)题已知方程在复数范围内有个根,且这个根在复平面内对应的点等分单位圆.下列复数是方程的根的是()A.1B.C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题已知,当(其中)时,有且只有一个解,则的取值范围是____________.第(2)题在的二项式展开式中的系数为160,则__________.第(3)题把正整数按如下规律排列:1,2,2,3,3,3,4,4,4,4,5,……,构成数列,则__________.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题如图,在中,,P为AB边上一动点,交AC于点D,现将沿PD翻折至.(1)沿PD翻折中是否会改变二面角的大小,并说明理由;(2)若PB=CB=2PD=2,E是的中点.求证:平面,并求当平面平面PBCD时,二面角的余弦值.第(2)题在极坐标系中,已知两条曲线的极坐标方程分别为与,它们相交于A,B两点,求线段AB的中点M的极坐标.第(3)题在中,内角的对边分别为,已知,.(1)求角;(2)若是上的中线,延长至点,使得,求两点的距离.第(4)题已知抛物线的顶点在坐标原点,焦点在轴的正半轴上,圆经过抛物线的焦点.(1)求的方程;(2)若直线与抛物线相交于两点,过两点分别作抛物线的切线,两条切线相交于点,求面积的最小值.第(5)题已知等比数列的公比为2,且.(1)求的通项公式;(2)若,求数列的前项和.。
湖北省黄冈市(新版)2024高考数学统编版(五四制)摸底(押题卷)完整试卷
湖北省黄冈市(新版)2024高考数学统编版(五四制)摸底(押题卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题若,是虚数单位,则 “”是“为纯虚数 ”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第(2)题已知复数满足,则()A.B.C.D.第(3)题若实数a,b满足,则()A.B.C.D.第(4)题如图,正方体ABCD-A1B1C1D1的棱长为2,M是B1C1的中点,N是BB1的中点,平面MND与棱C1D1交于点P,则下列结论不正确的是()A.平面AD1C B.CN⊥平面ABMC.三棱锥的体积为D.第(5)题已知为平面外一点,直线,点,记点到平面的距离为,点到直线的距离为,点、之间的距离为,则()A.B.C.D.第(6)题若,则()A.B.C.D.第(7)题某班有学生人,将这人编上到的号码,用系统抽样的方法抽取一个容量为的样本,已知编号为、、的学生在样本中,则另一个学生在样本中的编号为()A.B.C.D.第(8)题已知向量,若时,;时,,则()A.B.C.D.二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知函数,且,若函数向右平移个单位长度后为偶函数,则()A.B .函数在区间上单调递增C.的最小值为D.的最小值为第(2)题已知函数(,,)的部分图象如图所示,则下列判断正确的是()A.B.C .直线是函数图象的对称轴D .点是函数图象的对称中心第(3)题已知函数的部分图象如图所示,其中,则()A .函数在上单调递减B.函数在上单调递减C.D.三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题在中,角,,的对边分别为,,,若,,且的面积为,则b =___________.第(2)题已知,是单位向量,向量满足,且,则______.第(3)题在等比数列中,,,若,且的前n项和为,则满足的最小正整数n的值为______.四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题的内角,,的对边分别为,,,已知.(Ⅰ)求;(Ⅱ)若的面积,,求.第(2)题已知函数.(1)讨论的单调性;(2)若函数在有两个零点,求m的取值范围.第(3)题如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从中剪裁出两块全等的圆形铁皮与做圆柱的底面,剪裁出一个矩形做圆柱的侧面(接缝忽略不计),为圆柱的一条母线,点在上,点在的一条直径上,,分别与直线、相切,都与内切.(1)求圆形铁皮半径的取值范围;(2)请确定圆形铁皮与半径的值,使得油桶的体积最大.(不取近似值)第(4)题如图,在四棱锥PABCD中,PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP=4,AB=BC=2,M为PC的中点.(1)求异面直线AP,BM所成角的余弦值;(2)点N在线段AD上,且AN=λ,若直线MN与平面PBC所成角的正弦值为,求λ的值.第(5)题中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.在中国,剪纸具有广泛的群众基础,交融于各族人民的社会生活,是名种民俗活动的重要组成部分,传承视觉形象和造型格式,蕴涵了丰富的文化历史信息,表达了广大民众的社会认知、道德观念、实践经验、生活理想和审美情趣.现有一张矩形卡片,对角线长为(为常数),从中裁出一个内接正方形纸片,使得点,分别,上,设,矩形纸片的面积为,正方形纸片的面积为.(1)当时,求正方形纸片的边长(结果用表示);(2)当变化时,求的最大值及对应的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2011年高考必备)湖北省黄冈中学高考数学压轴题精编精解三21.飞船返回仓顺利到达地球后,为了及时将航天员救出,地面指挥中心在返回仓预计到达区域安排三个救援中心(记为A,B,C),B在A的正东方向,相距6km,C在B的北偏东300,相距4km,P为航天员着陆点,某一时刻A接到P 的求救信号,由于B、C两地比A距P远,因此4s后,B、C两个救援中心才同时接收到这一信号,已知该信号的传播速度为1km/s.(1)求A、C两个救援中心的距离;(2)求在A处发现P的方向角;(3)若信号从P点的正上方Q点处发出,则A、B收到信号的时间差变大还是变小,并证明你的结论.22.已知函数,,的最小值恰好是方程的三个根,其中.(Ⅰ)求证:;(Ⅱ)设,是函数的两个极值点.①若,求函数的解析式;②求的取值范围.23.如图,已知直线l与抛物线相切于点P(2,1),且与x轴交于点A,O为坐标原点,定点B的坐标为(2,0).(I)若动点M满足,求点M的轨迹C;(II)若过点B的直线l′(斜率不等于零)与(I)中的轨迹C交于不同的两点E、F(E在B、F之间),试求△OBE与△OBF面积之比的取值范围.24.设(e为自然对数的底数)(I)求p与q的关系;(II)若在其定义域内为单调函数,求p的取值范围;(III)证明:①;②(n∈N,n≥2).25.已知数列的前n项和满足(a为常数,且).(Ⅰ)求的通项公式;(Ⅱ)设,若数列为等比数列,求a的值;(Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n 项和为T n,求证:.26、对于函数,若存在,使成立,则称为的不动点.如果函数有且仅有两个不动点、,且.(Ⅰ)试求函数的单调区间;(Ⅱ)已知各项不为零的数列满足,求证:;(Ⅲ)设,为数列的前项和,求证:.27、已知函数f(x)的定义域为{x| x ≠kπ,k ∈Z},且对于定义域内的任何x、y,有f(x y) = 成立,且f(a) = 1(a为正常数),当0 < x < 2a时,f(x) > 0.(I)判断f(x)奇偶性;(II)证明f(x)为周期函数;(III)求f(x)在[2a,3a] 上的最小值和最大值.28、已知点R(-3,0),点P在y轴上,点Q在x轴的正半轴上,点M 在直线PQ上 ,且满足,.(Ⅰ)⑴当点P在y轴上移动时,求点M的轨迹C的方程;(Ⅱ)设为轨迹C上两点,且,N(1,0),求实数,使,且29、已知椭圆W的中心在原点,焦点在轴上,离心率为,两条准线间的距离为6. 椭圆W的左焦点为,过左准线与轴的交点任作一条斜率不为零的直线与椭圆W交于不同的两点、,点关于轴的对称点为.(Ⅰ)求椭圆W的方程;(Ⅱ)求证:();(Ⅲ)求面积的最大值.30、已知抛物线,点P(1,-1)在抛物线C上,过点P作斜率为k1、k2的两条直线,分别交抛物线C于异于点P的两点A(x1,y1),B(x2,),且满足k1+k2=0.y2(I)求抛物线C的焦点坐标;(II)若点M满足,求点M的轨迹方程.黄冈中学2011年高考数学压轴题汇总详细解答21、解:(1)以AB中点为坐标原点,AB所在直线为x轴建立平面直角坐标系,则则即A、C两个救援中心的距离为(2),所以P在BC线段的垂直平分线上又,所以P在以A、B为焦点的双曲线的左支上,且∴双曲线方程为BC的垂直平分线的方程为联立两方程解得:∴∠PAB=120°所以P点在A点的北偏西30°处23.(本小题满分12分)解:(I)由,∴直线l的斜率为, (1)分故l的方程为,∴点A坐标为(1,0)…………………………………… 2分设则,由得整理,得…………………………………4分∴动点M的轨迹C为以原点为中心,焦点在x轴上,长轴长为,短轴长为2的椭圆…………………………………………………………… 5分(II)如图,由题意知直线l的斜率存在且不为零,设l方程为y=k(x -2)(k≠0)①将①代入,整理,得,由△>0得0<k2<. 设E(x1,y1),F(x2,y2)则② (7)分令,由此可得由②知.∴△OBE与△OBF面积之比的取值范围是(3-2,1).……12分24.(本小题满分14分)解:(I)由题意(II)由(I)知:,令h(x)=p x2-2x+p.要使g(x)在(0,+∞)为单调函数,只需h(x)在(0,+∞)满足:h(x)≥0或h(x)≤0恒成立.………………………………4分①,∴g(x)在(0,+∞)单调递减,∴p=0适合题意.………………………5分②当p>0时,h(x)=p x2-2x+p图象为开口向上抛物线,称轴为x=∈(0,+∞).∴h(x)min=p-.只需p-≥0,即p≥1时h(x)≥0,g′(x) ≥0,∴g(x)在(0,+ ∞)单调递增,∴p≥1适合题意.…………………………7分③当p<0时,h(x)=p x2-2x+p图象为开口向下的抛物线,其对称轴为x=(0,+∞),只需h(0)≤0,即p≤0时h(0)≤(0,+ ∞)恒成立.∴g′(x)<0 ,∴g(x)在(0,+ ∞)单调递减,∴p<0适合题意.综上①②③可得,p≥1或p≤0.……………………………………9分(III)证明:①即证:ln x-x+1≤0 (x>0),设.当x∈(0,1)时,k′(x)>0,∴k(x)为单调递增函数;当x∈(1,∞)时,k′(x)<0,∴k(x)为单调递减函数;∴x=1为k(x)的极大值点,∴k(x)≤k(1)=0.即ln x-x+1≤0,∴ln x≤x-1.………………………………11分②由①知ln x≤x-1,又x>0,∴结论成立.…………………………………………………………………………14分27、解:(1)∵定义域{x| x ≠kπ,k∈Z}关于原点对称,又f(x) = f [(a x)a]= = = = = = f(x),对于定义域内的每个x值都成立∴f(x)为奇函数------------------------------------------------------------------------------------(4分)(2)易证:f(x + 4a) = f(x),周期为4a.------------------------------------------(8分)(3)f(2a)= f(a + a)= f [a(a)]= = = 0,f(3a)= f(2a + a)= f [2a(a)]= = = 1.先证明f(x)在[2a,3a]上单调递减为此,必须证明x∈(2a,3a)时,f (x) < 0,设2a < x < 3a,则0 < x 2a < a,∴f(x 2a)= = > 0,∴f(x)< 0---------------------(10分)设2a < x1 < x2 < 3a,则0 < x2x1 < a,∴f(x1)< 0 f(x2)< 0 f(x2x1)> 0,∴f(x1)f(x2)= > 0,∴f(x1)> f(x2),∴f(x)在[2a,3a]上单调递减--------------------------------------------------(12分)∴f(x)在[2a,3a]上的最大值为f(2a = 0,最小值为f(3a)= 128、解:(Ⅰ)设点M(x,y),由得P(0,),Q().由得(3,)·(,)=0,即又点Q在x轴的正半轴上,故点M的轨迹C的方程是.……6分(Ⅱ)解法一:由题意可知N为抛物线C:y2=4x的焦点,且A、B为过焦点N的直线与抛物线C的两个交点。
当直线AB斜率不存在时,得A(1,2),B(1,-2),|AB|,不合题意;………7分当直线AB斜率存在且不为0时,设,代入得则|AB|,解得…………………10分代入原方程得,由于,所以,由,得. ……………………13分解法二:由题设条件得由(6)、(7)解得或,又,故.29、解:(Ⅰ)设椭圆W的方程为,由题意可知解得,,,所以椭圆W的方程为. (4)分(Ⅱ)解法1:因为左准线方程为,所以点坐标为.于是可设直线的方程为.得.由直线与椭圆W交于、两点,可知,解得.设点,的坐标分别为,,则,,,.因为,,所以,.又因为,所以.……………………………………………………………10分解法2:因为左准线方程为,所以点坐标为.于是可设直线的方程为,点,的坐标分别为,,则点的坐标为,,.由椭圆的第二定义可得,所以,,三点共线,即. (10)分(Ⅲ)由题意知,当且仅当时“=”成立,所以面积的最大值为.30、解:(I)将P(1,-1)代入抛物线C的方程得a=-1,∴抛物线C的方程为,即焦点坐标为F(0,-).……………………………………4分(II)设直线PA的方程为,联立方程消去y得则由………………7分同理直线PB的方程为联立方程消去y得则又…………………………9分设点M的坐标为(x,y),由又…………………………………………11分∴所求M的轨迹方程为:。