二元一次方程组解应用题PPT
《二元一次方程组》数学教学PPT课件(2篇)
项的次数是多少?
定义:含有两个未知数,并且含未知数的项的次 数都是一次的方程叫做二元一次方程.
未知数x、y为哪些值时能使 x+y=35?
二元一次方程的解:使二元一次方程两边相等的 两个未知数的值,叫二元一次方程的一组解.
x=30 解的写法:上下摆放,左弧号连接,如:
y=5
小结:二元一次方程的解有无数组.
紧扣相 关概念
Dx. y 1,
1 x
y
1
新课进行时
核心知识点二 二元一次方程组的解
问题:满足课堂开始篮球联赛问题中的方程x y 10 ,且
符合问题的实际意义的值有哪些?把它们填入表中。
xx 0 1 2 3 4 5 6 7 适合一y 个y10二元一9 次方8程的7一组6未知5数的4值, 3
叫做这个二元一次方程的一个解。
解:设安排第一道工序为x人,第二道工序为y人。
根据题意得
x y 7, 900x 1200y
新课进行时 针对练习
根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( D )
小红,你上周买的笔和笔记本 的价格是多少啊?
哦……我忘了!只记得先后 买了两次,第一次买了5支笔 和10本笔记本花了42元钱, 第二次买了10支笔和5本笔记 本花了30元钱。
新课进行时
x+y=10 2x+y=16
叫作方程组
方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共 有两个方程,像这样的方程组叫作二元一次方程组。
超越自我
下列方程组是二元一次方程组的是(B )
A. xy 1, B.x y 1,
x y 1
2 2 x y 1
Cxx .
z y
1, 1
第3课时 应用二元一次方程-鸡兔同笼(课件)八年级数学上册(北师大版)
,建设一个A类美丽村庄和一个B类美丽村庄共需资金
300万元;P镇建设了2个A类村庄和5个B类村庄共投入
资金1 140万元.
(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金
分别是多少万元?
解:设建设一个A类美丽村庄所需的资金是x万元,建
设一个B类美丽村庄所需的资金是y万元.
(5)解: 解这个方程组,求出未知数的值;
(6)答: 检验所求的解是否符合实际意义,写出答案 .
新知探究
《孙子算经》是我国古代一部较
为普及的算书,许多问题浅显有趣,
其中下卷第31题“雉兔同笼”流传
尤为广泛,飘洋过海流传到了日本
等国.
今有鸡兔同笼
上有三十五头
下有九十四足
问鸡兔各几何
(1)“上有三十五头”的意思是什么?
根据题意得:
5x+6=y
6x-5=y
解这个方程组,得:
x=11
y=61
答:总共有11个人,61两银。
2.[中考·绥化]国庆节期间,学校组织466名八年级学生参加
社会实践活动,现已准备了49座和37座两种客车共10辆
,刚好坐满,设49座客车有x辆,37座客车有y辆.根据
题意,得(
)A
x+y=10,
解:设张强第一次购买香蕉x kg,第二次购买香蕉y kg.
由题意,得0<x<25,25<y<50.
①当0<x≤20,25<y≤40时,可得
x+y=50,
x=14,
解得
6x+5y=264,
y=36.
②当0<x≤20,40<y<50时,可得
x+y=50,
x=32,
列一元一次方程和二元一次方程组解应用题复习ppt课件(自制)
3、后悔是崇高的理想就像生长在高山 上的鲜 花。如 果要搞 下它, 勤奋才 能是攀 登的绳 索。 44、幸运之神的降临,往往只是因为 你多看 了一眼 ,多想 了一下 ,多走 了一步 。 45、对待生活中的每一天若都像生命 中的最 后一天 去对待 ,人生 定会更 精彩。
45、生活犹如万花筒,喜怒哀乐,酸 甜苦辣 ,相依 相随, 无须过 于在意 ,人生 如梦看 淡一切 ,看淡 曾经的 伤痛, 好好珍 惜自己 、善待 自己。 46、有志者自有千计万计,无志者只 感千难 万难。 47、苟利国家生死以,岂因祸福避趋 之。 48、不要等待机会,而要创造机会。
49、如梦醒来,暮色已降,豁然开朗 ,欣然 归家。 痴幻也 好,感 悟也罢 ,在这 青春的 飞扬的 年华, 亦是一 份收获 。犹思 “花开 不是为 了花落 ,而是 为了更 加灿烂 。 50、人活着要呼吸。呼者,出一口气 ;吸者 ,争一 口气。 51、如果我不坚强,那就等着别人来 嘲笑。
⑴将140吨食品全部进行粗加工后销售,则可获利润 ______元;
⑵将140吨食品尽可能多的进行精加工,没来得及加 工的在市场上直接销售,则可获利润___元;
⑶你能为公司再设计第三种更好的方案,使公司比原 来获取更多的利润吗?如何设计新的加工方案,并请通 过列一元一次方程的方法,求出可获取更多的利润.
52、若不给自己设限,则人生中就没 有限制 你发挥 的藩篱 。 53、希望是厄运的忠实的姐妹。 54、辛勤的蜜蜂永没有时间悲哀。 55、领导的速度决定团队的效率。
56、成功与不成功之间有时距离很短 只要后 者再向 前几步 。 57、任何的限制,都是从自己的内心 开始的 。
实际问题与二元一次方程组(第1课时)-七年级数学下册课件(人教版)
共55元 1束花+2个礼盒=55元 2束花+3个礼盒=90元
共90元
回顾旧知 列方程组解应用题的步骤:
1. 审题 2. 找等量关系 3. 设未知数 4. 列二元一次方程组 5. 解二元一次方程组 6 .检验 7. 答
合作探究
养牛场原有30头大牛和15头小牛,1天约用饲料675 kg;一周后又 购进12头大牛和5头小牛,这时1天约用饲料940 kg.饲养员李大叔估 计每头大牛1天约需饲料18~20 kg,每头小牛1天约需饲料7~8 kg. 你能通过计算检验他的估计吗?
运费表 单位:(元/台)
终点
温州
武汉
起点
北京
400
800
上海
300
500
【分析 】(1 )等量 关系为:400 ×北京运 往温州的 台数+800× 北京运 往武汉的 台数+300
×上海运往温州的台数+500×上海运往武汉的台数=8000,温州需要 6 台,把相关数值
代入求解即可;
(2)本着节约运送资金和分配到温州的仪器不能超过 5 台分析即可得到调配方案.
解:设2米的钢材有x段,1米的钢材有y段,根据题意,得
x+y=10 2x +y =18
解方程组,得
x=8 y =2
答:小明估计不正确. 2米钢材有8段,1米钢材2段.
估算作用
在生产和生活中估算具有一定的实用价值的,同学们应该逐渐 具备这种估算能力,但估算通常会产生一定的误差,通过精准 计算可以对估算的结果进行检验.
(2)由表格中的数据可得出,∵上海运送到温州的费用最低,
设北京运送到温州 x 台,则北京运武汉(10﹣x,总费用为 y,
二元一次方程组应用题
类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
类型二:列二元一次方程组解决——工程问题2.一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.类型三:列二元一次方程组解决——商品销售利润问题3.有甲、乙两件商品,甲商品的利润率为5%,乙商品的利润率为4%,共可获利46元。
价格调整后,甲商品的利润率为4%,乙商品的利润率为5%,共可获利44元,则两件商品的进价分别是多少元?【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?【变式2(注:获利 = 售价—进价)求该商场购进A、B两种商品各多少件;类型四:列二元一次方程组解决——银行储蓄问题4.小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)【变式2】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套。
人教版七年级数学下册:实际问题与二元一次方程组【精品课件】
某家商店的帐目记录显示,某天卖出 39 支牙 刷和 21 盒牙膏,收入 396 元;另一天,以同样的 价格卖出同样的 52 支牙刷和 28 盒牙膏,收入 518 元.这个记录是否有误?如果有误,请说明理由.
解:有误,理由:设一支牙刷的价格为 x 元,一 盒牙膏的价格为 y 元.由题意,得
39x 21y 396, 52x 28 y 518,
盒子.设用 x 张铁皮做盒身,y 张铁皮做盒底,则可 列方程组为( A )
x+y=190 A
2×8x=22y
x+y=190 B
2×22y=8x
2y+x=190 C
8x=22y
2y+x=190 D
2×8x=22y
2.解下列方程组:
3x-y=5
①
(1)
5y-1=3x+5
②
解:①+②,得 4y = 11. 解得:y 11
x=20 y=5 这就是说,每头大牛1天约需饲料 20 kg, 每头小牛1天约需饲料 5 kg.因此,饲养员李大 叔对大牛的食量估计 正确 ,对小牛的食量估 计 错误 .
练习
某校七年级学生在会议室开会,每排坐 12 人,则有 11 人无座位;每排坐 14 人,则 最后一排只有 1 人独坐.这间会议室共有座位 多少排?该校七年级有多少学生?
探究新知
知识点 几何图形问题
据统计资料,甲、乙两种作物的单位面积产量 的比是 1:2.现要把一块长 200 m、宽 100 m 的长 方形土地,分为两块小长方形土地,分别种植这两 种作物.怎样划分这块土地,使甲、乙两种作物的 总产量的比是 3:4?
这里研究的实际上是长方形的面积分割问题, 我们可以画出示意图来帮助自己.
华师大版七年级数学下册第七章《二元一次方程组应用题》公开课课件
• 15;某车间实行每天定额工作量管 理办法,如果第一天平均每人完成 5件产品,那么全车间这一天能超 额完成30件;如果第二天平均每人 完成4件产品,那么全车间这一天 比定额少完成20件,求车间的人数 及每天定额完成的产品数。
• 16;如图宽为
50厘米的大长
方形图案是由
5
10个完全一样
0
的小长方形拼
二元一次方程组 应用题练习
• 1;学校开展手拉手的活动,七 (1)班苗苗同学用自己的零花 钱买了圆珠笔和钢笔共8支准备 送给偏远的同学,共用去了20 元钱,其中圆珠笔每支1元,钢 笔5元,你知道苗苗买的圆珠笔 和钢笔各多少支吗?
• 等量关系: • 圆珠笔数量+钢笔数量=8支 • 圆珠笔花的钱+钢笔花的钱=20元 • 解:设苗苗买了圆珠笔X支,钢笔Y支。 • 根据题意得
• 25;在课间活动中,小英、小丽和小敏在 操场上画出A、B两个区域,一起玩投沙包 游戏,沙包落在A区域所得分值与落在B区 域所得分值不同,当每人各投沙包四次时,
其落点和四次总分如图所示,请求出小敏 的四次总分
···A
·
B
小英
总分34分
··A
··
B 小丽
总分32分
··A··
B 小敏
总分?
• 26;某工厂今年2月份起调整职工的月工资 分配方案,调整后的月工资由基本保障工
人必须独立装订,而且每个男生的装 订数是每个女生装订数的2倍,在装订 过程中发现,所有女生装订的总数超 过30本,所有男生、女生装订的总数 不足98本,问男生、女生平均每人装 订多少本?
• ※某储运站现有甲种货物1530吨,一种货 物1150吨,安排用一列货车将这批货物运 往喀什,这列货车可挂A、B两种不同规格 的货箱50节,已知甲种货物35吨和乙种货 物15吨可装满一节A型货箱,甲种货物25 吨和乙种货物35吨可装满一节B型车厢。
《用二元一次方程组解决问题课件 (公开课获奖)2022年华师大版
如图,每个小正方形边长均为1,那么 以下图中的三角形〔阴影局部〕与左 图△中ABC 相似的是〔B 〕
A
Bபைடு நூலகம்
C
A.
B.
C.
D.
相似三角形的判定方法
3、两边对应成比例,且夹角相等的两三角形相似
4、三边对应成比例的两三角形相似
根据以下条件能否判定△ABC与△A′B′C′相似?为 什么?
∠A=40°,∠B=80°, ∠A′=40°, ∠C′=60°
经过多少秒时以C、P、Q为顶点的三角形恰 好与⊿ABC相似? A
A
Q Q
B
P
CB
P
C
如图,△PAC∽△QCB , △PCQ是等边三角形 (1)假设AP=1,BQ=4,求PQ的长. (2)求∠ACB的度数. (3)求证:AC2=AP·AB.
C
AP
Q
B
P
AC
D
B
如图,在△ABC
中,DE∥BC,AH分别交DE,BC于 G,H,求证:
DG GE
A
BH HC
D B
E G
H
C
如图:在⊿ABC中, ∠C= 90°,BC=8,AC=6.点P 从点B出发,沿着BC向点C以2cm/秒的速度移动;点 Q从点C出发,沿着CA向点A以1cm/秒的速度移动。 如果P、Q分别从B、C同时出发,问:
A
40°
80°
B C
A′
40°
B′
60 °
C′
根据以下条件能否判定△ABC与△A′B′C′相似? 为什么?
∠A=40°,AB=3 ,AC=6
∠A′=40°,A′B′=7 ,A′C′=14
A
3 40° 6
湘教版七年级下册数学精品教学课件 第1章二元一次方程组 解决所列方程组中含“x+y=”形式的实际问题
总数 y 35 4y 94
解:设鸡为 x 只,兔为 y 只.则
x + y = 35,
①
2x + 4y = 94. ② ①×2 得 2x + 2y = 70,③
②-③ 得 2y = 24, y = 12.
把 y = 12 代入①,得 x = 23. 原方程组的解是 x = 23,
y = 12.
答:有鸡 23 只,兔 12 只.
6. 一个工厂共 42 名工人,每个工人平均每小时生产圆形 铁片 120 片或长方形铁片 80 片.已知两片圆形铁片与一片 长方形铁片可以组成一个圆柱形密封的铁桶.你认为如何 安排工人的生产,才能使每天生产的铁片正好配套?
解:设生产圆形铁片的工人 x 人,生产长方形铁片的 工人 y 人,根据题意列出方程组得
例3 某食品厂要配制含蛋白质 15% 的食品 100 kg,现 在有含蛋白质分别为 20%,12% 的甲乙两种配料.用 这两种配料可以配制出所要求的食品吗?如果可以的 话,它们各需多少千克? 分析 本问题涉及的等量关系有:
甲配料质量+乙配料质量 = 总质量, 甲配料含蛋白质质量+乙配料含蛋白质质量 = 总蛋白质质量.
01 竖着画,把长分成两段,则宽不变
02 横着画,把宽分成两段,则长不变 试着画一画
01 竖着画,把长分成两段,则宽不变
D
FC
等量关系式有几个?
A
E
B 1. 大长方形的长 = 200 m
2. 甲、乙两种作物总产量比 = 3∶4
01 竖着画,把长分成两段,则宽不变
D
如何设未知数呢? 200 m F C
“上有三十五头”的意思是什么? “下有九十四足”的意思是什么?
二元一次方程(组)解应用题(含答案)
第八章二元一次方程(组)解应用题(含答案)1缉私艇与走私艇相距 120海里的同一航道上航行,如果走私艇与缉私艇同时相向而行,则2小时缉私艇即可将走私艇截住;如果走私艇与缉私艇同时同向而行,则缉私艇需12小时才能追上.问走私艇与缉私艇的速度分别是多少?1. 解:设走私艇的速度是 x海里/时,缉私艇的速度是 y海里/时,由题意得:[2(x+y)=120[12 (y- K)-120,解得卜,辽(y=35答:走私艇的速度是 25海里/时,缉私艇的速度是 35海里/时2. 甲、乙两人从 A , B两地同时出发,甲骑自行车,乙骑摩托车,沿同一条直线公路相向匀速行驶.出发后经 3小时两人相遇.已知在相遇时乙比甲多行驶了90千米,相遇后经1小时乙到达A地.(1)问甲、乙行驶的速度分别是多少?(2)甲、乙行驶多少小时,两车相距30千米?2. 解:(1)设甲、乙行驶的速度分别是每小时 x 千米、y千米,根据题意,得’,ir v-i & 解得….(y=45所以甲、乙行驶的速度分别是每小时15千米、45千米;(2)由第(1)小题,可得 A , B两地相距45X( 3+1) =180 (千米).设甲、乙行驶x小时,两车相距 30千米,根据题意,得两车行驶的总路程是(180- 30)千米或(180+30)千米,则:(45+15) x=180 - 30 或(45+15) x=180+30 .解得:戸|或疋所以甲、乙行驶"或—小时,两车相距 30千米2 23. 小明家离学校1.8千米,其中有一段为上坡路,另一段为下坡路.如果小明在上坡路的平均速度为3千米/时,而在下坡路上的平均速度为5千米/时,那么从家里到学校共用了32 分钟.求小明上坡、下坡各用了多长时间?3. 解:32分钟小时,15设小明上坡用了 x小时,下坡用了(亠-x)小时,由题意,得15]3x+5 (一-x) =1.8,解得:x=90 y=304. A 、B 两地相距20千米.甲乙两人同时从 A 、B 两地相向而行,经过 2小时后两人相遇, 相遇时甲比乙多行 4千米•根据题意,列出两元一次方程组,求出甲乙两人的速度. 4•解:(1设甲的速度为 x 千米/时,乙的速度为 y 千米/小时,由题意得,(2s+2y=20(2K - 2y=4,解得:|{二.答:甲的速度为6千米/时,乙的速度为4千米/小时5.长春至吉林现有铁路长为 128千米,为了加快长春与吉林的经济一体化发展,有关部门决定新修建一条长春至吉林的城际铁路,城际铁路全长96千米•开通后,城际列车的平均速度将为现有列车平均速度的 2.25倍,运行时间将比现有列车运行时间缩短 芒小时.求城际3列车的平均速度.5.解:设现有列车的平均速度为x 千米/小时,现在列车的运行时间为y 小时.xy=1282.药小(y- -|) =96,卜二內4解得 :.64X2.25=144 千米 /小时.城际列车的平均速度 144千米/小时6•甲乙两地相距160千米,一辆汽车和一辆拖拉机从两地同时出发相向而行, 1小时20分后相遇•相遇后,拖拉机继续前进,汽车在相遇处停留1小时后原速返回,在汽车再次出发半小时后追上了拖拉机,这时汽车、拖拉机从开始到现在各自行驶了多少千米?[解得:x=「,则下坡所用时间为:答:小明上坡用了 鱼左』=丄15 30"10'小时1CI—小时,下坡用了306. 解:设汽车的速度是[■| (x+y) =160丄』 ,x 千米每小时,拖拉机速度 y 千米每小时,根据题意得:则汽车汽车行驶的路程是: (一+_) >90=165 (千米),3 2拖拉机行驶的路程是:(一+卫)>30=85 (千米).冈2答:汽车、拖拉机从开始到现在各自行驶了165千米和85千米7.—列客车长200 m ,一列货车长280 m ,在平行的轨道上相向行驶,从两车头相遇到两 车尾相离经过16s,已知客车与货车的速度之比是 3: 2,问两车每秒各行驶多少米? 7.解:设客车的速度是每秒x 米,货车的速度是每秒 -x 米.由题意得(x+Zx ) >6=200+280 ,3解得x=18.答:两车的速度是客车 18m/s ,货车12m/s& A 、B 两地相距36千米•甲从A 地出发步行到B 地,乙从B 地出发步行到 A 地•两人 同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的 2倍•求两人的速度.&解:设甲的速度是 x 千米/时,乙的速度是y 千米/时. 「4 (x+yj =36 (36-內0 二2 (36-6y)解得: 答:甲的速度是4千米/时,乙的速度是5千米/时9•从甲地到乙地的路有一段上坡与一段平路,如果保持上坡每小时走 3km ,平路每小时走4km ,下坡每小时走 5km ,那么从甲地到乙地用 54分钟,从乙地到甲地用 42分钟,甲地到 乙地的全程是多少?xkm ,平路为ykm ,/• x+y=3.1km ,答:甲地到乙地的全程是 3.1km 10•甲、乙分别自 A 、B 两地同时相向步行,2小时后在中途相遇,相遇后,甲、乙步行速 度都提高了 1千米/小时,当甲到达B 地后立刻按原路向 A 地返行,当乙到达A 地后也立刻由题意得:9•解:设从甲地到乙地的上坡路为解之得宙1・5 ]尸1花按原路向B 地返行,甲、乙二人在第一次相遇后 3小时36分又再次相遇,则 A 、B 两地的距离是多少?10•解:设甲的速度为 x 千米/时,乙的速度为y 千米/时, 可得:x+y=18 A 、B 两地的距离=2 (x+y) =2 XI8=36 答:A 、B 两地的距离是36千米11 •某班同学,从学校出发步行到某地搞军训活动,如果每小时走 6km ,则可提前10min到达目的地;如果每小时走 5km ,则比预定时间迟到 18min ,问:学校到某地有多远预定到达时间是多少?11 •解:设学校到某地 x 千米•预定到达时间是 y 小时.$(厂”I 5吨)=/解得.*1° •故学校到某地14千米•预定到达时间是 2.5小时 12.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20km ,那么甲用1小时就能追上乙;如果乙先走 1小时,那么甲只用15分钟就能追上乙,求甲、乙二人 的速度.12 •解:设甲的速度是 x 千米/时,乙的速度为y 千米/时, 答:甲的速度是25千米/时,乙的速度为5千米/时13.甲,乙两人相距15千米,如果两人同时相向而行,过 1小时30分相遇;如果乙向相反方向走,甲同时追赶,经过 7小时30分可以追上,求甲,乙二人的速度各是多少.13.解:设甲,乙二人的速度是 x 千米/小时和y 千米/小时.fl. 5K +1. 5y=157.由题意得,x=20+y0.25s= (141X25)y由题意可得:答:甲,乙二人的速度是 6千米/小时和4千米/小时14、在某条高速公路上依次排列着A B、C三个加油站,A到B的距离为120千米,B到C的距离也是120千米•分别在A C两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A C两个加油站驶去,结果往 B站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上. 问巡逻车和犯罪团伙的车的速度各是多少?14、解:设巡逻车、犯罪团伙的车的速度分别为x、y千米/时,则3 x y 120 x y 40 x 80,整理,得y ,解得,x y 120 x y 120 y 40答:巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.15、悟空顺风探妖踪,千里只行四分钟.归时四分行六百,风速多少才称雄?15、解:设悟空飞行速度是每分钟x里,风速是每分钟 y里,依题意得 4(x+y)=10004(x-y)=600 x=200 y=5016. 某列火车通过450米的铁桥,从车头上桥到车尾下桥, 度穿过760米长的隧道时,整列火车都在隧道里的时间是分别是多少?16. 解:设火车长为x米,火车的速度为 y米/秒,33y=x + 45022y=760 — xX=276 「解方程组得:[y=22答:火车长276米,速度为22米/秒. 共33秒,同一列火车以同样的速22秒,问这列火车的长度和速度。
初中数学人教七年级下册第八章 二元一次方程组 再探实际问题与二元一次方程组探究三PPT
① 1.2x·120
铁路120千米
公路10千米
A
原料x吨
③ 1.5y·20
·② 1.5x·10 长青化工厂
B
公路20千米
产品y吨
④ 1.2y·110
铁路110千米
1.5x·10 + 1.5y·20 =15000 1.2x·120 + 1.2y·110 =97200
批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地,公路运
价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),这两次运输共支
出公路运费15000元,铁路运费97200元,这批产品的销售款比原料费与
运输费的和多多少元?
1、公路运费= 1.5×_货__物__吨__数×_公__路__千__米_;数
97200
A 千米
B
产品y吨
米
·长青化工厂 1.5x·10 + 1.5y·20 = 15000
公路20千 米
铁路110 千米
1.2x·120+ 1.2y·110= 97200
从以上探究可以看出,方程组是解决含有多个未知数问题 的重要工具.用二元一次方程组解决问题时,要根据题意找 出的两个等量关系,设出两个未知数,从而列方程组解决 实际问题。
1、公路运费= 1.5 ×_货__物_吨__数_×__公__路_千_;米数
原料x吨 产品y吨 合 计
2、铁路运费= 1.2×__货_物__吨__数_×__铁__路__千;米数 公路运费
(元)
1.5x·10
1.5y·20
15000
原料x吨
铁路120
公路10千
《应用二元一次方程组—鸡兔同笼》二元一次方程组PPT课件
加减消元
归纳总结
列方程解应用题的步骤 1.审题 (找等量关系) 2.设未知数 3.列方程 4.解方程 5.检验,作答 关键:找等量关系、列方程
典例精析
例1:古题今解
以绳测井 若将绳三折测之,绳多五尺; 若将绳四折测之,绳多一尺. 绳长、井深各几何?
(1)“将绳三折测之,绳多五尺”,什么意思? (2)“若将绳四折测之,绳多一尺”,又是什么意思?
匹小马? 解:设有x匹大马, y匹小马,
由题意,得 x+y=100 3x+ 13y=100
解此方程组得: x =25, y=75.
60
6. 8块相同的小长方形地砖拼成一个大长方形,每块 小长方形地砖的长河宽分别是多少?(单位cm)
解:设有x匹大马, y匹小马, 由题意,得 x+y=60
x=3y 解此方程组得: x =45,
x y 35 2x 4y 94
头x 足 2x
总数 y 35 4y 94
解:设鸡为x 只,兔为y 只.则
x+y=35,
①
2x+4y=94. ②
①×2 得: 2x+2y=2.
把 y=12 代入①,得:x=23.
原方程组的解是 x=23, y=12.
答:有鸡23只,兔12只.
3x+4=y
4x-3=y
3. 甲、乙两人赛跑,若乙先跑10米,甲跑5秒即可追 上乙;若乙先跑2秒,则甲跑4秒就可追上乙.设甲速
为x米/秒,乙速为y米/秒,则可列方程组为( B ).
{5y+10=5x,
A. 4y=6x
{ C. 5x+10=5y, 4x=6y
{ B.
5x=5y+10,
新人教版七年级数学下册-二元一次方程组解决实际问题-同步课件
2022/4/8
5. 甲、乙二人相距6km,二人同时出发。 同向而行,甲3小时可追上乙;相向而行, 1小时相遇。二人的平均速度各是多少?
6km
(1)甲3小时行驶路程=乙3小时行驶+6 (2)甲3小时行驶+乙3小时行驶=6
2022/4/8
“新科”通讯器材商场,计划用 6万元从厂家购进若干种新型手机, 以满足市场的需求,已知该厂家生产 A、B、C三种不同的手机,出厂价 如右图所示: 若商场同时购进其中两种不同型的 手机40部,并将6万元恰好用完。 请你研究一下进货方案。
库存化肥 + 库存化肥 --
缺少化肥200千 剩余300千克
2022/4/8
例25、用白铁皮做罐头盒。每张铁皮可制盒身16个,或制盒底 43个,一个盒身与两个盒底配成一套罐头盒。现有150张白铁 皮,用多少张制盒身,多少张制盒底,可以刚好配套?
设用x张制盒身,用y张制盒底。
① 制盒身、盒底张数 = 150张
2022/4/8
这批蔬菜需租用5辆甲种货车、2辆乙种 货车刚好一次运完,如果每吨付20元运费 问:菜农应付运费多少元?
2022/4/8
答:要刚好一次运完,菜农应 付运费500元。
练习2:为引导公民节约用水,合理利用资 源,各地采用了价格调控手段。某地规定如 下用收费标准:每户每月的用水不超过10吨, 每吨按a元收费;超过10吨,超过的部分每 吨按b元收费。小明家7、8两月份的用水记 录如下:
2022/4/8
2022/4/8
分析:销售款与产品数量有关,原料费与原料 数量有关。设产品重x吨,原料重y吨。根据题 中数量关系填写下表。
1.5×20x 1.5×10y 1.5×(20x+10y)
(完整版)二元一次方程组的应用(几何图形问题)
二元一次方程组的应用(几何图形问题)一、列方程组解应用题的基本思路.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系,一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.二.列方程(组)解应用题的一般步骤(1)审题,弄清题意及题目中的数量关系.(2)设未知数,可直接设元,也可间接设元.(3)列出方程组,要根据题目中能表示全部意义的相等关系列出方程组.(4)解所列方程组,并检验解的正确性.(5)写出答案.三.注意事项(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去.(2)“设”“答”两步,都要写清单位名称.(3)一般来说,设几个未知数,就应列出几个方程并组成方程组.四、列方程组解应用题的常见题型和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量产品配套问题:加工总量成比例行程问题:速度×时间=路程航速问题:此类问题分为水中航速和风中航速两类顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位“1”的工程问题增长率问题:原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量浓度问题:溶液×浓度=溶质银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量数字问题:首先要正确掌握自然数、奇数、偶数、数位等有关的概念、特征及其表示年龄问题:抓住人与人的岁数是同时增长的几何问题:必须掌握几何图形的性质、周长、面积等计算公式及对应关系五、应用举例。
《列方程组解应用题》数学教学PPT课件(2篇)
六、感悟延伸
甲乙两人正在谈论他们的年龄. 甲:在我是你今年的岁数时,你那年10岁. 乙:在我是你今年的岁数时,你那年25岁. 想一想,甲乙二人谁的年龄大?今年甲、乙二人 各多岁?
七、总结启迪
本节课学习了列二元一次方程组解应用题, 谈谈你的收获?
作业 课本P.63第1,2题
二、衔接起步
列一元一次方程解应用题的步骤:
1、审 弄清题目中的已知量和未知量,以及它们
之间数量关系, 设出一个未知数.
2、列
3、解 4、验
列出方程 分析题意,找出等量关系 用含未知数的一次式表示有关的量 根据等量关系列出方程
解出方程,求出未知数的值
检验求得的值是否正确和符合实际情形
5、答 写出答案
三、活动探究 例1.小亮和小莹练习赛跑.如果小亮让小莹先跑10 米,那么小亮跑5秒就追上小莹;如果小亮让小莹先 跑2秒,那么小亮跑4秒就追上小莹.问两人每秒各跑 多少米?
与同学交流讨论:
1.题目中的已知量是什么?
2.题目中的未知量是什么?
等量关系1:小亮跑5秒的路程=小莹跑5秒的路程+米.
等量关系2:小亮跑4秒的路程=小莹跑(4+
答:笼子里有23只鸡、12只兔。
四、归纳概括 列二元一次方程组解应用题的一般步骤:
设 用两个字母表示问题中的两个未知数
列 列出方程组
分析题意,找出两个等量关系 根据等量关系列出方程组
解 解方程组,求出未知数的值
验 检验求得的值是否正确和符合实际情形 答 写出答案
列二元一次方程组解应用题的关键步骤:
等量关系2:小亮跑4秒的路程=小莹跑(4+ 2)秒的路程。
解决问题
解:设小亮每秒跑x米,小莹每秒跑y米, 根据题意,得 5x-5y=10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
去开心乐园,买门票需要多少元呢?
设大人的门票每张为x元,小孩的门票每张为y
元.列方程组得
5x + 3y = 68, 7x + 4y = 94.
12
巩固提高
我国古代数学问题 只闻隔壁人分银,不知多少银和人; 每人7两少7两,每人半斤多半斤; 试问各位善算者,多少人分多少银?
(注:这里的斤是指市斤,1市斤=10两)
二班
两班总和
学生数
x
y
100
达标学生数 87.5%x
75%y
81%×100
可例方程组为8x7+.5y%=x1+0075% y = 81% 100,
解得:xy
= =
48 52
15
实际问题 设未知数、找等量关系、列方程(组)
数学问题
[方程(组)]
实际问题 的答案
检验
解 方 程 ( 组 )
数学问题的解
16
5
解: (1)设1个大餐厅和1个小餐厅分别可供x 名,y名学生就餐,
x+2y=1680
依题意得
解得:
2x+y=2280
(2)若7个餐厅同时开放,则有
x=960 y=360
5×960+2×360=5320
5320>5300
答: (1) 1个大餐厅和1个小餐厅分别可供960
名,360名学生就餐. (2)若7个餐厅同时开放,可
8
哦,那你们家去
了几个大人?几
个小孩呢? 真笨,自已不会算吗? 成人票5元每人,小孩
3元每人啊!
昨天,我们一家8个人 去红山公园9
解:设有x个成人,y个儿童,由
x+ y =8
此可列方程组 5 x + 3 y = 34。
10
巩固提高 练一练,相信你能行 某中学七年级(3)班51名同学为“希望工程”捐 款,共捐款181元,捐款情况如下表,表格中捐款3 元和4元的人数不小心被墨水污染已看不清楚.
应取2段.
4
试一试 :某高校共有5个大餐厅和2个小餐厅,
经过测试:同时开放1个大餐厅和2个小餐厅, 可供1680名学生就餐;同时开放2个大餐厅和1 个小餐厅,可供2280名学生就餐. (1)求1个大餐厅和1个小餐厅分别可供多少 名学生就餐? (2)若7个餐厅同时开放,请估计一下能否供 应全校的5300名学生就餐?请说明理由.
1 必做题:教科书118页到119页复习 题8第3(1),7,8题。
2 选做题:教科书119页复习题8第9题.
17
18
y = 200 20%)x
(110%)y
=
780
14
3. 一、二两班共有100名学生,他们的体育达标率(达 到标准的百分率)为81%,如果一班学生的体育达标 率为87.5%,二班的达标率为75%,那么一、二两班 的学生数各是多少?设一、二两班学生数分别为x名, y名,填写下表并求出x,y的值。
一班
13
2. 某工厂去年的得润(总产值-总支出) 为200万元,今年总产值比去看增加了20%,总支 出比去年减少了10%,今年的利润为780万元。去 年的总产值、总支出各是多少万元?
总产值/万元 总支出/万 得润/万元 元
去年
x
y
200
今 年 (1+20%)x (1-10%)y
780
解:可例方程组为(x1+
实际问题与二元一次 方程组
1
悟空顺风探妖踪, 千里只行四分钟. 归时四分行六百, 风速多少才称雄?
顺风速度=悟空行走速度+风速 逆风速度=悟空行走速度-风速
2
解:设悟空行走速度是每分钟x里, 风速是每分钟y里,
x+y=1000÷4
依题意得
x-y=600÷4
解得:
x=200 y=50
答:风速是每分钟50里.
x=10
解 得:
y=5
答:该公司应安排x10天精加工,5天粗加工. 7
动手实践、探索研究
•小明在拼图时发现8个一 样大的长方形恰好可以拼 成一个大的长方形。小红 见了,说“我来试一试” 结果七拼八凑,拼成了正 方形。咳!怎么中间还留 下了一个恰好边长为2mm 的小正方形! •你能帮助他解开其中的 奥秘吗?
以供应全校的5300名学生就餐.
6
想一想 :某蔬菜公司收购到某种蔬菜140吨,
准备加工上市销售.该公司的加工能力是:每天 可以精加工6吨或粗加工16吨.现计划用15天完成 加工任务,该公司应安排几天精加工,几天粗加 工? 解:设该公司应安排x天精加工,y天粗加工,
依题意得 x+y=15 6x+16y=140
3
练一练: 长18米的钢材,要锯成10段,
而每段的长只能取“1米或2米”两种型号
之一,小明估计2米的有3段,你们认为他
估计的是否准确?为什么呢?那2米和1米
的各应取多少段?
解:设应取2米的x段,1米的y段,
x+y=10
x=8
依题意得 2x+y=18 解得: y=2
答:小明估计不准确.2米的应取8段,1米的
设捐款3元的有x名同学,捐款4元的有y名同学
,根据题意,可列方程组为: x + y = 30,. 3x + 4y = 100.
11
巩固提高 做一做
“五一期间”,你们一家5个大人和3个小
孩去开心乐园,买门票共花了68元.我们家也是
去开心乐园,不过比你家多2个大人,多1个小孩,
门票共花了94元.如果我们家9个大人和5个小孩