五年级下册奥数题

合集下载

五年级下册数学奥数题及答案

五年级下册数学奥数题及答案

五年级下册数学奥数题及答案一、选择题1.下列数中,哪一个不能整除30? A. 5 B. 6 C. 10 D. 15答案:A2.小明买了3双袜子,每双袜子花费5元,他还剩下多少元? A. 10 B.12 C. 15 D. 18答案:C3.一个长方形的长是8cm,宽是4cm,它的面积是多少平方厘米? A.16 B. 20 C. 30 D. 32答案:D4.下列数字中,哪一个是奇数? A. 10 B. 15 C. 20 D. 24答案:B5.如果一个三角形的三条边长度分别是3cm、4cm和5cm,那么它是什么三角形? A. 等边三角形 B. 直角三角形 C. 锐角三角形 D. 钝角三角形答案:B二、填空题1. 5 × 6 = ____ 答案:302.下列数字中,最小的是____ 答案:03.7 ÷ 2 = ____ 答案:3.54. 2 + 4 × 3 = ____ 答案:145.12 ÷ 3 = ____ 答案:4三、解答题1. 计算题小明在商场购买了两本数学书,每本书的价格分别是35元和20元。

他付给售货员一张50元的钞票,请问他应该找给小明多少零钱?解答:两本书的总价格:35元+ 20元= 55元小明给了售货员50元的钞票,所以需要找给小明的零钱是:50元- 55元= -5元小明应该还需要给售货员5元。

2. 推理题一辆汽车前进了200公里,然后返回原点,再往前走100公里,最后又返回原点。

请问汽车最终所在的位置与原点的位置相比,是在原点的左边还是右边?解答:汽车前进了200公里,然后返回原点,所以汽车回到了原点。

再往前走100公里,又返回原点,所以汽车依然在原点。

因此,汽车最终所在的位置与原点的位置重合,即汽车最终位置与原点相同。

四、总结本文列出了五年级下册数学奥数题及答案。

选择题包括了求除数、数字判断、图形面积、奇偶数、三角形分类等题型。

填空题涵盖了乘法、最小数、除法以及复杂的运算顺序。

五年级下册奥数题数学

五年级下册奥数题数学

五年级下册奥数题数学一、填空题1. 能同时被 2、3、5 整除的最小三位数是()。

解析:能同时被 2、3、5 整除的数必须是2×3×5 = 30 的倍数,最小的三位数是 120。

2. 把 5 米长的绳子平均剪成 8 段,每段长是()米,每段是全长的()。

解析:每段长5÷8 = 5/8 米,每段是全长的1÷8 = 1/8 。

3. 一个数的最大因数是 18,这个数是(),它的所有因数有()。

解析:一个数的最大因数是它本身,所以这个数是 18。

18 的因数有 1、2、3、6、9、18 。

4. 一个最简真分数,分子和分母的积是 8,这个分数是()。

解析:分子和分母的积是 8 的真分数有 1/8 和 2/4,最简真分数是 1/8 。

5. 有两个质数,它们的和是 20,积是 51,这两个数分别是()和()。

解析:将 51 分解因数可得51 = 3×17,且 3 + 17 = 20,所以这两个数是 3 和 17 。

6. 把 3 千克苹果平均分给 5 个小朋友,每个小朋友分得()千克苹果,每个小朋友分得这些苹果的()。

解析:每个小朋友分得3÷5 = 3/5 千克苹果,每个小朋友分得这些苹果的1÷5 = 1/5 。

7. 一个正方体的棱长总和是 72 厘米,它的表面积是()平方厘米,体积是()立方厘米。

解析:正方体有 12 条棱,每条棱的长度为72÷12 = 6 厘米。

表面积= 6×6×6 = 216 平方厘米,体积= 6×6×6 = 216 立方厘米。

8. 用 0、1、2 三个数字组成一个同时是 2、3、5 的倍数的最小三位数是()。

解析:同时是 2、3、5 的倍数的数个位必须是 0,且各位数字之和是 3 的倍数。

所以这个三位数是 120 。

9. 分数单位是 1/7 的最大真分数是(),最小假分数是()。

五年级下册奥数题

五年级下册奥数题

五年级下册奥数题(1)(1+++)×(+++)-(1++++)×(++)2131412131415121314151213141(2)+++……+++211⨯321⨯431⨯200920081⨯201020091⨯201120101⨯(3)++++……++200812008220083200842008200620082007盈亏问题基本数量关系(盈+亏)÷两次所分之差=人数(盈-盈)÷两次所分之差=人数(亏-亏)÷两次所分之差=人数1、一些铅笔奖给三好学生,每人分5支还多4支;每人分6支则少4支。

有多少个三好学生?有多少支铅笔?2、一些铅笔奖给三好学生,每人分4支还多10支;每人分6支则多2支。

有多少个三好学生?有多少支铅笔?3、一些铅笔奖给三好学生,每人分9支则少21支;每人分7支则少7支。

有多少个三好学生?有多少支铅笔?4、一筐桃子,每只猴子分6个,余12个;每只猴子分7个,少11个。

有几只猴子、几个桃子?5、一叠本子发给同学们,每人发4本还差2本,每人发6本就差20本。

求一共有多少个同学、多少个本子?6、一篮苹果分给小朋友,如果减少一人,每人正好分5个;如果增加一人,每人正好分4个。

这篮苹果一共有多少个?7、五年级同学去划船,如果增加一条船,正好每只船上坐7人;如果减少一条船,正好每只船上坐8人。

共有多少个同学?8、一个旅游团去旅馆住宿,如果6人一间,多2个房间;如果4人一间,就会少2个房间。

这个旅游团共有多少人?长方体和正方体的表面积1、有四个棱长为3分米的正方体,如果将它们拼成一个长方体,求这个长方体的表面积。

2、将一个长方体的高增加2厘米后,就成了一个正方体,且表面积比原来增加了40平方厘米,求原来长方体的表面积。

3、把三个长、宽、高分别是10厘米、8厘米、3厘米的长方体拼成一个较大的长方体,求这个长方体的表面积最小是多少平方厘米?4、一个长方体正好可以切割成3个完全一样的正方体,且没有剩余;三个正方体的表面积比原来增加了60平方厘米。

五年级数学下册奥数50题、附解析及参考答案

五年级数学下册奥数50题、附解析及参考答案

五年级数学下册奥数50题、附解析及参考答案一、工程问题1.甲乙两个水管单独开,注满一池水需要20小时和16小时。

丙水管单独开,排一池水要10小时。

如果水池没水,同时打开甲乙两水管,5小时后再打开排水管丙,问水池注满还需要多少小时?答:甲水管每小时注入1/20的水量,乙水管每小时注入1/16的水量,丙水管每小时排出1/10的水量。

在5小时内,甲乙两水管共注入了5/20+5/16=19/40的水量,水池中水量为19/40.再打开丙水管后,每小时水池中的水量减少1/10-1/20-1/16=3/80,所以注满整个水池还需要(1-19/40)/(3/80)=16小时。

2.修一条水渠,甲队单独修需要20天完成,乙队单独修需要30天完成。

如果两队合作,由于彼此施工有影响,他们的工作效率就要降低。

甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。

现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?答:设甲队合作x天,乙队合作XXX,则有以下两个方程:20x/(5/4)+30y/(10/9)=1.(甲、乙两队合作完成1个单位的工程)20x/(5/4)+(30-y)/(1/3)=16.(甲、乙两队合作16天完成工程)解得x=8,y=6,所以两队需要合作8天。

3.一件工作,甲、乙合做需4小时完成,乙、XXX做需5小时完成。

现在先请甲、XXX做2小时后,余下的乙还需做6小时完成。

乙单独做完这件工作要多少小时?答:设甲、乙、丙每小时完成的工作量分别为a、b、c,则有以下三个方程:2(a+c)+6b=1.(甲、乙、丙合作完成1个单位的工作)4(a+b)=1.(甲、乙合作完成1个单位的工作)5(b+c)=1.(乙、丙合作完成1个单位的工作)解得a=1/20,b=1/60,c=1/12,所以乙单独做完这件工作需要6b=6/60=1/10小时。

4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

五年级奥数题及答案5篇

五年级奥数题及答案5篇

五年级奥数题及答案5篇1.五年级奥数题及答案篇一1、甲乙两码头相距560千米,一只船从甲码头顺水航行20小时到达乙码头,已知船在静水中每小时行驶24千米,问这船返回甲码头需几小时?答案与解析:船顺水航行20小时行560千米,可知顺水速度,而静水中船速已知,那么逆水速度可得,逆水航行距离为560千米,船返回甲船头是逆水而行,逆水航行时间可求。

顺水速度:560÷20=28(千米/小时)逆水速度:24-(28-24)=20(千米/小时)返回甲码头时间:560÷20=28(小时)2、甲、乙二人骑自行车从环形公路上同一地点同时出发,背向而行。

现在已知甲走一圈的时间是70分钟,如果在出发后45分钟甲、乙二人相遇,那么乙走一圈的时间是____分钟?答案与解析:甲行走45分钟,再行走70-45=25(分钟)即可走完一圈。

而甲行走45分钟,乙行走45分钟也能走完一圈。

所以甲行走25分钟的路程相当于乙行走45分钟的路程。

甲行走一圈需70分钟,所以乙需70÷25×45=126(分钟)。

即乙走一圈的时间是126分钟。

2.五年级奥数题及答案篇二1、一副纸牌共54张,最上面的一张是红桃K。

如果每次把最上面的12张牌移到最下面而不改变它们的顺序及朝向,那么,至少经过多少次移动,红桃K才会又出现在最上面?解:因为[54,12]=108,所以每移动108张牌,又回到原来的状况。

又因为每次移动12张牌,所以至少移动108÷12=9(次)。

2、爷爷对小明说:“我现在的年龄是你的7倍,过几年是你的6倍,再过若干年就分别是你的5倍、4倍、3倍、2倍。

”你知道爷爷和小明现在的年龄吗?解:爷爷70岁,小明10岁。

提示:爷爷和小明的年龄差是6,5,4,3,2的公倍数,又考虑到年龄的实际情况,取公倍数中最小的。

(60岁)3、某质数加6或减6得到的数仍是质数,在50以内你能找出几个这样的质数?并将它们写出来。

五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版

五年级下册数学奥数题(含答案) 小学五年级奥数题大全及答案(更新版)-通用版

五年级奥数题问题+答案1、一块草地,可供24匹马吃6天;20匹马吃10天。

多少马12天吃尽?2、一块草地,可供5只羊吃40天;6只羊吃30天。

如果4只羊吃30天后又增加2只羊一起吃,那么这块草地还可以再吃多少天?3、每小时有3000人到书店买书。

如果设一个售书口,每分钟可以让50人买完离开;如果设2个售书口,1小时后就没有人排队了。

那么如果设4个口,多长时间后就没有人排队了?4、一口井,用3部抽水机40分钟可以抽干;6部抽水机16分钟可以抽干。

那么5部同样的抽水机,多少分钟可以抽干?5、一个水池,池内除原有的水外,每天都流入同样多的水。

如果用池中的水每天浇50亩地,10天用完;如果每天浇45亩地,20天用完。

那么,用这些水浇多少亩地,正好可用25天?6、一个大水坑,每分钟从四周流掉一定数量的水。

如果用5台水泵,6小时抽干;用10台,4小时抽干。

现在要2小时抽干,要多少水泵?7、仓库装满水泥时,可用30天。

现在仓库是空的,用大车运水泥,除每天供工地使用外,要装5天才可装满;用小车,除每天供工地使用外,要装10天才可装满。

如果大车小车一起用,除每天供工地使用外,要装几天才可装满?8、甲、乙、丙、丁四人加工同样的零件,甲先加工了一段时间,然后乙、丙、丁三人一起参加加工,6小时后乙和甲加工的一样多;9小时后丙和甲加工的一样多,12小时后丁和甲加工的一样多。

又知乙每小时加工27个零件,丙每小时加工23个零件。

那么,丁每小时加工零件多少个?答案1、假设草地单位为“1”,所以24*6=144 20*10=200 (200-144)/4=14 因此每天草地长草14个单位“1” 200-14*10=60,因此草地原有草60个单位"1"。

60/12+14=19 19马12天吃尽2、同理,40*5=200 30*6=180 (200-180)/(40-30)=2[每天草地长草] 200-2*40=120[原有草] 120-(4-2)*30=60 60/(6-2)=15(天)3、30分钟{每分钟有100人来,3000/(200-100)}4、20分钟{3*40-6*16=24 24/24=1 120-40*1=80 80/4=20}5、44亩地{45*20-50*10=400 400/10=40 500-40*10=100100/25+40=44}8、21个 {9*23-6*27=45 45/3=15 162-15*6=72 72/12+15=21}五年级奥数题有关行程问题的答案一环行跑道周长为240米,甲乙同向,丙与他们背向,都从同地点出发,每秒钟甲跑8米,乙跑5米,丙跑7米,出发后三人第一次相遇时,丙跑了多少圈?解:由题得知:甲比乙快8-5=3米/秒,也就是240/3=80秒后,甲会比乙多跑1圈且追上乙第一次相遇;要使甲、乙、丙同时相遇,则三者所用的时间必须是80秒的位数。

(完整版)小学五年级下奥数题

(完整版)小学五年级下奥数题

小学五年级奥数题修改版一、小数的巧算(一)填空题1. 计算 1.996+19.97+199.8=_____。

2. 计算 1.1+3.3+5.5+7.7+9.9+11.11+13.13+15.15+17.17+19.19=_____。

3. 计算 2.89⨯4.68+4.68⨯6.11+4.68=_____。

4. 计算 17.48⨯37-17.48⨯19+17.48⨯82=_____。

5. 计算 1.25⨯0.32⨯2.5=_____。

6. 计算 75⨯4.7+15.9⨯25=_____。

7. 计算 28.67⨯67+3.2⨯286.7+573.4⨯0.05=____。

(二)解答题8. 计算 172.4⨯6.2+2724⨯0.38。

9.。

10.计算 12.34+23.45+34.56+45.67+56.78+67.89+78.91+89.12+91.23。

二、数的整除性(一)填空题1. 四位数“3AA1”是9的倍数,那么A=_____。

2. 在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。

3. 能同时被2、3、5整除的最大三位数是_____。

4. 能同时被2、5、7整除的最大五位数是_____。

5. 1至100以内所有不能被3整除的数的和是_____。

6. 所有能被3整除的两位数的和是______。

7. 已知一个五位数□691□能被55整除,所有符合题意的五位数是_____。

(二)解答题8. 173□是个四位数字,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除。

”问:数学老师先后填入的3个数字的和是多少?9.在1992后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11整除,这个七位数最小值是多少?三质数与合数(一)填空题1. 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____。

五年级下册数学奥数题带答案

五年级下册数学奥数题带答案

五年级下册数学奥数题带答案一、拓展提优试题1.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.2.若2副网球拍和7个网球一共220元,且1副网球拍比1个网球贵83元.求网球的单价.3.对于自然数N,如果在1﹣9这九个自然数中至少有七个数是N的因数,则称N是一个“七星数”,则在大于2000的自然数中,最小的“七星数”是.4.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.5.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.6.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.7.某商店的同种点心有大小两种包装礼盒,大盒85.6元一盒,内有点心32块,小盒46.8元一盒,内有点心15块,若王雷用654元买了9盒点心,则他可得点心块.8.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.9.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.10.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.11.小明从家到学校去上课,如果每分钟走60米,可提前10分钟到校;如果每分钟走50米,要迟到4分钟到校.小明家到学校相距米.12.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).13.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.14.(8分)在如图每个方框中填入一个数字,使得乘法竖式成立.那么,两个乘数的和是.15.定义新运算:θa=,则(θ3)+(θ5)+(θ7)(+θ9)+(θ11)的计算结果化成最简真分数后,分子与分母的和是.16.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.17.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.18.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.19.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.20.如图,若长方形S长方形ABCD=60平方米,S长方形XYZR=4平方米,则四边形S四=平方米.边形EFGH21.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.22.(12分)甲、乙两人从A地步行去B地.乙早上6:00出发,匀速步行前往;甲早上8:00才出发,也是匀速步行.甲的速度是乙的速度的2.5倍,但甲每行进半小时都需要休息半小时.甲出发后经过分钟才能追上乙.23.(15分)如图,正六边形ABCDEF的面积为1222,K、M、N分别AB,CD,EF的中点,那么三角形PQR的边长是.24.(15分)一个自然数恰有9个互不相同的约数,其中3个约数A,B,C满足:①A+B+C=79②A×A=B×C那么,这个自然数是 .25.已知13411a b -=,那么()20132065b a --=______。

五年级下册数学必考奥数题型汇总带答案(共10题)

五年级下册数学必考奥数题型汇总带答案(共10题)

1一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?解:甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成甲乙的工作效率和=那么剩下的需要完成全部工程需要4+5=9天2生产一批零件,甲每小时可做18个,乙单独做要12小时成。

现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?解:乙的工作效率=完成任务时乙工作了小时那么甲一共生产18×=135个3一项工作,甲乙要4小时完成,乙丙要6小时完成。

现在甲丙合作2小时,剩下的乙7小时完成。

甲乙丙单独要多久完成?解:甲丙合作2小时,乙独做7小时相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时那么乙独做完成乙的工作效率=甲的工作效率=丙的工作效率=甲单独完成需要乙单独完成需要丙单独完成需要4服装厂接到加工一批服装的任务,王师傅每天可以制作3套服装,李师傅每天可以制作5套服装,如果王师傅单独完成制作这批服装的任务,比李师傅单独完成制作这批服装的任务要多用4天,那么,要加工的这批服装共有多少套?解答:(3×4)÷(5-3)=6(天)6×5=30(套)王王王……王王王王王李李李……李如上图,王字和李字分别代表二人一天的工作量。

王师傅在前几天一定比李师傅少加工了一部分零件,所以还需要再工作4天才和李师傅的工作量一样多。

王四天加工3×4=12(件),说明说明前几天王比李多加工12件,又由于每天多加工2件。

所以李共加工6天(12÷2),共6×5=30(套)5一项工程甲乙合做需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作的,如果这件工作由甲单独做,需多少天完成?解:甲3天乙8天看作甲乙合作3天,乙独做8-3=5天这是解决问题的关键乙独做5天完成乙的工作效率=甲的工作效率=甲单独完成需要6甲乙两人分别生产同样多的零件,各工作16天后,甲还需64个,乙还需384个才能完成,乙比甲的工作效率少40%,求甲的效率?解:设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天根据题意16a+64=0.6a×16+38416×0.4a=3200.4a=20a=50甲的工作效率为50个/天算术法:乙比甲每天少做40%那么16天少做384-64=320个每天少做320/16=20个那么甲的工作效率=20/40%=50个/天7有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成。

五年级下册数学最难的奥数题

五年级下册数学最难的奥数题

五年级下册数学最难的奥数题1、一个筐子放进4篮苹果后,连筐共重28千克,当倒出3篮苹果后再称,连筐共重10千克,一个筐子重(4)千克2、一块正方形菜地,边长是12米。

如果要把它的面积扩大到原来的2倍,其中一条边增加4米,另一条边增长多少米?(写出过程)3、学校卖3把椅子和4张桌子共用元,未知卖2张桌子的钱可以卖5把椅子,一把椅子多少元?一张桌子多少元?(写下过程)4.一条路长米,从头到尾每隔10米栽1棵梧桐树,共栽多少棵树?5、12棵柳树排列成一排,在每两棵柳树中间种3棵桃树,共种多少棵桃树?6、一根厘米长的木条,要锯成10厘米长的小段,需要锯几次?7、.蚂蚁爬到树枝,每上时一节须要10秒钟,从第一节爬到至第13节须要多少分钟?8.在花圃的周围方式菊花,每隔1米放1盆花。

花圃周围共20米长。

需放多少盆菊花?9、从发电厂至闹市区一共存有根电线杆,每相连两根电线杆之间就是30米。

从发电厂至闹市区存有多离?10、.王老师把月收入的一半又20元留做生活费,又把剩余钱的一半又50元储蓄起来,这时还剩40元给孩子交学费书本费。

他这个月收入多少元?11.一个人沿着小骗走了全长的一半后,又跑了剩的一半,还剩1千米,问:小加全长多少千米?12.甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。

问:这批零件有多少个?13.一条毛毛虫由幼虫短至成虫,每天短一倍,16天能长至16厘米。

反问它几天可以短至4厘米?14.一桶水,第一次倒出一半,然后倒回桶里30千克,第二次倒出桶中剩下水的一半,第三次倒出千克,桶中还剩下80千克。

桶里原来有水多少千克?15、甲、乙两书架共计图书本,甲书架的图书数比乙书架的3倍太少16本。

甲、乙两书架上各存有图书多少本?16、甲、乙、丙三人年龄之和是94岁,且甲的2倍比丙多5岁,乙2倍比丙多19岁,问:甲、乙、丙三人各多大?17.小明、小华捉住完鱼。

五年级下册数学奥数题

五年级下册数学奥数题

12 道五年级下册数学奥数题题目一:一个数既是 3 的倍数又是 5 的倍数,这个数最小是多少?解析:求既是 3 的倍数又是 5 的倍数的最小数,就是求 3 和 5 的最小公倍数。

因为3 和 5 互质,所以它们的最小公倍数是3×5 = 15。

题目二:有三根铁丝,长度分别是12 米、18 米和24 米,现在要把它们截成同样长的小段,每段最长是多少米?解析:求每段最长是多少米,就是求12、18 和24 的最大公因数。

12 的因数有1、2、3、4、6、12;18 的因数有1、2、3、6、9、18;24 的因数有1、2、3、4、6、8、12、24。

它们的最大公因数是6,所以每段最长是6 米。

题目三:一个长方体的长、宽、高分别是8 厘米、6 厘米和 4 厘米,这个长方体的表面积是多少平方厘米?解析:长方体表面积=(长×宽+ 长×高+ 宽×高)×2。

代入数值可得:(8×6 + 8×4 + 6×4)×2 =(48 + 32 + 24)×2 = 104×2 = 208(平方厘米)。

题目四:一个分数,分子与分母的和是48,如果分子加上6,这个分数就等于1。

原来的分数是多少?解析:设分子为x,则分母为48 - x。

分子加上 6 等于分母,即x + 6 = 48 - x,移项可得2x = 42,解得x = 21。

分母为48 - 21 = 27。

所以原来的分数是21/27。

题目五:有一筐苹果,平均分给 5 个人多 2 个,平均分给 6 个人也多 2 个。

这筐苹果最少有多少个?解析:这筐苹果平均分给 5 个人和 6 个人都多 2 个,说明苹果总数减去 2 后是5 和 6 的公倍数。

5 和 6 的最小公倍数是30,所以苹果最少有30 + 2 = 32 个。

题目六:一个正方体的棱长总和是48 厘米,它的体积是多少立方厘米?解析:正方体有12 条棱,且每条棱长相等。

小学数学五年级下册《奥数题》练习(共五大类,含答案解析)

小学数学五年级下册《奥数题》练习(共五大类,含答案解析)

五年级数学下册奥数题练习班级考号姓名总分一、排列组合问题1、有五对夫妇围成一圈,使每一对夫妇的夫妻二人都相邻的排法有( )A、768种B、32种C、24种D、2的10次方种2、若把英语单词hello的字母写错了,则可能出现的错误共有( )A、119种B、36种C、59种D、48种二、容斥原理问题1、有100种赤贫.其中含钙的有68种,含铁的有43种,那么,同时含钙和铁的食品种类的最大值和最小值分别是( )A、43,25B、32,25C、32,15D、43,112、在多元智能大赛的决赛中只有三道题。

已知:(1)某校25名学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍;(3)只解出第一题的学生比余下的学生中解出第一题的人数多1人;(4)只解出一道题的学生中,有一半没有解出第一题,那么只解出第二题的学生人数是( )A、5B、6C、7D、83、一次考试共有5道试题。

做对第1、2、3、4、5题的分别占参加考试人数的95%、80%、79%、74%、85%。

如果做对三道或三道以上为合格,那么这次考试的合格率至少是多少?三、抽屉原理、奇偶性问题1、一只布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的?2、有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样?3、某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球?4、地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由)四、路程问题1、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

五年级下册,奥数题

五年级下册,奥数题

五年级下册奥数题:
1.小明和小华在一个400米的环形跑道上练习跑步,两人同时从同一点出发,
同向而行,小明每秒跑3.5米,小华每秒跑5.5米。

经过多少秒,两人第三次相遇?
2.一辆公共汽车由起点站到终点站(这两站在内)共途经8个车站,已知前6
个车站共上车100人,除终点站外前面各站共下车80人,则从前六站上车而在终点站下车的乘客共有多少人。

3.在1997后面补上三个数字,组成一个七位数1997□□□,如果这七位数能
被4、5、6整除,那么补上的三个数字的和的最小可能值是多少?
4.已知两个数的最大公约数是4,最小公倍数是252,其中一个数是28,另一
个数是多少?
5.定义新运算a△b=ab-(a+b),则(4△3)+(3△4)=多少。

小学五年级下册奥数题精选

小学五年级下册奥数题精选

小学五年级下册奥数题精选1.小学五年级下册奥数题精选篇一1、一位少年短跑选手,顺风跑90米用了10秒钟。

在同样的风速下,逆风跑70米,也用了10秒钟。

问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12。

5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。

事先规定。

兄妹二人不许搭伴。

第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。

请你判断,小华、小红和小林各是谁的妹妹。

解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。

第一种可能是:李明的妹妹是小红,王宁的妹妹是小林;第二种可能是:李明的妹妹是小林,王宁的妹妹是小红。

对于第一种可能,第二盘比赛是张虎和小林对李明和王宁的妹妹。

王宁的妹妹是小林,这样就是张虎、李明和小林三人打混合双打,不符合实际,所以第一种可能是不成立的,只有第二种可能是合理的。

所以判断结果是:张虎的妹妹是小华;李明的妹妹是小林;王宁的妹妹是小红。

2.小学五年级下册奥数题精选篇二1、一个长方形的周长是24厘米,长与宽的比是2:1,这个长方形的面积是多少平方厘米?2、一个长方体棱长总和为96厘米,长、宽、高的比是3∶2∶1,这个长方体的体积是多少?3、小明看一本故事书,第一天看了全书的'1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是4∶3,男生有多少人?5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克?参考答案:1、S=(2/3×24/2)×(1/3×24/2)=32平方厘米2、V=(3/6×96/4)×(2/6×96/4)×(1/6×96/4)=384立方厘米3、24÷(1/5-1/9)=45×6=270页4、男=4/7×42=24(人)5、32+32×3/4÷80%=62(千克)3.小学五年级下册奥数题精选篇三1、有一批苹果,如果每天吃掉其中的三分之一,需要几天才能吃完?2、一辆车以每小时60公里的速度行驶,行驶了5个小时后,还剩下240公里的路程,这辆车一共要行驶多少公里?3、小明有10元钱,他要买5个苹果和3个橙子,苹果每个1元,橙子每个2元,他还需要多少钱?4、一种药品的说明书上写着,每次服用2粒,每天服用3次,一盒药共有30粒,这盒药可以服用几天?5、甲、乙两人同时从A地出发,分别向B地和C地行驶,甲的速度是每小时40公里,乙的速度是每小时60公里,B、C两地的距离是120公里,甲、乙两人同时到达B、C两地,求他们出发的时间。

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)

小学五年级奥数题30道(附答案)1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,求一张桌子和一把椅子的价钱分别是多少元。

设一把椅子的价钱为x元,则一张桌子的价钱为10x元。

根据题意,有10x - x = 288,解得x = 32,因此一把椅子的价钱为32元,一张桌子的价钱为320元。

2.3箱苹果重45千克,一箱梨比一箱苹果多5千克,求3箱梨的重量是多少千克。

设一箱苹果的重量为x千克,则3箱苹果的重量为3x千克。

根据题意,有3x = 45,解得x = 15,因此一箱苹果的重量为15千克,一箱梨的重量为20千克,因此3箱梨的重量为60千克。

3.甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。

甲比乙速度快,甲每小时比乙快10千米,求甲、乙两人的速度分别是多少千米每小时。

设甲的速度为x千米每小时,则乙的速度为x - 10千米每小时。

根据题意,有4x = (4 + 4) * 2,解得x = 4,因此甲的速度为4千米每小时,乙的速度为(4 - 10)千米每小时,即-6千米每小时(表示向相反方向行驶)。

4.XXX和XXX同样多的钱买了同一种铅笔,XXX要了13支,XXX要了7支,XXX又给XXX0.6元钱。

求每支铅笔的价格是多少元。

设每支铅笔的价格为x元,则李军和XXX分别付出的钱数为13x元和7x元。

根据题意,有13x = 7x + 0.6,解得x = 0.1,因此每支铅笔的价格为0.1元。

5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。

由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。

甲车每小时行40千米,乙车每小时行45千米,求两地相距多少千米。

设两地相距为x千米,则甲车和乙车相遇时,它们共行驶了(x/2)千米。

根据题意,甲车和乙车共用了6个小时,因此它们共行驶了2x千米。

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇

五年级奥数题及答案通用13篇五年级小学生奥数题篇一1、某厂有一批煤,原计划每天烧5吨,可以烧45天。

实际每天少烧0.5吨,这批煤可以烧多少天?2、学校买来150米长的塑料绳,先剪下7.5米,做3根同样长的跳绳。

照这样计算,剩下的塑料绳还可以做多少根?3、修一条水渠,原计划每天修0.48千米,30天修完。

实际每天多修0.02千米,实际修了多少天?4、王老师看一本书,如果每天看32页,15天看完。

现在每天看40页,可以提前几天看完?5、一辆汽车4小时行驶了260千米,照这样的速度,又行了2.4小时,前后一共行驶了多少千米?(用两种方法解答)五年级小学生奥数题篇二1、快车和慢车同时从两个城市相对开出,2.5小时后相遇。

快车每小时行42千米,慢车每小时行35千米。

两个城市相距多少千米?2、甲、乙二位同学合打一份资料,甲每分打18个字,乙每分打22个字,两人用了30分打完这份资料,这份资料一共有多少个字?3、甲乙两车分别从两地同时出发,相对开来,甲车每小时行40千米,乙车每小时行50千米,3小时后两车还相距25千米,两地相距多少千米?4、两地相距628千米,甲车每小时行60千米,乙车每小时行80千米。

两车同时从两地相向而行,4小时后两车相遇了吗?两车相距多少千米?5、甲乙两人合做一批零件。

甲每小时做124个,乙每小时做136个。

他们合做了8小时,超额完成120个。

他们原来打算合做多少个零件?6、上午10时一只货船从甲港开往乙港,下午1小时一只客船从乙港开往甲港。

客船开出4小时与货船相遇。

货船每小时行18千米,客船每小时行27千米。

两港相距多远?参考答案1、(42+35)×2.5=192.5(千米)2、(18+22)×30=12003、(50+40)×3+25=295(千米)4、没相遇。

(60+80)×4=560(千米)628-560=68(千米)5、(124+136)×8-120=1960(个)6、18×3+(18+27)×4=234(千米)五年级小学生奥数题篇三1、甲、乙、丙三人赛跑,同时从A地出发向B地跑,当甲跑到终点时,乙离B还有30米,丙离B还有70米;当乙跑到终点时,丙离B还有45米。

五年级下册简单奥数题

五年级下册简单奥数题

五年级下册简单奥数题一、工程问题。

1. 一项工程,甲队单独做20天完成,乙队单独做30天完成。

如果两队合作,多少天可以完成这项工程?- 解析:把这项工程的工作量看作单位“1”。

甲队单独做20天完成,那么甲队每天的工作效率是1÷20=(1)/(20);乙队单独做30天完成,乙队每天的工作效率是1÷30=(1)/(30)。

两队合作每天的工作效率就是(1)/(20)+(1)/(30)。

- 计算:(1)/(20)+(1)/(30)=(3 + 2)/(60)=(5)/(60)=(1)/(12),工作时间 = 工作量÷工作效率,所以1÷(1)/(12)=12(天)。

2. 修一条路,甲单独修需16天,乙单独修需24天,如果乙先修了9天,然后甲、乙二人合修,还要几天?- 解析:把这条路的工作量看作单位“1”。

甲每天的工作效率是1÷16=(1)/(16),乙每天的工作效率是1÷24=(1)/(24)。

乙先修9天,完成的工作量是(1)/(24)×9=(3)/(8),剩下的工作量是1-(3)/(8)=(5)/(8)。

甲乙合作每天的工作效率是(1)/(16)+(1)/(24)=(3+2)/(48)=(5)/(48)。

- 计算:剩下工作量除以甲乙合作工作效率(5)/(8)÷(5)/(48)=(5)/(8)×(48)/(5)=6(天)。

二、分数问题。

3. 有一个分数,分子加3可约简为(5)/(6),分子减3可约简为(1)/(3),求这个分数。

- 解析:设这个分数的分子为x,分母为y。

根据题意可得(x + 3)/(y)=(5)/(6),即6(x + 3)=5y;(x-3)/(y)=(1)/(3),即3(x - 3)=y。

将y = 3(x - 3)代入6(x + 3)=5y中,得到6(x + 3)=5×3(x - 3)。

- 计算:6x+18 = 15x-45,15x-6x=18 + 45,9x=63,x = 7。

小学五年级下册数学必考奥数题型汇总带答案(共10题)

小学五年级下册数学必考奥数题型汇总带答案(共10题)

1一项工程,甲独做10天完成,乙独做20完成,现在甲乙合作,甲休息一天,乙休息5天,完成这项工程要多少天?解:甲休息1天,乙休息5天,相当于甲乙休息1天后,乙又休息4天那么甲4天完成甲乙的工作效率和=那么剩下的需要完成全部工程需要4+5=9天2生产一批零件,甲每小时可做18个,乙单独做要12小时成。

现在由甲乙二人合做,完成任务时,甲乙生产的数量之比是3:5,甲一共生产零件多少个?解:乙的工作效率=完成任务时乙工作了小时那么甲一共生产18×=135个3一项工作,甲乙要4小时完成,乙丙要6小时完成。

现在甲丙合作2小时,剩下的乙7小时完成。

甲乙丙单独要多久完成?解:甲丙合作2小时,乙独做7小时相当于甲乙可做2小时,乙丙合作2小时,乙独做7-2-2=3小时那么乙独做完成乙的工作效率=甲的工作效率=丙的工作效率=甲单独完成需要乙单独完成需要丙单独完成需要4服装厂接到加工一批服装的任务,王师傅每天可以制作3套服装,李师傅每天可以制作5套服装,如果王师傅单独完成制作这批服装的任务,比李师傅单独完成制作这批服装的任务要多用4天,那么,要加工的这批服装共有多少套?解答:(3×4)÷(5-3)=6(天)6×5=30(套)王王王…… 王王王王王李李李……李如上图,王字和李字分别代表二人一天的工作量。

王师傅在前几天一定比李师傅少加工了一部分零件,所以还需要再工作4天才和李师傅的工作量一样多。

王四天加工3×4=12(件),说明说明前几天王比李多加工12件,又由于每天多加工2件。

所以李共加工6天(12÷2),共6×5=30(套)5一项工程甲乙合做需12天完成,若甲先做3天后,再由乙工作8天,共完成这项工作的,如果这件工作由甲单独做,需多少天完成?解:甲3天乙8天看作甲乙合作3天,乙独做8-3=5天这是解决问题的关键乙独做5天完成乙的工作效率=甲的工作效率=甲单独完成需要6甲乙两人分别生产同样多的零件,各工作16天后,甲还需64个,乙还需384个才能完成,乙比甲的工作效率少40%,求甲的效率?解:设甲的工作效率为a个/天,则乙为(1-40%)a=0.6a个/天根据题意16a+64=0.6a×16+38416×0.4a=3200.4a=20a=50甲的工作效率为50个/天算术法:乙比甲每天少做40%那么16天少做384-64=320个每天少做320/16=20个那么甲的工作效率=20/40%=50个/天7有一项工程要在规定日期内完成,如果甲工程队单独做正好如期完成,如果乙工程队单独做就要超过5天才能完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级下册奥数题目录第一讲图形的变换(图形的分割与拼接)………………………………3-5第二讲因数与倍数(数的整除特征一)………………………………6-10第三讲因数与倍数(数的整除特征二)……………………………11-12第四讲因数与倍数(奇数与偶数)……………………………13-17第五讲因数与倍数(最小公倍数与最大公因数)……………………18-20第六讲因数与倍数(最小公倍数与最大公因数)……………………21-26第七讲长方体和正方体(巧算表面积)………………………………27-30第八讲长方体和正方体(巧算体积)……………………………………31-35第九讲分数的意义和性质……36-40第十讲分数的加法和减法……41-44第十一讲平均数问题……………45-49第十二讲教学广角(追及问题)…………………………………50-54第十三讲数学广角(还原问题)…55-58第十四讲容斥原理………………59-62第十五讲抽屉原理和最不利……63-67第十六讲综合练习…………… 68-98五年级下册奥数题第一讲图形的变换(图形的分割与拼接)1、把右图分成形状、大小都相同的四块,并且每个图形中要有一个“·”。

2、把下图分成大小、形状相同的三块,使每一块都有一颗星,该怎么分割3、下图是由一个正方形和一个等腰直角三角形组成的,请把它分成大小、形状相同的四块。

4、将下图分成大小、形状相同的四块、每块中带有一个小圆圈。

5、将图中五个图形拼成一个正方形v1.0 可编辑可修改6、将图中长方形切成两块,拼成一个正方形。

7、将下图(缺两角的长方形)分割成两块,然后拼成一个正方形。

8、将下图“T ”字剪成四块,然后拼成一个正方形。

169第二讲因数与倍数(数的整除特征一)1、五位数73()28能被9整除,()里应该是几2、一梯形面积为1400平方米,高为50米,若两底的米数都是整数且可被8整除,求两底,此问题解的组数为多少3、A8919B能被66整除,这个六位数是多少4、期末考试六年级一班数学平均分是90分,总分是()95(),这个班有多少名学生5、任意一个三位数连着写两回得到一个六位数,这个六位数一定能被7,11,13整除。

为什么6、求无重复数字被75整除的五位数3A6B5有多少个7、已知一个两位数恰好是它的两个数字之和的6倍,求这个两位数。

8、四位数能被2和3中应填。

9、把789连续写次,所组成的数能被9整除,并且这个数最小。

10、四位数36ab能同时被2,3,4,5,9整除,则36ab=。

11、把1,2,3这三个数字任意排列,可组成若干个三位数,在这些三位数中,能被11整除的是多少12、七位数22A333A能被4整除,且它的末两位数字组成的两位数3A是6的倍数,那么A等于多少13、同时能被3,4,5整除的最小的四位数是多少14、在十进制数中,各位数均是0或1,并且能被225整除的最小自然数是多少15、有一个1994位数a能被9整除,它的各位数字之和为b,b的各位数之和为c,则c多少16、从3、5、0、1这四个数字中任选出3个组成没有重复数字且同时能被3,5整除的三位数有那些第三讲因数与倍数(数的整除特征二)1、有一类数,每个数都能被11整除,并且各位数字之和是20,问这类数中,最小的数是多少2、在1~200这200个自然数中,能被6或8整除的数共有几个3、在小于5000的自然数中,能被11整除,并且各数位的数和为13的数,共有多少个4、一个六位数,它能被9和11整除,去掉这个六位数的首、尾两个数字,中间的四个数字是1997,问这个六位数是多少5、一个三位数被9除余7,被7除余5,被5除余3.问:这样的三位数有哪些6、从0~9这9个数字中选出4个数字,使它能被3,5,7,11整除。

第四讲因数与倍数(奇数与偶数)1、1+2+3+4+…+2001+2002是奇数还是偶数2、有一列数:1,1,2,3,5,8,13,21,34,55……从第三个数开始,每个数都是前两个数的和。

那么在前1000个数中,有多少个奇数3、用0~9这10个数组成5个两位数,每个数只用一次,要求它们的和是奇数,那么这5个两位数的和最大是多少4、两个四位数相加,第一个四位数的每个数码都不小于5,第二个四位数仅仅是第一个四位数的数码调换了位置。

某同学做出的答数是16246.试问该同学的答数正确吗如果正确,写出这两个四位数;如果不正确,请说明理由。

5、若5×3×a×9×b是奇数,则整数a、b的奇偶性适合()。

奇b偶奇b奇偶b偶偶b奇6、a+b+c =奇数,a×b×c =偶数,则a、b、c的奇偶性适合()。

A.三个数都是奇数B.两个奇数一个偶数C.一个奇数两个偶数D.三个都是偶数7、a、b、c是任意给定的三个整数,那么乘积(a+b)(b+c) (c+a)的奇偶性为()。

A.奇数B.偶数C.不能肯定,取决于a、b、b的奇偶性D.能肯定,取决于a、b、c的具体数值8、有四个互不相同的自然数,最大的数与最小的数之差是4,最大数与最小数之积是奇数,而这四个数的和是最小数之积是奇数,而这四个数的和是最小的两位数奇数,则这四个数的乘积是多少9、七个连续质数从大到小排列为a,b,c,d,e,f,g,已知它们的和是偶数,那么c等于多少10、A、B、C、E、F、G七盏灯各自装有一个拉线开关,开始B、D、F亮着,一个小朋友按从A到G,再从A到G,再从A到G的顺序依次拉开关,一共拉了2000次,这时亮着的灯是开着还是闭着第五讲因数与倍数(最小公倍数与最大公因数)1、求42,70和105的最小公倍数。

2、能同时被2,3,5整除的最小的三位数是多少3、能同时被2,3,4,5,6,7,8,9整除的四位数有多少个4、求下面每组数的最小公倍数54和81 35和36 26和785、求下面每组中三个数的最小公倍数180,150和240 42,168和2526、求能被2,3,5整除的最小四位数。

7、能同时被3,5,7除余1的最小的数是多少8、有一个数,同时能被9,10,15整除,满足条件的最大三位数是多少第六讲因数与倍数(最小公倍数与最大公因数)1、把长120厘米、宽80厘米的铁板裁成面积相等,最大的正方形而且没有剩余,可以裁成多少块2、用某数去除3705余9,去除4759余13,去除5079少3。

求某数最大是几3、把长132厘米、宽60厘米、厚36厘米的木料锯成尽可能大的,同样大小的正方体木块,锯后不许有剩余(耗损不计),能锯成多少块4、有一批书分给三个小组,平均每人正好分6本。

如果只分给第一组,则平均每人分10本;如果只分给第三组,平均每人分得21本。

第二组人数接近10人,每组各有多少人5、有一列数5,10,15…,5995,6000共1200个。

其中12的倍数有多少个6、25和54的最大公约数是(),于是,我们称这两个数互为();最小公倍数是()。

7、用96朵红花和72朵白花做成花束,如果每束花里红花的朵数相同,白花的朵数也相同,每束花里最少有多少朵花8、7月6日,宝柱从避暑山庄打电话给乾隆问好,贾六来看望乾隆,春喜在打扫房间。

如果春喜每隔3天打扫一次,宝柱每隔6天打一次电话,贾六每隔5天看望一次,则至少经过几天问好、看望、打扫这三件事才能同时发生9、65,42,120的最小公倍数是()。

10、为了搞科学种田的实验,需要将一块长为75米,宽为60米的长方形土地划分为面积相当的小正方形土地,那么小正方形土地的面积最大是多少平方米11、两个数的最大公约数是18,最小公倍数180,两个数相差54,求这两个数各是多少12、有一种新型的电子钟,每到正点和半点都响一次铃,每过9分亮一次,如果中午12点时,它既响了铃,又亮了灯,那么下一次既响铃又亮灯要到什么时间13、爷爷现在的年龄是明明现在年龄的7倍,过几年之和是他的6倍,再过几年就分别是明明年龄的5倍,3倍,2倍,你能算出爷爷现在的年龄是多少吗第七讲长方体和正方体(巧算表面积)1、一个长方形铁箱,长12分米,宽8分米,高6.5米。

如果把它的内外涂上油漆(外底面不涂),每平方米用油漆0.25千克,涂这个铁箱要用油漆多少千克(厚度忽略不计)2、一个正方形木块,棱长是15厘米,从它的八个顶点处各截去棱长分别为1,2,3,4,5,6,7,8厘米的小正体,这个木块剩下部分的表面积最少是多少平方厘米3、建造一个长方体的游泳池,长30米,宽10米,深1.6米,池的四壁和底面用瓷砖铺砌,如果每平方米用瓷砖25块,共需多少块4、一个火柴盒长4.5厘米,宽3.5厘米,高2厘米,如果材料厚度不计,做这样一个火柴盒外壳和内芯共需多少平方厘米纸板5、油漆4根柱子,柱子截面是边长0.3米的正方形,柱子长5米,每平方米油漆费元,共要多少元6、一个长方体是宽的倍,宽是高的2倍,棱长总和是96厘米,这个长方体的表面积是多少平方厘米v1.0 可编辑可修改7、在一个棱长是3分米的正方体一个面的正和一个顶点处,各挖去一个棱长为1分米的正方体(如下图),剩下形体的表面积是多少第八讲长方体和正方体(巧算体积)1、如下图,有一块土地,A地的面积是25平方米,B地的面积是15平方米,A 地比B地高4米。

现要把A地的土推到B地,使A,B两地同样高,这样B地可升高多少米2、一块长方形铁皮长24厘米,四角剪去边长3厘米的正方形后,然后通过折叠、焊接,做成一个无盖的长方体铁盒,铁盒的容积是486立方厘米。

求原来长方形铁皮的面积。

3、木工师傅用2厘米厚的木板做成一只有盖的长方体报箱,从外面量长64厘米,宽34厘米,高39厘米,这只报箱的容积是多少4、一根方钢长5米,它的横截面是一个边长2厘米的正方形,已知1立方米钢重7.8千克,一吨这样的钢材约有多少根(保留整数)5、底面是正方形的长方体,所有棱长之和是80厘米,已知高10厘米,求体积。

6、长方体棱长之和是60分米,长是7分米,高是3分米,求长方体体积。

7、如下图,有一堆土,甲处比乙处高50厘米,现在要把这堆土推平整,使甲处和乙处一样高,要从甲处取多少厘米厚8、一正方体木箱,从外面量得棱长52厘米,箱壁厚1厘米,求木箱容积。

9、在一个棱长为3厘米的大立方体的顶部中央挖去一个棱长为1厘米的小立方体,求这个立方体的表面积和体积。

第九讲分数的意义和性质1、一个分数,分子加上1后,其值为23,分子减1后,其值为12,求这个分数的值。

2、有三个分数,8990 ,989990 ,99899990,这三个分数中最大的是哪一个分数最小的是哪一个分数 3、分母是91的最简真分数一共有多少个这些最简真分数的和是多少4、一个分数是313,分子、分母同时加上多少后,可得135、98的分母加上56,要使分数的大小不变,分子应加上多少 6、下列分数中哪些能化成有限小数1140 ,215 ,1470 ,1011 ,2160 ,217 ,7167、把2425 ,189190 ,1523 ,998999按从大到小的顺序排列。

相关文档
最新文档