电磁场与电磁波(第三版)课后标准答案谢处方
电磁场与电磁波(西安交大第三版)第8章课后答案
第八章 电磁辐射与天线8.1 由(8.1-3)式推导(8.1-4)及(8.1-5)式。
解)sin ˆcos ˆ(4θθθπμ-=-rrIdle A jkrρ (8.1-3) 代入A H ρρ⨯∇=μ1,在圆球坐标系ˆsin ˆˆsin 112θ∂ϕ∂∂θ∂∂∂ϕθθθμμrA A rr r rr A H r=⨯∇=ρρ)]cos ()sin ([4ˆ])([sin sin ˆ2r e e r r Idl A rA r r r jkr jkr r θθθπϕθθμθϕθ--∂∂--∂∂=∂∂-∂∂=可求出H ρ的3个分量为jkre kr kr j Idl k H -+=))(1(sin 422θπϕ (8.1-4) 0==θH H r将上式代入E j H ρρωε=⨯∇,可得到电场为H j E ρρ⨯∇=ωε1ϕθ∂ϕ∂∂θ∂∂∂ϕθθθωεH r rr r rr j sin 0ˆsin ˆˆsin 12=代入ϕH 得jkrr e kr kr j Idl k j E -+-=))(1)((cos 2323θπωε jkr e kr jkr kr j Idl k E --+=))()(1(sin 4323θπωεθ (8.1-5) 0=ϕE8.2 如果电流元yIl ˆ放在坐标原点,求远区辐射场。
解 解1 电流元yIl ˆ的矢量磁位为 jkr e rIl y A -=πμ4ˆρ 在圆球坐标系中jkry r e rIl A A -==πϕθμϕθ4sin sin sin sinjkry e rIl A A -==πϕθμϕθθ4sin cos sin cosjkry e rIl A A -==πϕμϕϕ4cos cos由A H ρρ⨯∇=μ1,对远区辐射场,结果仅取r1项,得jkre rIl jH -=λϕθ2cos jkre r Il j H --=λϕθϕ2sin cos根据辐射场的性质,E r ZH ρρ⨯=ˆ1得 jkre r Il jZ E --=λϕθθ2sin cosjkre r Il jZ E --=λϕϕ2cos解2 根据 jkR e RR l Id j H -⨯=λ2ˆρρ (8.1-13) RH Z E ˆ⨯=ρρ (8.1-14) ϕϕϕθθϕθcos ˆsin cos ˆsin sin ˆˆˆ++==r y lr Rˆˆ≈ ϕθϕθϕcos ˆsin cos ˆˆˆ+-=⨯rl ϕϕϕθθcos ˆsin cos ˆˆ)ˆˆ(--=⨯⨯r rl jkRer Idl j H -=λ2ρ)cos ˆsin cos ˆ(ϕθϕθϕ+- 2jkR Idl E jZ erλ-=r )cos ˆsin cos ˆ(ϕϕϕθθ--8.3 三副天线分别工作在30MHz,100MHz,300MHz,其产生的电磁场在多远距离之外主要是辐射场。
电磁场与电磁波课后答案第1章
第一章习题解答给定三个矢量、和如下:求:(1);(2);(3);(4);(5)在上的分量;(6);(7)和;(8)和。
解(1)(2)(3)-11(4)由,得(5)在上的分量(6)(7)由于所以(8)三角形的三个顶点为、和。
(1)判断是否为一直角三角形;(2)求三角形的面积。
解(1)三个顶点、和的位置矢量分别为,,则,,由此可见故为一直角三角形。
(2)三角形的面积求点到点的距离矢量及的方向。
解,,则且与、、轴的夹角分别为给定两矢量和,求它们之间的夹角和在上的分量。
解与之间的夹角为在上的分量为给定两矢量和,求在上的分量。
解所以在上的分量为证明:如果和,则;解由,则有,即由于,于是得到故如果给定一未知矢量与一已知矢量的标量积和矢量积,那么便可以确定该未知矢量。
设为一已知矢量,而,和已知,试求。
解由,有故得在圆柱坐标中,一点的位置由定出,求该点在:(1)直角坐标中的坐标;(2)球坐标中的坐标。
解(1)在直角坐标系中、、故该点的直角坐标为。
(2)在球坐标系中、、故该点的球坐标为用球坐标表示的场,(1)求在直角坐标中点处的和;(2)求在直角坐标中点处与矢量构成的夹角。
解(1)在直角坐标中点处,,故(2)在直角坐标中点处,,所以故与构成的夹角为球坐标中两个点和定出两个位置矢量和。
证明和间夹角的余弦为解由得到一球面的半径为,球心在原点上,计算:的值。
解在由、和围成的圆柱形区域,对矢量验证散度定理。
解在圆柱坐标系中所以又故有求(1)矢量的散度;(2)求对中心在原点的一个单位立方体的积分;(3)求对此立方体表面的积分,验证散度定理。
解(1)(2)对中心在原点的一个单位立方体的积分为(3)对此立方体表面的积分故有计算矢量对一个球心在原点、半径为的球表面的积分,并求对球体积的积分。
解又在球坐标系中,,所以求矢量沿平面上的一个边长为的正方形回路的线积分,此正方形的两边分别与轴和轴相重合。
再求对此回路所包围的曲面积分,验证斯托克斯定理。
电磁场与电磁波(第三版)课后答案第6章
第六章时变电磁场6.1 有一导体滑片在两根平行的轨道上滑动,整个装置位于正弦时变磁场5cos mT z e t ω=B 之中,如题6.1图所示。
滑片的位置由0.35(1cos )m x t ω=-确定,轨道终端接有电阻0.2R =Ω,试求电流i.解 穿过导体回路abcda 的磁通为5cos 0.2(0.7)cos [0.70.35(1cos )]0.35cos (1cos )z z d B ad ab t x t t t t ωωωωωΦ==⨯=⨯-=--=+⎰ B S e e故感应电流为110.35sin (12cos ) 1.75sin (12cos )mAin d i R R dt t t t t R ωωωωωωΦ==-=-+-+E6.2 一根半径为a 的长圆柱形介质棒放入均匀磁场0z B =B e 中与z 轴平行。
设棒以角速度ω绕轴作等速旋转,求介质内的极化强度、体积内和表面上单位长度的极化电荷。
解 介质棒内距轴线距离为r 处的感应电场为 00z r r r B φωω=⨯=⨯=E v B e e B e故介质棒内的极化强度为 00000(1)()e r r r r B r B εεεωεεω==-=-P E e e X极化电荷体密度为2000011()()2()P rP r B r r r rB ρεεωεεω∂∂=-∇⋅=-=--∂∂=--P极化电荷面密度为00()()P r r r a e r a B σεεωεεω==⋅=-⋅=-P n B e 则介质体积内和表面上同单位长度的极化电荷分别为220020012()212()P P PS P Q a a B Q a a B πρπεεωπσπεεω=⨯⨯=--=⨯⨯=-6.3 平行双线传输线与一矩形回路共面,如题6.3图所示。
设0.2a m =、0.1m b c d ===、71.0cos(210)A i t π=⨯,求回路中的感应电动势。
电磁场与电磁波课后答案谢处方
第二章习题解答2.1 一个平行板真空二极管内的电荷体密度为43230049U d x ρε--=-,式中阴极板位于0x =,阳极板位于x d =,极间电压为0U 。
如果040V U =、1cm d =、横截面210cm S =,求:(1)0x =和x d =区域内的总电荷量Q ;(2)2x d =和x d =区域内的总电荷量Q '。
解 (1) 43230004d ()d 9dQ U d x S x τρτε--==-=⎰⎰110044.7210C 3U S dε--=-⨯ (2)4320024d ()d 9dd Q U d x S x τρτε--''==-=⎰⎰11004(10.9710C 3U S d ε--=-⨯ 2.2 一个体密度为732.3210C m ρ-=⨯的质子束,通过1000V 的电压加速后形成等速的质子束,质子束内的电荷均匀分布,束直径为2mm ,束外没有电荷分布,试求电流密度和电流。
解 质子的质量271.710kg m -=⨯、电量191.610C q -=⨯。
由21mv qU = 得 61.3710v ==⨯ m s 故 0.318J v ρ== 2A m26(2)10I J d π-== A2.3 一个半径为a 的球体内均匀分布总电荷量为Q 的电荷,球体以匀角速度ω绕一个直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球内任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin r φωθ=⨯=v r e ω球内的电荷体密度为343Qa ρπ=故 333sin sin 434Q Q r r a aφφωρωθθππ===J v e e 2.4 一个半径为a 的导体球带总电荷量为Q ,同样以匀角速度ω绕一个直径旋转,求球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为z 轴。
设球面上任一点P 的位置矢量为r ,且r 与z 轴的夹角为θ,则P 点的线速度为sin a φωθ=⨯=v r e ω球面的上电荷面密度为24Q a σπ=故 2sin sin 44S Q Q a a aφφωσωθθππ===J v e e 2.5 两点电荷18C q =位于z 轴上4z =处,24C q =-位于y 轴上4y =处,求(4,0,0)处的电场强度。
电磁场与电磁波第三版课后答案
电磁场与电磁波第三版课后答案本文是对《电磁场与电磁波》第三版的课后习题答案的整理与解答。
本书是电磁场与电磁波领域的经典教材,其中的习题对于巩固和加深对电磁场与电磁波知识的理解非常重要。
以下是本文对第三版的习题答案的详细解析。
第一章电磁场基本概念1.1 电磁场基本概念习题答案:1.电磁场的基本概念是指在空间中存在着电场和磁场,它们相互作用产生相互关联的现象;它们是由带电粒子的运动而产生的,是物理学的基本概念之一。
2.宏观电荷位移是指电荷在物体内部的移动;它的存在使得物体表面或其周围的电场产生变化,从而产生an内部电磁场。
3.电磁场的基本方程是麦克斯韦方程组,由四个方程组成:高斯定律、法拉第电磁感应定律、法拉第电磁感应定律的积分形式和安培环路定律。
1.2 矢量分析习题答案:1.根据题目所给的向量,求两个向量的点乘积:$\\vec{A}\\cdot\\vec{B}=A_{x}B_{x}+A_{y}B_{y}+A_{z}B_{ z}$2.根据题目所给的向量,求两个向量的叉乘积:$\\vec{A}\\times\\vec{B}=(A_{y}B_{z}-A_{z}B_{y})\\hat{i}+(A_{z}B_{x}-A_{x}B_{z})\\hat{j}+(A_{x}B_{y}-A_{y}B_{x})\\hat{k}$3.定义标量和矢量场,然后利用高斯定理得出结论。
1.3 电场与静电场习题答案:1.静电场是指电场的源是静止电荷,不会随时间变化,不产生磁场。
2.在静电场中,高斯定律表示为:$\ abla \\cdot\\vec{E} = \\frac{1}{\\varepsilon_0}\\rho$,其中$\ abla\\cdot \\vec{E}$表示电场的散度,$\\varepsilon_0$表示真空介电常数,$\\rho$表示电荷密度。
3.电场的位移矢量$\\vec{D}$定义为$\\vec{D} =\\varepsilon_0 \\vec{E} + \\vec{P}$,其中$\\varepsilon_0$表示真空介电常数,$\\vec{E}$表示电场强度,$\\vec{P}$表示极化强度。
电磁场与电磁波第三版-郭辉萍-第三章习题答案
电磁场与电磁波第三版-郭辉萍-第三章习题答案第一题题目一个半径为R的均匀带电球壳的电荷面密度为σ,以电荷面密度为0的球心C为球心作半径为R的球面S,球面上一点P的电场强度E的大小与距离R的关系。
### 答案由于球壳上各点带电量的方向相反,由球壳对球内外各一点的电场叠加,所以无论球面内或球面外,点P的电场强度大小与距离R 无关。
即E不随R的变化而变化。
第二题题目电势能缺少的条件是什么? ### 答案电势能缺少的条件有两个:第一是电势为零点的规定,第二是确定电势差。
电势能只能说是一个与地球或其他准零电位的参考体系有关的概念,它取决于选取零点时电势与参考体系的差,而不是取决于问题中的具体点或场点的电势。
题目在有限导体平面上有一面密度为质量面密度σ的均匀带电薄片,试推导在它所在面的垂直平分线上的电势。
### 答案在面上任选此点坐标为(x,0),显然它距离面上各点的距离和面在此点的电势分别为:r = (x^2 + y^2) ^ (1/2),V = kq / r。
这里面的q = σdx。
由于对称性可知任一垂直平分线上的电势是相等的,所以我们可以通过积分的方法求出垂直平分线上的电势。
电势V为此线两边同号。
所以,由于σdx$$ V=\\int_0^{+\\infty}\\frac{k\\sigma dx}{x^2}+\\int_0^{-\\infty}\\frac{k\\sigma dx}{x^2} =+\\infty $$两项分别收敛。
所以原版电势。
题目试推导导体表面任意点上电场强度的切线与导体表面的夹角θ与电势的关系。
### 答案任意一个点r(k)在导体表面上,电场E的方向就垂直于导体表面,从而与该点处的法向量n垂直。
另一方面,根据高斯定理得出E.EA=Φ/ε,导体表面n方向上在2S表面积内的电荷为,即σ*2S,而2S又等于dA。
从而得到该方向上场强为E的切向分量EEE=2EE其中,E=dΦ/dA=-dΦ2S/εdA这样就有了场强与导体表面的法线方向上单位面积上电荷量与电势的关系题目试设内半径为a,外半径为b,中心位于轴线上的两同心导体球壳A、B,A球壳带正电+q,B球壳不带电,试详细分析以下两种情况:(1)球壳之间无绝缘介质;(2)球壳之间有绝缘介质。
电磁场及电磁波谢处方第一章
ey
cos
ez
cos
)
eA ex cos ey cos ez cos
电磁场与电磁波
第1章 矢量分析
5
2. 矢量的代数运算
(1)矢量的加减法
两矢量的加减在几何上是以这两矢量为邻 B
边的平行四边形的对角线,如图所示。
A B
A
在直角坐标系中两矢量的加法和减法:
= x2 y2 ,
arctan( y / x)
zz
或者
x cos
y sin
zz
电磁场与电磁波
第1章 矢量分析
d. 柱坐标的关系
r e
r e
r ez
er erz er
rr r
ez e e
e.柱坐标的导数关系
r e
r ex
cos
在电磁场与波理论中,三种常用的正交曲线坐标系为:直角坐 标系、圆柱坐标系和球面坐标系。
电磁场与电磁波
第1章 矢量分析
10
1、直角坐标系
坐标变量 x, y, z
坐标单位矢量 ex , ey , ez
位置矢量
r ex x ey y ez z
线元矢量
dl exdx eydy ezdz
面元矢量
dSx
exdlydlz
exdydz
dSy dSz
eydlxdlz
ezdlxdly
eydxdz
ezdxdy
z
z z0 (ez平面)
P
ey
ex
电磁场与电磁波第三版答案第四章
《电磁场与电磁波》——习题详解第四章 静态场的解4-1 一个点电荷 Q 与无穷大导体平面相距为 d ,如果把它移动到无穷远处,需要 作多少功? 解: 用镜像法, 相当于两个电荷关于 y = 0 平面向相反方向离开,当 Q 移到 y 处时,受到 的电场力为:y Qdy y xdF= Q2 4πε 0 (2 y ) 2-Q 此时移动 d y 需对电荷做功图 4-1dw = Fd y =移到无穷远处做的总功为:Q2 16πε 0 y 2dyW = dw = Fd y =d∫∫∞∫∞ dQ216πε 0 y 2dy=Q2 16πε 0 d当用外力将电荷 Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以在整个过程中,外力作的总功为Q2 8πε 0 d也可以用静电能计算,在移动以前,系统的静电能等于两个点电荷之间的相互 作用能:W=1 1 1 1 Q Q Q2 + (Q) q11 + q2 2 = Q = 2 2 2 4π ε 0 (2d ) 2 4π ε 0 (2d ) 8π ε 0 d移动点电荷到无穷远以后,系统的静电能为零.因此,在这个过程中,外力作 功等于系统静电能的增量,即外力作功为Q2 8πε 0 d.43习题四4-2 一个点电荷放在直角导体内部(如图 4-2),求出所有镜像电荷的位置和大小y-q r2 d r3O r1 r4rq ax -qq图 4-2 解:假设如图所示三个镜像电荷,则空间电荷分布为φ (r ) =v1 1 1 1 ( + ) 4πε 0 r1 r2 r3 r4q经检验:在 y = 0 平面上 φ ( r ) = 0 ,在 x = 0 平面上vφ (r ) = 0所以上述解为原问题的解.因此求得镜像电荷的位置和大小如图 4-2 所示,即vq 2 = q 位置 ( a, d ) , q3 = q 位置 ( a, d ) , q 4 = q 位置 (a, d )4-3 证明:一个点电荷 q 和一个带有电荷 Q ,半径为 R 的导体球之间的作用力为Rq Q + D q DRq F= 2 4π ε 0 D 2 (D R 2 ) 2 其中 D 是 q 到球心的距离 ( D > R ) . 证明:使用镜像法分析.由于导体球不接地,本身又带电 Q ,必须在导体球内 加上两个镜像电荷来等效导体球对外的影响.在距离球心 b = R / D 处,镜像电荷2为 q′ = Rq / D ;在球心处,镜像电荷为 q2 = Q q′ = Q + Rq / D .点电荷 q 受导 体球的作用力就等于球内两个镜像电荷对 q 的作用力,即44《电磁场与电磁波》——习题详解F= q2 q′ D 2 + ( D b) 2 4π ε 0 q Rq Rq Q + D q D = + R2 2 4π ε 0 D 2 2 (D ) D Rq Q + D DRq = 2 4π ε 0 D 2 (D R 2 ) 2 q4-4 两个点电荷 + Q 和 Q 位于一个半径为 a 的接地导体球的直径的延长线上, 分 别距离球心 D 和 D . (1) (2) 证明:镜像电荷构成一电偶极子,位于球心,偶极矩为 2a Q / D . 令 Q 和 D 分别趋于无穷,同时保持 Q / D 不变,计算球外的电场. 使用导体球面的镜像法和叠加原理分析.在球内加上两个镜像电荷:2 2 3 2解:(1)一个是 Q 在球面上的镜像电荷, 1 = aQ / D , q 距离球心 b1 = a / D ; 第二个是 Q 在球面上的镜像电荷, q2 = aQ / D ,距离球心 b2 = a / D .当距离较大时,镜像2电荷间的距离很小,等效为一个电偶极子,电偶极矩为p = q 1 (b1 b2 ) =(2) 2a 3Q D2球外任意点的电场等于四个点电荷产生的电场的叠加.设 + Q 和 Q 位于2坐标 z 轴上,当 Q 和 D 分别趋于无穷,同时保持 Q / D 不变时,由 + Q 和 Q 在空 间产生的电场相当于均匀平板电容器的电场,是一个均匀场,均匀场的大小为v 2Q / 4π ε 0 D 2 ,方向在 ez ,由镜像电荷产生的电场可以由电偶极子的公式计算.v E=p 4π ε 0 r3v v (er 2 cos θ + eθ sin θ )45习题四=4-5 2 a 3Q v v (er 2 cos θ + eθ sin θ ) 3 2 4π ε 0 r D接地无限大导体平板上有一个半径为 a 的半球形突起,在点 (0,0, d ) 处有一个 点电荷 q (如图 4-3),求导体上方的电z dq a bq2 -bq3-dq1 图 4-3位. 解:计算导体上方的电位时,要保持导 体平板部分和半球部分的电位都为零.先找平 面导体的镜像电荷 q1 = q ,位于 (0,0, d ) 处.再找球面镜像电荷 q2 = aq / d ,位于(0,0, b) 处,b = a 2 / d .当叠加这两个镜像电荷和原电荷共同产生的电位时,在导体平面上位于 (0,0,b) 处. 和球面上都不为零, 应当在球内再加上一个镜像电荷 q3 = aq / d , 这时,三个镜像电荷和原电荷共同产生的电位在导体平面和球面上都为零,而且三 个镜像电荷在要计算的区域以外. 导体上方的电位为四个点电荷电位的叠加,即=其中 q q1 q2 q3 + + + 4π ε 0 R r1 r2 r3 1R = [ x 2 + y 2 + ( z d ) 2 ]1 2 r1 = [ x 2 + y 2 + ( z + d ) 2 ]1 2 r2 = [ x 2 + y 2 + ( z b) 2 ]1 2 r3 = [ x 2 + y 2 + ( z + b) 2 ]1 24-6 求截面为矩形的无限长区域( 0 < x < a , 0 < y < b )的电位,其四壁的电位 为 ( x,0) = ( x, b) = 0 ,46《电磁场与电磁波》——习题详解 (0, y ) = 0U 0 y b , ( a, y ) = y U 0 (1 ), b 0 < y ≤ b/ 2 b/ 2 < y < b解:法一:由边界条件 ( x,0) = ( x, b) = 0 知,方程的基本解在 y 方向应该 为周期函数,且仅仅取正弦函数,即Yn = sin k n y(k n =nπ ) b在 x 方向,考虑到是有限区域,选取双曲正弦函数和双曲余弦函数,使用边界 (0, y ) = 0 条件,得出仅仅选取双曲正弦函数,即X n = sh nπ x b将基本解进行线性组合,得 = ∑ Cn shn =1∞nπ x nπ y sin b b待定常数由 x = a 处的边界条件确定,即 (a, y ) = ∑ Cn shn =1∞nπ a nπ y sin b b使用正弦函数的正交归一性质,有b nπ a C n sh = 2 b∫ (a, y) sin0bnπ y dy bb/2∫b/2 02 U0 y U b nπ y by nπ y nπ y sin d y = 0 cos sin b b b nπ b nπ b 0=U0 b b nπ b2 nπ cos sin 2 2nπ 2 nπ 2∫y nπ y U 0 1 sin dy b b/2 bb47习题四b 2 b nπ y U b nπ y by nπ y 0 = U 0 cos cos sin nπ b b / 2 b nπ b nπ b bb/2b nπ U 0 b nπ = U 0 sin + cos nπ cos 2 b nπ 2 nπ +化简以后得2U 0 b2 U b b nπ cos nπ 0 cos 2 b nπ b nπ 2b nπ a = C n sh b 2∫ (a, y) sin0bnπ y b nπ d y = 2U 0 2 2 sin b 2 nπ求出系数,代入电位表达式,得nπ 4U 2 sin nπ y sh nπ x = ∑ 2 02 nπ a b b n =1 n π sh b 4-7 一个截面如图 4-4 所示的长槽,向 y 方向无限延伸,两侧的电位是零,槽内∞siny → ∞ , → 0 ,底部的电位为 ( x,0) = U 0求槽内的电位. 解:法一:令 ( x, y ) = X ( x)Y ( y ) = 0 , 因边界条件y =0 =0 = U0 (0, y ) = (a, y ) = 0a图 4-4x所以 X(x) = Acos K x x + B sin K x xQ X ( x) = X (a) = 0求得A = 0 , Kx =nπ a( n = 1,2,3L )X ( x) = Bn sinnπ x ( n = 1,2,3L ) a48《电磁场与电磁波》——习题详解由 Kx + Ky = 0 得 所以 Y ( y ) = C n enπ y a22K y = K x K y = ± j22nπ a( n = 1,2,3L )+ Dn e nπ y a nyπ a nyπ a ( x, y ) =∑n =1 ∞∞(C n e+ Dn e )Bn sinnπ x a=∑n =1 ′ (C n enyπ a′ + Dn e nyπ a) sinnπ x a′ 由边界条件 ( x,+∞) = 0 可得 C n = 0所以 ( x, y ) =∑n =1∞′ Dn enπ y asinnπ x a再由边界条件 ( x,0) = U 0 代入可得∑n =1∞′ Dn e nπ 0 asinnπ x= a∑ D′ sinn n =1∞nπ x = U0 a再两边同乘以 sinmπ x ,并从 0 到 a 积分得 a 4U 0 2U 0 ′ Dn = (1 cos mπ ) = mπ mπ 0 所以槽内电位为∞m = 1,3,5L m = 2,4,6L ( x, y ) =4U 0 myπ mπ e a sin x mπ a m =1, 3, 5....∑=∑n =1∞( 2 n 1) yπ 4U 0 (2n 1)π a x e sin a (2n 1)π法二:由于在 x = 0 和 x = a 两个边界的电位为零,故在 x 方向选取周期解, 且仅仅取正弦函数,即X n = sin k n xnπ kn = a 49习题四在 y 方向,区域包含无穷远处,故选取指数函数,在 y → ∞ 时,电位趋于零,所以 选取Yn = e kn y由基本解的叠加构成电位的表示式为nπ x nπa y e = C n sin a n =1∑∞待定系数由 y = 0 的边界条件确定.在电位表示式中,令 y = 0 ,得U 0 = ∑ Cn sinn =1∞nπ x aCna = 2∫a0U 0 sinaU 0 nπ x dx = (1 cos nπ ) nπ a当 n 为奇数时, Cn =4U 0 ,当 n 为偶数时, Cn = 0 .最后,电位的解为 nπnπ y a=4-84U nπ x ∑,5 nπ0 sin a e n =1, 3∞若上题的底部的电位为 ( x,0) = U 0 sin重新求槽内的电位3π x a解:同上题,在 x 方向选取正弦函数,即 X n = sin k n x , k n = 向选取 Yn = e kn y nπ ,在 y 方 a .由基本解的叠加构成电位的表示式为 = ∑ Cn sinn =1∞nπ x e anπ y a将 y = 0 的电位代入,得 U 0 sinnπ x 3π x ∞ = ∑ Cn sin a a n =1其余系数 Cn = 0 , 应用正弦级数展开的惟一性, 可以得到 n = 3 时,C3 = U 0 ,50《电磁场与电磁波》——习题详解所以 = U 0 sin4-93π x e a3π y a一个矩形导体槽由两部分构成, 如图 4-5 所示, 两个导体板的电位分别是 U 0 和 零,求槽内的电位. 解: 将原问题的电位看成是两个电位的叠加. 一个电位与平行板电容器的电位相同(上板电位为 U 0 ,下板电位为零 ),另一个电位为 U ,即=U0 y +U a y = 0 ,U = 0 y = a ,U = 0 a a 2y其中,U 满足拉普拉斯方程,其边界条件为 = U0 =0x图 4-5x = 0 时, U0 U 0 a y, U0 y= U = (0, y ) U a 0 y, a a < y<a 2 a 0< y< 2x → ∞ 时,电位 U 应该趋于零. U 的形式解为 nπ y e U = ∑ Cn sin a n =1待定系数用 x = 0 的条件确定.∞ ∞ nπ x aU (0, y ) = ∑ Cn sinn =1nπ y anπ y dy aa/2a C = 2 n∫a 0U (0, y ) sin∫a/2 02 U0 y U 0 a nπ y nπ y a nπ y sin dy = y cos sin a a a nπ a nπ a 051习题四U = 0 a a 2 nπ a 2 nπ cos + sin 2 2nπ 2 nπ a∫y nπ y a nπ y U 0 1 sin d y = U 0 cos a a/2 nπ a aaa/2 aU 0 a a 2 nπ y ay nπ y cos sin a nπ a nπ nπ U0 a sin + 2 a nπ 2a/2= U 0a nπnπ cos nπ cos 2 +化简后,得到U a a U0 a2 nπ cos nπ 0 cos 2 a nπ 2 a nπ U a nπ y nπ d y = 0 cos a nπ 2a C = 2 n∫a0U (0, y ) sin只有偶数项系数不为零.将系数求出,代入电位的表达式,得=4-10∞ U0 y 2U 0 nπ nπ y + ∑ cos sin e a a 2 n = 2 , 4 ,L nπnπ x a将一个半径为 a 的无限长导体管平分成两半,两部分之间互相绝缘,上半(0 < φ < π ) 接电压 U 0 ,下半 (π < φ < 2π ) 电位为零,如图 4-6,求管内的电位. 解:圆柱坐标的通解为 (r , φ ) = ( A0φ + B0 )(C0 ln r + D0 ) + ∑ r n ( An cos nφ + Bn sin nφ )n =1∞+ ∑ r n (Cn cos nφ + Dn sin nφ )n =1∞由于柱内电位在 r = 0 点为有限值,通解中不能有 ln r 和 rn项,即有52《电磁场与电磁波》——习题详解Cn = 0 , Dn = 0 , C0 = 0 (n = 1,2, L)柱内电位是角度的周期函数, A0 = 0 .因此,该题的通 解取为 r = U0 φx (r , φ ) = B0 D0 + ∑ r ( An cos nφ + Bn sin nφ )n n =1∞ =0图 4-6各项系数用 r = a 处的边界条件来定. (a, φ ) = B0 D0 + ∑ a n ( An cos nφ + Bn sin nφ ) = n =1∞ U0, 0 < φ < π 0, π < φ < 2πB 0 D0 =a n An =U 1 2π (a, φ ) d φ = 0 2π 0 2∫1π1∫ ∫0 (a, φ ) cos nφ d φ = 02π2πa n Bn =柱内的电位为π0 (a, φ ) sin nφ d φ =U0 (1 cos nπ ) nπ2U U (r , φ ) = 0 + 0 2 π4-111r ∑5L n a sin nφ n =1, 3,∞n半径为无穷长的圆柱面上,有密度为 ρ S = ρ S 0 cos φ 的面电荷,求圆柱面内, 外的电位. 解:由于面电荷是余弦分布,所以柱内,外的电位也是角度的偶函数.柱外的电位不应有 r 项,柱内电位不应有 r 是角度的周期函数.故柱内电位选为nn项.柱内,外的电位也不应有对数项,且1 = A0 + ∑ r n An cos nφn =1∞柱外电位选为 2 = C0 + ∑ r nCn cos nφn =1∞53习题四假定无穷远处的电位为零,定出系数 C0 = 0 . 在界面 r = a 上, 1 = 2 , ε0∞ 2 + ε0 1 = ρ S 0 cos φ r r∞即A0 + ∑ a n An cos nφ = ∑ a nCn cos nφn =1 n =1 ε0 ∑ na n 1Cn cos nφ + ε0 ∑ na n 1 An cos nφ = ρ S 0 cos φn =1 n =1∞∞解之得A0 = 0 , A1 =ρS 0 a2 ρS 0 , C1 = 2ε 2ε 0(n > 1)An = 0 , Cn = 0最后的电位为 ρS0 2ε r cos φ , = 2 0 a ρ S 0 cos φ , 2ε 0 r 3-12r<a r>a将一个半径为 a 的导体球置于均匀电场 E0 中,求球外的电位,电场. 解:采用球坐标系求解,设均匀电场沿正 z 方向,并设原点为电位零点(如图v4-7) . 因 球 面 是 等 位 面 , 所 以 在 r = a 处 , = 0 ; 在 r → ∞ 处 , 电 位 应 是 = E0 r cos θ ,球坐标中电位通解具有如下形式: (r ,θ ) = ∑ ( An r n + Bn r n 1 ) Pn (cos θ )n =0∞用无穷远处的边界条件 r → ∞ 及 = E0 r cos θ ,得到 A1 = E0 ,其余An = 0 .再使用球面上 ( r = a ) 的边界条件54《电磁场与电磁波》——习题详解∞ (a,θ ) = E0 a cos θ + ∑ Bn a n 1 Pn (cos θ ) = 0n =0上式可以改写为E0 a cos θ = ∑ Bn a n 1 Pn (cos θ )n =0∞因为勒让德多项式是完备的,即将任意的函数展开成勒让德多项式的系数是 惟 一 的 , 比 较 上 式 左 右 两 边 , 并 注 意 P (cos θ ) = cos θ , 得 E0 a = B1a 12,即B1 = E0 a 3 ,其余的 Bn = 0 .故导体球外电位为 = 1 电场强度为a3 E0 r cos θ r3 rE0θz图 4-7Er = 2a 3 = E0 1 + 3 cos θ r r a = E0 1 3 sin θ r rθ 3Eθ = 4-13将半径为 a , 介电常数为 ε 的无限长介质圆柱放置于均匀电场 E0 中, E0 沿 设vvx 方向,柱的轴沿 z 轴,柱外为空气,如图 4-8,求任意点的电位,电场.解: 选取原点为电位参考点, 1 表示柱内电位, 2 表示柱外电位. r → ∞ 用 在 处,电位 2 = E0 r cos φ因几何结构和场分布关于 y = 0 平面对称, 故电位表 示式中不应有 φ 的正弦项.令rE0φε ε0图 4-8x1 = A0 + ∑ ( An r n + Bn r n ) cos nφn =1∞55习题四∞ 2 = C0 + ∑ (Cn r n + Dn r n ) cos nφn =1因在原点处电位为零,定出 A0 = 0 , Bn = 0 .用无穷远处边界条件 r → ∞ 及 2 = E0 r cos φ ,定出 C1 = E0 ,其余 Cn = 0 .这样,柱内,外电位简化为 1 = ∑ An r n cos nφn =1∞ 2 = C1r cos φ + ∑ Dn r n cos nφn =1∞再用介质柱和空气界面 ( r = a ) 的边界条件 1 = 2 及 ε 1 = ε 0 2 ,得 r r∞ ∞ n n ∑ An a cos nφ = E0 a cos φ + ∑ Dn a cos nφ n =1 n =1 ∞ ∞ ∑ εnAn a n 1 cos nφ = ε 0 E0 cos φ ∑ ε 0 nDn a n 1 cos nφ n =1 n =1 比较左右 n = 1 的系数,得A1 解之得D1 D1 = E0 , ε A1 + ε 0 2 = ε 0 E0 2 a aA1 = 2ε 0 ε ε0 E0 , D1 = E0 a 2 ε + ε0 ε + ε0比较系数方程左右 n > 1 的各项,得An Dn D = 0 , ε An + ε 0 2n = 0 2n a a n由此解出 An = Dn = 0 .最终得到圆柱内,外的电位分别是1 = E02ε 0 r cos φ , ε + ε0ε ε0 a2 2 = E0 r cos φ + E0 cos φ ε + ε0 r56《电磁场与电磁波》——习题详解电场强度分别为v v 2ε 0 v 2ε 0 E1 = 1 = er E0 cos φ eφ E0 sin φ ε + ε0 ε + ε0v v ε ε 0 a2 v ε ε 0 a2 1 + E0 cos φ eφ 1 E2 = 2 = er ε + ε r 2 E0 sin φ ε + ε0 r2 0 4-14 在均匀电场中,设置一个半径为 a 的介质球,若电场的方向沿 z 轴,求介质 球内,外的电位,电场(介质球的介电常数为 ε ,球外为空气). 解:设球内,外电位解的形式分别为1 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ ) ,n =0 ∞∞ 2 = ∑ (Cn r n + Dn r n 1 ) Pn (cos nθ )n =0在 选取球心处为电位的参考点, 则球内电位的系数中 A0 = 0 ,Bn = 0 . r → ∞ 处,电位 2 = E0 r cos θ ,则球外电位系数 Cn 中,仅仅 C1 不为零,即 C1 = E0 , 其余为零.因此,球内,外解的形式分别简化为1 = ∑ An r n Pn (cos nθ ) ,n =0∞ 2 = E0 r cos θ + ∑ Dn r n 1 Pn (cos nθ )n =0∞再用介质球面 ( r = a ) 的边界条件 1 = 2 及 ε1 = ε 0 2 ,得 r r∞ ∞ n An a Pn (cos nθ ) = E 0 a cos θ + Dn a n 1 Pn (cos nθ ) n =1 n =1 ∞ ∞ εnA a n 1 P (cos nθ ) = ε E cos θ ε 0 (n + 1) Dn a n 2 Pn (cos nθ ) n n 0 0 n =1 n =1 ∑ ∑∑∑比较上式的系数,可以知道,除了 n = 1 以外,系数 An , Dn 均为零,且A1a = E0 a + D1a 2 , ε A1 = ε 0 E0 2ε 0 D1a 357习题四由此,解出系数A1 = 3ε 0 ε ε0 E0 , D1 = E0 a 3 ε + 2ε 0 ε + 2ε 0 3ε 0 r cos θ , ε + 2ε 0最后得到电位,电场1 = E0 2 = E0 r cos θ + E0v v E1 = 1 = erε ε 0 a3 cos θ ε + 2ε 0 r 23ε 0 v 3ε 0 E0 cos θ eθ E0 sin θ ε + 2ε 0 ε + 2ε 0v ε ε 0 a3 ε ε 0 a3 v v 1 + 2 E0 cos θ eθ 1 E2 = 2 = er ε + 2ε r 3 E0 sin θ ε + 2ε 0 r 3 0 4-15 已知球面 ( r = a ) 上的电位为 = U 0 cos θ ,求球外的电位. 解:设球外电位解的形式为 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ )n =0∞在无穷远处,应该满足自然边界条件,即电位趋于零.这样确定系数 An = 0 ,球外 电位的形式解简化为 = ∑ Bn r n 1 Pn (cos nθ )n =0∞使用球面 ( r = a ) 的边界条件,有U 0 cos θ = ∑ Bn a n 1 Pn (cos nθ )n =0∞由于勒让德多项式 Pn (cos nθ ) 是线性无关的,考虑到 P (cos θ ) = cos θ ,比较上式 1 左右的系数,得到 B1 = U 0 a , Bn = 02(n = 0,2,3,L) .所以,球外的电位分布为58《电磁场与电磁波》——习题详解 = U04-16a2 cos θ r2求无限长矩形区域 (0 < x < a,0 < y < b) 第一类边值问题的格林函数(即矩形 槽的四周电位为零,槽内有一与槽平行的单位线源,求槽内电位,如图 4-9). 解:这个问题的格林函数满足的方程为 2G 2G 1 + 2 = δ( x x′) δ( y y′) 2 x y ε0格林函数的边界条件是,在矩形区域的四周为零,即 x = 0 或 x = a , G = 0 ,y = 0 或 b = 0 , G = 0 .用分离变量法求这个问题的格林函数.考虑到格林函数在x = 0 , x = a 时的边界条件,将格林函数表示为y b(x',y')G = ∑Ψ n ( y ) sinn =1∞nπ x a将其代入格林函数方程,得a x 2 nπ 2 nπ x 1 = δ( x x′) δ( y y′) Ψ n ( y ) sin 图 4-9 ∑ y 2 a ε0 a n =1 nπ x 上式左右乘以 sin , 并在 0 < x < a 区间积分, 利用正弦函数的正交性和 δ 函数 a∞的积分性质,得函数Ψ n ( y ) 满足的微分方程为2 d2 nπ x ′ 2 nπ sin δ( y y ′) Ψn ( y ) = 2 a ε 0a dy a 在确定函数Ψ n ( y ) 时,将原来的区域分为两个区域,并注意到边界条件,设nπ An sh a (b y ), Ψ n ( y) = nπ Bn sh y, a 在 y = y′ 处,电位连续,即y > y′ y < y′An shnπ nπ (b y′) = Bn sh y′ a a59习题四对于函数Ψ n ( y ) 满足的微分方程,在点源附近积分,得∫y′+ 0 y′0d2 nπ Ψn ( y ) d y 2 dy a 2∫y′+ 0 y′0Ψ0 ( y ) d y = nπ x 2 sin ε 0a a因为电位连续,故上式左边第二项的积分为零,从而有d d nπ x′ 2 sin Ψ n ( y) Ψ n ( y) = dy dy a ε 0a y = y′ y = y′ + 代入函数Ψ n ( y ) 的形式,得nπ nπ nπ nπ x′ nπ 2 (b y′) sin An ch Bn ch y′ = a a a a ε 0a a将上式与 An shnπ nπ (b y′) = Bn sh y′ 相互联立求解,得 a a nπ 2 1 An = sh y′ , nπ ε 0 sh nπ b a a nπ 2 1 Bn = sh (b y′) nπ ε 0 sh nπ b a asin最后得到矩形区域的格林函数为nπ x ′ n π x nπ nπ sin y ≤ y′ sh a (b y′) sh a y, 2 a a = G= nπ ∑ nπ nπ b ε 0π n =1 sh y′ sh (b y ), y ≥ y′ n sh a a a 4-17 推导无限长圆柱区域内(半径为 a )第一类边值问题的格林函数. 解:使用镜像法及其格林函数的定义计算.在半径为 a 的导体圆柱内部离轴 线 r ′ 处,放置一个线密度为 1 单位,与导体圆柱平行的无穷长线电荷,并且维持导∞体柱面的电位为零,求出柱内的电位,这个电位就是柱内的格林函数.当原电荷位 于 r 处,需要在 r ′ 的镜像位置 r ′′ 处,加一个线密度为 1 的线电荷.此时,圆柱内 的电位是v v G (r , r ′) =1 2π εln1 1 1 ln +C R1 2π ε R2R1 和 R2 分别是从 r ′ 和 r ′′ 到 r 的距离(如图 4-10),C 是常数.由柱面上的电位为零,60《电磁场与电磁波》——习题详解可以定出这个常数的值.最后得到柱内的格林函数为v v G (r , r ′) =1 2π εlnR2 r ′ R1 a yrR1 r'R2 r'' x =0 = U0图 4-10 4-18d图 4-11x两个无限大导体平板间距离为 d ,其间有体密度 ρ =ρ 0 x / d 的电荷,极板的电位如图 4-11 所求,用格林函数法求极板之间的电位. 解:先用直接积分法求解.电位仅仅是 x 的函数,故其满足如下方程:ρ x d2 ρ = = 0 2 dx ε0 ε 0d对以上方程积分得ρ x2 ρ x3 d = C1 0 , = C2 + C1 x 0 dx 2ε 0 d 6ε 0 d由 x = 0 及 = 0 , 可 定 出 系 数 C2 = 0 ; 由 x = d 及 = U 0 , 可 定 出 系 数C1 =U 0 ρ0d + ,从而,得到电容器内的电位为 d 6ε 0 =ρ0 x3 6ε 0 dU ρ d + 0 + 0 x d 6ε 0 再用格林函数法求解.这个问题的格林函数为 d x′ x < x′ ε d x, 0 G ( x, x′) = x′ (d x), x > x′ ε 0d 为了计算方便,将这个问题分解为两个:一个是平板电容器内有电荷,而两极板的61习题四电位为零,即奇次边界条件,记电位 1 ;另一个是无电荷分布,极板的电位维持原 来的电位,记电位 2 .用格林函数法计算奇次边界条件时的电位 1 :1 = ρ ( x ′)G ( x, x ′) d x ′0∫d= ρ ( x ′)G ( x, x ′) d x ′ + ρ ( x ′)G ( x, x ′) d x ′0 x∫x∫d=∫x 0ρ 0 x ′ x ′(d x) d x′ + d ε 0d∫d xρ 0 x ′ (d x ′) x d x′ d ε 0dρ 0 (d x) x 3 ρ 0 x 1 2 2 1 (d x )d + (d 3 x 3 ) = + 2 2 3 ε 0d 2 3 ε 0d =ρ0 3 ρ0d x + x 6ε 0 d 2 6ε 0至于电位 2 ,容易得出 2 = (U 0 / d ) x .故所求电位为 = 1 + 2 = 4-192ρ0 2 U 0 ρ0d x + d + 6ε x 6ε 0 d 0 分析复变函数 w = z 能够表示的静电场. 解: w = u + j v = z = ( x + j y ) = x y + j 2 xy2 2 2 2u = x 2 y 2 , v = 2 xy实部的等值线是双曲线 x y = C1 ;虚部的等值线也是双曲线,其方程为2 22 xy = C2 .因此,这个函数能够表示极板形状为双曲线的导体附近的静电场.如果用虚部表示电位函数,在 x = 0 或 y = 0 处,电位为零,可以表示接地的直角导体拐 角附近的静电场. 4-20 分析复变函数 w = arccos z 能够表示哪些情形的静电场.62《电磁场与电磁波》——习题详解解: z = x + j y = cos(u + j v) = cos u ch v j sin u sh vx = cos u ch v , y = sin u sh vx2 y2 x2 y2 + 2 = 1, 2 =1 ch 2 v sh v cos 2 u sin u可见,虚部的等值线是一簇椭圆,实部的等值线是一簇双曲线.当用虚部表示 电位时,能够表示两个共焦点的椭圆柱体之间的场;当用实部表示电位时,能够表 示两个共焦点的双曲线柱体之间的场. 4-21 用有限差分法求图 4-12 所示区域中各个节点的电位. 解:1 4 1 2 = (1 + 4 + 100) 4 1 3 = (1 + 4 ) 4 1 4 = ( 2 + 3 ) 41 = ( 2 + 3 + 100)解这一方程组,得到1 = 2 = 37.5 V , 3 = 4 = 12.5 V100V 1 0V 3 4 2 0V0V 图 4-1263。
《电磁场与电磁波》第三版答案
习题1.1 已知z y x B z y x A ˆ2ˆˆ;ˆˆ3ˆ2-+=-+=,求:(a) A 和B 的大小(模); (b) A 和B 的单位矢量;(c)B A⋅;(d)B A⨯;(e)A 和B 之间的夹角;(f) A 在B 上的投影。
解:(a) A 和B 的大小74.314132222222==++=++==z y x A A A A A 45.26211222222==++=++==z y x B B B B B (b)A 和B 的单位矢量zy x z y x A A a ˆ267.0ˆ802.0ˆ535.0)ˆˆ3ˆ2(74.31ˆ-+=-+==zy x z y x B B b ˆ816.0ˆ408.0ˆ408.0)ˆ2ˆˆ(45.21ˆ-+=-+==(c)A B⋅7232=++=++=⋅zz y y x x B A B A B A B A(d)BA⨯zy x z y x B B B A A A z y x B A z y x z y x ˆˆ3ˆ5211132ˆˆˆˆˆˆ-+-=--==⨯(e)A 和B 之间的夹角α根据αcos AB B A =⋅得 764.0163.97cos ==⋅=AB B A α019.40=α(f)A 在B 上的投影86.245.27ˆ==⋅=⋅B B A bA1.2如果矢量A 、B 和C 在同一平面,证明A ·(B ⨯C )=0。
证明:设矢量A 、B 和C 所在平面为xy 平面y A x A A y x ˆˆ+= y B xB B y x ˆˆ+=y C xC C y x ˆˆ+=电磁场与电磁波答案z C B C B y C B C B xC B C B C C C B B B zy xC B x y y x z x x z y z z y zy x z y xˆ)(ˆ)(ˆ)(ˆˆˆ-+-+-==⨯zC B C B x y y x ˆ)(-= 0ˆˆ)(0)(=⋅-⨯=⨯⋅z zC B C B C B A x y y x1.3已知A =ααsin ˆcos ˆy x+、B ββsin ˆcos ˆy x -=和C ββsin ˆcos ˆy x +=,证明这三个矢量都是单位矢量,且三个矢量是共面的。
电磁场与电磁波第三版答案第三章
《电磁场与电磁波》——习题详解第三章 恒定电流的电场和磁场3-1 一个半径为 a 的球内均匀分布着总量为 q 的电荷,若其以角速度 ω 绕一直径匀 速旋转,求球内的电流密度. 解:传导电流:导体中的自由电子或半导体中的自由电荷在电场作用下作定向 运动所形成的电流. 运流电流: 带电粒子在真空或气体中运动时形成的电流. 本题求的是运流电流. 选 取 球 坐 标系 . 设 转 轴和 直 角 坐 标系 的 z 轴 重 合 , 球 内 某 一点 的 坐标为 ( r , θ , φ ),则电流密度为v v J =ρv =q v 3qω r sin θ v eφ ω r sin θ eφ = 2 4π a 3 4π a 3注意到球面坐标的有向面积元为v v v v d S = er r 2 sin θ d θ d φ + eθ r sin θ d r d φ + eφ r d r d θ可以得到总电流为I=∫∫Sv v J dS =∫ ∫0πJr d r d θ =0aqω 2π2π总电流也可以通过电流强度的定义计算. 因为球体转动一周的时间为 T = 所以ω,I=3-2球形电容器内,外极板的半径分别为 a , b ,其间媒质的电导率为 σ ,当外加 电压为 U 0 时,计算功率损耗并求电阻. 解:设内,外极板之间的总电流为 I .由对称性,可以得到极板间的电流密q qω = T 2π度为v J= v E=I24π r I v e 2 r 4πσ rv er ,U0 = E d r =a∫bI 1 1 4πσ a b 25习题三从而I=v 4πσU 0 σU 0 v ,J = er 1 1 1 1 2 r a b a b2单位体积内功率损耗为 U0 J 1 1 p= =σ r 2 σ a b 2总功率损耗为P=∫b ap 4π r d r =24πσ U 02 1 1 a b2∫d r 4πσ U 02 = 2 1 1 a r a bb由P =U 02 ,得 R R= 1 1 1 4πσ a b 3-3土壤的电导率为 σ . 略去地面的影 一个半径为 a 的导体球作为电极深埋地下, 响,求电极的接地电阻. 解: 当不考虑地面影响时, 这个问题就相当于计算位于无限大均匀导电媒质中的导体球的恒定电流问题.设导体球的电流为 I ,则任意点的电流密度为v J=I 4π rI2v v er , E =I 4πσ rI2v er导体球面的电位为(选取无穷远处为电位零点)U =接地电阻为∫∞a4πσ r2dr =4πσ aR=3-4U 1 = I 4πσ a在无界非均匀导电媒质(电导率和介电常数均是坐标的函数)中,若恒定电流存 在,证明媒质中的自由电荷密度为 ρ = E (ε 证明:由方程 J = 0 得vε σ ) . σv26《电磁场与电磁波》——习题详解v v v v J = (σ E ) = E σ + σ E = 0即E = 故有vσ v Eσρ = D = (ε E ) = E ε + ε Ev ε σ v v = E ε ε E = E ε σ σ σ vvvv3-5如图 3-1,平板电容器间由两种媒质完全填充,厚度分别为 d1 和 d 2 ,介电常数 分别为 ε 1 和 ε 2 ,电导率分别为 σ 1 和 σ 2 ,当外加电压 U 0 时,求分界面上的自 由电荷面密度. 解:设电容器极板之间的电流密度为 J ,则J = σ 1 E1 = σ 2 E2E1 =于是Jσ1, E2 =Jσ2U0d1 d2ε1,σ1 ε2,σ2U0 =即Jd1σ1+Jd 2σ2图 3-1J=U0σ1 σ 2分界面上的自由面电荷密度为d1+d2ρ S = D2 n D1n = ε 2 E2 ε 1 E1 = ε ε U0 = 2 1 σ σ d1 d 2 1 2 +3-6 ε2σ2ε1 J σ1 σ1 σ 2内,外导体半径分别为 a , c 的同轴线,其间填充两种漏电媒质,电导率分别27习题三为 σ 1 ( a < r < b )和 σ 2 ( b < r < c ),求单位长度的漏电电阻. 解:设每单位长度从内导体向外导体的电流为 I ,则电流密度为v J=各区域的电场为I2π rv erv E1 = v E2 =内,外导体间的电压为I2πσ 1rv er ( a < r < b ) v er ( b < r < c )I2πσ 2 rU0 =∫c av v E dr =∫I dr + 2πσ 1 r ab∫ 2πσ r = 2πσb 2cI drIln1b I c + ln a 2πσ 2 b因而,单位长度的漏电电阻为R=3-71 1 U b c = ln + ln I 2πσ 1 a 2πσ 2 b一个半径为 10cm 的半球形接地电极,电极平面与地面重合,如图 3-2,若土 壤的电导率为 0.01S/m,求当电极通过的电流为 100A 时,土壤损耗的功率. 解:半球形接地器的电导为G = 2πσ a接地电阻为I σ a图 3-21 1 R= = G 2πσ a土壤损耗的功率为100 2 = ≈ 1.59 ×106 W P=I R= 2πσ a 2π × 0.01× 0.12I23-8一个正 n 边形(边长为 a )线圈中通过的电流为 I ,试证此线圈中心的磁感应强 度为B= 0 nI π tan 2π a n解:先计算有限长度的直导线在线圈中心产生的磁场.使用公式B=0 I (sin α1 sin α 2 ) 4π r28《电磁场与电磁波》——习题详解并注意到α1 = α 2 =2π π = 2n n设正多边形的外接圆半径是 a .由于r π = cos a n所以,中心点的磁感应强度为B=3-9 0 nI π tan 2π a n求载流为 I ,半径为 a 的圆形导线中心的磁感应强度. 解:电流元 I d l 在中心处产生的磁场为vv v v 0 I d l × er dB = 4π r2各电流元在中心处产生的磁场在同一方向,并注意 的磁场为 3-100 I2a∫rdl2=2π ,所以,圆心处 a.一个载流 I1 的长直导线和一个载流 I 2 的圆环(半径为 a )在同一平面内,圆心 与导线的距离是 d .证明两电流之间的相互作用力为 0 I1 I 2 1 d a d22BdF解:选取图 3-3 所示的坐标.直线电流产生的 I1 磁感应强度为I2 d图 3-3v I v 0 I1 v B1 = 0 1 eφ = eφ 2π r 2π (d + a cos θ )v v v F = I 2 d l 2 × B1θ a∫由对称性可以知道,圆电流环受到的总作用力仅仅有水平分量, d l2 × eφ 的 水平分量为 a cos θ d θ ,再考虑到圆环上,下对称,得vvF=使用公式 0 I1 I 2 2π∫π20 0 I1 I 2 a cos θ dθ = π d + a cos θ∫π0d 1 d θ d + a cos θ 29习题三∫π0dθ = d + a cos θπd a22最后得出二回路之间的作用力为 0 I1 I 2 力). 3-11 d 1 (负号表示吸引 2 2 d a 内,外半径分别为 a , b 的无限长空心圆柱中均匀分布着轴向电流 I ,求柱 内,外的磁感应强度. 解:法一:取积分回路为半径为 r ,圆心在轴上的圆,由安培定律 r≤a 时∫lv v v v H dl = 0 H = 0 B = 0a<r≤b 时 v v H dl =∫lI π (r 2 a 2 ) π (b a 2 )2(r 2 a 2 ) I H 2π r = 2 b a2 H = (r 2 a 2 ) I 2π r (b 2 a 2 )v v (r 2 a 2 ) I 0 v er B = 0 H = 2π r (b 2 a 2 )r >b时∫lv v H dl = I v H= I v er2π r v v I v B = 0 H = 0 er 2π r法二:使用圆柱坐标系.电流密度沿轴线方向为30《电磁场与电磁波》——习题详解 r<a 0, I J = , a<r <b 2 2 π (b a ) 0, b<r 由电流的对称性,可以知道磁场只有圆周分量.用安培定律计算不同区域的磁 场.当 r < a 时,磁场为零.当 a < r < b 时,选取安培回路为半径等于 r 且与导电 圆柱的轴线同心的圆.该回路包围的电流为I ′ = Jπ (r 2 a 2 ) =由 B dl = 2π rB =I (r 2 a 2 ) b2 a2∫vv 0 I ′ ,得 0 I (r 2 a 2 ) B= 2π r (b 2 a 2 )当 r > b 时,回路内包围的总电流为 I ,于是 B = 3-120 I . 2π r两个半径都为 a 的圆柱体,轴间距为 d , d < 2a (如图 3-4).除两柱重叠部 分 ( R 区域) 外,柱间有大小相等,方向相反的电流,密度为 J ,求 R 区域 的B.v解:在重叠区域分别加上量值相等(密度为 J ),方向相反的电流分布,可以 将原问题电流分布化为一个圆柱体内均匀分布正向电流,另一个圆柱体内均匀分布 反向电流.由其产生的磁场可以通过叠加原理计算. 由沿正方向的电流(左边圆柱)在重叠y区域产生的磁感应强度为 B1 :∫B1 d l = 2π r1 B1 = 0π r12 JJ r1r2JB1 = 0 r1 J2o1 vdo2x其方向为左边圆周方向 eφ 1 .图 3-4由沿负方向的电流(右边圆柱)在重叠区域产生的磁感应强度为 B2 :B2 = 0 r2 J231习题三其方向为右边圆柱的圆周方向 eφ 2 . 注意:vv v v v v v eφ1 = ez × eρ1 , eφ 2 = ez × eρ 2 v v v Jv v v B = B1 + B2 = 0 ez × (r1eρ 1 r2 eρ 2 ) 2 Jv J v v = 0 ez × (d ex ) = 0 d e y 2 2 v v v v v 3-13 证明矢位 A1 = ex cos y + e y sin x 和 A2 = e y (sin x + x sin y ) 给出相同的磁场 v B ,并证明它们得自相同的电流分布.它们是否均满足矢量泊松方程?为什么? 证明:与给定矢位相应的磁场为v v ex ey v v B1 = × A1 = x y cos y sin x v ex v v B2 = × A2 = x 0v ez v = ez (cos x + sin y ) z 0 v ez v = ez (cos x + sin y ) z 0v ey y sin x + x sin y所以,两者的磁场相同.与其相应的电流分布为v v 1 1 v v J1 = × B1 = (ex cos y + e y sin x)00v 1 v v J2 = (ex cos y + e y sin x)0可以验证,矢位 A1 满足矢量泊松方程,即vv v v v v 2 A1 = 2 (e x cos y + e y sin x) = (e x cos y + e y sin x) = 0 J 1但是,矢位 A2 不满足矢量泊松方程,即v32《电磁场与电磁波》——习题详解v v v v 2 A2 = 2 [e y (sin x + x sin y )] = e y (sin x + x sin y ) ≠ 0 J 2这是由于 A2 的散度不为零.当矢位不满足库仑规范时,矢位与电流的关系为vv v v v × × A2 = 2 A2 + ( A2 ) = 0 J 2可以验证,对于矢位 A2 ,上式成立,即vv v v 2 A2 + ( A2 ) = e y (sin x + x sin y ) + ( x cos y )v v v = e y (sin x + x sin y ) + ex cos y e y x sin y v v = e y sin x + ex cos y v = 0 J 23-14 半径为 a 的长圆柱面上有密度为 J S 的面电流, 电流方向分别为沿圆周方向和 沿轴线方向,分别求两种情况下柱内,外的 B . 解:(1)当面电流沿圆周方向时,由问题的对称性可以知道,磁感应强度仅仅 是半径 r 的函数,而且只有轴向方向的分量,即vvv v B = ez Bz (r )由于电流仅仅分布在圆柱面上,所以,在柱内或柱外, × B = 0 .将 B = ez Bz (r ) 代入 × B = 0 ,得vvvvv v B × B = eφ z = 0 r即磁场是与 r 无关的常量.在离柱面无穷远处的观察 点,由于电流可以看成是一系列流向相反而强度相同的电流 元之和,所以磁场为零.由于 B 与 r 无关,所以在柱外的任 一点处,磁场恒为零 . 为了计算柱内的磁场, 选取安培回路为图 3-5 所示的矩 形回路vh图 3-533习题三∫lv v B d l = hB = h 0 J S因而柱内任一点处, B = e z 0 J S (2) 当面电流沿轴线方向时,由对称性可知,空间的磁场仅仅有圆周分量,且 只是半径的函数.在柱内,选取安培回路为圆心在轴线并且位于圆周方向的圆.可 以得出,柱内任一点的磁场为零.在柱外,选取圆形回路, B d l =lvv∫vv 0 I ,与该回路交链的电流为 2π aJ S , B d l = 2π rB ,所以l∫vvv v a B = eφ 0 J S r 3-15 一对无限长平行导线,相距 2a ,线上载有大小相等,方向相反的电流 I (如 v v 图 3-6),求磁矢位 A ,并求 B .解:将两根导线产生的磁矢位看作是单个导线产生的磁矢位的叠加,对单个 导线,先计算有限长度产生的磁矢位.设导线长度为 l ,导线 1 的磁矢位为(场点选 在 xoy 平面)A1 =0 I 4π∫ I l / 2 + [(l / 2) 2 + r12 ]l / 2 dz = 0 ln 2 2 12 2π r1 l / 2 (r + z ) 1l/2当 l → ∞ 时,有y A1 =0 I l ln r1 2π-ar2 I图 3-6r1 a I x同理,导线 2 产生的磁矢位为A2 = 由两个导线产生的磁矢位为0 I l ln r2 2πv v l v I l A = ez ( A1 + A2 ) = ez 0 ln ln r 2π 1 r2 v 0 I r2 v 0 I ( x + a) 2 + y 2 = ez ln = ez ln 2π r1 4π ( x a) 2 + y 2相应的磁场为34《电磁场与电磁波》——习题详解v v A v A v B = × A = ex z e y z y x v I = ex 0 2π y y ( x + a) 2 + y 2 ( x a) 2 + y 2 x+a xa v I ey 0 2 2 2 2 2π ( x + a) + y ( x a) + y v v v v v v 3-16 由无限长载流直导线的 B 求矢位 A (用 B d S = A d l , 并且 r = r0 处为∫S∫C磁矢位的参考零点),并验证 × A = B . 解:设导线和 z 轴重合.由于电流只有 z 分量,磁矢位也只有 z 分量.用安培 环路定律,可以得到直导线的磁场为vvv I v B = 0 eφ 2π r 选取矩形回路 C ,如图 3-7 所求.在此回路上,注意到磁矢位的参考点.磁矢位的线积分为∫ ∫SCv v A d l = Az hv v BdS =∫∫0 I Ih r d r d z = 0 ln r0 2π r 2πIBh r0 r图 3-7由此得到I r Az (r ) = 0 ln r0 2π可以验证rv v I v A v B = × A = z eφ = 0 eφ 2π r r3-17 证明 xoy 平面上半径为 a , 圆心在原点的圆电流环(电流为 I )在 z 轴上的磁标 位为 m = 1 2 2 1 2 2 (a + z ) 证明:法一:由毕奥萨伐尔定律可求得,z 轴上某一点的磁感应强度为:Iz35习题三v B=Ia 22( a + z )2 2 3/ 2v ezv v B H = =Ia 2 v e 2 2 3/ 2 z 2(a + z )由 H = m = (v m v m v m v e + e + e ) x x y y z z可得 m Ia 2 = z 2( a 2 + z 2 ) 3 / 2 m = ∫ Ia 2 Iz dz = +C 2 2 3/ 2 2 2( a + z ) 2(a + z 2 )1 / 2当 z → ∞ 时, m = 0 ,求得C=所以I 2 z ) ( a + z 2 )1 / 22 m = (1 I 2法二:整个圆形回路在轴线上产生的磁场,由于对称,仅仅有轴向分量.使用 叠加原理,可以计算出轴线上任一点的磁场强度为Ia 2 H= 2( a 2 + z 2 ) 3 2由磁标位与磁场强度的关系式 H = m ,可以得到m =3-18∫∞zHdz =∫∞z Ia 2 I z d z = 1 2 2 12 2 2 32 2 (a + z ) 2(a + z )一个长为 L ,半径为 a 的圆柱状磁介质沿轴向方向均匀磁化(磁化强度为M 0 ),求它的磁矩.若 L = 10cm , a = 2cm , M 0 = 2 A / m ,求出磁矩的值. 解:均匀磁化介质内的磁化电流为零.在圆柱体的顶面与底面,有v v v Jms = M × n = 036《电磁场与电磁波》——习题详解在侧面v v v v v v J m s = M × n = M 0 ez × er = M 0 eφ侧面的总电流为I = JmsL = M 0L磁矩为m = IS = Iπ a 2 = M 0 Lπ a 2代入相关数值后得m = M 0 Lπ a 2 = 2 × 0.1× π × 0.02 2 = 2.512 × 10 4 A m 23-19 球心在原点,半径为 a 的磁化介质球中, M = M 0 磁化电流的体密度和面密度. 解:磁化电流的体密度为vz2 v ez ( M 0 为常数) ,求 a2v v Jm = × M = 0在球面上v v v z2 v v v J m s = M × n = M 0 ez × er = M 0 2 sin θ eφ a注意,在球面上v v z = a cos θ , J m s = M 0 cos 2 θ sin θ eφ3-20 证明磁介质内部的磁化电流是传导电流的( r 1 )倍. 证明:由于 J = × H , J m = × Mvvvv因而 3-21v v v v v v v B = H = 0 ( H + M ) , M = 1 H = ( r 1) H 0 v v J m = ( r 1) J已知内,外半径分别为 a , b 的无限长铁质圆柱壳(磁导率为 )沿轴向有恒 定的传导电流 I ,求磁感应强度和磁化电流.37习题三解: 考虑到问题的对称性, 用安培环路定律可以得出各个区域的磁感应强度. 当 r < a 时, B = 0vv I (r 2 a 2 ) v 当 a < r < b 时, B = eφ 2π r (b 2 a 2 )当 r > b 时, B = 当 a < r < b 时,v0 I v eφ 2π rv v I (r 2 a 2 ) v 1 v M = ( r 1) H = ( r 1) B = ( r 1) eφ 2π r (b 2 a 2 ) v v v 1 (rM ρ ) v ( r 1) I J m = × M = ez = ez r r π (b 2 a 2 )当 r > b 时, J m = 0 在 r = a 处,磁化强度 M = 0 ,所以vvv v v v v J m s = M × n = M × (er ) = 0在 r = b 处,磁化强度 M =v Jms3-22( r 1) I v eφ ,所以 2π b v v v v ( 1) I v = M × n = M × er = r ez 2π b v设 x < 0 的半空间充满磁导率为 的均匀磁介质, x > 0 的空间为真空,线电流 I 沿 z 轴方向,如图 3-8,求磁感应强度和磁场强度. 解:由恒定磁场的边界条件,可以判断出,在磁介质和真空中,磁感应强度相 同,而磁场强度不同.由问题的对称性,选取以 z 轴为轴线,半径为 r 的圆环为安 培回路,有∫注意到lv v H d l = π rH 1 + π rH 2 = Iy0H1 =1B1, H2 =2B2, B1 = B2 = BIx图 3-838《电磁场与电磁波》——习题详解1 = 0 , 2 = 因而得B= 0 I π ( 0 + )r其方向沿圆周方向. 3-23 已知在半径为 a 的无限长圆柱导体内有恒定电流 I 沿轴向方向.设导体的磁 导率为 1 ,其外充满磁导率为 2 的均匀磁介质,求导体内,外的磁场强度, 磁感应强度,磁化电流分布. 解:考虑到问题的对称性,在导体内,外分别选取与导体圆柱同轴的圆环作 为安培回路,并注意电流在导体内是均匀分布的.可以求出磁场强度如下:Ir v eφ 2π a 2 v I v r > a 时, H = eφ 2π r磁感应强度如下:v r ≤ a 时, H =v Ir v r ≤ a 时, B = 1 2 eφ 2π a v 2 I v r > a 时, B = eφ 2π r为了计算磁化电流,要求出磁化强度:v v v v Ir I v , J m = × M = e z 1 1 r ≤ a 时, M = eφ 1 1 2 2π a 2 0 0 π av v v v I r > a 时, M = eφ 2 1 , Jm = × M = 0 0 2π r在 r = a 的界面上计算面电流时,可以理解为在两个磁介质之间有一个很薄的 真空层.这样,其磁化面电流就是两个磁介质的磁化面电流之和,即v v v v v J m s = M 1 × n1 + M 2 × n2这里的 n1 , n2 分别是从磁介质到真空的单位法向.如果取从介质 1 到介质 2 的单位法向是 n ,则有vvvv v v v v J m s = M1 × n M 2 × n39习题三代入界面两侧的磁化强度,并注意到 n = er ,得vvv I v v 2 I J m s = e z 1 1 2π a + ez 1 2π a 0 0 I v = ez 2 1 0 0 2π a3-24 试证长直导线和其共面的正三角形之间的互感为M=0 a (a + b) ln1 + b a π 3 其中 a 是三角形的高,b 是三角形平行于长直导线的边至直导线的距离(且该 边距离直导线最近). 证明:取如图 3-9 所示的坐标.直线电流 I 产生的磁场为B=0 I 2π x由图 3-9 知道,三角形三个顶点的坐标分别为 A(b, a3 ) , B (b, a3) ,C (a + b,0) ,直线 AC 的方程为 z=互感磁通为z A I1 b B图 3-91 (a + b x) 3C b+axΨ = BdS = 2∫∫a +b b0 I 1 (a + b x) d x 2π x 3=0 I a (a + b) ln1 + b a π 3 0 a (a + b) ln1 + b a π 3 直线与矩形回路的互感为M=3-25无限长的直导线附近有一矩形回路(二者不共面,如图 3-10),试证它们之间 的互感为40《电磁场与电磁波》——习题详解M =0 a R ln 2 2 12 2π [2b( R c ) + b 2 + R 2 ]1 2b a R R1图 3-10IIc证明:直线电流 I 产生的磁场为 B =0 I ,作积分,得出磁通量 2π rΨ = BdS =注意:∫∫R1 R 0 Ia Ia R d r = 0 ln 1 R 2π r 2π1 2 1 2 1 2R1 = [c + (b + R c ) ] = [2b( R c ) + b + R ]2 2 2 2 2 2 2 2将其代入,即可得到互感. 3-26 外导体的内半径为 b , 通过的电流为 I . 空气绝缘的同轴线, 内导体半径为 a , 设外导体壳的厚度很薄,因而其储存的能量可以忽略不计.计算同轴线单位 长度的储能,并由此求单位长度的自感. 解:设内导体的电流均匀分布,用安培环路定律可求出磁场.r < a 时, H =Ir 2π a 2 I a < r < b 时, H = 2π rWm =单位长度的磁场能量为∫a01 H 2 2π r d r + 2 0∫b a1 H 2 2π r d r 2 0=0 I 2 0 I 2 b ln + 16π 4π aL=故得单位长度的自感为0 0 b + ln 8π 2π a41习题三其中第一项是内导体的内自感. 3-27 一个长直导线和一个圆环(半径为 a )在同一平面,圆心与导线的距离是 d , 证明它们之间互感为M = 0 (d d 2 a 2 )证明:设直导线位于 z 轴上,由其产生的磁场I r d θB=0 I 0 I = 2π x 2π (d + r cos θ ) 0 I其中各量的含义如图 3-11 所示,磁通量为图 3-11Φ = BdS =∫∫∫0 2π 0a2π 02π (d + r cos θ )2πr dθ d r上式先对 θ 积分,并用公式∫得dθ = d + a cos θd 2 a2Φ = 0 I所以互感为 3-28∫ardr d r2 20= 0 I (d d 2 a 2 )M = 0 (d d 2 a 2 )如图 3-12 所示的长密绕螺线管(单位长度 n 匝),通过的电流为 I ,铁心的磁 导率为 ,面积为 S ,求作用在它上面的力. 解:在忽略边缘影响时,密绕螺线管内部的磁场是一个均匀磁场,其值为H = NI , 管外磁场为零. 设螺线管的长度为 L , 铁心位于螺线管内的部分长度为 x , 总的磁场能量为Wm =1 1 Sx( NI ) 2 + 0 S ( L x)( NI ) 2 2 2Wm xL● ● ● ● ● ● ●用电流不变情形下的虚位移公式,得到铁心受力 x0SF==I1 ( 0 ) SN 2 I 2 2× × × × × × × 图 3-12力的方向沿 x 增加的方向.42。
《电磁场与电磁波第三版》课后答案
ˆ cos ˆ cos sin ˆ F2 (r , , ) sin sin , F2 ( , , z ) 3 用直角坐标系中的坐标分 1.9 将圆柱坐标系中的矢量场 F1 ( , , z ) 2
量表示。 解:根据
习题
ˆ 3y ˆz ˆ y ˆ 2z ˆ; B x ˆ ,求:(a) A 和 B 的大小(模) 1.1 已知 A 2 x ; (b) A 和 B 的单位
矢量;(c) A B ;(d) A B ;(e)A 和 B 之间的夹角;(f) A 在 B 上的投影。 解:(a) A 和 B 的大小
ˆ sin ˆ cos cos ˆ F1 (r , , ) sin cos Fr 2 sin cos F 2 cos cos F 2 sin sin cos cos cos sin sin sin cos sin cos sin sin cos sin cos cos Fx 2 sin Fy 2 0 Fz 2 cos 0 sin sin sin 1 cos sin 0 0 cos
ˆ Ay y ˆ A Ax x ˆ By y ˆ B Bx x ˆ x
ˆ y By Cy
ˆ z ˆ ( Bz C x Bx C z ) y ˆ ( Bx C y B y C x ) z ˆ Bz ( B y C z Bz C y ) x Cz
ˆ 12 y ˆz ˆ 3y ˆz ˆ 和 2x ˆ ,求从 P 点到 Q 点的距离矢 1.6 P 点和 Q 点的位置矢量分别为 5 x
《电磁场与电磁波》第 版 谢处方 编 课后习题答案 高等教育出版社
(A B) C (ex10 ey1 ez 4) (ex 5 ez 2) 42
ex ey ez
(8) (A B)C 10 1 4 ex 2 ey 40 ez 5
5 0 2
ex ey ez
A (B C) 1 2 3 ex 55 ey 44 ez11
解
(1) aA
A A
ex ey 2 ez 3 12 22 (3)2
ex
1 14
ey
2 14
ez
3 14
(2) A B (ex ey 2 ez 3) (ey 4 ez ) ex ey 6 ez 4 53
(3) A B (ex ey 2 ez 3) (ey 4 ez ) -11
A P A(A X ) (A X )A (A A)X pA (A A)X
故得
X pA A P
AA
1.8 在圆柱坐标中,一点的位置由 (4, 2 ,3) 定出,求该点在:(1)直角坐标中的坐 3
标;(2)球坐标中的坐标。
解 (1)在直角坐标系中 x 4 c o s ( 2 3 ) 、 2y 4sin(2 3) 2 3 、 z 3
1 2 1 2
2
1 2 1 2
2
1 2 1 2 24x2 y2 (1)3 d x dy 1 2 1 2 24x2 y2 ( 1)3 d x dy 1
1 2 1 2
2
1 2 1 2
2
24
故有
Ad
1 24
S
A
d
S
1.19 计算矢量 r 对一个球心在原点、半径为 a 的球表面的积分,并求 r 对球体积
电磁场与电磁波(西安交大第三版)第6章课后答案
第六章 平面电磁波 1.在εr=2, μr=1的理想介质中,频率为f =150MHZ 的均匀平面波沿y 方向传播,y=0处,E =zˆ10V/m,求E , E (y,t), H ,H (y,t) ,S c,υp.解:s m c cv rr p /2==εμ,m f c fv p 222===λπλπ22==kyj jkye z eE E π2010ˆ--==Z=120π/2Z e z yZ E k H yj /10ˆˆ/ˆ2π-⨯=⨯==-xˆ(2/12π)yj e π2-E (y,t)= zˆ102cos(2π*150*106t-2πy) H (y,t)= -xˆ/6πcos(2π*150*106t-2πy) Sc=*H E ⨯=yˆ52/6π2.在真空中H =xˆx H =x ˆ0H zj e π2求E ,E (z,t), λ, f ,Z, S c.解:Z=120πE =kH Z ˆ⨯=z j e H z x ππ20120)ˆ(ˆ-⨯=y ˆ120π0H z j e π2 k=2πλ=k π2=1m ,Hz c v f p 8103⨯===λλ Sc=*H E⨯=-zˆ120π0H 23.在理想介质中E (x,t)= y ˆ80π2cos(10*107πt+2πx)H (x,t)= -z ˆ2cos(10*107πt+2πx)求: f , εr, μr ,λ.解:71010⨯=πω,f =πω2=5*107Hz π2=k ,λ=kπ2=1m,m f c 60==λ由: k=2π=ω (εrμr)2/1及 Z=80π=120π(μr /εr)2/1 得:εr=9 ,μr=44.均匀平面电磁波在真空中沿kˆ=1/2(yˆ+z ˆ)方向传播, 0E =10x ˆ,求E ,E (y,z,t),H ,H (y,z,t), Sc解:则k=2π,E =0E r k j e ∙-=xˆ10))(2(z y j e +-πH =1/Z*⨯kˆE =2/24π(yˆ-z ˆ))(2z y j e +-πE (y,z,t)= xˆ102cos(2πc/λt-(2π)(y+z)) H (y,z,t)= 1/12π(y ˆ-z ˆ)cos(2πc/λt-(2π)(y+z)) Sc=*H E ⨯=(5/62π)(yˆ+z ˆ)5、在均匀理想介质中)sin(2ˆ)cos(2ˆ)(00kz t E y kz t E xt E -+-=ωω. 求)(t H及平均坡印亭矢量。
电磁场与电磁波第三版课后答案 谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z+-===e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e ⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520xy z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波习题解 谢处方 饶克谨编(第三版)
C
C
∫= 2π (−a2 cosφ sinφ + a4 cos2 φ sin2 φ )dφ = π a4
0
4
∫ ∫ S
∇×
� AidS
=
S
� ez
(
∂Ay ∂x
−
∂Ax ∂y
)ie�z dS
∫ ∫ ∫ = y2dS = a 2π r2 sin2 φrdφdr = π a4
S
00
4
∫ � � �
1.19 给定矢量函数 E = ex y + e y x ,试求从点 P1(2,1, −1) 到点 P2 (8, 2, −1) 的线积分
�� Eidl :
� (1)沿抛物线 x = y2 ;( 2)沿连接该两点的直线。这个 E 是保守场吗?
��
解(1) ∫ Eidl = ∫ Exdx + Eydy = ∫ ydx + xdy
C
C
C
2
2
∫ ∫ = yd(2 y2 ) + 2 y2dy = 6 y2dy = 14
1
1
(2)连接点 P1(2,1, −1) 到点 P2 (8, 2, −1) 直线方程为
−1/ 2 −1/ 2
2
−1/ 2 −1/ 2
2
=1 24
故有
�
∫ ∇iAdτ
τ
=
1 24
=
�∫
S
�� AidS
1.14
计算矢量
� r
对一个球心在原点、半径为
a
的球表面的积分,并求
∇ir�
对球体积的积分。
解
�∫
r�idS
=
�∫
电磁场与电磁波第三版课后答案 谢处方
第一章习题解答1.1 给定三个矢量A 、B 和C 如下:23x y z =+-A e e e4y z =-+B e e52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)⨯A C ;(7)()⨯A B C g 和()⨯A B C g ;(8)()⨯⨯A B C 和()⨯⨯A B C 。
解 (1)23A x y z +-===-e e e A a e e e A(2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11(4)由cos AB θ===A B A B g ,得1cos AB θ-=(135.5=o(5)A 在B 上的分量 B A =A cos AB θ==A B B g(6)⨯=A C 123502xy z-=-e e e 41310x y z ---e e e(7)由于⨯=B C 041502x y z-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e()⨯=A B C g (1014)x y z ---e e e g (52)42x z -=-e e(8)()⨯⨯=A B C 1014502x y z---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。
(1)判断123PP P ∆是否为一直角三角形; (2)求三角形的面积。
电磁场与电磁波(西安交大第三版)第2章课后答案
第2章习题2-1.已知真空中有四个点电荷q C11=,q C22=,q C34=,q C48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:zyrzxrzyrzxrˆˆ;ˆˆ;ˆˆ;ˆˆ4321+=+=+-=+-=84ˆ15ˆ6ˆ3)ˆˆˆˆ(412444233322222111πεπεzyxrrqrrqrrqrrqE++=+++=2-2.已知线电荷密度为ρl的均匀线电荷围成如图所示的几种形状,求P点的电场强度。
题2-2图解:(a) 由对称性04321=+++=EEEEE(b) 由对称性0321=++=EEEE(c) 两条半无限长线电荷产生的电场为yayxyxaEEE llaˆ2)}ˆˆ()ˆˆ{(421περπερ-=+--=+=半径为a的半圆环线电荷产生的电场为yaE lbˆ2περ=总电场为0=+=baEEE2-3.真空中无限长的半径为a的半边圆筒上电荷密度为ρs,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为ϕad的窄条,,电荷线密度为ϕρρadsl=,对ϕ积分,可得真空中无限长的半径为a的半边圆筒在轴线上的电场强度为ydxyad r aE sssˆ)ˆcosˆsin(22ˆ0000⎰⎰-=--==πππερϕϕϕπερπεϕρ题2-3图题2-4图2-4.真空中无限长的宽度为a的平板上电荷密度为ρs,求空间任一点上的电场强度。
解:在平板上'x处取宽度为'dx的无限长窄条,可看成无限长的线电荷,电荷线密度为'dxslρρ=,在点),(yx处产生的电场为ρρρπε'ˆ21),(dxyxEd s=其中22)'(y x x +-=ρ;22)'(ˆˆ)'(ˆyx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为 )}2/2/(2ˆ)2/()2/(ln ˆ{4),(22220y a x arctg y a x arctg y ya x y a x x y x E s --+++-++=περr 为场点到坐标原点的距离,a ,b 为常数。
电磁场与电磁波(第三版)课后答案第3章
第三章习题解答3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。
解 由点电荷q 和q -共同产生的电通密度为33[]4q R R π+-+-=-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量d d zz SSS Φ====⎰⎰D S D e22322232()[]2d 4()()aq a arr r a r a ππ--=++⎰ 221201)0.293()aqa q q r a =-=-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为02314ra Ze r r r π⎛⎫=- ⎪⎝⎭D e ,试证明之。
解 位于球心的正电荷Ze 球体内产生的电通量密度为 124rZer π=D e 原子内电子云的电荷体密度为 333434a a Ze Zer r ρππ=-=- 电子云在原子内产生的电通量密度则为32234344r r ar Ze rr r ρπππ==-D e e 故原子内总的电通量密度为 122314ra Ze r r r π⎛⎫=+=- ⎪⎝⎭D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30C m ρ, 两圆柱面半径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。
求空间各部分的电场。
解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。
但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
JS v ω r ez era
e a sin
e
Q 4 a
sin
将球面划分为无数个宽度为 dl a d 的细圆环,则球面上任一个宽度为 dl a d 细
.-
圆环的电流为
d
I
JS
dl
Q 4
sin
d
细圆环的半径为 b a sin ,圆环平面到球心的距离 d a cos ,利用电流圆环的轴线上
.-
第二章习题解答
2.1
一个平行板真空二极管内的电荷体密度为
4 9
0U0d 4
3 x 2
3
,式中阴极板位
于 x 0 ,阳极板位于 x d ,极间电压为 U0 。如果 U0 40 V 、 d 1cm 、横截面
S 10cm2 ,求:(1) x 0 和 x d 区域内的总电荷量 Q ;(2) x d 2 和 x d 区域内
解 电偶极子 p1 在矢径为 r 的点上产生的电场为
E1
1 4 0
[3(
p1 r)r r5
p1 r3
]
所以 p1 与 p 2 之间的相互作用能为
We
p2
E1
1 [3( p1 4 0
r)( p2 r5
r)
p1 r
p2
3
]
因为1 r, p1 ,2 r, p2 ,则
p1 r p1r cos1
处的电场强度 E 中,有一半是有平面上半径为 3z0 的圆内的电荷产生的。
解 半径为 r 、电荷线密度为 l d r 的带电细圆环在 z 轴上 z z0 处的电场强度为
d
E
ez
r z0 d r 20 (r 2 z02 )3
2
故整个导电带电面在 z 轴上 z z0 处的电场强度为
E
ez
0
E1
q 40
ex (x [(x
a) ey y a)2 y2
ez z z2 ]3 2
电荷 2q 在 (x, y, z) 处产生的电场为
E2
2q 40
ex (x [(x
a) ey y a)2 y2
ez z z2 ]3 2
(x, y, z) 处的电场则为 E E1 E2 。令 E 0 ,则有
直径旋转,求球内的电流密度。
解 以球心为坐标原点,转轴(一直径)为 z 轴。设球内任一点 P 的位置矢量为 r ,且
r 与 z 轴的夹角为 ,则 P 点的线速度为
v r er sin
球内的电荷体密度为
Q 4 a3
3
故
J
v
e
Q 4 a3
r sin 3
e
3Q 4 a3
r sin
2.4 一个半径为 a 的导体球带总电荷量为 Q ,同样以匀角速度 绕一个直径旋转,求
(cos 30
cos150
) ey
3l1 2 0 L
E2
(ex cos 30
ey sin 30
)
3l 2 2 0 L
(ex
3
e
y
)
3l1 8 0 L
E3 (ex cos 30
ey sin 30
) 3l3 2 0 L
(ex
3
e
y
)
3l1 8 0 L
故等边三角形中心处的电场强度为
E E1 E2 E3
p2 r p2r cos2
又因为 是两个平面 (r, p1) 和 (r, p2 ) 间的夹角,所以有
(r p1) (r p2 ) r2 p1 p2 sin1 sin2 cos
题 2.13 图
另一方面,利用矢量恒等式可得
.-
(r p1) (r p2 ) [(r p1) r] p2 r2 ( p1 p2 ) (r p1)(r p2 )
2
r z0 d r 0 (r2 z02 )3
2
ez
z0 2 0
(r2
1 z02 )1 2
0
ez
2 0
而半径为 3z0 的圆内的电荷产生在 z 轴上 z z0 处的电场强度为
E ez
3z0 r z0 d r 0 20 (r2 z02 )3 2
ez
z0 20
1 (r2 z02 )1 2
球表面的面电流密度。
解 以球心为坐标原点,转轴(一直径)为 z 轴。设球面上任一点 P 的位置矢量为 r ,
且 r 与 z 轴的夹角为 ,则 P 点的线速度为
v r ea sin
球面的上电荷面密度为
Q 4 a2
故
JS
v
e
Q 4 a2
a sin
e
Q sin 4 a
2.5 两点电荷 q1 8C 位于 z 轴上 z 4 处, q2 4 C 位于 y 轴上 y 4 处,求
题 2.6 图
2.7 三根长度均为 L ,均匀带电荷密度分别为 l1 、l2 和 l3 地线电荷构成等边三角形。设 l1 2l2 2l3 ,计算三角形中心
处的电场强度。
解 建立题 2.7 图所示的坐标系。三角形中心到各边的距离为
题 2.7 图
d L tan 30 3 L
2
6
则
E1
ey
l1 4 0 d
dE la r r d 40 ( 2a)3
l ez (ex cos ey sin) d
8 20
a
在半圆环上对上式积分,得到轴线上 z a 处的电场强度为
E(0,0, a) d E
8
l 2
0a
2
[ez
2
(ex cos ey sin)]d
l (ez ex 2) 8 2 0a
解 (1)由细圆环电流在其轴线上的磁感应强度
B
ez
0 Ia 2 2(a2 z2 )3
2
得到两个线圈中心点处的磁感应强度为
B
ex
0 NIb2 (b2 d 2 4)3
2
(2)两线圈的电流在其轴线上 x (0 x d) 处的磁感应强度为
B
ex
0 2(b2
NIb2 x2 )3
2
2[b2
0 NIb2 (d x)2 ]3
为 p2 的电偶极子,位于矢径为 r 的某一点上。试证明两偶极子之间相互作用力为
Fr
3 p1 p2 4 0r4
(sin1 sin2
cos
2 cos1
cos2 )
式中1 r, p1 ,2 r, p2 , 是两个平面 (r, p1) 和 (r, p2 ) 间的夹角。并
问两个偶极子在怎样的相对取向下这个力值最大?
2.11 两个半径为 b 、同轴的相同线圈,各有 N 匝,相互隔开距离为 d ,如题 2.11 图
所示。电流 I 以相同的方向流过这两个线圈。
(1)求这两个线圈中心点处的磁感应强度 B ex Bx ;
(2)证明:在中点处 d Bx d x 等于零;
(3)求出 b 与 d 之间的关系,使中点处 d 2 Bx d x 2 也等于零。
3z0 0
ez
40
1E 2
2.10 一个半径为 a 的导体球带电荷量为 Q ,当球体以均匀角速
度 绕一个直径旋转,如题 2.10 图所示。求球心处的磁感应强度 B 。
题 2.10 图
解 球面上的电荷面密度为
Q 4 a2
当球体以均匀角速度 绕一个直径旋转时,球面上位置矢量 r er a 点处的电流面密度为
①
y[(x a)2 y2 z2 ]3 2 2 y[(x a)2 y2 z2 ]3 2
②
z[(x a)2 y2 z2 ]3 2 2z[(x a)2 y2 z2 ]3 2
③
当 y 0 或 z 0 时,将式②或式③代入式①,得 a 0 。所以,当 y 0 或 z 0 时
(4, 0, 0) 处的电场强度。
.-
解 电荷 q1 在 (4, 0, 0) 处产生的电场为
E1
q1 40
r r1 r r13
2 0
ex 4 ez 4 (4 2)3
电荷 q2 在 (4, 0, 0) 处产生的电场为
E2
q2 4 0
r r2 r r2 3
1 0
ex 4 ey 4 (4 2)3
d2 Bx d x2
150 NIb2 x2 2(b2 x2 )7 2
30 NIb2 2(b2 x2 )5
2
150 NIb2 (d x)2 2[b2 (d x)2 ]7 2
30 NIb2 2[b2 (d x)2 ]5
2
令
d 2 Bx d x2
xd 2 0 ,有
5d 2 [b2 d 2
ey
3l1 2 0 L
(ex
3
ey
)
3l1 8 0 L
(ex
3
ey)
3l1 8 0 L
ey
3l1 4 0 L
2.8 -点电荷 q 位于 (a, 0, 0) 处,另-点电荷 2q 位于 (a, 0, 0) 处,空间有没有电
场强度 E 0 的点?
解 电荷 q 在 (x, y, z) 处产生的电场为
.-
题 2.12 图
.-
带,每一细条带的电流 dI I dx 。由安培环路定理,可得位于 x 处的细条带的电流 dI 在 2a
点 P(x, y) 处的磁场为
dB
0 d I 2 R
0I d x 4 aR
0I d x 4 a[(x x)2
y2 ]1 2
则
d
Bx
d B sin
0Iy d x 4 a[(x x)2
ex (x a) ey y ez z 2[ex (x a) ey y ez z] [(x a)2 y2 z2 ]3 2 [(x a)2 y2 z2 ]3 2