波谱分析

合集下载

波谱分析

波谱分析

波谱分析波谱分析是一种重要的科学技术方法,它在多个领域有着广泛的应用。

本文将为读者介绍波谱分析的原理、方法以及其在不同领域中的应用,希望能够带给读者一些有关波谱分析的基础知识。

波谱分析是一种通过对信号频谱的分析,来研究信号特性的方法。

它主要通过将信号转化为频域来进行分析,以便更好地理解信号的频率成分。

波谱分析通常包括以下步骤:信号采样、转换为频域信号、频域信号分析以及结果展示。

在波谱分析中,最基础的是信号采样。

信号采样即将连续的模拟信号转化为离散的数字信号。

通过采样,我们获得了离散的信号数据,为后续的分析提供了基础。

转换为频域信号是波谱分析的关键步骤。

这一步骤主要通过傅里叶变换来实现,将时域信号转化为频域信号。

傅里叶变换能够将信号分解成一系列频率成分,使得我们能够更加清晰地了解信号的频率特征。

在波谱分析的频域信号分析阶段,我们可以使用不同的方法来对信号进行进一步的分析。

常见的方法包括功率谱分析、相位谱分析、自相关分析等。

功率谱分析可以帮助我们了解信号各个频率成分对总体信号功率的贡献程度,相位谱分析可以揭示信号的相位变化规律,自相关分析则是通过计算信号与其自身的相关性来分析信号的周期性变化。

波谱分析在不同的领域中都有广泛的应用。

在通信领域中,波谱分析可以用于信号传输中的频率选择性衰减的检测和修复;在音频领域中,波谱分析可以用于声音信号的处理和音乐分析;在医学领域中,波谱分析可以用于心电图和脑电图的分析,帮助医生进行诊断和治疗。

此外,波谱分析在材料科学、地震学、天文学等领域也有广泛应用。

在材料科学中,波谱分析可以用于材料结构的研究和分析;在地震学中,波谱分析可以用于地震波的研究和地震活动的监测;在天文学中,波谱分析可以用于星体的研究和宇宙的探索。

总结起来,波谱分析是一种基于信号频谱的分析方法,它通过将信号转化为频域信号来研究信号的特性。

波谱分析包括信号采样、转换为频域信号、频域信号分析以及结果展示等步骤。

波谱分析讲整理.ppt

波谱分析讲整理.ppt
第二篇 波谱分析
第一章 光谱分析 第二章 核磁共振波谱 第三章 质谱
第一章 光谱分析
1.1 概述 1.2 紫外吸收光谱分析(UV) 1.3 红外吸收光谱分析(IR) 1.4 激光拉曼光谱(RS)
1.1 概述
1.1.1光谱分析法
因光的作用引起被照物体内分子运动状态发 生变化,并产生特征能态的跃迁进行分析的方 法
n→π*的影响
1.2 紫外吸收光谱分析(UV)
b. π→π*跃迁所产生的吸收峰随着溶 剂极性的增加而向长波长方向移动。 因为在多数π→π*跃迁中,激发态的 极性要强于基态,极性大的π*轨道 与溶剂作用强,能量下降较大,而π 轨道极性小,与极性溶剂作用较弱, 故能量降低较小,致使π及π*间能量 差值变小。因此,π→π*跃迁在极性 溶剂中的跃迁能小于在非极性溶剂 中的跃迁能。所以在极性溶剂中, π→π*跃迁产生的吸收峰向长波长方 向移动。
(4)n→π* 跃迁 指分子中处于非 键轨道上的n电子吸收能量后向 π*反键轨道的跃迁。
1.2 紫外吸收光谱分析(UV)
电子跃迁类型不同,实际跃迁需要的能量不同, σ→σ* ~150nm n→σ* ~200nm π→π* ~200nm n→π* ~300nm
吸收能量的次序为: σ→σ*>n→σ*≥π→π*>n→π*
1.2 紫外吸收光谱分析(UV)
iii B—带 它是芳香族化合物的特征吸收带。是苯环振动及
π→π* 重叠引起的。在230~270nm之间出现精细结构 吸收,又称苯的多重吸收
iv E-带 它也是芳香族化合物的特征吸收之一,E带可分为E1及
E2两个吸收带,二者可以分别看成是苯环中的乙烯键和 共轭乙烯键所引起的,也属π→π* 跃迁。
溶剂对π→π*
1.2 紫外吸收光谱分析(UV)

波谱分析

波谱分析

2960~2850 cm-1 ,甲基、亚甲基C—H键伸缩振动;
1466、1380 cm-1 ,为C—H键的面内弯曲振动;
726,长链亚甲基面外弯曲振动,(CH2)n中n≥4时出现。
(2) 烯烃 C=C键的伸缩振动吸收峰1680~1600 cm-1,取代基多、 对称性强峰就减弱,共轭使峰增强但频率略降低;
3 影响紫外光谱的因素
(1) 几个基本概念
生色基:能在某一段光的波长内产生吸收的基团,称 为这一段波长的生色团或生色基,如:C=C、C=O、 NO2等。 助色基:本身在紫外或可见光区没有吸收,当它们连
在双键或共轭体系上时,使吸收向长波方向位移,颜色
加深。如:—OH、—NH2、—Cl等。
红移现象:由于取代基或溶剂的影响使最大吸收峰向

1 2
k(
1 1 ) + m2 m1
键能增大,键长缩短,力常数k增大。
分子的振动方式
①伸缩振动:
对称伸缩
不对称伸缩
②弯曲振动:
面内弯曲
剪式振动
平面摇摆
面外弯曲
非平面摇摆
扭曲振动
每一种振动方式,都有固定的吸收频率。
当E2-E1 = hν时,红外线才能被吸收,因此同一基团
总是在一个特定的范围内产生吸收峰。 红外吸收峰产生的条件 必要条件:辐射光的频率与分子振动的频率相当; 充分条件:必须是能引起分子偶极矩变化的振动。
S3 S2
T2
S1 V3 V2 V1
J3 J1 J3 J1
T1
S 电子能级 1-20 eV V 振动能级 10-2-10eV J 转动能级 10-6-10-3 eV
F
P
S0
双原子分子能级和能级跃迁示意图

波谱分析

波谱分析

一、概述元素分析:C.H.N.X.S.P ℅含量,经典分析:m.p ,b.p ,折光率 官能团特征反应:生成衍生物 缺点:繁琐,费时,不准确,有干扰现代有机分析的两大支柱 1.色谱分析:GC, HPLC, TLC 裂解色谱成分分析2.波谱分析:UV,IR,NMR,MS (有机)结构分析 色谱分析:具有高效分离能力可以把复杂有机混合物分离成单一的纯组分。

为有机结构分析服务波谱分析:纯样品进行结构分析 微量化 测量快 结果准确 重复性好 除MS 之外,可回收样品 1.灵敏度:MS >UV >IR >1HNMR >13CNMR MS:微克级 UV: ppb 级 IR :毫克级(可微克级,FTIR )( 1HNMR :0.5mg 13CNMR : 0.5mg )可回收 质谱(MS )—分子量及部分结构信息、红外光谱(IR )—官能团种类、紫外—可见光谱(UV / Vis )—共轭结构、核磁共振谱(NMR )—C-H 骨架及所处化学环境 第二章 紫外-可见吸收光谱有机化合物的UV 吸收位于200-400nm 之间(近紫外),V 吸收位于400-800nm 之间(可见),真空(远)U V :< 200 n m σ→ σ*跃迁吸收,石英器皿应用范围 :2 0 0 – 3 0 0 n m 、玻璃器皿应用范围 :> 3 0 0 n m 郎伯-比耳(Beer-Lambert)定理 A = l o g I 0 / I = l o g 1 / T = εc L四种主要跃迁所需能量ΔΕ大小顺序:n →π*<π→π*< n →σ*< σ→σ*π→π* K 带(跃迁允许)ε 10 4~5 n →σ*R 带(跃迁禁阻) ε≯2 0 0 0溶剂效应 溶剂极性增大,π—π*跃迁向红移,ΔE = h ν=h/λ、n —π*跃迁向蓝移,精细结构消失有机化合物的电子吸收光谱:饱和烃 仅有σ→σ*跃迁 吸收光谱 λ<200nm 含杂原子饱和烃 含O 、S 、 N 和卤素等的饱和烃衍生物则有σ→σ* 及n →σ*跃迁需能量大。

波谱分析教程

波谱分析教程

波谱分析教程
波谱分析是一种常用的信号处理技术,用于研究信号的频谱特性。

本教程将向您介绍波谱分析的基本概念、方法和应用。

1. 什么是波谱分析?
波谱分析是通过将信号从时域转换为频域,来研究信号频谱特性的过程。

通过波谱分析,我们可以获取信号的频率成分、频谱强度和相位信息。

2. 傅里叶变换
傅里叶变换是用于将时域信号转换为频域信号的重要数学工具。

傅里叶变换将信号表示为一组正弦和余弦函数的叠加,可以将信号的频谱特性展现出来。

3. 离散傅里叶变换(DFT)
离散傅里叶变换是傅里叶变换在离散数据上的应用。

通过对离散信号进行DFT,我们可以得到信号的离散频谱。

4. 快速傅里叶变换(FFT)
快速傅里叶变换是一种高效的计算离散傅里叶变换的算法。

FFT可以大大提高计算速度,使得波谱分析在实时信号处理中得以广泛应用。

5. 波谱估计方法
波谱估计方法是通过有限的信号样本,估计信号的频谱特性。

常用的波谱估计方法包括周期图法、自相关法、最大熵法等。

6. 应用案例
波谱分析在许多领域都有广泛的应用。

例如,在通信领域,波谱分析常用于频谱分配、信号识别和调制识别等方面。

在振动分析中,波谱分析可以用于检测机械故障、分析材料的动态特性等。

在此教程中,我们将详细介绍如何进行波谱分析,包括信号预处理、傅里叶变换、波谱估计和结果解释。

通过学习本教程,您将掌握波谱分析的基本方法,为更深入的研究和应用打下基础。

波谱解析知识点总结

波谱解析知识点总结

波谱解析知识点总结一、波谱解析的基本原理1. 光谱学基础知识光谱学涉及到物质对光的吸收、发射、散射等现象,它是物质分析的重要手段之一。

常见的光谱包括紫外光谱、可见光谱、红外光谱、拉曼光谱等。

每种光谱方法都有其独特的应用领域和分析特点。

2. 原子光谱原子光谱是指研究原子吸收、发射光谱的一门学科,主要包括原子吸收光谱和原子发射光谱。

原子光谱可以用于分析金属元素和非金属元素的含量,它是分析化学中的重要手段。

3. 分子光谱分子光谱是指研究分子在光的作用下吸收、发射、散射等现象的一门学科,主要包括紫外光谱、红外光谱、拉曼光谱等。

分子光谱可以用于研究分子的结构和性质,对于有机化合物的分析具有重要意义。

4. 核磁共振波谱核磁共振波谱是指研究核磁共振现象的一门学科,它可以用于研究原子核的磁共振现象,得到有关物质结构和性质的信息。

核磁共振波谱在有机化学、生物化学等领域有着广泛的应用。

二、波谱解析的仪器和设备1. 分光光度计分光光度计是用于测量物质吸收、发射光谱的仪器,它可以测量紫外、可见、红外等波段的光谱,是分析化学中常用的仪器之一。

2. 核磁共振仪核磁共振仪是用于测量核磁共振波谱的仪器,它可以测量氢、碳等核的共振信号,得到物质的结构和性质信息。

3. 质谱仪质谱仪是用于测量物质离子的质量和荷质比的仪器,它可以得到物质的分子量、结构等信息,是很多化学分析的重要手段。

4. 激光拉曼光谱仪激光拉曼光谱仪是用于测量拉曼光谱的专用仪器,它可以用激光光源激发样品,得到与分子振动信息有关的拉曼光谱。

三、波谱解析的应用领域1. 化学分析波谱解析技术在化学分析中有着广泛的应用,它可以用于定量分析、质量分析、结构分析等多个方面,对于复杂的化合物和材料有很高的分析能力。

2. 药物研发波谱解析技术在药物研发中有着重要的应用,它可以用于研究药物的成分、结构和性质,对于新药物的研究和开发有很大帮助。

3. 生物医学波谱解析技术在生物医学领域有着广泛的应用,它可以用于研究生物分子的结构和功能,对于临床诊断和治疗有着重要意义。

波谱分析.ppt

波谱分析.ppt

紫外光谱中常以吸收带最大的吸收波长λmax 和该波长下的摩尔吸光系数εmax 来表征化合 物的特征吸收,吸收光谱反应了物质分子对 不同紫外光的吸收能力,吸收带的形状以及 λmax εmax 与分子的结构有密切的关系。
紫外吸收光谱是由分子中的价电 子能级跃迁所产生的,在跃迁过 程中,电子能级的跃迁往往伴随 着分子振动能级的跃迁和转动能 级的跃迁,因此电子能级的跃迁 多产生的吸收带由于附加了分子 振动能级和转动能级的跃迁而变 成了较宽的谱带。
• 学习的目的和要求:
1、分子中电子能级及电子跃迁的规律,σ、π、n轨道及σσ*, n- σ*, π- π*, n- π* 跃迁与分子结构的关系,电子跃 迁产生的吸收带波长及其光谱特征。
2、分子结构变化及取代基对吸收光谱的影响,共轭体系对 吸收波长的影响。
3、各类化合物的紫外吸收特征,共轭二烯烃α,β不饱和羰基 化合物及其酰基苯衍生物的K带波长计算方法。
二 分子轨道与电子跃迁类型 分子轨道
..
CH3CH2O. .H n
电子跃迁类型
电子在不同轨道间跃迁所吸收的光辐射波长不 同。 σ→σ*跃迁所需要的能量最高,吸收波长 最短;n →π*跃迁所需要的能量最低,吸收 波长较长。
(1)σ →σ*跃迁:饱和烃△E = hυ= hc/λ 高能跃迁,大约需780kJ.mol-1的能量,相 当于真空紫外区的波长。 乙烷的σ →σ* :135nm 环丙烷σ →σ* :190nm
2、波谱分析法(UV、IR、NMR、MS) 特点:样品微量化,测定速度快,结果准确,重复 性好。 解析方法: ①、与已知纯物质的标准图谱对照。 ②、对比实验法(空白对照、底物对照、设计实 验)。 几种图谱应互相参照,相互补充,能自园其说,不 互相矛盾,才能准确地确定未知物的分子结构。

波谱分析的应用实践

波谱分析的应用实践

波谱分析的应用实践
波谱分析是一种重要的信号处理技术,广泛应用于许多领域,包括通信、音频处理、医学、环境监测等。

本文将主要介绍波谱分析的应用实践,并以几个具体案例来说明。

第三,波谱分析在医学领域的应用也越来越重要。

通过对生物体内信
号的波谱分析,可以获得很多有关健康和疾病的信息。

例如,在神经科学中,对脑电图(EEG)信号进行波谱分析可以帮助研究人员了解大脑活动
的频谱特征,以诊断和治疗神经系统疾病。

此外,对心电图(ECG)信号
进行波谱分析可以帮助识别心律失常和其他心血管疾病。

最后,波谱分析在环境监测中也得到了广泛的应用。

通过对环境噪声
信号进行波谱分析,可以评估和监测环境质量。

例如,在城市规划中,波
谱分析可以用于评估交通噪声对居民健康的影响,以便进行噪声控制和城
市规划。

此外,在环境污染监测中,波谱分析可以用于检测和分析大气、水、土壤等环境中的污染物,以帮助评估环境质量和进行环境保护。

综上所述,波谱分析作为一种重要的信号处理技术,具有广泛的应用
实践。

从通信、音频处理到医学和环境监测,波谱分析都有着重要的作用,帮助我们更好地理解和利用不同信号的频谱特征。

在未来,随着技术的不
断发展和创新,波谱分析的应用将进一步拓展,并发挥更大的作用。

波谱解析的原理及应用

波谱解析的原理及应用

波谱解析的原理及应用1. 引言波谱解析是一种重要的分析技术,广泛应用于物理、化学、生物等领域。

本文将介绍波谱解析的基本原理以及其在不同领域中的应用。

2. 波谱解析的原理波谱解析是指通过测量光谱中的波长或频率分布来分析物质的成分、结构和性质。

它基于不同物质对辐射能的吸收、发射或散射的不同特性进行分析。

波谱解析的基本原理包括以下几个方面:2.1 原子和分子的能级结构原子和分子具有不同的能级结构,当光或其他辐射能与原子或分子相互作用时,会引起能级的变化。

这种能级变化会伴随着能量的吸收、发射或散射,从而产生特定的光谱现象。

2.2 光谱的测量方法波谱解析中常用的测量方法包括吸收光谱、发射光谱和散射光谱。

吸收光谱是通过测量样品对入射光的吸收程度来分析样品的成分和浓度。

发射光谱是通过测量样品发射的光的强度和波长来分析样品的性质。

散射光谱则是通过测量样品对入射光的散射程度来分析样品的形态和结构。

2.3 光谱的解析方法波谱解析方法包括光谱峰识别、波长/频率计算、能级分析等。

光谱峰识别是通过分析光谱中的峰值来确定物质的成分,每个峰对应特定的波长或频率。

波长/频率计算是通过已知的能级结构和物理常数来计算光谱中峰值的波长或频率。

能级分析是通过比较实验测得的波谱与理论模型进行对比,进而推导出物质的能级结构和特性。

3. 波谱解析的应用波谱解析在不同领域中有着广泛的应用。

以下列举了几个常见领域的应用案例。

3.1 化学分析波谱解析在化学分析中起着重要作用。

例如,红外光谱被广泛用于确定分子的结构和功能团;紫外可见光谱可用于分析溶液中的物质浓度以及化学反应的动力学过程;质谱则能够确定物质的分子量和化学结构。

3.2 材料科学波谱解析在材料科学中也有广泛应用。

例如,X射线衍射可以用于确定晶体的结构和定量分析晶体中的杂质;核磁共振波谱可用于确定物质的结构和分析样品的纯度。

3.3 生物科学在生物科学领域,波谱解析被用于分析生物分子的结构和功能。

有机化学波谱分析

有机化学波谱分析
,形成质谱图。
质谱的解析方法
谱图解析
01
根据质谱峰的位置和强度,确定有机分子的分子量和结构信息。
同位素峰分析
02
利用同位素峰的强度比推断有机分子的元素组成。
裂解模式分析
03
研究有机分子在质谱仪中的裂解行为,推断有机分子的结构特
征。
质谱在有机化学中的应用
有机分子鉴定
通过比较标准谱图和实验谱图,确定有机分子的 化学结构。
通过自动化和智能化的技术手段,实 现波谱分析与其他分析方法的快速、 高效联用,提高分析效率,减少人为 误差。
波谱分析在有机化学中的新应用
新材料表征
随着新材料研究的不断深入,波谱分析在新型有机材料如高 分子聚合物、纳米材料等的表征中发挥越来越重要的作用。
生物大分子研究
利用波谱分析技术,研究生物大分子如蛋白质、核酸等的结 构和功能,有助于深入了解生物体系的复杂性和相互作用的 机制。
通过有机化学波谱分析,可以确定有机化合物的分子量、官能团、化学键等结构信息,有助于深入了解 有机化合物的性质和反应机理。
有机化学波谱分析还可以用于有机化合物的定性和定量分析,为有机化合物的合成、分离、纯化等提供 有力支持。
有机化学波谱分析的发展趋势
随着科技的不断进步,有机化学波谱分析技术也在不 断发展,新的技术和方法不断涌现。
THANKS
感谢观看
高灵敏度检测
利用新型的信号处理技术和高精度的 检测设备,提高波谱分析的灵敏度和 分辨率,有助于更准确地鉴定有机化 合物的结构和性质。
波谱分析与其他分析方法的联用
联用技术
将波谱分析与其他分析方法如色谱、 质谱、核磁共振等联用,可以实现更 全面、准确的分析,提高复杂有机混 合物的分离和鉴定能力。

有机波谱分析总结

有机波谱分析总结

有机波谱分析总结有机波谱分析是有机化学中一项重要的分析技术,通过对有机化合物的波谱进行分析,可以确定其结构和功能基团,对于有机合成、药物研发等领域有着广泛的应用。

本文将对有机波谱分析的原理、常见波谱技术和分析方法以及应用进行总结。

一、有机波谱分析原理有机波谱分析主要基于分子中所包含的原子核和电子的转动、振动和电子能级跃迁引起的辐射吸收或发射现象。

通过测量分子在不同频率范围内所吸收或发射的辐射能量,可以得到不同类型的波谱。

有机波谱分析常用的波谱包括红外光谱、质谱、核磁共振谱和紫外可见光谱。

二、常见的有机波谱技术1.红外光谱(IR):红外光谱是根据有机化合物中的官能团和化学键所具有的振动频率的不同来进行分析的。

通过红外光谱可以确定有机化合物中的官能团,如羧酸、醇、醛等。

红外光谱具有非破坏性、操作简便的特点,广泛应用于有机合成、药物研发等领域。

2.质谱(MS):质谱是通过对有机化合物中分子离子和碎片离子质量进行测量来分析有机化合物的分子结构。

质谱具有高灵敏度、高分辨率的特点,可以确定分子的组成和相对分子质量,对于有机化合物的鉴定具有重要意义。

3.核磁共振谱(NMR):核磁共振谱是根据核磁共振现象进行分析的。

通过测量有机化合物中原子核受到外加磁场影响的吸收或发射的辐射能量,可以得到有机化合物中原子核的位置、种类和环境。

核磁共振谱具有高分辨率、非破坏性和无辐射的特点,广泛应用于有机合成、物质鉴定和生物医学研究等领域。

4.紫外可见光谱(UV-Vis):紫外可见光谱是通过测量有机化合物在紫外可见光区域吸收或发射的辐射能量,以确定有机化合物的电子能级和共轭体系的存在与否。

紫外可见光谱具有高灵敏度和快速测量的特点,常用于有机合成、化学动力学和药物研发等领域。

三、有机波谱分析方法1.结构鉴定法:通过与已知化合物的波谱进行对比,确定未知化合物的结构。

结构鉴定法常用于核磁共振谱和质谱。

2.定量分析法:通过测定化合物在特定波长或波数处的吸光度或吸收峰面积,来确定有机化合物的含量。

波谱分析

波谱分析

E
E
质子磁矩顺外加磁场方向 H0
△E
=
h
H0
= h
,
= H0
为磁旋比(物质的特征常数)
是照射频率 h为Plank常数
当照射电磁波的能量恰好等于两能级能量之差时,质子 吸收电磁波从低能级跃迁到高能级,这时就发生了核磁 共振。
样品管
N
记录仪 S
无线电波 振荡器
放大器
△E
=
h
H0
= h
,
= H0
FT-ICR-MS HPLC/MS
UV-Spectrophotometer
IR
电场或磁场
7.1 电磁波谱(Electromagnetic Spectrum)
A
一个循环
c =
△E=h
吸收光谱——分子吸收电磁波所形成的光谱。
分子内的各种跃迁都是不连续的,即量子化的,只有当 光子的能量与两个能级之间的能量差相等时,这个光子 的能量才能被吸收产生分子内跃迁。
H实 = H0-H = H0-σH0= H0(1-σ)
H实为质子实际感受到的磁场强度 H0为外加磁场强度 H 为感应磁场强度 σ为屏蔽常数
核外电子对质子产生的这种作用称为屏蔽效应。质子周围的电子云密度 越大,屏蔽效应越大,只有增加磁场强度才能使质子发生共振。反之, 若感应磁场与外加磁场方向相同,质子实际感受到的磁场强度为外加磁 场与感应磁场强度之和,这种作用称去屏蔽效应,只有减小外加磁场强 度才能使质子共振。由于分子中不同质子核周围的电子云密度各有不同, 或者说质子所处的化学环境不同,因此它们发生核磁共振所需的外磁场 强度各有不同,即产生了化学位移(chemical shift)。
问题5:分子式为C2H4Cl2的红外光谱图和氢谱如下,推测其结构。

波谱解析pdf

波谱解析pdf

波谱解析pdf
波谱解析是一种科学技术,用于研究和分析物质的光谱特性。

它通过测量材料与不同波长或频率的光之间的相互作用,得到关于材料的信息。

波谱解析可以应用于各个领域,如化学、物理、生物学等。

常见的波谱解析方法包括:
1.紫外可见光谱:通过测量物质在紫外可见光波段吸收或散射光的强度变化,来推断物质的结构和浓度。

2.红外光谱:利用物质吸收红外光的特性,来研究物质的分子结构和化学键的性质。

3.核磁共振(NMR)光谱:通过观察核磁共振现象,测量样品中原子核的共振频率,从而了解分子结构、组成和化学环境。

4.质谱:通过将物质分子中的离子化,然后对离子进行质量-电荷比的测量,从而确定物质的分子量和分子结构。

5.微波光谱:研究物质分子在微波波段的转动和振动特性,从而得到物质的结构信息。

波谱解析在科学研究、材料分析、环境监测、医学诊断等领域都有广泛的应用,可以帮助人们深入理解物质的性质和特性。

波谱分析

波谱分析

3. 铬酸氧化 4. 臭氧化
5. 羰基试剂 6. Tollen’s 试剂 7. 碘仿反应 8. Fehling’s 试剂 Benedict’s 试剂
10
9. HIO4、Pb(OAc)4 10. AgNO3/NH3·H2O
CuCl/NH3·H2O
11. AgNO3/EtOH 12. Lucas’ 试剂 HCl/ZnCl2 13. 金属钠 Na 14. 饱和亚硫酸氢钠 NaHSO3 aq. 15. NaHCO3 aq. 16. NaOH aq.
4
例1
C7H7NO
U = ½ (2 x 7 – 7 + 1) + 1 = 5
可能是:
CONH2
NHCH O
NOH H
CHO
……
NH2
5
例 2 C7H7NO2 UN(III) = ½ (2 x 7 – 7 + 1) + 1 = 5 U N(V) = ½ (2 x 7 – 7 + 3) + 1 = 6
可能是: NV
根据所提供的化学、波谱信息进行推导。
波谱法推导结构
根据所提供的波谱信息进行推导。
8
一. 化学法推导结构
根据所提供的化学信息进行推导。
(一) 信息与结构 z信息 (反应)
(二) 结构与信息 z结构
结构 反应 (信息)
9
(一) 信息与结构
1. Br2/CCl4 2. KMnO4
C=C 及其数量
C=C、C≡C、ArCHROH(1˚、2˚)、RCHO
H H 5.25
CC
H
H
+C
3.66
3.99 H
O CH2CH3
CC

波谱分析_精品文档

波谱分析_精品文档

波谱分析现代波谱分析现代波谱分析摘要:1、引言早在19世纪50年代,人们就开始应用目视比色法。

19世纪末就已经开始了红外和紫外光谱测定,进入20世纪,随着科学技术的发展,仪器性能大大提高,实验方法不断改进和革新,特别是计算机的应用,使波谱法得到了突飞猛进的发展。

近年来,新应用以及新方法不断涌现。

波谱分析主要是以光学理论为基础,以物质与光相互作用为条件,建立物质分子结构与电磁辐射之间的相互关系,进行物质分子几何异构、立体异构、构象异构和分子结构分析和鉴定的方法。

波谱法主要包括红外光谱、紫外光谱、核磁共振和质谱,简称为四谱。

除此之外还包含有拉曼光谱、荧光光谱、旋光光谱和圆二色光谱、顺磁共振谱。

波谱法的种类也越来越多。

由于波谱分析法具有快速、灵敏、准确、重现性好等优点,使其应用范围广泛,涉及到化学、化工、材料科学、医学、生命科学、环保、食品安全等领域。

2、波谱分析进展从19世纪中期至现在,波谱分析经历了一个漫长的发展过程。

进入20世纪的计算机时代后,波谱分析得到了飞跃的发展,不断地完善和创新,在方法、原理、一起设备以及应用上都在突飞猛进。

2、1、四谱四谱是现代波谱分析中最主要也是最重要的四种基本分析方法。

四谱的发展直接决定了现代波谱的发展。

在经历了漫长的发展之后四谱的发展以及应用已渐成熟,也使波谱分析在化学分析中有了举足轻重的地位。

2、1、1、紫外-可见光谱现代波谱分析20世纪30年代,光电效应应用于光强度的控制产生第一台分光光度计并由于单色器材料的改进,是这种古老的分析方法由可见光区扩展到紫外光区和红外光区。

紫外光谱具有灵敏度和准确度高,应用广泛,对大部分有机物和很多金属及非金属及其化合物都能进行定性、定量分析,且仪器的价格便宜,操作简单、快速,易于普及推广,所以至今它仍是有机化合物结构鉴定的重要工具。

近年来,由于采用了先进的分光、检测及计算机技术,使仪器的性能得到极大的提高,加上各种方法的不断创新与改善,使紫外光谱法成为含发色团化合物的结构鉴定、定性和定量分析不可或缺的方法之一。

波谱分析复习资料

波谱分析复习资料

波谱分析复习资料绪论【波谱分析的定义】物质在电磁波的照射下,引发分子内部某些运动,从而吸取或散射某种波长的光,将入射光强度变化或散射光的信号统计下来,得到的信号强度与光的波长(波数、频率)散射角度的关系图,用于物质的构造、构成及化学变化的分析,称为波普分析。

第一章紫外光谱1、UV 产生原理?电子跃迁类型、能级大小和相对应的吸取波段【原理】分子吸取紫外光发生价电子能级跃迁而产生的吸取光谱。

分子中电子的分布及相应的能级,决定了分子紫外吸取光谱特性。

【类型】σ→σ*跃迁是单键中的σ电子在σ成键和反键轨道间的跃迁。

跃迁需要的能量最大,对应的激发光波长最短,在150~160nm 范畴内。

n →σ*跃迁是O、N、S 和卤素等杂原子的未成键电子向σ反键轨道跃迁。

跃迁需要的能量较小,对应的吸取带的波长较长,普通出现在200nm 附近。

半径较大的杂原子(如S、I),其n 轨道的能级较高,此跃迁所需能量较低,故含S 或I 的饱和有机化合物在220~250nm 附近可能产生这种跃迁。

π→π*跃迁是不饱和键中的π电子吸取能量跃迁到π*轨道。

孤立双键π→π*跃迁产生的吸取带位于160~180nm,但在共轭双键体系中,吸取带向长波方向移动(红移)。

共轭体系愈大,π→π*跃迁产生的吸取带波长愈大。

n→π*跃迁当不饱和键上连有杂原子(如C=O、—NO2)时,杂原子上的n 电子跃迁到π*轨道。

n→π*跃迁所需要的能量最小,所对应的吸取带位于270~300nm的近紫外区。

各电子跃迁的能级差ΔE 存在下列次序:σ→σ*>n→σ*≥π→π*﹥n→π*2、什么叫发色团(生色)和助色团?红移,长移,增色效应,短移,蓝移?【发色团】分子中含有π电子的基团(如C=C、C=O、—N=N—、—C≡N、—NO2、—C6H5)成为发色团。

他们能产生π→π*和(或)n→π*跃迁从而能在紫外—可见光范畴能产生吸取。

【助色团】含有未成键n 电子的杂原子饱和基团(如—OH、—NH2、—SR、—Cl、—Br、—I),他们本身在紫外—可见光范畴内不产生吸取,但当他们与发色团相连时,能使该发色团的吸取峰向长波方向移动,并使吸取峰强度增加,被称为助色团。

波谱分析

波谱分析

O H NH R R HN H O
游 离 1690 氢 键 1650
C=O
N-H
3500 3400
N-H
1650-1620
形成分子内氢键时影响很显著
(6)偶合效应
邻近的两个基团。同时具有大约相等的频率就会偶合产 生两个吸收带-振动偶合。 (a) 一个碳上含有两个或三个甲基,在1385~1350 cm-1出现 两个吸收峰。 (b) 酸酐上两个羰基互相偶合产生两个吸收带; 硝基苯中硝基N=O键偶合产生两个吸收带. O CH3-C CH3-C O
影响基团吸收频率变化的因素
• 分子中化学键不是孤立的,受分子中相邻基团的影 响 • 同一基团在不同的分子结构中受不同基团的影响, 其基团频率会有所改变,了解影响基团频率的因素, 对解析红外光谱和推断分子结构非常有用。 • 影响基团频率的因素有内部结构和外部环境的影响
1. 诱导效应
2 .共轭效应 3. 环张力效应 内部因素: 影响基团频率的因素 外部因素 4.空间位阻 5.氢键效应 6.偶合效应 1 状态 2 溶剂效应
(3)l000~650cm-1,烯碳上质子的面外摇摆振动=CH ① =CH3000cm-1,这是不饱和碳上质子与饱和碳上质子的重要 区别,饱和碳上质子CH3000cm-1。 ② C=C的位置及强度与烯碳的取代情况及分子对称性密切相关。 乙烯基型的C=C出现在1640cm-1附近。 随着双键上取代基的增加,吸收峰向高频方向移动。 有对称中心时,C=C看不到。 烯键与C=C、C=O、CN及芳环等共轭时, C=C向低波数方 向移动,强度大大加强。
表3-5 取代烯烃 RCH=CH2
不同类型烯烃特征频率表(cm-1)as CH 2 Nhomakorabea
s CH 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章
1.红外光谱法(IR)
基本原理:当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。

红外活性:分子振动过程中能引起偶极矩变化
产生红外吸收的两个条件:⑴振动频率与红外光光谱段的某频率相等⑵偶极矩变化
伸缩振动
键长变化
剪式振动
振动形式面内面内摇摆振动
弯曲振动
键角变化面外面外摇摆振动
面外摇摆振动
吸收带类型:基频带、倍频带、合频带。

红外三要素:峰位、峰数、峰强
▲频率位移的影响因素:内部因素有诱导效应、共轭效应、空间效应、氢键作用、张力效应、振动耦合、Fermi共振。

外部因素有物态的影响和溶剂的影响。

2.拉曼散射光谱
基本原理:由于键上电子云分布产生瞬间变形引起的暂时极化,产生诱导偶极,当返回基态时发生的散射。

拉曼散射:当激发光照射样品时,光子与分子碰撞后发生了能量交换,即发生拉曼散射。

拉曼位移:拉曼散射光与入射光的频率之差称为拉曼位移。

拉曼位移产生条件:激发能量应大于振动能级的能量差,低于电子能级间的能量差,并且激发光要远离分析物的紫外—可见吸收光范围。

3.核磁共振(NMR)
原理:在强磁场中,一些具有磁性的原子核的能量可以裂分为2个或2个以上的能级。

如果此时外加的能量等于相邻2个能级之差,则该核就会吸收能量,产生共振吸收,从低能态跃迁至高能态。

所吸收能量的数量级相当于频率范围为0.1~100MHz的电磁波,同时产生核磁共振信号,得到核磁共振谱。

产生核磁共振的条件:⑴原子核的自旋⑵外磁场能级分裂⑶照射频率与外磁场的比值ν0/H0=γ/2π。

化学位移:能够反映磁核在分子中所处的化学环境。

质子周围基团的性质不同,使它的共振频率不同,这种现象称为化学位移。

影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键
4.X射线分析
WAXD广角X射线:⑴聚合物晶型及有规立构的分析鉴定⑵高聚物物相鉴定⑶聚合物材料中添加物的分析⑷结晶参数的测定
SAXS小角X射线散射:⑴粒子的尺寸、形状及分布⑵粒子的分散状态⑶高分子链结构和分子运动⑷多相聚合物的界面结构和相分离
第二章
1.分子量与分子量分布
M z≥M w≥Mη≥M n
第三章
1.扫描电子显微镜(SEM)
基本结构:电子光学系统(主要组成部分)、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。

电子光学系统:电子枪、电磁透镜和扫描线圈
原理:扫描电镜是用聚焦电子束在试样表面逐点扫描成像。

试样为块状或粉末颗粒,成像信号可以是二次电子、背散射电子或吸收电子。

其中二次电子是扫描电镜中应用最广泛、分辨率最高的一种成像信号。

应用:1.1观察高分子材料的形态与结构 1.2观察高分子材料的晶态结构
1.3观察高分子材料的共混相容性 1.4观察高分子/纳米复合材料的结构
1.5观察高分子材料的生物降解性
2.透射电子显微镜(TEM)
基本结构:照明系统、成像系统、观察、记录成像。

相关名词:▲衬度:透射电子和部分散射电子成像,其像显示不同的明暗程度即衬度。

▲散射衬度:由于样品对入射电子的散射而引起的,它是非晶态形态衬度的主要
原因,主要取决于样品各处参与成像的电子数目的差别,电子在试样中与原子相
碰撞的次数愈多,散射量就愈大。

当散射电子被物镜光阑挡住而不能参与成像时,
则样品中散射强的部分在像中显得较暗,而散射较弱的部分在像中显得较亮。

应用:2.1观察高分子材料的形态与结构 2.2观察高分子材料的晶态结构
2.3观察多相高分子体系
3.原子力显微镜(AFM)
工作原理:将探针装在一单行微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描
时,探针与样品表面原子间的微弱的排斥力会使得微悬臂轻微变形,这种变形可以作为探针和样品间排斥力的直接量度。

成像模式:接触模式、非接触模式、敲击模式
应用:3.1观察高分子材料表面形貌 3.2观察高分子材料表面结晶形态及结晶过程
3.3观察高分子材料单链结构及性能 3.4观察高分子纳米复合材料
4.偏光显微镜(POM)
基本原理:采用偏光显微镜检测时,原则上要使起偏镜与检偏镜出于正交检偏位的状态下进行。

在正交的情况下,若被检物体在光学上表现为各向同性,这部分就是黑暗,若被检物体中含有双折射性物质,这部分就是发光的。

黑十字消光原理:
由合成光的强度I:I=A2sin22α·sin2(d/2)·cos2(wt-δ/2) (A、w一定)
各晶片中半径方向与切线方向的折射率是一样的,即δ为常数,I只与α=0、90、180等时sinα=0,没有光通过,当α为45的奇数时,sin2α有极大值,视野明亮,于是高分子球晶在偏光显微镜的两正交偏转器之间,出现黑十字消光现象。

应用:4.1观察高分子结晶中球晶(包括球晶形态和球晶生长及生长速率测定)
4.2观察高分子共混体系(包括共混物的结晶形态、共混物相容性判定、共混物体系
球晶形态)
第四章
1.热重分析法(TG)
概念:热重分析就是在不同的热条件下对样品的质量变化加以测量的动态热分析技术应用:热重法是在程序控温下,测量物质的质量与温度或时间的关系的方法。

通常测量试样的质量变化与温度的关系。

原理:△ω=f(T)或f(τ),△ω为重量变化,T为热力学温度,τ为时间。

对温度或时间求微分(dω/dτ)得到DTG曲线。

(曲线题建议查看试卷,原题几率很大,以下DTA、DSC曲线均不画出,卷子上绝对是原题)
2.差热分析法(DTA)
应用:测定玻璃化温度Tg、熔点Tm、熔化热、汽化热、纯度等。

吸热效应:熔化、蒸发、升华、解吸、脱水
放热效应:吸附、氧化、结晶
吸热效应+失重→分解、脱水
放热效应+增重→氧化
吸热、无重量变化、有体积变化→晶型转变
放热+收缩→新晶相形成、重结晶
无热效应而有体积收缩→烧结
影响差热分析主要因素:
2.1气氛和压力的影响例如,有的样品易氧化,可以通入氮气、氖气等
2.2升温速率的影响升温速率↑,单位时间的热效应↑,峰顶温度向高温方向移动峰变高变宽,面积也变大。

2.3试样的预处理及用量试样量越多,内部传热时间越长,形成的温度梯度越大,DTA峰形会扩张,峰顶温度在那个高温移。

2.4参比物的影响要求在加热或冷却过程中不发生任何变化,在整个升温过程中参比物的比热、导热系数、粒度尽可能与试样一致。

2.5纸速的影响纸速↑,峰面积大,峰平坦,误差小;纸速↓,峰面积小。

3.差示扫描量热法(DSC)
概念:在程序控温下,测量物质和参比物之间的能量差随温度变化关系的一种技术。

a点玻璃化转变温度,b为结晶,c为熔融(吸热),d为固化、氧化、反应、交联(放热)、e为分解气化
应用:测定高分子材料的玻璃化转变Tg、熔融、结晶、熔融热、结晶热以及共熔温度和纯度。

还可以进行高分子材料的鉴别,测定高分子材料的热稳定性、氧化稳定性、反应动力学、热力学函数等。

4.热机械分析
静态热机械分析(TMA)
动态热机械分析(DMA)
应用:可以测量高聚物的Tg温度、研究高聚物的松弛运动、固化过程、分析增塑剂含量、表征高聚物合金组分的相容性。

相关文档
最新文档