【常考题】高中必修二数学下期中第一次模拟试卷附答案
【压轴题】高中必修二数学下期中第一次模拟试卷(带答案)
误;
对于选项②,由于 , m , m ,则根据直线与平面平行的判定,可得 m// ,故
②正确;
对于选项③,由于 // , m ,则根据面面平行的性质定理可得 m// ,故③正确;
A. a3 4
B. a3 3
C. a3 2
D. a3 a3
10.一个几何体的三视图如图所示,则该几何体的表面积为( )
A. B. C.
D.
11.如图是正方体的平面展开图,则在这个正方体中:
① BM 与 ED 平行
② CN 与 BE 是异面直线
③ CN 与 BM 成 60 角
④ DM 与 BN 是异面直线
①l∥平面 ABCD; ②l⊥AC; ③直线 l 与平面 BCC1B1 不垂直; ④当 x 变化时,l 不是定直线. 其中不成立的结论是________.(写出所有不成立结论的序号)
14.如图,在正方体 ABCD — A1B1C1D1 中, M,N 分别为棱 C1D1,C1C 的中点,有以下
四个结论:
故选:A 【点睛】 此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间 想象能力.
5.C
解析:C 【解析】 分析:由三视图还原实物图,再根据三角形面积公式求解. 详解:在斜二测直观图中 OB=2,OA=2, 所以在平面图形中 OB=2,OA=4, OA⊥OB, 所以
面积为 S 1 2 4 4 . 2
A.α⊥β,且 m⊂α
B.m⊥n,且 n∥β
C.α⊥β,且 m∥α
D.m∥n,且 n⊥β
4.已知正四面体 ABCD 中, M 为棱 AD 的中点,设 P 是 BCM (含边界)内的点,若
点 P 到平面 ABC ,平面 ACD ,平面 ABD 的距离相等,则符合条件的点 P ( )
【典型题】高中必修二数学下期中第一次模拟试题含答案(1)
故选D.
【点睛】
本题主要考查了平面与平面平行的判定与性质的应用,其中解答中灵活运用平面与平面平行额判定与性质进行判定是解答的关键,着重考查学生严密的思维能力和空间想象能力,属于基础题.
在Rt△ 中, ,
由勾股定理 得 ,
∴球的表面积 ,故选A.
考点:球的体积和表面积
9.C
解析:C
【解析】
【分析】
由题意首先求得长方体的棱长,然后求解其外接球的表面积即可.
【详解】
设长方体的棱长分别为 ,则 ,
所以 ,于是 ,
设球的半径为 ,则 ,所以这个球面的表面积为 .
本题选择C选项.
【点睛】
与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.
14.已知A,B,C,D是同一球面上的四个点,其中 是正三角形, 平面ABC, ,则该球的体积为_________.
15.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥 为鳖臑, 平面 , ,三棱锥 的四个顶点都在球 的球面上,则球 的表面积为__________.
【详解】
如图:连接 , ,
在三角形 中, ,故C正确.
平面 , , 与 垂直,故A正确;
【必考题】高中必修二数学下期中第一次模拟试卷含答案
2 3
,即 1 1 DQ 3
2 ,∴ DQ 3
2 ,设球心为 O ,半径为 R ,则在直角
AQO 中, OA2 AQ2 OQ2 ,即 R2 12 2 R2 ,∴ R 5 ,则这个球的表面积
4
为: S
4
5 2 4
25 4
;故选D.
考点:球内接多面体,球的表面积.
9.B
解析:B 【解析】
15,则这个棱柱的侧面积是( ).
A.130
B.140
C.150
D.160
12.某几何体的三视图如图所示(单位: cm ),其俯视图为等边三角形,则该几何体的
体积(单位: cm3 )是( )
A. 4 3 二、填空题
Hale Waihona Puke B. 10 3 3C. 2 3
D. 8 3 3
13.已知棱台的上下底面面积分别为 4,16 ,高为 3 ,则该棱台的体积为________. 14.在三棱锥 P ABC 中, PA 平面 ABC , AB BC , AB 3 , BC 4 , PA 5 ,
1, 圆心在 l 上.
(1)若圆心 C 也在直线 y x 1上,过点 A 作圆 C 的切线,求切线方程; (2)若圆 C 上存在点 M ,使 MA 2MO ,求圆心 C 的横坐标 a 的取值范围. 23.在三棱锥 S ABC 中,平面 SAB 平面 SBC , AB BC , AS AB ,过 A 作 AF SB ,垂足为 F ,点 E , G 分别是棱 SA , SC 的中点. (1)求证:平面 EFG∥平面 ABC . ( 2 )求证: BC SA.
考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一
定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.
【典型题】高中必修二数学下期中一模试题(及答案)
【典型题】高中必修二数学下期中一模试题(及答案)一、选择题1.设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4B .14-C .14D .42.已知a ,b 是两条异面直线,且a b ⊥r r,直线c 与直线a 成30°角,则c 与b 所成的角的大小范围是( ) A .[]60,90︒︒B .[]30,90︒︒C .[]30,60︒︒D .[]45,90︒︒3.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .644.已知正四面体ABCD 中,M 为棱AD 的中点,设P 是BCM ∆(含边界)内的点,若点P 到平面ABC ,平面ACD ,平面ABD 的距离相等,则符合条件的点P ( ) A .仅有一个B .有有限多个C .有无限多个D .不存在5.如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是( )A . 22B . 42C .4D .86.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切 B .相交 C .外切 D .相离 7.用一个平面去截正方体,则截面不可能是( ) A .直角三角形B .等边三角形C .正方形D .正六边形8.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .309.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .10.点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256πB .8πC .2516πD .254π11.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个12.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,10二、填空题13.正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.14.已知一束光线通过点()3,5A -,经直线l :0x y +=反射,如果反射光线通过点()2,5B ,则反射光线所在直线的方程是______.15.三棱锥P ABC -中,5PA PB ==,2AC BC ==,AC BC ⊥,3PC =,则该三棱锥的外接球面积为________.16.若圆1C :220x y ax by c ++++=与圆2C :224x y +=关于直线21y x =-对称,则c =______.17.如图,在ABC V 中,AB BC ⊥,SA ⊥平面ABC ,DE 垂直平分SC ,且分别交AC ,SC 于点D ,E ,又SA AB =,SB BC =,则二面角E BD C --的大小为_______________.18.直线10x y --=与直线20x ay --=互相垂直,则a =__________.19.正四棱锥S -ABCD 的底面边长和各侧棱长都为2,点S 、A 、B 、C 、D 都在同一个球面上,则该球的体积为______.20.已知双曲线的半焦距为,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是(为双曲线的离心率),则的值为__________.三、解答题21.如图,直角梯形BDFE 中,//,,2EF BD BE BD EF ⊥=ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.22.如图,在三棱锥A BCD -中,,E F 分别为棱,BC CD 上的中点.(1)求证:EF P 平面ABD ;(2)若,BD CD AE ⊥⊥平面BCD ,求证:平面AEF ⊥平面ACD .23.如图,ABCD 是正方形,O 是该正方体的中心,P 是平面ABCD 外一点,PO ⊥平面ABCD ,E 是PC 的中点.(1)求证://PA 平面BDE ; (2)求证:BD ⊥平面PAC .24.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(1)求证://DM 平面APC ; (2)求证:BC ⊥平面APC ;(3)若4BC =,10AB =,求三棱锥D BCM -的体积.25.如图,1AA 、1BB 为圆柱1OO 的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,DE ⊥平面1CBB .(1)证明:AC ⊥平面11AA B B ; (2)证明://DE 平面ABC .26.如图,四棱锥P ABCD -中,AP ⊥平面1,//,,,2PCD AD BC AB BC AD E F ==分别为线段,AD PC 的中点.(1)求证://AP 平面BEF ; (2)求证:平面BEF ⊥平面PAC【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值. 【详解】解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-, 又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =. 故选D . 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.A解析:A 【解析】 【分析】将异面直线所成的角转化为平面角,然后由题意,找出与直线a 垂直的直线b 的平行线,与直线c 平行线的夹角. 【详解】在直线a 上任取一点O ,过O 做//c c ',则,a c '确定一平面α,过O 点做直线b 的平行线b ',所有平行线b '在过O 与直线a 垂直的平面β内, 若存在平行线1b '不在β内,则1b '与b '相交又确定不同于β的平面, 这与过一点有且仅有一个平面与一条直线垂直矛盾,所以b '都在平面β内, 且,l αβαβ⊥=I ,在直线c '上任取不同于O 的一点P ,做PP l '⊥于P ',则PP β'⊥,POP '∠为是c '与β所成的角为60︒, 若b l '⊥,则,b b c α'''⊥⊥,若b '不垂直l 且不与l 重合, 过P '做P A b ''⊥,垂足为A ,连PA ,则b '⊥平面PP A ', 所以b PA '⊥,即1,cos 2OA OP OA PA AOP OP OP '⊥∠=<=,60AOP ∠>︒,综上b '与c '所成角的范围为[60,90]︒︒,所以直线b 与c 所成角的范围为[]60,90︒︒. 故选:A.【点睛】本题考查异面直线所成角,空间角转化为平面角是解题的关键,利用垂直关系比较角的大小,属于中档题.3.A解析:A 【解析】 【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值. 【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O . 则2a OA =,1PO ⊥ 平面ABCD . 则22211OO O A OA +=,即()2222332a h ⎛⎫+-=⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=- 令()()2122f h h hh =-,则()2246f h h h'=-当04h <<时,()0f h '>,()f h 单调递增. 当4h >时,()0f h '<,()f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯= . 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.4.A解析:A【解析】【分析】根据正四面体的对称性分析到平面ABC,平面ACD,平面ABD的距离相等的点的轨∆所在平面的公共部分即符合条件的点P.迹,与BCM【详解】在正四面体ABCD中,取正三角形BCD中心O,连接AO,根据正四面体的对称性,线段AO上任一点到平面ABC,平面ACD,平面ABD的距离相等,到平面ABC,平面ACD,平面ABD的距离相等的点都在AO所在直线上,AO与BCM∆所在平面相交且∆内部,所以符合题意的点P只有唯一一个.交于BCM故选:A【点睛】此题考查正四面体的几何特征,对称性,根据几何特征解决点到平面距离问题,考查空间想象能力.5.C解析:C【解析】分析:由三视图还原实物图,再根据三角形面积公式求解.详解:在斜二测直观图中OB=2,OA=2,所以在平面图形中OB=2,OA=4, OA⊥OB,所以面积为12442S=⨯⨯=.选C.点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.6.B解析:B【解析】化简圆到直线的距离,又两圆相交. 选B7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A正三角形C正方形:D正六边形可以画出三角形但不是直角三角形;故选A.用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A.8.C解析:C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C.考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.9.A解析:A【解析】【分析】利用线面平行判定定理可知B 、C 、D 均不满足题意,从而可得答案. 【详解】对于B 项,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ , 同理可证,C ,D 项中均有AB ∥平面MNQ . 故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.10.D解析:D 【解析】试题分析:根据题意知,ABC V 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S V 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =V ,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO V 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D.考点:球内接多面体,球的表面积.11.C解析:C 【解析】 【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面(4)利用反证法,可推出//BC AE 不成立. 【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又Q 平面ABE I 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂Q 平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则2AC a =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥, 即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直, 取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆Q 是等边三角形,且D 为AB 的中点,DE AB ⊥∴.Q 平面ABE ⊥平面ABC ,平面ABE I 平面ABC AB =,DE ⊂平面ABE .DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴, DE ⊄Q 平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT .G Q 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄Q 平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT . DE AB D =Q I ,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥Q ,则AE AB ⊥,事实上60BAE ∠=o , 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行. 因此,可能正确命题的个数为3. 故选:C. 【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题.12.D【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.二、填空题13.【解析】【分析】首先根据数形结合分析可知线段的长度的最小值转化为在平面上投影线段的最小值然后转化为点到直线的距离的最小值【详解】当平面时线段与其在平面上投影相等当与平面不平行时是斜线段大于其在平面上【解析】 【分析】首先根据数形结合分析可知线段PQ 的长度的最小值转化为PQ 在平面ABCD 上投影线段的最小值,然后转化为点到直线的距离的最小值. 【详解】当//PQ 平面ABCD 时,线段PQ 与其在平面ABCD 上投影相等,当PQ 与平面ABCD 不平行时,PQ 是斜线段,大于其在平面ABCD 上投影的长度,∴求线段PQ 的最小值就是求其在平面ABCD 上投影的最小值,点P 在平面ABCD 的投影是点C ,点Q 在平面ABCD 的投影在BD 上,∴求线段PQ 的最小值转化为点C 到BD 的距离的最小值,连接,AC BD ,交于点O ,AC BD ⊥,∴点C 到BD 的距离的最小值22CO =.故答案为:22【点睛】本题考查几何体中距离的最小值,意在考查空间想象能力和数形结合分析问题的能力,属于中档题型.14.【解析】【分析】计算关于直线的对称点为计算直线得到答案【详解】设关于直线的对称点为故故故反射光线为:化简得到故答案为:【点睛】本题考查了直线的反射问题找出对称点是解题的关键 解析:27310x y -+=【解析】 【分析】计算()3,5A -关于直线0x y +=的对称点为()15,3A -,计算直线1A B 得到答案.【详解】设()3,5A -关于直线0x y +=的对称点为()1,A x y ,故51335022y x x y -⎧=⎪⎪+⎨-+⎪+=⎪⎩,故()15,3A -. 故反射光线为1A B :()532525y x -=-++,化简得到27310x y -+=. 故答案为:27310x y -+=.【点睛】本题考查了直线的反射问题,找出对称点是解题的关键.15.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球解析:7π【解析】 【分析】由已知数据得,,CA CB CP 两两垂直,因此三棱锥外接球直径的平方等于这三条棱长的平方和. 【详解】∵PA PB ==AC BC ==PC =,∴222222,PC CB PB PC CA PA +=+=,∴,PC CB PC CA ⊥⊥,又CA CB ⊥,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.设外接球半径为R ,则2222(2)7R CA CB CP =++=,2R =,球表面积为22447.S R πππ==⨯= 故答案为:7π. 【点睛】本题考查球的表面积,解题关键是确定,,CA CB CP 两两垂直,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.16.【解析】【分析】两圆关于直线对称即圆心关于直线对称则两圆的圆心的连线与直线垂直且中点在直线上圆的半径也为即可求出参数的值【详解】解:因为圆:即圆心半径由题意得与关于直线对称则解得圆的半径解得故答案为 解析:165-【解析】 【分析】两圆关于直线对称即圆心关于直线对称,则两圆的圆心的连线与直线21y x =-垂直且中点在直线21y x =-上,圆1C 的半径也为2,即可求出参数,,a b c 的值. 【详解】解:因为圆1C :220x y ax by c ++++=,即22224224ab a b cx y 骣骣+-琪琪+++=琪琪桫桫,圆心111,22C a b ⎛⎫-- ⎪⎝⎭,半径r =由题意,得111,22C a b ⎛⎫-- ⎪⎝⎭与()20,0C 关于直线21y x =-对称,则112,122112221,22b a ba ⎧-⎪=-⎪⎪-⎨⎪--⎪⎪=⨯-⎩解得85=-a ,45b =,圆1C的半径2r ==,解得165c =-. 故答案为:165-【点睛】本题考查圆关于直线对称求参数的值,属于中档题.17.60°【解析】【分析】首先证得是二面角的平面角解直角三角形求得的大小【详解】由于是的中点所以由于所以平面所以由于平面所以而所以平面所以所以是二面角的平面角设则所以所以在中所以所以故答案为:【点睛】本解析:60° 【解析】 【分析】首先证得EDC ∠是二面角E BD C --的平面角,解直角三角形求得EDC ∠的大小. 【详解】由于SB BC =,E 是SC 的中点,所以SC BE ⊥,由于,SC DE DE BE E ⊥⋂=,所以SC ⊥平面BDE ,所以SC BD ⊥.由于SA ⊥平面ABC ,所以SA BD ⊥,而SA SC S ⋂=,所以BD ⊥平面SAC ,所以,BD DC BD DE ⊥⊥,所以EDC ∠是二面角E BD C --的平面角.设1SA AB ==,则SB BC ==2SC =,所以在Rt SAC ∆中,12SA SC =,所以30SCA ∠=o ,所以60EDC ∠=o . 故答案为:60o 【点睛】本小题主要考查二面角的求法,考查空间想象能力和逻辑推理能力,属于中档题.18.【解析】【分析】根据直线垂直的条件计算即可【详解】因为直线与直线互相垂直所以解得故填【点睛】本题主要考查了两条直线垂直的条件属于中档题 解析:1-【解析】 【分析】根据直线垂直的条件计算即可. 【详解】因为直线10x y --=与直线20x ay --=互相垂直, 所以110a ⨯+= 解得1a =-.故填1-. 【点睛】本题主要考查了两条直线垂直的条件,属于中档题.19.【解析】如图过S 作SO1⊥平面ABCD 由已知=1在Rt △SO1C 中∵SC =∴∴O1S =O1A =O1B =O1C =O1D 故O1是过SABCD 点的球的球心∴球的半径为r =1∴球的体积为点睛:与球有关的组合解析:43π【解析】如图,过S 作SO 1⊥平面ABCD ,由已知1112O C AC ==1.在Rt △SO 1C 中, ∵ SC =2 ,∴ 22111SO SC O C =-=,∴ O 1S =O 1A =O 1B =O 1C =O 1D ,故O 1是过S ,A ,B ,C ,D 点的球的球心,∴ 球的半径为r =1, ∴ 球的体积为34433r π=π.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.20.62【解析】试题分析:由题意得抛物线的准线为x=-c 它正好经过双曲线的左焦点所以准线被双曲线截得的弦长为2b2a 所以2b2a=223be2即ba=23e2所以整理得2e4-9e2+1=0解得e=62 解析:【解析】试题分析:由题意,得抛物线的准线为,它正好经过双曲线的左焦点,所以准线被双曲线截得的弦长为,所以,即,所以,整理,得,解得或.又过焦点且斜率为1的直线与双曲线的右支交于两点,所以.考点:1、抛物线与双曲线的几何性质;2、直线与双曲线的位置关系.【方法点睛】关于双曲线的离心率问题,主要是有两类试题:一类是求解离心率的值,一类是求解离心率的范围.基本的解题思路是建立椭圆和双曲线中的关系式,求值问题就是建立关于的等式,求取值范围问题就是建立关于的不等式.三、解答题21.(1)见解析(2)23【解析】 【分析】 【详解】 试题分析:(1)直接利用面面垂直的性质定理可证;(2)设AC BD O =I ,计算后可证OF//BE ,从而由已知可证OF ⊥平面ABCD ,因此可以OA ,OB ,OF 为坐标轴建立空要间直角坐标系,利用向量法求二面角. 试题解析:(1)∵平面BDFE ⊥平面ABCD ,C A BD ⊥,平面BDFE I 平面ABCD BD =, 又AC ⊂平面ABCD ,∴AC ⊥平面BDFE ;(2)设AC BD O =I ,∵四边形ABCD 为等腰梯形,,242DOC AB CD π∠===,∴2,22OD OC OB OA ====,∵//FE OB ,∴四边形BOFE 为平行四边形,∴//OF BE , 又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角,∴4FBO π∠=,又∵2FOB π∠=,∴22OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系, 则()()(()()0,22,0,0,2,0,2,2,0,0,22,0,0B D F C A --,(()2,22,2,2,0DF CD u u u v u u u v==-,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0, 设平面DFC 的一个法向量为(),,n x y z =v,由·0·0DF n CD n ⎧=⎨=⎩u u u v v u u u v v 得220220z x ⎧+=⎪⎨-=⎪⎩,令2x =得,()2,2,1n =-v ,2222cos ,31?221n AC u u uv v ==++,∴二面角B DF C --的余弦值为23.点睛:立体几何中求“空间角”,一种方法是根据“空间角”的定义作出它的“平面角”,再通过解三角形求得,其方法是一作二证三计算;第二种方法是在图形中有相互垂直的三条直线(或两条)时,可建立空间直角坐标系,利用空间向量法求角,这种方法主要的就是计算,减少了作辅助线,证明的过程,只要计算过关,一般都能求得正确结论. 22.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据线面平行的判定定理,在平面ABD 中找EF 的平行线,转化为线线平行的证明;(2)根据面面垂直的判定定理,转化为CD ⊥平面AEF . 【详解】(1)E Q ,F 分别是BC ,CD 的中点,EF ∴P BD ; 又Q EF ⊄平面ABD ,BD ⊂平面ABD ,EF ∴P 平面ABD .(2)BD CD ⊥Q ,EF P BD ,EF CD ∴⊥;AE ^Q 平面BCD ,AE CD ∴⊥;又EF ⊂平面AEF ,AE ⊂平面AEF ,CD \^平面AEF ,又CD ⊂平面ACD ,∴平面AEF ⊥平面ACD . 【点睛】本题考查了面面垂直的证明,难点在于转化为线面垂直,方法:结合已知条件,选定其中一个面为垂面,在另外一个面中找垂线,不行再换另外一个面. 23.证明见解析. 【解析】试题分析:(1)要证PA 与平面EBD 平行,而过PA 的平面PAC 与平面EBD 的交线为EO ,因此只要证//PA EO 即可,这可由中位线定理得证;(2)要证BD 垂直于平面PAC ,就是要证BD 与平面PAC 内两条相交直线垂直,正方形中对角线BD 与AC 是垂直的,因此只要再证BD PO ⊥,这由线面垂直的性质或定义可得. 试题解析:证明:(1)连接EO ,∵四边形ABCD 为正方形, ∴O 为AC 的中点,∵E 是PC 的中点,∴OE 是APC ∆的中位线. ∴//EO PA ,∵EO ⊂平面BDE ,PA ⊄平面BDE , ∴//PA 平面BDE .(2)∵PO ⊥平面ABCD ,BD ⊂平面ABCD , ∴PO BD ⊥,∵四边形ABCD 是正方形, ∴AC BD ⊥,∵PO AC O ⋂=,AC ⊂平面PAC ,PO ⊂平面PAC , ∴BD ⊥平面PAC .考点:线面平行与线面垂直的判断. 24.(1)见详解;(2)见详解;(353. 【解析】 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP PBC ⊥平面,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】(1)证明:因为M 为AB 的中点,D 为PB 的中点, 所以MD 是ABP △的中位线,MD AP P . 又MD APC ⊄平面,AP APC ⊂平面, 所以MD APC ∥平面.(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥.又MD AP P ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P I =,所以AP PBC ⊥平面.因为BC PBC ⊂平面,所以⊥AP BC .又因为BC AC ⊥,AC AP A ⋂=,所以BC APC ⊥平面.(3)因为AP PBC ⊥平面,MD AP P ,所以MD PBC ⊥平面,即MD 是三棱锥M DBC -的高.因为10AB =,M 为AB 的中点,PMB △为正三角形,所以5,PB MB MD MB ====. 由BC APC ⊥平面,可得BC PC ⊥,在直角三角形PCB 中,由54PB BC =,=,可得3PC =. 于是111433222BCD BCP S S ⨯⨯⨯=△△==.所以1133322D BCM M DBC BCD V V S MD --⨯⨯=g △===. 【点睛】本题考查空间线面平行与垂直的证明,体积的计算.空间中的平行与垂直的证明过程就是利用相关定义、判定定理和性质定理实现线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转换.求三棱锥的体积常采用等积转换的方法,选择易求的底面积和高来求体积.25.(1)证明见解析;(2)证明见解析【解析】【分析】(1)通过证明1A A AC ⊥和AB AC ⊥,即可证得AC ⊥平面11AA B B ;(2)通过证明//DE AO ,即可证得//DE 平面ABC .【详解】(1)由题,得1A A ⊥平面ABC ,所以1A A AC ⊥,又BC 是底面圆O 的直径,所以AB AC ⊥,因为1AB AA A =I ,所以AC ⊥平面11AA B B ;(2)连接,OE OA ,因为,E O 分别为1,B C BC 的中点,所以1//OE BB 且112OE BB =, 易得1//AD BB 且112AD BB =, 所以//AD OE 且AD OE =,所以四边形OADE 为平行四边形,则//DE AO ,因为AO ⊂平面ABC ,DE ⊄平面ABC ,所以//DE 平面ABC .【点睛】本题主要考查线面垂直和线面平行的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.26.(1)证明见详解(2)证明见详解【解析】【分析】(1)设,AC BE 交点为O ,连接OF ,则可根据OF 是APC ∆中位线求证OF AP P ,进而得证;(2)由线段关系可证BE CD ∥,又由AP ⊥平面PCD 可得AP CD ⊥,进而可得BE AC ⊥,再结合四边形ABCE 是菱形可得BE AC ⊥,即可求证;【详解】(1)设,AC BE 交点为O ,连接OF ,又1,2AB BC AD ==BC AE ∴=, 又//AD BC Q ,所以四边形ABCE 是菱形,则O 是AC 中点,又F 为PC 中点,∴OF 是APC ∆中位线,OF AP ∴P , AP ⊄平面BEF ,OF ⊂平面BEF ,∴//AP 平面BEF ;(2)由(1)可知四边形ABCE 是菱形,BE AC ∴⊥,又Q AP ⊥平面PCD 可得AP CD ⊥,E 为AD 中点可得BC ED =,又//AD BC Q ,∴四边形BCDE 为平行四边形,CD BE P ,AP BE ∴⊥,AC AP A =I ,BE ∴⊥平面PAC ,又BE ⊂平面BEF , ∴平面BEF ⊥平面PAC【点睛】本题考查线面平行面面垂直的证明,属于中档题。
【压轴卷】高中必修二数学下期中模拟试题附答案(1)
【压轴卷】高中必修二数学下期中模拟试题附答案(1)一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.已知三棱锥D ABC -的外接球的表面积为128π,4,42AB BC AC ===,则三棱锥D ABC -体积的最大值为( ) A .2732B .1086+ C .166+ D .322166+3.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( ) A .643B .32C .54D .644.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦5.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -的体积为43,则球O 的半径为( ) A .3B .1C .2D .46.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8πB .12πC .20πD .24π7.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm8.从点(,3)P m 向圆22(2)(2)1x y +++=引切线,则切线长的最小值( ) A .26B .5C .26D .42+9.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .3010.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763 B .1603C .1283D .3211.长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为( ) A .72π B .56πC .14πD .64π12.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC V 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF ,则1AFFA 的值为( )A .1B .12或2 C .22或2 D .13或3 二、填空题13.已知一束光线通过点()3,5A -,经直线l :0x y +=反射,如果反射光线通过点()2,5B ,则反射光线所在直线的方程是______.14.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 与△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①0BD AC ⋅≠u u u r u u u r;②∠BAC =60°;③三棱锥D ﹣ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确结论的序号是 .(请把正确结论的序号都填上)15.已知正方体1111ABCD A B C D -的棱长为1,点E 是棱1BB 的中点,则点1B 到平面ADE 的距离为__________.16.圆台的两个底面面积之比为4:9,母线与底面的夹角是60°,轴截面的面积为1803,则圆台的侧面积为_____.17.如图,AB 是底面圆O 的直径,点C 是圆O 上异于A 、B 的点,PO 垂直于圆O 所在的平面,且1,2PO OB BC ===,点E 在线段PB 上,则CE OE +的最小值为________.18.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______.19.函数2291041y x x x =++-+的最小值为_________.20.已知点()1,0A -,()2,0B ,直线l :50kx y k --=上存在点P ,使得2229PA PB +=成立,则实数k 的取值范围是______.三、解答题21.已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.22.如图1所示,在等腰梯形ABCD 中,4524AB CD BAD AB CD ∠=︒==∥,,,点E 为AB 的中点.将ADE ∆沿DE 折起,使点A 到达P 的位置,得到如图2所示的四棱锥P EBCD -,点M 为棱PB 的中点.(1)求证:PD MCE ∥平面;(2)若PDE EBCD ⊥平面平面,求三棱锥M BCE -的体积. 23.已知平面内两点(8,6),(2,2)A B -. (1)求AB 的中垂线方程;(2)求过点(2,3)P -且与直线AB 平行的直线l 的方程.24.如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ⊥平面ABCD ,33DE AF ==.(1)证明:平面//ABF 平面DCE ;(2)在DE 上是否存在一点G ,使平面FBG 将几何体ABCDEF 分成上下两部分的体积比为3:11?若存在,求出点G 的位置;若不存在,请说明理由.25.已知点(3,4),(9,0)A B -,,C D 分别为线段,OA OB 上的动点,且满足AC BD = (1)若4,AC =求直线CD 的方程;(2)证明:OCD ∆的外接圆恒过定点(异于原点).26.如图,1AA 、1BB 为圆柱1OO 的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,DE ⊥平面1CBB .(1)证明:AC ⊥平面11AA B B ; (2)证明://DE 平面ABC .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=o,根据2AB =,求得123BC =,可以确定122CC =,之后利用长方体的体积公式求出长方体的体积. 【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=o,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C. 【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.2.D解析:D 【解析】 【分析】先求出球心O 到底面距离的最大值,从而可求顶点D 到底面的距离的最大值,利用该最大值可求体积的最大值. 【详解】设外接球的球心为O ,半径为R ,则24128R ππ=,故42R =设球心O 在底面上的投影为E ,因为OA OC OB ==,故E 为ABC ∆的外心. 因为4AB BC ==,42AC =222AC AB BC =+,故ABC ∆为直角三角形, 故E 为AC 的中点,所以2226OE OA AE =-=, 设D 到底面ABC 的距离为h ,则2642h OE R ≤+= 所以三棱锥D ABC -的体积的最大值为(1132216644264232+⨯⨯⨯⨯=. 故选:D. 【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,注意球心在底面上的投影为底面外接圆的圆心.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.3.A解析:A 【解析】 【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值. 【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O . 则2a OA =,1PO ⊥平面ABCD . 则22211OO O A OA +=,即()2222332a h ⎛⎫+-= ⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=-令()()2122f h h hh =-,则()2246f h h h'=-当04h <<时,()0f h '>,()f h 单调递增. 当4h >时,()0f h '<,()f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯=. 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.4.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO …,即满足2PO …,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO …故2222000103634PO x y y y ==+-+… 解得0825y 剟,0605x 剟即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO …,从而得到不等式求出参数的取值范围.5.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.6.C解析:C 【解析】 【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC V 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC V 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C 【点睛】本题考查多面体外接球的表面积,是常考题型.7.B解析:B 【解析】 【分析】 【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4, ∴几何体的体积V =×3×4×5﹣××3×4×5=20(cm 3). 考点:1.三视图读图的能力;2.几何体的体积公式.8.A解析:A 【解析】 【分析】设切线长为d ,则2222(2)51(2)24d m m =++-=++再利用二次函数的图像和性质求函数的最小值得解. 【详解】设切线长为d ,则2222(2)51(2)24d m m =++-=++, min 26d ∴=. 故选:A. 【点睛】本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力.9.C解析:C 【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C .考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.10.B解析:B 【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.11.C解析:C 【解析】【分析】由题意首先求得长方体的棱长,然后求解其外接球的表面积即可. 【详解】设长方体的棱长分别为,,a b c ,则236ab bc ac =⎧⎪=⎨⎪=⎩,所以()236abc =,于是213a b c =⎧⎪=⎨⎪=⎩,设球的半径为R ,则2222414R a b c =++=,所以这个球面的表面积为24R π=14π. 本题选择C 选项. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.12.B解析:B 【解析】 【分析】易证1BD C F ⊥,故要使1C F ⊥平面BDF ,只需1C F DF ⊥,然后转化到平面11AAC C 中,根据勾股定理计算,即可得结果. 【详解】1CC ⊥平面ABC ,BD ⊂平面ABC ,所以1BD CC ⊥,又BA BC =,D 为AC 中点, 所以BD AC ⊥,又1AC CC C =I , 所以BD ⊥平面11AAC C ,1C F Q 平面11AAC C ,所以1C F BD ⊥,因为DF BD D =I ,故要使1C F 平面BDF ,只需1C F DF ⊥,在四边形11AAC C 中,1231AC CC AD CD ====,,, 设AF x =,则13FA x =-,由22211C D DF C F =+得()()2219143xx ⎡⎤+=+++-⎣⎦, 即2320x x -+=,解得1x =或2x =,所以112AF FA =或者12AFFA =, 故选:B.【点睛】本题考查了棱柱的结构特征,考查了空间中直线与平面的垂直的性质,勾股定理,考查空间想象能力和推理能力,属于中档题.二、填空题13.【解析】【分析】计算关于直线的对称点为计算直线得到答案【详解】设关于直线的对称点为故故故反射光线为:化简得到故答案为:【点睛】本题考查了直线的反射问题找出对称点是解题的关键 解析:27310x y -+=【解析】 【分析】计算()3,5A -关于直线0x y +=的对称点为()15,3A -,计算直线1A B 得到答案.【详解】设()3,5A -关于直线0x y +=的对称点为()1,A x y ,故51335022y x x y -⎧=⎪⎪+⎨-+⎪+=⎪⎩,故()15,3A -. 故反射光线为1A B :()532525y x -=-++,化简得到27310x y -+=. 故答案为:27310x y -+=.【点睛】本题考查了直线的反射问题,找出对称点是解题的关键.14.②③【解析】【分析】①由折叠的原理可知BD ⊥平面ADC 可推知BD ⊥AC 数量积为零②由折叠后AB =AC =BC 三角形为等边三角形得∠BAC =60°;③由DA =DB =DC 根据正三棱锥的定义判断④平面ADC解析:②③ 【解析】 【分析】①由折叠的原理,可知BD ⊥平面ADC ,可推知BD ⊥AC ,数量积为零,②由折叠后AB =AC =BC ,三角形为等边三角形,得∠BAC =60°;③由DA =DB =DC ,根据正三棱锥的定义判断.④平面ADC 和平面ABC 不垂直. 【详解】BD ⊥平面ADC ,⇒BD ⊥AC ,①错; AB =AC =BC ,②对;DA =DB =DC ,结合②,③对④错. 故答案为②③ 【点睛】本题主要考查折叠前后线线,线面,面面关系的不变和改变,解题时要前后对应,仔细论证,属中档题.15.【解析】【分析】点到平面的距离等价于点到平面的距离过作交于证得平面利用等面积法求得点到平面的距离也即点到平面的距离【详解】由于是的中点故点到平面的距离等价于点到平面的距离过作交于由于故平面在直角三角【解析】 【分析】点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,证得BF ⊥平面ADE ,利用等面积法求得点B 到平面ADE 的距离,也即点1B 到平面ADE 的距离. 【详解】由于E 是1BB 的中点,故点1B 到平面ADE 的距离等价于点B 到平面ADE 的距离,过B 作BF AE ⊥,交AE 于F ,由于BF AD ⊥,AD AE E ⋂=,故BF ⊥平面ADE .在直角三角形ABE 中,11,,22AB BE AE ===,所以1122AB BE AE BF ⋅⋅=⋅⋅,解得BF =.【点睛】本小题主要考查点到面的距离,考查等面积法求高,考查线面垂直的证明,属于基础题. 16.【解析】【分析】首先通过两个底面面积之比为得到半径比设出上底半径为下底半径为由因为母线与底面的夹角是得到母线长为高为就可以根据轴截面的面积解出代公式求出侧面积即可【详解】圆台的两个底面面积之比为则半解析:360π【解析】【分析】首先通过两个底面面积之比为4:9,得到半径比,设出上底半径为2k,下底半径为3k,由因为母线与底面的夹角是60o,得到母线长为2k,高为3k.就可以根据轴截面的面积k=,代公式求出侧面积即可.解出6【详解】圆台的两个底面面积之比为4:9,则半径比为2:3所以设圆台的上底半径为2k,下底半径为3k,由于母线与底面的夹角是60o,所以母线长为2k3k.由于轴截面的面积为1803, 所以()46318032k k k+⨯=,解得6k =.所以圆台的上底半径为12,下底半径为18.母线长为12. 所以圆台的侧面积为()121812360ππ+⨯=. 故答案为:360π 【点睛】本题主要考查圆台的性质以及圆台的侧面积,同时考查了线面成角问题,属于中档题.17.【解析】【分析】首先求出即有将三棱锥展开当三点共线时值最小可证为中点从而可求从而得解【详解】在中所以同理所以在三棱锥中将侧面绕旋转至平面使之与平面共面如图所示当共线时取得最小值又因为所以垂直平分即为 解析:26+ 【解析】 【分析】首先求出2PB PC ==,即有PB PC BC ==,将三棱锥展开,当三点共线时,值最小,可证E 为PB 中点,从而可求OC OE EC ''=+,从而得解.【详解】在POB V 中,1PO OB ==,90POB ∠=︒, 所以22112PB =+=,同理2PC =,所以PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ', 使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值, 又因为OP OB =,C P C B '=', 所以OC '垂直平分PB ,即E 为PB 中点, 从而2626222OC OE EC ''=+=+= 亦即CE OE +26+ 26+【点睛】本题主要考查了空间中线段和最小值问题,考查了空间想象能力、推理论证能力,考查了数形结合思想、化归与转化思想,属于中档题.18.4【解析】因为圆=关于直线=对称所以圆心在直线=上所以即又圆的半径为当点(ab)与圆心的距离最小时切线长取得最小值又点(ab)与圆心的距离为=所以切线长的最小值为=故答案为4点睛:本题主要考查直线与解析:4 【解析】因为圆22:243C x y x y ++-+=0关于直线26ax by ++=0对称,所以圆心()1,2C -在直线26ax by ++=0上,所以2260a b -++=,即3a b -=,, 当点(a,b )与圆心的距离最小时,切线长取得最小值,又点(a,b )与圆心的距离为≥所以切线长的最小值为=4.故答案为4点睛:本题主要考查直线与圆的位置关系,考查了转化思想.利用勾股关系,切线长取得最小值时即为当点(a,b )与圆心的距离最小时.19.【解析】【分析】将变形为设则即轴上的一动点到的距离之和作点关于轴的对称点即可求出距离和的最小值;【详解】解:设则即轴上的一动点到的距离之和作点关于轴的对称点连接则即为距离和的最小值故答案为:【点睛】【解析】 【分析】将y y =()0,3A ,()5,4B ,(),0C x ,则y AC BC =+即x 轴上的一动点C 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,即可求出距离和的最小值; 【详解】解:y ==()0,3A ,()5,4B ,(),0C x ,则y AC BC +,即x 轴上的一动点(),0C x 到()0,3A ,()5,4B 的距离之和,作()0,3A 点关于x 轴的对称点()10,3A -,连接1BA ,则1BA 即为距离和的最小值,1BA ==min y ∴=故答案为:74【点睛】本题考查平面直角坐标系上两点间的距离公式的应用,将军饮马问题,属于中档题.20.【解析】【分析】先求出直线经过的定点设直线上的点坐标由可求得点的轨迹方程进而求得斜率的取值范围【详解】解:由题意得:直线因此直线经过定点;设点坐标为;化简得:因此点为与直线的交点所以应当满足圆心到直解析:1515,1515⎡-⎢⎣⎦【解析】 【分析】先求出直线l 经过的定点,设直线上的p 点坐标,由2229PA PB +=可求得点P 的轨迹方程,进而求得斜率k 的取值范围. 【详解】解:由题意得:直线:(5)l y k x =-, 因此直线l 经过定点(5,0);设点P 坐标为0(x ,0)y ;2229PA PB +=Q ,∴22220000(1)22(2)9y x y x +++++=化简得:2200020x y x +-=,因此点p 为2220x y x +-=与直线:(5)l y k x =-的交点.所以应当满足圆心(1,0)到直线的距离小于等于半径∴211k +解得:[k ∈故答案为[k ∈ 【点睛】本题考查了求轨迹方程,一次函数的性质,考查了直线与圆的位置关系,是中档题.三、解答题21.(1)()3,0;(2)223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭;(3)存在,77k -≤≤或34k =±. 【解析】 【分析】(1)通过将圆1C 的一般式方程化为标准方程即得结论;(2)设当直线l 的方程为y=kx ,通过联立直线l 与圆1C 的方程,利用根的判别式大于0、韦达定理、中点坐标公式及参数方程与普通方程的相互转化,计算即得结论;(3)通过联立直线l 与圆1C 的方程,利用根的判别式△=0及轨迹C 的端点与点(4,0)决定的直线斜率,即得结论 【详解】(1)由22650x y x +-+=得()2234x y -+=,∴ 圆1C 的圆心坐标为()3,0; (2)设(),M x y ,则∵ 点M 为弦AB 中点即1C M AB ⊥, ∴11⋅=-C M AB k k 即13y yx x⋅=--, ∴ 线段AB 的中点M 的轨迹的方程为223953243x y x ⎛⎫⎛⎫-+=<≤ ⎪ ⎪⎝⎭⎝⎭; (3)由(2)知点M 的轨迹是以3,02C ⎛⎫⎪⎝⎭为圆心32r =为半径的部分圆弧EF (如下图所示,不包括两端点),且53E ⎛ ⎝⎭,5,33F ⎛⎫-⎪ ⎪⎝⎭,又直线L :()4y k x =-过定点()4,0D ,当直线L 与圆L 相切时,由223402321k k⎛⎫-- ⎪⎝⎭=+得34k =±,又202357554DE DFk k ⎛⎫-- ⎪⎝⎭=-=-=-,结合上图可知当332525,,44k ⎡⎤⎧⎫∈--⎨⎬⎢⎥⎩⎭⎣⎦U 时,直线L :()4y k x =-与曲线L 只有一个交点. 考点:1.轨迹方程;2.直线与圆相交的位置关系;3.圆的方程 22.(1)见解析;(2)2 【解析】 【分析】(1)连接BD ,交CE 于点O ,连接OM ,易知底面EBCD 是平行四边形,则O 为BD 中点,又M 是BP 中点,可知PD MO P ,则结论可证.(2)先证明ADE V 是等腰直角三角形,由条件中的面面垂直可得PD ⊥平面BCDE ,则由(1)可知MN ⊥平面BCDE ,则MN 为三棱锥M BCE -的高,底面BCE V 的面积容易求得,根据公式求三棱锥M BCE -的体积. 【详解】(1)在平面图中,因为12BE AB CD ==且//BE CD , 所以四边形EBCD 是平行四边形; 在立体图中,连接BD ,交CE 于点O ,连接OM ,所以点O 是BD 的中点,又因为点M 为棱PB 的中点,所以//OM PD ,因为PD ⊄平面MCE ,OM ⊂平面MCE ,所以//PD 平面MCE ;(2)在平面图中,因为EBCD 是平行四边形,所以DE BC =,因为四边形ABCD 是等腰梯形, 所以AD BC =,所以AD DE =,因为45BAD ∠=︒,所以AD DE ⊥;在立体图中,PD DE ⊥,又平面PDE ⊥平面EBCD ,且平面PDE ⋂平面EBCD DE =,PD ⊂平面PDE 所以PD ⊥平面EBCD ,由(1)知//OM PD ,所以OM ⊥平面EBCD ,在等腰直角三角形ADE 中,因为2AE =,所以2AD DE ==所以11222OM PD AD ===,又1BCE ADE S S ∆∆==, 所以1236M BCE BCE V S OM -∆=⋅⋅=. 【点睛】本题考查平面几何与立体几何的关系,线面平行的证明,面面垂直的性质等,有一定的综合性,属中等题.23.(1)34230x y --=; (2)4310x y ++=.【解析】试题分析:(1)首先求得中点坐标,然后求得斜率,最后利用点斜式公式即可求得直线方程;(2)利用点斜式可得直线方程为4310x y ++=.试题解析:(1)8252+=,6222-+=- ∴AB 的中点坐标为()5,2- 624823AB k --==--,∴AB 的中垂线斜率为34∴由点斜式可得()3254y x +=- ∴AB 的中垂线方程为34230x y --= (2)由点斜式()4323y x +=-- ∴直线l 的方程4310x y ++= 24.(1)见解析(2)存在点G 且1EG =满足条件.【解析】试题分析:(1)根据//,//DE AF AB CD ,结合面面平行的判定定理可知两个平面平行;(2)先求出整个几何体的体积.假设存在一点G ,过G 作//MG BF 交EC 于M ,连接,BG BM ,设EG t =,求得几何体GFBME 的体积,将其分割成两个三棱锥,B EFG B EGM --,利用t 表示出两个三棱锥的高,再利用体积建立方程,解方程组求得t 的值. 试题解析:解:(1)∵DE ⊥平面ABCD ,AF ⊥平面ABCD ,∴//DE AF ,∴//AF 平面DCE ,∵ABCD 是正方形,//AB CD ,∴//AB 平面DCE ,∵AB AF A ⋂=,AB ⊂平面ABF ,AF ⊂平面ABF ,∴平面//ABF 平面DCE .(2)假设存在一点G ,过G 作//MG BF 交EC 于M ,连接,BG BM ,()1331133213332322ABCDEF B ADEF B CDE V V V --+⨯⨯=+=⨯⨯+⨯⨯=, 设EG t =,则21392144GFBME B EFG B EGM V V V --=+=⨯=, 设M 到ED 的距离为h ,则331h EM t EC ==-,32h t =,234EGM S t ∆= ∴2131393334324t t ⨯⨯+⨯⨯=,解得1t =,即存在点G 且1EG =满足条件. 点睛:本题主要考查空间点线面的位置关系,考查几何体体积的求法,考查探究性问题的解决方法.第一问要证明面面平行,根据面面平行的判定定理可知,只需找到平面的两条相交直线和另一个平面的两条相交直线平行即可.第二问要对几何体进行分割,先假设存在,接着计算出总的体积,然后再次利用分割法用体积来列方程组,求解出G 的位置的值. 25.(1)750x y +-=(2)详见解析【解析】试题分析:(1)求直线CD的方程,只需确定C,D坐标即可:34 (,)55C-,(5,0)D,直线CD的斜率40153755-=-⎛⎫-- ⎪⎝⎭,直线CD的方程为750x y+-=.(2)证明动圆过定点,关键在于表示出圆的方程,本题适宜设圆的一般式:22+0x y Dx Ey F+++=设(3,4)(01)C m m m-<≤,则D(5+4,0)m,从而()()2220,{916340,54540.Fm m mD mE Fm m D F=+-++=++++=解之得(54),0D m F=-+=,103E m=--,整理得22435(2)0x y x y m x y+---+=,所以△OCD的外接圆恒过定点为(2,1)-.试题解析:(1)因为(3,4)A-,所以22(3)45OA=-+=, 1分又因为4AC=,所以1OC=,所以34(,)55C-, 3分由4BD=,得(5,0)D, 4分所以直线CD的斜率40153755-=-⎛⎫-- ⎪⎝⎭, 5分所以直线CD的方程为1(5)7y x=--,即750x y+-=. 6分(2)设(3,4)(01)C m m m-<≤,则5OC m=. 7分则55AC OA OC m=-=-,因为AC BD=,所以5+4OD OB BD m=-=,所以D点的坐标为(5+4,0)m8分又设OCD∆的外接圆的方程为22+0x y Dx Ey F+++=,则有()()2220,{916340,54540.Fm m mD mE Fm m D F=+-++=++++=10分解之得(54),0D m F =-+=,103E m =--,所以OCD ∆的外接圆的方程为22(54)(103)0x y m x m y +-+-+=, 12分整理得22435(2)0x y x y m x y +---+=, 令2243=0,{+2=0x y x y x y +--,所以0,{0.x y ==(舍)或2,{ 1.x y ==- 所以△OCD 的外接圆恒过定点为(2,1)-. 14分考点:直线与圆方程26.(1)证明见解析;(2)证明见解析【解析】【分析】(1)通过证明1A A AC ⊥和AB AC ⊥,即可证得AC ⊥平面11AA B B ;(2)通过证明//DE AO ,即可证得//DE 平面ABC .【详解】(1)由题,得1A A ⊥平面ABC ,所以1A A AC ⊥,又BC 是底面圆O 的直径,所以AB AC ⊥,因为1AB AA A =I ,所以AC ⊥平面11AA B B ;(2)连接,OE OA ,因为,E O 分别为1,B C BC 的中点,所以1//OE BB 且112OE BB =, 易得1//AD BB 且112AD BB =, 所以//AD OE 且AD OE =,所以四边形OADE 为平行四边形,则//DE AO ,因为AO ⊂平面ABC ,DE ⊄平面ABC ,DE平面ABC.所以//【点睛】本题主要考查线面垂直和线面平行的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.。
【典型题】高中必修二数学下期中第一次模拟试卷附答案
BC 的中点, ABE 与 BCF 分别是以 AB 、 BC 为底边的等边三角形,现将 ABE 与
BCF 分别沿 AB 与 BC 向上折起(如图 2 ),则在翻折的过程中下列结论可能正确的个
数为( )
图1
图2
(1)直线 AE⊥直线 BC ;(2)直线 FC 直线 AE ;
(3)平面 EAB// 平面 FGT ;(4)直线 BC// 直线 AE .
【典型题】高中必修二数学下期中第一次模拟试卷附答案
一、选择题 1.已知三棱锥 S ABC 的所有顶点都在球 O 的求面上, ABC 是边长为1的正三角形, SC 为球 O 的直径,且 SC 2 ,则此棱锥的体积为( )
A. 2 6
B. 3 6
C. 2 3
D. 2 2
2.已知平面 / / 平面 ,直线 m ,直线 n ,点 Am ,点 B n ,记点 A、B 之
25.已知圆 C : x2 y2 2x 4 y 1 0 , O 为坐标原点,动点 P 在圆外,过点 P 作圆 C 的切线,设切点为 M .
(1)若点 P 运动到 1,3 处,求此时切线 l 的方程;
(2)求满足 PM PO 的点 P 的轨迹方程.
26.如图,已知四棱锥
的底面
是菱形, 平面
,点 为 的中点.
数的最小值得解. 【详解】
设切线长为 d ,则 d 2 (m 2)2 52 1 (m 2)2 24 , dmin 2 6 .
故选:A. 【点睛】 本题主要考查圆的切线问题,考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平 和分析推理能力.
点.
(1)证明: PB / / 平面 AEC ; (2)设二面角 D AE C 为 60°, AP 1, AD 3 ,求直线 AC 与平面 ECD 所成
【压轴题】高中必修二数学下期中第一次模拟试卷含答案
解析:D 【解析】 【分析】 利用空间直线和平面的位置关系对每一个选项逐一分析判断得解. 【详解】
A. 若 a ∥ , b ∥ ,则 a 与 b 平行或异面或相交,所以该选项不正确; B. 若 a ∥ b , b ∥ ,则 a ∥ 或 a ,所以该选项不正确; C. 若 a ∥ , ∥ ,则 a ∥ 或 a ,所以该选项不正确; D. 若 ∥ , a ,则 a ∥ ,所以该选项正确.
22.已知点 A(3, 4), B(9, 0) , C, D 分别为线段 OA,OB 上的动点,且满足 AC BD (1)若 AC 4, 求直线 CD 的方程; (2)证明: OCD 的外接圆恒过定点(异于原点).
23.已知过点 P0, 2 的圆 M 的圆心 a, 0 在 x 轴的非负半轴上,且圆 M 截直线
小时,求 AOB 的周长;
(3)当直线 l 在两坐标轴上的截距均为整数时,求直线 l 的方程. 26.如图,在三棱柱 ABC A1B1C1 中, C1C 底面 ABC , AC BC , AC BC CC1 , M 、 N 分别是 A1B 、 B1C1 的中点.
(1)求证: MN 平面 A1BC ; (2)求直线 BC1 和平面 A1BC 所成角的大小. 【参考答案】***试卷处理标记,请不要删除
D. 41
A.12
B.18
C.24
D.30
7.设直线 a, b 是空间中两条不同的直线,平面, 是空间中两个不同的平面,则下列说
法正确的是( )
A.若 a ∥ , b ∥ ,则 a ∥ b
B.若 a ∥ b , b ∥ ,则 a ∥
C.若 a ∥ , ∥ ,则 a ∥
D.若 ∥ , a ,则 a ∥
20.如图,在体积为V1 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部
【典型题】高中必修二数学下期中一模试题(附答案)
【典型题】高中必修二数学下期中一模试题(附答案)一、选择题1.圆224470x y x y +--+=上的动点P 到直线0x y +=的最小距离为( )A .1B .221-C .22D .22.已知三棱锥D ABC -的外接球的表面积为128π,4,42AB BC AC ===,则三棱锥D ABC -体积的最大值为( ) A .2732B .1086+ C .166+ D .322166+3.已知a ,b 是两条异面直线,且a b ⊥,直线c 与直线a 成30角,则c 与b 所成的角的大小范围是( ) A .[]60,90︒︒ B .[]30,90︒︒ C .[]30,60︒︒ D .[]45,90︒︒4.三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( ) A .6πB .5πC .4πD .3π5.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( ) A .-3B .-4C .-6D .36-6.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( ) A .5B .6C .35D .417.若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm8.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .9.已知AB 是圆22620x y x y +-+=内过点(2,1)E 的最短弦,则||AB 等于( )A .3B .22C .23D .2510.已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( )A .[]4,10B .[]3,5C .[]8,10D .[]6,1011.已知ABC 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,25BC =,三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22πB .743πC .24πD .36π12.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ; ②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值; ④AEF ∆的面积与BEF ∆的面积相等, A .4B .3C .2D .1二、填空题13.已知直线40Ax By A +-=与圆O :2236x y +=交于M ,N 两点,则线段MN 中点G 的轨迹方程为______.14.已知在直角梯形ABCD 中,AB AD ⊥,CD AD ⊥,224AB AD CD ===,将直角梯形ABCD 沿AC 折叠,使平面BAC ⊥平面DAC ,则三棱锥D ABC -外接球的体积为__________.15.三棱锥P ABC -中,5PA PB ==,2AC BC ==,AC BC ⊥,3PC =,则该三棱锥的外接球面积为________.16.已知直线:0l x my m ++=,且与以A (-1,1)、B (2,2)为端点的线段相交,实数m 的取值范围为___________.17.已知双曲线的半焦距为,过右焦点且斜率为1的直线与双曲线的右支交于两点,若抛物线的准线被双曲线截得的弦长是(为双曲线的离心率),则的值为__________.18.已知点(,)P x y 是直线4(0)y kx k =-->上的一个动点,PA ,PB 是圆22:20C x y y +-=的两条切线,A ,B 是切点,若四边形PACB 的面积的最小值为2,则实数k 的值为__________.19.如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.20.已知直线1:1l y x =-上有两个点11(,)A x y 和22(,)B x y , 且12,x x 为一元二次方程2610x x -+=的两个根, 则过点,A B 且和直线2:1l x =-相切的圆的方程为______________.三、解答题21.如图,四棱锥P -ABCD 的底面ABCD 是平行四边形,BA =BD =2,AD =2,PA =PD =5,E ,F 分别是棱AD ,PC 的中点.(1)证明:EF ∥平面PAB ; (2)若二面角P -AD -B 为60°. ①证明:平面PBC ⊥平面ABCD ;②求直线EF 与平面PBC 所成角的正弦值.22.如图,在三棱锥S ABC -中,SAC ∆为等边三角形,4AC =,43BC=,BC AC ⊥,3cos SCB ∠=-,D 为AB 的中点.(1)求证:AC SD ⊥;(2)求直线SD 与平面SAC 所成角的大小.23.在三棱柱111ABC A B C -中,侧面11AA C C ⊥底面ABC ,112AA AC AC AB BC =====,且点O 为AC 中点.(1)证明:1A O ⊥平面ABC ; (2)求三棱锥1C ABC -的体积.24.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,ABE ∆是等腰直角三角形,AB AE =,FA FE =,45AEF ∠=︒.(1)设线段CD AE 、的中点分别为P M 、,求证://PM 平面BCE ; (2)求二面角F BD A --所成角的正弦值.25.在ABC ∆中,已知()1,2A ,()3,4C ,点B 在x 轴上,AB 边上的高线CD 所在直线的方程为220x y --=. (1)求B 点坐标; (2)求ABC ∆面积.26.如图,四棱锥P ABCD -中,AP ⊥平面1,//,,,2PCD AD BC AB BC AD E F ==分别为线段,AD PC 的中点.(1)求证://AP 平面BEF ; (2)求证:平面BEF ⊥平面PAC【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先求出圆心到直线0x y +=的距离,根据距离的最小值为d r -,即可求解. 【详解】由圆的一般方程可得22(2)(2)1x y -+-=, 圆心到直线的距离222d == 所以圆上的点到直线的距离的最小值为221. 故选B. 【点睛】本题主要考查了点到直线的距离,圆的方程,属于中档题.2.D解析:D 【解析】 【分析】先求出球心O 到底面距离的最大值,从而可求顶点D 到底面的距离的最大值,利用该最大值可求体积的最大值. 【详解】设外接球的球心为O ,半径为R ,则24128R ππ=,故42R =设球心O 在底面上的投影为E ,因为OA OC OB ==,故E 为ABC ∆的外心. 因为4AB BC ==,42AC =222AC AB BC =+,故ABC ∆为直角三角形, 故E 为AC 的中点,所以2226OE OA AE =-=, 设D 到底面ABC 的距离为h ,则2642h OE R ≤+= 所以三棱锥D ABC -的体积的最大值为(11322166442642323⨯⨯⨯⨯=. 故选:D. 【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,注意球心在底面上的投影为底面外接圆的圆心.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.3.A解析:A 【解析】 【分析】将异面直线所成的角转化为平面角,然后由题意,找出与直线a 垂直的直线b 的平行线,与直线c 平行线的夹角. 【详解】在直线a 上任取一点O ,过O 做//c c ',则,a c '确定一平面α,过O 点做直线b 的平行线b ',所有平行线b '在过O 与直线a 垂直的平面β内, 若存在平行线1b '不在β内,则1b '与b '相交又确定不同于β的平面, 这与过一点有且仅有一个平面与一条直线垂直矛盾,所以b '都在平面β内, 且,l αβαβ⊥=,在直线c '上任取不同于O 的一点P ,做PP l '⊥于P ',则PP β'⊥,POP '∠为是c '与β所成的角为60︒, 若b l '⊥,则,b b c α'''⊥⊥,若b '不垂直l 且不与l 重合, 过P '做P A b ''⊥,垂足为A ,连PA ,则b '⊥平面PP A ', 所以b PA '⊥,即1,cos 2OA OP OA PA AOP OP OP '⊥∠=<=, 60AOP ∠>︒,综上b '与c '所成角的范围为[60,90]︒︒,所以直线b 与c 所成角的范围为[]60,90︒︒. 故选:A.【点睛】本题考查异面直线所成角,空间角转化为平面角是解题的关键,利用垂直关系比较角的大小,属于中档题.4.A解析:A 【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球,外接球的直径等于长方体的对角线, 即24116R =++=246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球; ④特殊几何体可以直接找出球心和半径.5.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-,则圆心坐标为(1,1)-,半径r =又由圆心到直线的距离为d ==所以由圆的弦长公式可得4=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.6.A解析:A 【解析】 【分析】计算圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,最大距离为MN ,得到答案. 【详解】圆M :2220x y y =++,即()2211x y ++=,圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,故圆心M 到直线l 的最大距离为5MN =.故选:A . 【点睛】本题考查了点到直线距离的最值问题,确定直线过定点()3,5N -是解题的关键.7.B解析:B 【解析】 【分析】 【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4, ∴几何体的体积V =×3×4×5﹣××3×4×5=20(cm 3). 考点:1.三视图读图的能力;2.几何体的体积公式.8.A解析:A 【解析】 【分析】利用线面平行判定定理可知B 、C 、D 均不满足题意,从而可得答案. 【详解】对于B 项,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ , 同理可证,C ,D 项中均有AB ∥平面MNQ . 故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.9.D解析:D 【解析】 【分析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可. 【详解】圆的标准方程为(x ﹣3)2+(y +1)2=10,则圆心坐标为C (3,﹣1),半径为10 过E 的最短弦满足E 恰好为C 在弦上垂足,则CE 22(32)[11]5=-+--=(),则|AB |==, 故选D . 【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.10.D解析:D 【解析】 【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解. 【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=,又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C ,当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =,再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10. 故选:D. 【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.11.C解析:C 【解析】 【分析】由已知可得三角形ABC 为直角三角形,斜边BC 的中点O '就是ABC 的外接圆圆心,利用三棱锥O ABC -的体积,求出O 到底面的距离,可求出球的半径,然后代入球的表面积公式求解. 【详解】在ABC 中,∵2AB =,4AC =,BC =AB AC ⊥, 则斜边BC 的中点O '就是ABC 的外接圆的圆心, ∵三棱锥O ABC -的体积为43,11424323OO '⨯⨯⨯⨯=,解得1OO '=,221(5)6R =+=, 球O 的表面积为2424R ππ=. 故选C .【点睛】本题考查球的表面积的求法,考查锥体体积公式的应用,考查空间想象能力和计算能力,属于基础题.12.B解析:B 【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确 考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质二、填空题13.【解析】【分析】直线过定点设代入方程利用点差法计算得到答案【详解】直线过定点设则两式相减得到即故整理得到:故答案为:【点睛】本题考查了轨迹方程意在考查学生对于点差法的理解和掌握 解析:()2224x y -+=【解析】 【分析】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,代入方程利用点差法计算得到答案. 【详解】直线40Ax By A +-=过定点()4,0,设()()1122,,,M x y N x y ,(),G x y ,则221136x y +=,222236x y +=,两式相减得到()()()()121212120x x x x y y y y +-++-=,即220x ky +=. 故2204y x y x +=-,整理得到:()2224x y -+=. 故答案为:()2224x y -+=. 【点睛】本题考查了轨迹方程,意在考查学生对于点差法的理解和掌握.14.【解析】结合题意画出折叠后得到的三棱锥如图所示由条件可得在底面中取AB 的中点OAC 的中点E 连OCOE 则∵∴∵平面平面∴平面∴又∴∴∴点O 为三棱锥外接球的球心球半径为2∴答案:点睛:(1)本题是一道关 解析:323π【解析】结合题意画出折叠后得到的三棱锥D ABC -如图所示,由条件可得在底面ACB ∆中,90,22ACB AC BC ∠=︒==。
【好题】高中必修二数学下期中一模试题及答案(1)
【好题】高中必修二数学下期中一模试题及答案(1)一、选择题1.设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( ) A .-4B .14-C .14D .42.圆224470x y x y +--+=上的动点P 到直线0x y +=的最小距离为( )A .1B .221-C .22D .23.已知三棱锥D ABC -的外接球的表面积为128π,4,42AB BC AC ===,则三棱锥D ABC -体积的最大值为( )A .2732B .10863+ C .1663+ D .3221663+ 4.已知a ,b 是两条异面直线,且a b ⊥r r,直线c 与直线a 成30°角,则c 与b 所成的角的大小范围是( ) A .[]60,90︒︒B .[]30,90︒︒C .[]30,60︒︒D .[]45,90︒︒5.已知直线m 、n 及平面α,其中m ∥n ,那么在平面α内到两条直线m 、n 距离相等的点的集合可能是:(1)一条直线;(2)一个平面;(3)一个点;(4)空集。
其中正确的是( )A .(1)(2)(3)B .(1)(4)C .(1)(2)(4)D .(2)(4)6.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8π B .12πC .20πD .24π7.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( )A .内切B .相交C .外切D .相离 8.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = )A .1B .1-C .2-或1D .2或1 9.如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直线AB 与平面MNQ 不平行的是( )A .B .C .D .10.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A .15 B .5 C .6 D .10 11.如图在正方体中,点为线段的中点. 设点在线段上,直线与平面所成的角为,则的取值范围是( )A .B .C .D .12.已知平面αβ⊥且l αβ=I ,M 是平面α内一点,m ,n 是异于l 且不重合的两条直线,则下列说法中错误的是( ). A .若//m α且//m β,则//m l B .若m α⊥且n β⊥,则m n ⊥ C .若M m ∈且//m l ,则//m βD .若M m ∈且m l ⊥,则m β⊥二、填空题13.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD V 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.14.点(5,2)到直线()1(21)5m x m y m -+-=-的距离的最大值为________. 15.直线与圆交于两点,则________.16.已知三棱锥P ABC -中,侧面PAC ⊥底面ABC ,90BAC ∠=︒,4AB AC ==,23PA PC ==,则三棱锥P ABC -外接球的半径为______.17.已知动点,A B 分别在x 轴和直线y x =上,C 为定点()2,1,则ABC ∆周长的最小值为_______.18.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60o ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60o ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.19.如图,在△ABC 中,AB=BC=2,∠ABC=120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD=DA ,PB=BA ,则四面体PBCD 的体积的最大值是 .20.在一个密闭的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液面的形状都不可能是三角形,那么液体体积的取值范围是 .三、解答题21.如图,在多面体ABCDM 中,BCD ∆是等边三角形,CMD ∆是等腰直角三角形,90CMD ∠=︒,平面CMD ⊥平面BCD ,AB ⊥平面BCD ,点O 为CD 的中点.(1)求证://OM 平面ABD ;(2)若2AB BC ==,求三棱锥M ABD -的体积.22.如图,ABCD 是正方形,O 是该正方体的中心,P 是平面ABCD 外一点,PO ⊥平面ABCD ,E 是PC 的中点.(1)求证://PA 平面BDE ; (2)求证:BD ⊥平面PAC .23.已知圆C 的圆心坐标()1,1,直线l :1x y +=被圆C 截得弦长为2. (1)求圆C 的方程;(2)从圆C 外一点()2,3P 向圆引切线,求切线方程.24.在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点. (1)求证:平面EFG ∥平面ABC . (2)求证:BC SA ⊥.25.如图,四棱锥P ABCD -的底面ABCD 是直角梯形,//AB CD , 33AB CD ==,AB AD ⊥,AB PA ⊥, 且2AD PA ==,22PD =,13PE PB =uur uu r(1)证明://CE 平面PAD ; (2)求点B 到平面ECD 的距离;26.如图,三棱柱111ABC A B C -中,平面11AAC C ⊥平面11AA B B ,平面11AACC ⊥平面ABC ,12AB AC AA ===,点P 、M 分别为棱BC 、1CC 的中点,过点B 、M 的平面交棱1AA 于点N ,使得AP ∥平面BMN .(1)求证:AB ⊥平面11AAC C ; (2)若四棱锥B ACMN -31A AC ∠的正弦值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值. 【详解】解:由31x y x +=-,得()()2213411x x y x x ---=---'=,∴2'|4x y ==-, 又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =. 故选D . 【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.B解析:B 【解析】 【分析】先求出圆心到直线0x y +=的距离,根据距离的最小值为d r -,即可求解. 【详解】由圆的一般方程可得22(2)(2)1x y -+-=, 圆心到直线的距离222d == 所以圆上的点到直线的距离的最小值为221-. 故选B. 【点睛】本题主要考查了点到直线的距离,圆的方程,属于中档题.3.D解析:D 【解析】 【分析】先求出球心O 到底面距离的最大值,从而可求顶点D 到底面的距离的最大值,利用该最大值可求体积的最大值. 【详解】设外接球的球心为O ,半径为R ,则24128R ππ=,故R =设球心O 在底面上的投影为E ,因为OA OC OB ==,故E 为ABC ∆的外心.因为4AB BC ==,AC =222AC AB BC =+,故ABC ∆为直角三角形,故E 为AC 的中点,所以OE ==,设D 到底面ABC 的距离为h ,则h OE R ≤+=所以三棱锥D ABC -的体积的最大值为(1144323⨯⨯⨯⨯=. 故选:D. 【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,注意球心在底面上的投影为底面外接圆的圆心.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定.4.A解析:A 【解析】 【分析】将异面直线所成的角转化为平面角,然后由题意,找出与直线a 垂直的直线b 的平行线,与直线c 平行线的夹角. 【详解】在直线a 上任取一点O ,过O 做//c c ',则,a c '确定一平面α,过O 点做直线b 的平行线b ',所有平行线b '在过O 与直线a 垂直的平面β内, 若存在平行线1b '不在β内,则1b '与b '相交又确定不同于β的平面, 这与过一点有且仅有一个平面与一条直线垂直矛盾,所以b '都在平面β内, 且,l αβαβ⊥=I ,在直线c '上任取不同于O 的一点P ,做PP l '⊥于P ',则PP β'⊥,POP '∠为是c '与β所成的角为60︒, 若b l '⊥,则,b b c α'''⊥⊥,若b '不垂直l 且不与l 重合, 过P '做P A b ''⊥,垂足为A ,连PA ,则b '⊥平面PP A ', 所以b PA '⊥,即1,cos 2OA OP OA PA AOP OP OP '⊥∠=<=, 60AOP ∠>︒,综上b '与c '所成角的范围为[60,90]︒︒,所以直线b 与c 所成角的范围为[]60,90︒︒. 故选:A.【点睛】本题考查异面直线所成角,空间角转化为平面角是解题的关键,利用垂直关系比较角的大小,属于中档题.5.C解析:C【解析】【分析】根据题意,对每一个选项进行逐一判定,不正确的只需举出反例,正确的作出证明,即可得到答案.【详解】如图(1)所示,在平面内不可能由符合题的点;如图(2),直线,a b到已知平面的距离相等且所在平面与已知平面垂直,则已知平面为符合题意的点;如图(3),直线,a b所在平面与已知平面平行,则符合题意的点为一条直线,综上可知(1)(2)(4)是正确的,故选C.【点睛】本题主要考查了空间中直线与平面之间的位置关系,其中熟记空间中点、线、面的位置关系是解答此类问题的关键,着重考查了空间想象能力,以及推理与论证能力,属于基础题. 6.C解析:C【解析】【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得. 【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC V 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC V 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C 【点睛】本题考查多面体外接球的表面积,是常考题型.7.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B8.D解析:D 【解析】 【分析】根据题意讨论直线它在两坐标轴上的截距为0和在两坐标轴上的截距不为0时,求出对应a 的值,即可得到答案.【详解】由题意,当2a 0-+=,即a 2=时,直线ax y 2a 0+-+=化为2x y 0+=, 此时直线在两坐标轴上的截距都为0,满足题意;当2a 0-+≠,即a 2≠时,直线ax y 2a 0+-+=化为122x y a a a+=--,由直线在两坐标轴上的截距相等,可得2a2a a-=-,解得a 1=; 综上所述,实数a 2=或a 1=. 故选:D . 【点睛】本题主要考查了直线方程的应用,以及直线在坐标轴上的截距的应用,其中解答中熟记直线在坐标轴上的截距定义,合理分类讨论求解是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【解析】 【分析】利用线面平行判定定理可知B 、C 、D 均不满足题意,从而可得答案. 【详解】对于B 项,如图所示,连接CD ,因为AB ∥CD ,M ,Q 分别是所在棱的中点,所以MQ ∥CD ,所以AB ∥MQ ,又AB ⊄平面MNQ ,MQ ⊂平面MNQ ,所以AB ∥平面MNQ , 同理可证,C ,D 项中均有AB ∥平面MNQ . 故选:A.【点睛】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.10.D解析:D 【解析】 【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,设正三棱柱的各棱长为2,则115,22,3C N BC BN ===,设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 2522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为104,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.11.B解析:B【解析】【分析】【详解】设正方体的棱长为,则,所以,.又直线与平面所成的角小于等于,而为钝角,所以的范围为,选B.【考点定位】空间直线与平面所成的角.解析:D【解析】【分析】根据已知条件和线面位置关系一一进行判断即可.【详解】选项A :一条直线平行于两个相交平面,必平行于两个面交线,故A 正确;选项B :垂直于两垂直面的两条直线相互垂直,故B 正确;选项C :M m ∈且//m l 得m α⊂且//m β,故C 正确;选项D :M m ∈且m l ⊥不一定得到m α⊂,所以,m l 可以异面,不一定得到m β⊥. 故选:D .【点睛】本题主要考查的是空间点、线、面的位置关系的判定,掌握线面、线线之间的判定定理和性质定理是解决本题的关键,是基础题.二、填空题13.【解析】当位于的中点点与中点重合随点到点由得平面则又则因为所以故综上的取值范围为点睛:立体几何中折叠问题要注重折叠前后垂直关系的变化不变的垂直关系是解决问题的关键条件 解析:1,12⎛⎫ ⎪⎝⎭【解析】当F 位于DC 的中点,点D 与AB 中点重合,1t =.随F 点到C 点,由CB AB ⊥,CB DK ⊥,得CB ⊥平面ADB ,则CB BD ⊥.又2CD =,1BC =,则BD =.因为1AD =,2AB =,所以AD BD ⊥,故12t =. 综上,t 的取值范围为1,12⎛⎫ ⎪⎝⎭. 点睛:立体几何中折叠问题,要注重折叠前后垂直关系的变化,不变的垂直关系是解决问题的关键条件.14.【解析】【分析】先判断过定点可得点到直线的距离的最大值就是点与点的距离从而可得结果【详解】化简可得由所以过定点点到直线的距离的最大值就是点与点的距离为故答案为【点睛】本题主要考查直线过定点问题以及两解析:【分析】先判断()()1215m x m y m -+-=-过定点()9,4-,可得点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是点(5,2)与点()9,4-的距离,从而可得结果.【详解】化简()()1215m x m y m -+-=-可得m ()()2150x y x y +--+-=,由2109504x y x x y y +-==⎧⎧⇒⎨⎨+-==-⎩⎩, 所以()()1215m x m y m -+-=-过定点()9,4-,点(5,2)到直线()()1215m x m y m -+-=-的距离的最大值就是点(5,2)与点()9,4-的距离为()224652213-+==, 故答案为213.【点睛】本题主要考查直线过定点问题以及两点间距离公式的应用,考查了转化思想的应用,属于中档题. 转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本解法将求最大值的问题转化成了两点间的距离的问题来解决,转化巧妙. 15.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根 解析:【解析】【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】根据题意,圆的方程可化为, 所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为. 【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16.【解析】【分析】设三棱锥外接球球心为半径为如图所示作辅助线设则解得答案【详解】设三棱锥外接球球心为半径为故在平面的投影为中点为中点故侧面底面故底面连接作于易知为矩形设则解得故答案为:【点睛】本题考查解析:34【解析】【分析】设三棱锥P ABC-外接球球心为O,半径为R,如图所示作辅助线,设1OO h=,则()2222221R PD h OHR h CO⎧=-+⎪⎨=+⎪⎩,解得答案.【详解】设三棱锥P ABC-外接球球心为O,半径为R,90BAC∠=︒,故O在平面ABC的投影为BC中点1O,D为AC中点,PA PC=,故PD AC⊥,侧面PAC⊥底面ABC,故PD⊥底面ABC.连接1O D,作OH PD⊥于H,易知1OO DH为矩形,设1OO h=,则()2222221R PD h OHR h CO⎧=-+⎪⎨=+⎪⎩,22PD=,12OH DO==,122CO=,解得34R=.故答案为:34.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.17.【解析】【分析】点C关于直线y=x的对称点为(12)点C关于x轴的对称点为(2﹣1)三角形PAB周长的最小值为(12)与(2﹣1)两点之间的直线距离【详解】点C关于直线y=x的对称点为(12)点C关【解析】【分析】点C关于直线y=x的对称点为C'(1,2),点C关于x轴的对称点为C''(2,﹣1).三角形PAB周长的最小值为C'(1,2)与C''(2,﹣1)两点之间的直线距离.【详解】点C关于直线y=x的对称点为C'(1,2),点C关于x轴的对称点为C''(2,﹣1).三角形PAB周长的最小值为C'(1,2)与C''(2,﹣1)两点之间的直线距离,|C C'''(2,﹣1).【点睛】本题考查点到直线的距离公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.18.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E是BD的中点易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD解析:②③④【解析】【分析】作出此直二面角的图象,由图形中所给的位置关系对命题逐一判断,即可得出正确结论.【详解】作出如图的图象,E是BD的中点,易得∠AED=90°即为此直二面角的平面角对于命题①AB与平面BCD所成的线面角的平面角是∠ABE=45°,故AB与平面BCD成60°的角不正确;对于命题②,在等腰直角三角形AEC中AC等于正方形的边长,故△ACD是等边三角形,此命题正确;对于命题③可取AD中点F,AC的中点H,连接EF,EH,FH,则EF,FH是中位线,故∠EFH或其补角为异面直线AB与CD所成角,又EF,FH其长度为正方形边长的一半,而EH是直角三角形AEC的中线,其长度是AC的一半即正方形边长的一半,故△EFH是等边三角形,由此AB与CD所成的角为60°,此命题正确;对于命题④,BD ⊥面AEC ,故AC ⊥BD ,此命题正确;对于命题⑤,连接BH ,HD,则BH ⊥AC, DH ⊥AC,则∠BHD 为二面角B AC D --的平面角,又BH=DH=3AC,BD=2,AC cos ∠BHD=-1,3故二面角B AC D --不是120︒综上知②③④是正确的故答案为②③④【点睛】本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.19.【解析】中因为所以由余弦定理可得所以设则在中由余弦定理可得故在中由余弦定理可得所以过作直线的垂线垂足为设则即解得而的面积设与平面所成角为则点到平面的距离故四面体的体积设因为所以则(1)当时有故此时因解析:12【解析】 ABC ∆中,因为2,120AB BC ABC ==∠=o ,所以30BAD BCA ∠==o .由余弦定理可得2222cos AC AB BC AB BC B =+-⋅2222222cos12012=+-⨯⨯=o ,所以23AC =设AD x =,则023t <<,23DC x =-.在ABD ∆中,由余弦定理可得2222cos BD AD AB AD AB A =+-⋅22222cos30x x =+-⋅o 2234x x =-+.故2234BD x x =-+. 在PBD ∆中,PD AD x ==,2PB BA ==. 由余弦定理可得2222222(234)3cos 2PD PB BD x x x BPD PD PB +-+--+∠===⋅, 所以30BPD ∠=o .过P 作直线BD 的垂线,垂足为O .设PO d = 则11sin 22PBD S BD d PD PB BPD ∆=⨯=⋅∠, 2112342sin 3022x x d x -+=⋅o , 解得2234d x x =-+.而BCD ∆的面积111sin (23)2sin 303)222S CD BC BCD x x =⋅∠=⋅=o . 设PO 与平面ABC 所成角为θ,则点P 到平面ABC 的距离sin h d θ=.故四面体PBCD 的体积211111sin (23)33332234BcD BcD BcD V S h S d S d x x x θ∆∆∆=⨯=≤⋅=⨯-+ 21(23)6234x x x x -=-+ 设22234(3)1t x x x =-+=-+023x ≤≤12t ≤≤.则231x t -=-(1)当03x ≤≤时,有2331x x t ==- 故231x t =-此时,221(31)[23(31)]t t V -----=21414()66t t t t-=⋅=-. 214()(1)6V t t=--',因为12t ≤≤, 所以()0V t '<,函数()V t 在[1,2]上单调递减,故141()(1)(1)612V t V ≤=-=.(2x <≤x x =-=故x =此时,V = 21414()66t t t t-=⋅=-. 由(1)可知,函数()V t 在(1,2]单调递减,故141()(1)(1)612V t V <=-=. 综上,四面体PBCD 的体积的最大值为12. 20.【解析】【分析】【详解】试题分析:如图正方体ABCD-EFGH 此时若要使液面不为三角形则液面必须高于平面EHD 且低于平面AFC 而当平面EHD 平行水平面放置时若满足上述条件则任意转动该正方体液面的形状 解析:15,66⎛⎫ ⎪⎝⎭【解析】【分析】【详解】试题分析:如图,正方体ABCD-EFGH ,此时若要使液面不为三角形,则液面必须高于平面EHD ,且低于平面AFC .而当平面EHD 平行水平面放置时,若满足上述条件,则任意转动该正方体,液面的形状都不可能是三角形.所以液体体积必须>三棱柱G-EHD 的体积16,并且<正方体ABCD-EFGH 体积-三棱柱B-AFC 体积15166-=考点:1.棱柱的结构特征;2.几何体的体积的求法三、解答题21.(1)证明见解析;(23 【解析】【分析】(1)通过面面垂直推证出OM ⊥平面BCD ,再由AB ⊥平面BCD ,即可得OM //AB ,由线线平行,即可推证线面平行;(2)根据(1)中所求,结合M ABD O ABD A OBD V V V ---==,即可求解三棱锥A OBD -的体积即为所求.【详解】(1)∵CMD ∆是等腰直角三角形,90CMD ∠=︒,点O 为CD 的中点,∴OM CD ⊥.∵平面CMD ⊥平面BCD ,平面CMD I 平面BCD CD =,OM ⊂平面CMD ,∴OM ⊥平面BCD .∵AB ⊥平面BCD ,∴OM //AB .∵AB Ì平面ABD ,OM ⊄平面ABD ,∴OM //平面ABD .(2)由(1)知OM //平面ABD ,∴点M 到平面ABD 的距离等于点O 到平面ABD 的距离.∵2AB BC ==,BCD V 是等边三角形,点O 为CD 的中点 ∴11322BOD BCD S S ∆∆== 2334BC == ∴M ABD O ABD A OBD V V V ---==1133233BOD S AB ∆=⋅==【点睛】本题考查的是空间的直线与平面平行判定定理的运用及点到面的距离的计算问题.第一问的解答时,务必要依据线面平行的判定定理中的条件要求,找出面内的线,面外的线,线线平行等三个缺一不可的条件;第二问三棱锥的体积的计算时,要运用等积转化法将问题进行转化,再运用三棱锥的体积公式进行计算.22.证明见解析.【解析】试题分析:(1)要证PA 与平面EBD 平行,而过PA 的平面PAC 与平面EBD 的交线为EO ,因此只要证//PA EO 即可,这可由中位线定理得证;(2)要证BD 垂直于平面PAC ,就是要证BD 与平面PAC 内两条相交直线垂直,正方形中对角线BD 与AC 是垂直的,因此只要再证BD PO ⊥,这由线面垂直的性质或定义可得.试题解析:证明:(1)连接EO ,∵四边形ABCD 为正方形,∴O 为AC 的中点,∵E 是PC 的中点,∴OE 是APC ∆的中位线.∴//EO PA ,∵EO ⊂平面BDE ,PA ⊄平面BDE ,∴//PA 平面BDE .(2)∵PO ⊥平面ABCD ,BD ⊂平面ABCD ,∴PO BD ⊥,∵四边形ABCD 是正方形,∴AC BD ⊥,∵PO AC O ⋂=,AC ⊂平面PAC ,PO ⊂平面PAC ,∴BD ⊥平面PAC .考点:线面平行与线面垂直的判断.23.(1)()()22111x y -+-=;(2)2x =和3460x y -+=.【解析】【分析】()1设圆C 的半径为r ,根据圆心坐标写出圆的标准方程,利用点到直线的距离公式求出圆心到直线l 的距离即为弦心距,然后根据垂径定理得到其垂足为弦的中点,由弦长的一半,圆心距及半径构成的直角三角形,根据勾股定理列出关于r 的方程,求出方程的解即可得到r 的值,从而确定圆C 的方程;()2当切线方程的斜率不存在时,显然得到2x =为圆的切线;当切线方程的斜率存在时,设出切线的斜率为k ,由p 的坐标和k 写出切线方程,利用点到直线的距离公式求出圆心到所设直线的距离d ,根据直线与圆相切,得到d 等于圆的半径,列出关于k 的方程,求出方程的解即可得到k 的值,从而确定出切线的方程,综上,得到所求圆的两条切线方程.【详解】(1)设圆C 的标准方程为: ()()22211x y r -+-= (0)r >圆心()1,1C 到直线10x y +-=的距离:2d ==,则22211122r d =+=+=⎝⎭∴圆C 的标准方程: ()()22111x y -+-=(2)①当切线斜率不存在时,设切线: 2x =,此时满足直线与圆相切. ②当切线斜率存在时,设切线: ()32y k x -=-,即23y kx k =-+则圆心()1,1C 到直线230kx y k --+=的距离:1d ==解得: 43k =,即34k = 则切线方程为: 3460x y -+=综上,切线方程为: 2x =和3460x y -+=24.(1)见解析(2)见解析【解析】[证明] (1)∵AS AB =,AF SB ⊥,垂足为F ,∴F 是SB 的中点,又因为E 是SA 的中点,∴EF ∥AB ,∵EF ⊄平面ABC ,AB ⊂平面ABC ,∴EF ∥平面ABC ; 同理EG ∥平面ABC . 又EF EG E ⋂=,∴平面EFG ∥平面ABC .(2)∵平面SAB ⊥平面SBC ,且交线为SB ,又AF ⊂平面SAB ,AF SB ⊥, ∴AF ⊥平面SBC ,∵BC ⊂平面SBC ,∴AF BC ⊥,又因为AB BC ⊥,AF AB A ⋂=,AF 、AB ⊂平面SAB ,∴BC ⊥平面SAB ,∵SA ⊂平面SAB ,∴BC SA ⊥.【考点定位】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.25.(1)见解析;(2)41313【解析】【分析】 (1)取PA 的三等分点F ,法一,利用线面平行的判定定理证明.法二,利用面面平行判定定理证明;(2)法一,利用等积转换即B ECD E BCD V V --=,即可求得,法二,利用空间向量法,求点到面的距离.【详解】(1)解法一:取PA 的三等分点F ,连结,DF EF ,则13PF PA =又因为13PE PB =,所以13EF AB =且//EF AB , 因为13CD AB =且//AB CD ,所以EF CD =且//EF CD ,四边形CDFE 是平行四边形,所以//CE DF ,又平面DF ⊂平面 PAD ,CE ⊄平面 PAD ,所以//CE 平面 PAD .解法二:取AB 的三等分点G ,连结,FG CG ,则13AG AB =, 又因为13PE PB =, 所以23EG PA =且//EG PA ,EG ⊄平面PAD , PA ⊂平面PAD , //EG ∴平面PAD ,因为13CD AB =且//AB CD ,所以AG CD =且//AG CD , 四边形ADCG 是平行四边形.所以//AD CG ,CG ⊄平面PAD ,DA ⊂平面PAD ,//CG ∴平面PAD ,又因为EG CG G ⋂=,,EG CG ⊂平面CEG ,所以平面//CEG 平面PAD ,又因为CE ⊂平面CEG ,所以//CE 平面PAD .(2)解法一:设点B 到平面ECD 的距离为h .因为2PA AD ==,PD =222PA AD PD +=,所以,PA AD ⊥,因为,PA AB AB AD A ⊥⋂=,所以PA ⊥平面ABCD , 点E 平面ABCD 的距离是43,3DF ==, 12112BCD S ∆=⨯⨯=,11122ECD S CD DF ∆=⨯⨯=⨯=, 因为B ECD E BCD V V --=,所以,1141,333313h h ⨯=⨯⨯= 点B 到平面ECD解法二:设点B 到平面ECD 的距离为h .因为2PA AD ==,PD =222PA AD PD +=所以,PA AD ⊥,因为,PA AB AB AD A ⊥⋂=,所以PA ⊥平面ABCD , 分别以,,AD AB AP 为x 轴y 轴z 轴,建立空间坐标系,4(0,0,0),(0,3,0),(2,1,0),(2,0,0),0,1,3A B C D E ⎛⎫ ⎪⎝⎭’40,2,3BE ⎛⎫=- ⎪⎝⎭u u u r , 设平面CDE 法向量1(,,)n x y z =u r , 因为04203y x z =⎧⎪⎨-+=⎪⎩,所以1(2,0,3)n =u r , 设BE 与平面ECD 所成角为θ, 则 点B 到平面ECD的距离11||cos BE n h BE n θ⋅====u u u r u r u u u r u r点B 到平面ECD 的距离为41313. 【点睛】 本题主要考查的是直线与平面平行的证明,点到面的距离的求法,以空间向量法求距离的应用,及解题时要注意认真审题,注意等价转化思想的合理应用,是中档题.26.(1)见解析;(2)3. 【解析】(1)在平面ABC 中,过点B 作棱AC 的垂线,垂足为D ,Q 平面11AAC C ⊥平面ABC ,∴ BD ⊥平面11AAC C .在平面11AA B B 中,过点B 作棱1AA 的垂线,垂足为E ,Q 平面11AAC C ⊥平面11AA B B ,∴BE ⊥平面11AAC C .Q 过点B 与平面11AAC C 垂直的直线有且只有一条,∴BE 与BD 重合,又∵平面ABC I 平面11AA B B AB =,∴BE 与BD 重合于AB ,所以AB ⊥平面11AAC C .(2)设BM 的中点为Q ,连接PQ ,NQ ,Q 点P 为棱BC 的中点,∴PQ ∥CM 且PQ =12CM , Q 1AA ∥1CC ,∴PQ ∥AN ,∴P 、Q 、N 、A 四点共面,∵AP ∥平面BMN ,∴AP ∥NQ ,∴四边形PQNA 是平行四边形,∴PQ =AN ,∵M 为1CC 的中点且12AB AC AA ===,∴1CM =,∴PQ =AN =12, 设梯形ACMN 的高为h ,Q 2AB =, ∴111132×2322B ACMN h V h -⎛⎫+ ⎪⎝⎭=⨯==,∴3h = ∴13sin h A AC AC ∠==,∴1A AC ∠3。
最新高中必修二数学下期中第一次模拟试卷(及答案)
8.C
解析:C 【解析】 【分析】
首先确定三角形 ABC 为等腰三角形,进一步确定球的球心,再求出球的半径,最后确定
值.
【详解】
解:由
y
x3 x 1
,得
y
x
1 x 3
x 12
4
x 12
,
∴ y ' |x2 4 ,
又曲线 y x 3 在点(2,5)处的切线与直线 ax y 1 0 平行, x 1
∴ a 4 ,即 a 4 .
故选 D. 【点睛】 本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中 档题.
(1)设线段 CD、AE 的中点分别为 P、M ,求证: PM / / 平面 BCE ; (2)求二面角 F BD A 所成角的正弦值. 25.如图,在 ABC 中 AC BC 且点 O 为 AB 的中点,矩形 ABEF 所在的平面与平面 ABC 互相垂直.
(1)设 EC 的中点为 M ,求证: OM // 平面 ACF ; (2)求证: AC 平面 CBE 26.如图,在三棱柱 ABC A1B1C1 中, CC1 平面 ABC , AC BC, AC BC CC1 2 ,点 D, E, F 分别为棱 A1C1, B1C1, BB1 的中点.
(3 a)x 3, x 7
解: 函数 f (x) ax6, x 7
单调递增,
3 a 0
a 1
解得 9 a 3
3 a 7 3 a 4
所以实数
【常考题】高中必修二数学下期中一模试卷(及答案)
【常考题】高中必修二数学下期中一模试卷(及答案)一、选择题1.设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( )A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥2.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .26B .36C .23D .223.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π4.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π5.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2B .1-C .2D .不存在 6.已知圆M :2220x y y =++与直线l :350ax y a +-+=,则圆心M 到直线l 的最大距离为( )A .5B .6C .35D 417.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .308.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( ) A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭9.已知点()1,2-和3,0⎛⎫ ⎪ ⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( )A .,43ππ⎛⎫⎪⎝⎭ B .2,33ππ⎛⎫ ⎪⎝⎭ C .25,36ππ⎛⎫ ⎪⎝⎭ D .30,,34πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭10.一锥体的三视图如图所示,则该棱锥的最长棱的棱长为 ( )A .B .C .D .11.如图,正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立D .不存在点G ,使平面EFG ⊥平面ABD 成立 12.如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,ABC 是等腰三角形,BA BC =,123AC CC ==,,D 是AC 的中点,点F 在侧棱1A 上,若要使1C F ⊥平面BDF,则1AF FA 的值为( )A .1B .12或2C 2或2D .13或3 二、填空题13.经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.14.光线由点P(2,3)射到直线x+y+1=0上,反射后过点Q(1,1) ,则反射光线方程为__________.15.已知A ,B ,C ,D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为_________.16.已知P 是抛物线24y x =上的动点,点Q 是圆22:(3)(3)1C x y ++-=上的动点,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是____________.17.若圆1C :220x y ax by c 与圆2C :224x y +=关于直线21y x =-对称,则c =______.18.圆221x y +=上的点到直线34250x y +-=的距离的最小值是 .19.底面边长为2的正三棱柱111ABC A B C -被不平行于底面的平面MNP 所截,其中3AM =,4BN =,5PC =,则多面体ABC MNP -体积为________20.如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.三、解答题21.已知过原点的动直线l 与圆1C :22650x y x +-+=相交于不同的两点A ,B . (1)求圆1C 的圆心坐标;(2)求线段AB 的中点M 的轨迹C 的方程;(3)是否存在实数k ,使得直线L:()4y k x =-与曲线C 只有一个交点?若存在,求出k 的取值范围;若不存在,说明理由.22.如图所示,四棱锥B AEDC -中,平面AEDC ⊥平面ABC ,F 为BC 的中点,P 为BD 的中点,且AE ∥DC ,90ACD BAC ∠=∠=︒,2DC AC AB AE ===.(Ⅰ)证明:平面BDE ⊥平面BCD ;(Ⅱ)若2DC =,求三棱锥E BDF -的体积.23.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.24.如图,在四棱锥P ABCD -中,CB ⊥平面PBD ,AD ⊥平面PBD ,PH BD ⊥于H ,10CD =,8BC AD ==.(1)求证:CD PH ⊥;(2)若13BH BD =,12PH BD =,在线段PD 上是否存在一点M ,使得HM ⊥平面PAD ,且直线HA 与平面PAD 所成角的正弦值为35.若存在,求PM 的长;若不存在,请说明理由.25.如图,四棱锥P ABCD -的底面ABCD 是直角梯形,//AB CD , 33AB CD ==,AB AD ⊥,AB PA ⊥, 且2AD PA ==,22PD =,13PE PB =(1)证明://CE 平面PAD ;(2)求点B 到平面ECD 的距离;26.在正方体1111ABCD A B C D -中,AB=3,E 在1CC 上且12CE EC =.(1)若F 是AB 的中点,求异面直线1C F 与AC 所成角的大小;(2)求三棱锥1B DBE -的体积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系2.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=2333=, ∴11613OO =-= ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623S ABC V -==三棱锥考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.3.C解析:C【解析】【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C【点睛】本题考查多面体外接球的表面积,是常考题型.4.C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点,则O 为外接球球心, 半径长度为1522AD =, 所以表面积为25π.5.C解析:C【解析】【分析】直接根据直线平行公式得到答案.【详解】直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除.故选:C .【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.6.A解析:A【解析】【分析】计算圆心为()0,1M -,350ax y a +-+=过定点()3,5N -,最大距离为MN ,得到答案.圆M :2220x y y =++,即()2211x y ++=,圆心为()0,1M -, 350ax y a +-+=过定点()3,5N -,故圆心M 到直线l 的最大距离为5MN =. 故选:A .【点睛】本题考查了点到直线距离的最值问题,确定直线过定点()3,5N -是解题的关键.7.C解析:C【解析】试题分析:由三视图可知,几何体是三棱柱消去一个同底的三棱锥,如图所示,三棱柱的高为,消去的三棱锥的高为,三棱锥与三棱柱的底面为直角边长分别为和的直角三角形,所以几何体的体积为,故选C .考点:几何体的三视图及体积的计算.【方法点晴】本题主要考查了几何体的三视图的应用及体积的计算,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答的难点在于根据几何体的三视图还原出原几何体和几何体的度量关系,属于中档试题.8.D解析:D【解析】试题分析:A.}r rααββ⊥⇒⊥不正确,以墙角为例,,αβ可能相交;B.}m l l m ββ⇒⊥⊥不正确,,l β有可能平行;C.}m r m n n r ⇒不正确,m,n 可能平行、相交、异面;故选D 。
【典型题】高中必修二数学下期中第一次模拟试题(及答案)
【典型题】高中必修二数学下期中第一次模拟试题(及答案)一、选择题1.水平放置的ABC 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .82.若圆C:222430x y x y ++-+=关于直线260ax by ++=对称,则由点(,)a b 向圆所作的切线长的最小值是( ) A .2B .4C .3D .63.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256π C .25π D .100π4.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离5.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763B .1603C .1283D .326.在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .23π B .43π C .53π D .2π7.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b8.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则a 的值为( ) A .-2或2B .12或32C .2或0D .-2或09.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个10.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误..的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行 D .MN 与11A B 平行11.已知平面αβ⊥且l αβ=,M 是平面α内一点,m ,n 是异于l 且不重合的两条直线,则下列说法中错误的是( ).A .若//m α且//m β,则//m lB .若m α⊥且n β⊥,则m n ⊥C .若M m ∈且//m l ,则//m βD .若M m ∈且m l ⊥,则m β⊥12.α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( ) A .m ,n 是平面α内两条直线,且//m β,//n β B .α内不共线的三点到β的距离相等 C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.给出下面四个命题:①“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”; ②“直线//a 直线b ”的充要条件是“a 平行于b 所在的平面”; ③“直线a ,b 为异面直线”的充分不必要条件是“直线a ,b 不相交”;④“平面//α平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”. 其中正确命题的序号是____________________14.如图,在正方体1111—ABCD A B C D 中,M N ,分别为棱111C D C C ,的中点,有以下四个结论:①直线AM 与1CC 是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与1MB 是异面直线; ④直线AM 与1DD 是异面直线. 其中正确的结论的序号为________.15.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 与△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论: ①0BD AC ⋅≠; ②∠BAC =60°;③三棱锥D ﹣ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确结论的序号是 .(请把正确结论的序号都填上)16.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2正三角形,,E F 分别是,PA AB 的中点,90CEF ︒∠=,则球O 的体积为_________________。
【典型题】高中必修二数学下期中一模试卷(及答案)
圆 O 外有一点 P ,圆上有一动点 Q , OPQ 在 PQ 与圆相切时取得最大值.如果 OP 变
长,那么 OPQ 可以获得的最大值将变小.因为 sin OPQ QO , QO 为定值,即半
PO
径, PO 变大,则 sin OPQ 变小,由于 OPQ (0, ) ,所以 OPQ 也随之变小.可以得
14.若直线 y x b 与曲线 y 3 4x x2 有公共点,则 b 的取值范围是______. 15.已知 P 是抛物线 y2 4x 上的动点,点 Q 是圆 C : (x 3)2 ( y 3)2 1上的动点,点 R 是点 P 在 y 轴上的射影,则 PQ + PR 的最小值是____________. 16.已知三棱锥 P ABC 的四个顶点在球 O 的球面上, PA PB PC ,△ABC 是边长 为 2 正三角形, E, F 分别是 PA, AB 的中点, CEF 90 ,则球 O 的体积为
B 两点,则弦长 AB 的取值范围是( )
A. 4,10
B. 3, 5
C. 8,10
D. 6,10
10.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为 5,它的对角线的长分别是 9 和
15,则这个棱柱的侧面积是( ).
A.130
B.140
C.150
D.160
11.如图,正四面体 ABCD 中, E, F 分别是线段 AC 的三等分点, P 是线段 AB 的中 点, G 是线段 BD 的动点,则( )
l
的倾斜角的
取值范围是 ( )
A.
4
,
3
B.
3
,
2 3
C.
2 3
,
5 6
D.
0,
新高中必修二数学下期中第一次模拟试卷(带答案)
一、选择题 1.在长方体 ABCD A1B1C1D1 中, AB BC 2 , AC1 与平面 BB1C1C 所成的角为 30 ,则该长方体的体积为( )
A. 8
B. 6 2
C. 8 2
D. 8 3
2.已知 m,n 表示两条不同直线, 表示平面,下列说法正确的是( )
(1)求证: AB 平面 AA1C1C ;
(2)若四棱锥 B ACMN 的体积为 3 ,求 A1AC 的正弦值. 2
26.如图, AA1 、 BB1 为圆柱 OO1 的母线(母线与底面垂直),BC 是底面圆 O 的直径, D、E 分别是 AA1 、 CB1 的中点, DE 平面 CBB1 .
A.若 m / /, n / /, 则 m // n
B.若 m , n ,则 m n
C.若 m , m n ,则 n / /
D.若 m / / , m n ,则 n
3.已知三棱锥 D ABC 的外接球的表面积为128 , AB BC 4, AC 4 2 ,则三棱
锥 D ABC 体积的最大值为( )
2 时,直线 ax
y
2a
0 化为
2
x
a
2
y
a
1,
a
由直线在两坐标轴上的截距相等,可得 2 a 2 a ,解得 a 1; a
综上所述,实数 a 2 或 a 1.
故选:D.
【点睛】
本题主要考查了直线方程的应用,以及直线在坐标轴上的截距的应用,其中解答中熟记直
线在坐标轴上的截距定义,合理分类讨论求解是解答的关键,着重考查了运算与求解能
所以异面直线 AD1 与 A1C 所成的角的大小是 90 .
【常考题】高中必修二数学下期中第一次模拟试题(含答案)
【常考题】高中必修二数学下期中第一次模拟试题(含答案)一、选择题1.圆心在x +y =0上,且与x 轴交于点A (-3,0)和B (1,0)的圆的方程为( ) A .22(1)(1)5x y ++-= B .22(1)(1)5x y -++= C .22(1)(1)5x y -++= D .22(1)(1)5x y ++-=2.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,33.直线(2)4y k x =-+与曲线2320x y y ++-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB 为等边三角形,三棱锥S ABC -的体积为433,则球O 的半径为( ) A .3 B .1C .2D .45.对于平面、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B .若//,a b b α⊂,则//a αC .若//,,,a b αβαγβγ==则//a bD .若,,//,//a b a b ββαα⊂⊂,则//βα6.<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ) A .8πB .12πC .20πD .24π7.设α表示平面,a ,b 表示直线,给出下列四个命题:①a α//,a b b α⊥⇒//; ②a b //,a b αα⊥⇒⊥;③a α⊥,a b b α⊥⇒⊂;④a α⊥,b a b α⊥⇒//,其中正确命题的序号是( ) A .①② B .②④ C .③④ D .①③ 8.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = )A .1B .1-C .2-或1D .2或19.正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( ) A .25B .25C .25D .2510.设有两条直线m ,n 和三个平面α,β,γ,给出下面四个命题: ①m αβ=,////n m n α⇒,//n β ②αβ⊥,m β⊥,//m m αα⊄⇒;③//αβ,//m m αβ⊂⇒; ④αβ⊥,//αγβγ⊥⇒ 其中正确命题的个数是( ) A .1B .2C .3D .411.若方程21424x kx k +-=-+有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫ ⎪⎝⎭C .53,124⎛⎫ ⎪⎝⎭D .53,12412.已知ABC 的三个顶点在以O 为球心的球面上,且2AB =,4AC =,25BC =,三棱锥O ABC -的体积为43,则球O 的表面积为( ) A .22πB .743πC .24πD .36π二、填空题13.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____14.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD 所在平面的距离等于 . 15.过点(1,2)-且与直线2390x y -+=垂直的直线方程为____________. 16.若直线y x b =+与曲线234y x x =-b 的取值范围是______.17.已知,m n 为直线,,αβ为空间的两个平面,给出下列命题:①,//m n m n αα⊥⎧⇒⎨⊥⎩;②,////m n m n αβαβ⊂⎧⎪⊂⇒⎨⎪⎩;③,//m m ααββ⊥⎧⇒⎨⊥⎩;④,//m m n n ββ⊥⎧⇒⎨⊥⎩.其中的正确命题为_________________.18.已知圆22:(2)1M x y +-=,Q 是x 轴上的动点,QA ,QB 分别切圆M 于A ,B 两点,则动弦AB 的中点P 的轨迹方程为__________.19.若圆C :222430x y x y ++-+=,关于直线260ax by ++=对称,则由点(),a b 向圆所作的切线长的最小值为______.20.直线10x y --=与直线20x ay --=互相垂直,则a =__________.三、解答题21.在平面直角坐标系xOy 中,已知两直线1:330l x y --=和2:10l x y ++=,定点(1,2)A .(1)若1l 与2l 相交于点P ,求直线AP 的方程;(2)若1l 恰好是△ABC 的角平分线BD 所在的直线,2l 是中线CM 所在的直线,求△ABC 的边BC 所在直线的方程.22.如图,在棱长均为4的三棱柱111ABC A B C -中,1,D D 分别是BC 和11B C 的中点.(1)求证:11//A D 平面1AB D(2)若平面ABC ⊥平面111,60BCC B B BC ∠=︒,求三棱锥1B ABC -的体积. 23.已知平面内两点(8,6),(2,2)A B -. (1)求AB 的中垂线方程;(2)求过点(2,3)P -且与直线AB 平行的直线l 的方程.24.如图,在Rt AOB 中,30OAB ∠=︒,斜边4AB =,Rt AOC 可以通过Rt AOB以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.25.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(1)求证://DM 平面APC ; (2)求证:BC ⊥平面APC ;(3)若4BC =,10AB =,求三棱锥D BCM -的体积.26.如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 3B AF C --的正切值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】 【分析】由题意得:圆心在直线x=-1上,又圆心在直线x+y=0上,故圆心M 的坐标为(-1,1),再由点点距得到半径。
【典型题】高中必修二数学下期中第一次模拟试题(带答案)
【典型题】高中必修二数学下期中第一次模拟试题(带答案)一、选择题1.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .2.已知两点()A 3,4-,()B 3,2,过点()P 1,0的直线l 与线段AB 有公共点,则直线l 的斜率k 的取值范围是( ) A .()1,1- B .()(),11,∞∞--⋃+ C .[]1,1-D .][(),11,∞∞--⋃+3.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( ) A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 4.已知三棱锥S ABC -的所有顶点都在球O 的球面上,SC 为球O 的直径,且SC OA ⊥,SC OB ⊥,OAB V 为等边三角形,三棱锥S ABC -,则球O 的半径为( ) A .3B .1C .2D .45.直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( )A .-3B .-4C .-6D .36.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( ) A .α⊥β,且m ⊂α B .m ⊥n ,且n ∥β C .α⊥β,且m ∥α D .m ∥n ,且n ⊥β 7.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = )A .1B .1-C .2-或1D .2或18.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20πB .40πC .80πD .160π9.若方程124kx k =-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫ ⎪⎝⎭C .53,124⎛⎫ ⎪⎝⎭D .53,124纟çúçú棼10.如图,在正方体1111ABCD A B C D -中,M ,N 分别是1BC ,1CD 的中点,则下列说法错误..的是( )A .MN 与1CC 垂直B .MN 与AC 垂直 C .MN 与BD 平行D .MN 与11A B 平行11.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .43B .1033C .23D .83312.如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题13.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2,4PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O的表面积为__________.14.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____15.在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________16.将正方形ABCD沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60o ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60o ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.17.正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上.若163P ABCDV -=,则球O 的体积是______. 18.三棱锥A BCD -中,E 是AC 的中点,F 在AD 上,且2AF FD =,若三棱锥A BEF -的体积是2,则四棱锥B ECDF -的体积为_______________.19.如图所示,二面角l αβ--为60,,A B o是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.20.如图,在体积为1V的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V,则21VV=__________.三、解答题21.如图,在三棱锥S ABC-中,SAC∆为等边三角形,4AC=,43BC=,BC AC⊥,3cos SCB∠=-,D为AB的中点.(1)求证:AC SD⊥;(2)求直线SD与平面SAC所成角的大小.22.如图,在三棱锥A BCD-中,,E F分别为棱,BC CD上的中点.(1)求证:EF P 平面ABD ;(2)若,BD CD AE ⊥⊥平面BCD ,求证:平面AEF ⊥平面ACD .23.如图,已知三棱锥A BPC -中,AP PC ⊥,AC BC ⊥,M 为AB 的中点,D 为PB 的中点,且PMB △为正三角形.(1)求证://DM 平面APC ; (2)求证:BC ⊥平面APC ;(3)若4BC =,10AB =,求三棱锥D BCM -的体积.24.如图,在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,90ADC ∠=︒,12BC AD =,PA PD =,M ,N 分别为AD 和PC 的中点.(1)求证://PA 平面MNB ; (2)求证:平面PAD ⊥平面PMB .25.如图,三棱柱111ABC A B C -中,平面11AAC C ⊥平面11AA B B ,平面11AACC ⊥平面ABC ,12AB AC AA ===,点P 、M 分别为棱BC 、1CC 的中点,过点B 、M 的平面交棱1AA 于点N ,使得AP ∥平面BMN .(1)求证:AB ⊥平面11AAC C ; (2)若四棱锥B ACMN -的体积为32,求1A AC ∠的正弦值. 26.如图,1AA 、1BB 为圆柱1OO 的母线(母线与底面垂直),BC 是底面圆O 的直径,D 、E 分别是1AA 、1CB 的中点,DE ⊥平面1CBB .(1)证明:AC ⊥平面11AA B B ; (2)证明://DE 平面ABC .【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果. 【详解】设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E 设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥Q 平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+=解得:3x =,3R =∴球的体积为:343233V R ππ==本题正确选项:D 【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.2.D解析:D 【解析】分析:根据两点间的斜率公式,利用数形结合即可求出直线斜率的取值范围. 详解:∵点A (﹣3,4),B (3,2),过点P (1,0)的直线L 与线段AB 有公共点, ∴直线l 的斜率k≥k PB 或k≤k PA ,∵PA 的斜率为4031--- =﹣1,PB 的斜率为2031--=1, ∴直线l 的斜率k≥1或k≤﹣1, 故选:D .点睛:本题主要考查直线的斜率的求法,利用数形结合是解决本题的关键,比较基础.直线的倾斜角和斜率的变化是紧密相联的,tana=k,一般在分析角的变化引起斜率变化的过程时,是要画出正切的函数图像,再分析.3.B解析:B 【解析】 【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QOOPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO …,即满足2PO …,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的. 【详解】由分析可得:22200PO x y =+又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO …故2222000103634PO x y y y ==+-+… 解得0825y 剟,0605x 剟 即0x 的取值范围是6[0,]5, 故选:B . 【点睛】解题的关键是充分利用几何知识,判断出2PO …,从而得到不等式求出参数的取值范围.4.C解析:C 【解析】 【分析】根据题意作出图形,欲求球的半径r .利用截面的性质即可得到三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和,即可计算出三棱锥的体积,从而建立关于r 的方程,即可求出r ,从而解决问题. 【详解】解:根据题意作出图形: 设球心为O ,球的半径r .SC OA ⊥Q ,SC OB ⊥,SC ∴⊥平面AOB ,三棱锥S ABC -的体积可看成是两个小三棱锥S ABO -和C ABO -的体积和. 2343123S ABC S ABO C ABO V V V r r ---∴=+=⨯⨯⨯⨯=三棱锥三棱锥三棱锥, 2r ∴=.故选:C .【点睛】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定将三棱锥S ABC -的体积看成是两个小三棱锥S ABO -和C ABO -的体积和,属于中档题.5.A解析:A 【解析】 【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可. 【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-, 则圆心坐标为(1,1)-,半径1r a =- 又由圆心到直线的距离为11222d -++==所以由圆的弦长公式可得4=,解得3a =-,故选A. 【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.6.D解析:D 【解析】 【分析】根据所给条件,分别进行分析判断,即可得出正确答案. 【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立; //m n 且n β⊥⇒m β⊥,故D 成立;故选:D 【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.7.D解析:D 【解析】 【分析】根据题意讨论直线它在两坐标轴上的截距为0和在两坐标轴上的截距不为0时,求出对应a 的值,即可得到答案.【详解】由题意,当2a 0-+=,即a 2=时,直线ax y 2a 0+-+=化为2x y 0+=, 此时直线在两坐标轴上的截距都为0,满足题意;当2a 0-+≠,即a 2≠时,直线ax y 2a 0+-+=化为122x y a a a+=--,由直线在两坐标轴上的截距相等,可得2a2a a-=-,解得a 1=; 综上所述,实数a 2=或a 1=. 故选:D . 【点睛】本题主要考查了直线方程的应用,以及直线在坐标轴上的截距的应用,其中解答中熟记直线在坐标轴上的截距定义,合理分类讨论求解是解答的关键,着重考查了运算与求解能力,属于基础题.8.C解析:C 【解析】 【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin ar A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案.【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =. ABC ∆的外接圆半径为42sin ar A==,设球O 的半径为R , 则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得25R =,故球O 的表面积为2480R ππ=. 故选:C . 【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.9.D解析:D 【解析】 【分析】由题意可得,曲线22(1)4(1)x y y +-=…与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围. 【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=…,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <…,直线与半圆有两个交点,AD 与半圆相切时,221k =+,解得512AD k =,4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦.故选:D 【点睛】本题考查直线与圆的位置关系,属于中档题.10.D解析:D 【解析】 【分析】先利用三角形中位线定理证明//MN BD ,再利用线面垂直的判定定理定义证明MN 与1CC 垂直,由异面直线所成的角的定义证明MN 与AC 垂直,即可得出结论.【详解】如图:连接1C D ,BD ,Q 在三角形1C DB 中,//MN BD ,故C 正确.1CC ⊥Q 平面ABCD ,1CC BD ∴⊥,MN ∴与1CC 垂直,故A 正确;AC BD ^Q ,//MN BD ,MN ∴与AC 垂直,B 正确;∵//MN BD ,MN ∴与11A B 不可能平行,D 错误 故选:D . 【点睛】本题主要考查了正方体中的线面关系,线线平行与垂直的证明,异面直线所成的角及其位置关系,熟记正方体的性质是解决本题的关键.11.B解析:B 【解析】由题意可知该几何体为正三棱柱去掉一个小三棱锥,1104323333V =⋅=. 故选:B.12.D解析:D 【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题13.【解析】【分析】由题意得该四面体的四个面都为直角三角形且平面可得因为为直角三角形可得所以因此结合几何关系可求得外接球的半径代入公式即可求球的表面积【详解】本题主要考查空间几何体由题意得该四面体的四个 解析:20π【解析】 【分析】由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,可得25PC =22PB =PBC V 为直角三角形,可得23BC =PB BC ⊥,因此AB BC ⊥,结合几何关系,可求得外接球O 的半径2222152PA R r ⎛⎫=+=+= ⎪⎝⎭O 的表面积.【详解】本题主要考查空间几何体.由题意得该四面体的四个面都为直角三角形,且PA ⊥平面ABC ,2PA AB ==,4AC =,25PC =22PB =因为PBC V 为直角三角形,因此23BC =7BC =(舍). 所以只可能是23BC = 此时PB BC ⊥,因此AB BC ⊥,所以平面ABC 所在小圆的半径即为22ACr ==, 又因为2PA =,所以外接球O的半径R ===所以球O 的表面积为24π20πS R ==. 【点睛】本题考查三棱锥的外接球问题,难点在于确定BC 的长,即得到AB BC ⊥,再结合几何性质即可求解,考查学生空间想象能力,逻辑推理能力,计算能力,属中档题.14.【解析】设球半径为则故答案为点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体锥体或台体则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出则常 解析:32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.15.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球 解析:50π【解析】 【分析】以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球,由此能求出三棱锥P ABC -的外接球的表面积. 【详解】由题意,在三棱锥P ABC -中,PA ⊥平面,,3,4,5ABC AB BC AB BC PA ⊥===, 以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球, 所以三棱锥P ABC -的外接球的半径为2R ==, 所以三棱锥P ABC -的外接球的表面积为2244()502S R πππ==⨯=. 【点睛】本题主要考查了三棱锥的外接球的表面积的计算问题,其中解答中根据几何体的结构特征,以,,AB BC PA 为长宽高构建长方体,得到长方体的外接球是三棱锥P ABC -的外接球是解答的关键,着重考查了数形结合思想,以及推理与运算能力.16.②③④【解析】【分析】作出此直二面角的图象由图形中所给的位置关系对命题逐一判断即可得出正确结论【详解】作出如图的图象E 是BD 的中点易得∠AED =90°即为此直二面角的平面角对于命题①AB 与平面BCD解析:②③④ 【解析】 【分析】作出此直二面角的图象,由图形中所给的位置关系对命题逐一判断,即可得出正确结论. 【详解】作出如图的图象,E 是BD 的中点,易得∠AED =90°即为此直二面角的平面角 对于命题①AB 与平面BCD 所成的线面角的平面角是∠ABE =45°,故AB 与平面BCD 成60°的角不正确;对于命题②,在等腰直角三角形AEC 中AC 等于正方形的边长,故△ACD 是等边三角形,此命题正确;对于命题③可取AD 中点F ,AC 的中点H ,连接EF ,EH ,FH ,则EF ,FH 是中位线,故∠EFH 或其补角为异面直线AB 与CD 所成角,又EF,FH 其长度为正方形边长的一半,而EH 是直角三角形AEC 的中线,其长度是AC 的一半即正方形边长的一半,故△EFH 是等边三角形,由此AB 与CD 所成的角为60°,此命题正确;对于命题④,BD ⊥面AEC ,故AC ⊥BD ,此命题正确;对于命题⑤,连接BH ,HD,则BH ⊥AC, DH ⊥AC,则∠BHD 为二面角B AC D --的平面角,又32,cos ∠BHD=-1,3故二面角B AC D --不是120︒综上知②③④是正确的 故答案为②③④ 【点睛】本题考查与二面角有关立体几何中线线之间的角的求法,线面之间的角的求法,以及线线之间位置关系的证明方法.综合性较强,对空间立体感要求较高.17.【解析】【分析】正四棱锥底面的四个顶点在球的同一个大圆上则棱锥的高等于球的半径由此可由棱锥体积求得球的半径从而得球体积【详解】∵正四棱锥底面的四个顶点在球的同一个大圆上∴球心是正方形对角线交点是棱锥 解析:323π【解析】 【分析】正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,则棱锥的高等于球的半径,由此可由棱锥体积求得球的半径,从而得球体积. 【详解】∵正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,∴球心O 是正方形ABCD 对角线交点,PO 是棱锥的高,设球半径为R ,则2AB R =,22(2)2ABCD S R R ==,211162333P ABCD ABCD V S PO R R -==⨯⨯=,2R =,∴3344322333V R πππ==⨯=球. 故答案为:323π.【点睛】本题考查球的体积,考查正四棱锥与半球的截接问题.解题关键是确定球半径与正四棱锥中的线段长之间的关系.18.【解析】【分析】以B 为顶点三棱锥与四棱锥等高计算体积只需找到三角形AEF 与四边形ECDF 的面积关系即可求解【详解】设B 到平面ACD 的距离为h 三角形ACD 面积为因为是的中点在上且所以所以又=2所以所以解析:【解析】 【分析】以B 为顶点,三棱锥B AEF -与四棱锥B ECDF -等高,计算体积只需找到三角形AEF 与四边形ECDF 的面积关系即可求解. 【详解】设B 到平面ACD 的距离为h ,三角形ACD 面积为S ,因为E 是AC 的中点,F 在AD 上,且2AF FD =,所以16AEF ACD S AE AF S AC AD∆∆⋅==⋅,16AEF S S ∆=,所以56ECDF S S =,又A BEF V -=2,所以⨯=11236Sh ,36Sh =,所以153610318B ECDF ECDF V S h -==⋅=. 故答案为10. 【点睛】本题考查空间几何体的体积计算,考查空间想象能力和运算能力,属于基础题.19.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程解析:217. 【解析】 【分析】推导出CD CA AB BD =++u u u r u u u r u u u r u u u r,两边平方可得CD 的长. 【详解】Q 二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内,且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++u u u r u u u r u u u r u u u r, ∴22()CD CA AB BD =++u u u r u u u r u u u r u u u r2222CA AB BD CA BD =+++u u u r u u u r u u u r u u u r u u u r g361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==u u u r.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这 解析:23【解析】分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V . 详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r hV V r hr hππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==. 三、解答题21.(1)证明见解析;(2)6π. 【解析】 【分析】(1)取AC 的中点O ,连接OS 、OD ,证明出OS AC ⊥,OD AC ⊥,利用直线与平面垂直的判定定理可得出AC ⊥平面SOD ,即可证明出AC SD ⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H ,说明直线SD 与平面SAC 所成的角为OSD ∠,求出OSD ∆三边边长,利用余弦定理求出OSD ∠,即可求出直线SD 与平面SAC 所成角的大小. 【详解】(1)取AC 的中点O ,连接OS 、OD ,SAC ∆Q 为等边三角形,O 为AC 的中点,SO AC ∴⊥,D Q 、O 分别为AB 、AC 的中点,//OD BC ∴,BC AC ⊥Q ,OD AC ∴⊥, SO OD O =Q I ,AC ∴⊥平面SOD ,SD ⊂Q 平面SOD ,AC SD ∴⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H , AC ⊥Q 平面SOD ,DH ⊂平面SOD ,DH AC ∴⊥,DH SO ⊥Q ,SO AC O =I ,DH ∴⊥平面SAC ,所以,直线SD 与平面SAC 所成的角为OSD ∠,由(2)知,1232OD BC ==AC BC ⊥Q ,228AB AC BC ∴+=. SAC ∆Q 是边长为4的等边三角形,4sin233SO π∴==在SBC ∆中,4SC =,43BC=由余弦定理得2222cos 88SB SC BC SC BC SCB =+-⋅⋅∠=,222SB ∴=由余弦定理得2221cos 28SA AB SB SAB SA AB +-∠==-⋅,2222cos 36SD SA AD SA AD SAD ∴=+-⋅⋅∠=,6SD ∴=.在SOD ∆中,由余弦定理得2223cos 2SO SD OD OSD SO SD +-∠==⋅. 0OSD π<∠<Q ,6OSD π∴∠=,因此,直线SD 与平面SAC 所成角的大小为6π. 【点睛】本题考查利用线面垂直的性质证明线线垂直,同时也考查了直线与平面所成角的计算,涉及到利用余弦定理解三角形,考查推理能力与计算能力,属于中等题. 22.(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)根据线面平行的判定定理,在平面ABD 中找EF 的平行线,转化为线线平行的证明;(2)根据面面垂直的判定定理,转化为CD ⊥平面AEF . 【详解】(1)E Q ,F 分别是BC ,CD 的中点,EF ∴P BD ; 又Q EF ⊄平面ABD ,BD ⊂平面ABD ,EF ∴P 平面ABD .(2)BD CD ⊥Q ,EF P BD ,EF CD ∴⊥;AE ^Q 平面BCD ,AE CD ∴⊥;又EF ⊂平面AEF ,AE ⊂平面AEF ,CD \^平面AEF ,又CD ⊂平面ACD , ∴平面AEF ⊥平面ACD .【点睛】本题考查了面面垂直的证明,难点在于转化为线面垂直,方法:结合已知条件,选定其中一个面为垂面,在另外一个面中找垂线,不行再换另外一个面.23.(1)见详解;(2)见详解;(3. 【解析】 【分析】(1)先证DM AP ∥,可证//DM 平面APC .(2)先证AP PBC ⊥平面,得⊥AP BC ,结合AC BC ⊥可证得BC ⊥平面APC . (3)等积转换,由D BCM M DBC V V --=,可求得体积. 【详解】(1)证明:因为M 为AB 的中点,D 为PB 的中点, 所以MD 是ABP △的中位线,MD AP P . 又MD APC ⊄平面,AP APC ⊂平面, 所以MD APC ∥平面.(2)证明:因为PMB △为正三角形,D 为PB 的中点,所以MD PB ⊥. 又MD AP P ,所以AP PB ⊥.又因为AP PC ⊥,PB PC P I =,所以AP PBC ⊥平面. 因为BC PBC ⊂平面,所以⊥AP BC . 又因为BC AC ⊥,AC AP A ⋂=, 所以BC APC ⊥平面.(3)因为AP PBC ⊥平面,MD AP P ,所以MD PBC ⊥平面,即MD 是三棱锥M DBC -的高. 因为10AB =,M 为AB 的中点,PMB △为正三角形,所以5,PB MB MD MB ====. 由BC APC ⊥平面,可得BC PC ⊥,在直角三角形PCB 中,由54PB BC =,=,可得3PC =. 于是111433222BCD BCP S S ⨯⨯⨯=△△==.所以1133322D BCM M DBC BCD V V S MD --⨯⨯=g △===. 【点睛】本题考查空间线面平行与垂直的证明,体积的计算.空间中的平行与垂直的证明过程就是利用相关定义、判定定理和性质定理实现线线平行(垂直)、线面平行(垂直)、面面平行(垂直)的转换.求三棱锥的体积常采用等积转换的方法,选择易求的底面积和高来求体积. 24.(1)见解析;(2)见解析.【解析】【分析】(1)通过证明//NQ PA ,即可得到本题结论;(2)由题,先证PM AD ⊥和AD MB ⊥,即可得到AD ⊥平面PMB ,由此即可得到本题结论.【详解】(1)连接AC 交MB 于Q ,连接,NQ MC .因为//AM BC ,12AM AD BC ==, 所以四边形ABCM 是平行四边形,所以Q 是AC 的中点.又N 是PC 的中点,所以//NQ PA ,因为NQ ⊂平面MNB ,PA ⊄平面MNB ,所以//PA 平面MNB ;(2)因为PA PD =,AM MD =,所以PM AD ⊥,因为//MD BC ,MD BC =,所以四边形BCDM 是平行四边形,所以//MB DC ,因为=90ADC ∠︒,即AD DC ⊥,所以AD MB ⊥,因为PM MB M ⋂=,,PM MB ⊂平面PMB ,所以AD ⊥平面PMB ,又AD ⊂平面PAD ,所以平面PAD ⊥平面PMB .【点睛】本题主要考查线面平行的判定与面面垂直的判定,考查学生的空间想象能力和逻辑推理能力.25.(1)见解析;(2)32. 【解析】(1)在平面ABC 中,过点B 作棱AC 的垂线,垂足为D ,Q 平面11AAC C ⊥平面ABC ,∴ BD ⊥平面11AAC C .在平面11AA B B 中,过点B 作棱1AA 的垂线,垂足为E ,Q 平面11AAC C ⊥平面11AA B B ,∴BE ⊥平面11AAC C .Q 过点B 与平面11AAC C 垂直的直线有且只有一条,∴BE 与BD 重合,又∵平面ABC I 平面11AA B B AB =,∴BE 与BD 重合于AB ,所以AB ⊥平面11AAC C .(2)设BM 的中点为Q ,连接PQ ,NQ ,Q 点P 为棱BC 的中点,∴PQ ∥CM 且PQ =12CM , Q 1AA ∥1CC ,∴PQ ∥AN ,∴P 、Q 、N 、A 四点共面,∵AP ∥平面BMN ,∴AP ∥NQ ,∴四边形PQNA 是平行四边形,∴PQ =AN ,∵M 为1CC 的中点且12AB AC AA ===,∴1CM =,∴PQ =AN =12, 设梯形ACMN 的高为h ,Q 2AB =, ∴111132×2322B ACMN h V h -⎛⎫+ ⎪⎝⎭=⨯==,∴3h = ∴13sin 2h A AC AC ∠==,∴1A AC ∠的正弦值为32. 26.(1)证明见解析;(2)证明见解析【解析】【分析】(1)通过证明1A A AC ⊥和AB AC ⊥,即可证得AC ⊥平面11AA B B ;(2)通过证明//DE AO ,即可证得//DE 平面ABC .【详解】(1)由题,得1A A ⊥平面ABC ,所以1A A AC ⊥,又BC 是底面圆O 的直径,所以AB AC ⊥,因为1AB AA A =I ,所以AC ⊥平面11AA B B ;(2)连接,OE OA ,因为,E O 分别为1,B C BC 的中点,所以1//OE BB 且112OE BB =, 易得1//AD BB 且112AD BB =, 所以//AD OE 且AD OE =,所以四边形OADE 为平行四边形,则//DE AO ,因为AO ⊂平面ABC ,DE ⊄平面ABC ,所以//DE 平面ABC .【点睛】本题主要考查线面垂直和线面平行的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.。
【常考题】高中必修二数学下期中一模试题(附答案)
【常考题】高中必修二数学下期中一模试题(附答案)一、选择题1.已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( )A .若//,//,m n αα则//m nB .若m α⊥,n α⊂,则m n ⊥C .若m α⊥,m n ⊥,则//n αD .若//m α,m n ⊥,则n α⊥2.已知三棱锥D ABC -的外接球的表面积为128π,4,42AB BC AC ===,则三棱锥D ABC -体积的最大值为( )A .2732B .1086+C .166+D .322166+ 3.已知正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,则该四棱锥的体积的最大值为( )A .643B .32C .54D .644.已知m ,n 是空间中两条不同的直线,α,β为空间中两个互相垂直的平面,则下列命题正确的是( )A .若m α⊂,则m β⊥B .若m α⊂,n β⊂,则m n ⊥C .若m α⊄,m β⊥,则//m αD .若m αβ=,n m ⊥,则n α⊥5.已知点(),P x y 是直线()400kx y k ++=>上一动点,,PA PB 是圆22:20C x y y +-=的两条切线,切点分别为,A B ,若四边形PACB 的面积最小值为2,则k 的值为( )A .3B .21C .22D .26.设α表示平面,a ,b 表示直线,给出下列四个命题:①a α//,a b b α⊥⇒//; ②a b //,a b αα⊥⇒⊥;③a α⊥,a b b α⊥⇒⊂;④a α⊥,b a b α⊥⇒//,其中正确命题的序号是( )A .①②B .②④C .③④D .①③7.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C .32D .3 8.若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.已知AB 是圆22620x y x y +-+=内过点(2,1)E 的最短弦,则||AB 等于( )A .3B .22C .23D .2510.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ;(3)平面//EAB 平面FGT ;(4)直线//BC 直线AE .A .1个B .2个C .3个D .4个11.若底面是菱形的棱柱其侧棱垂直于底面,且侧棱长为5,它的对角线的长分别是9和15,则这个棱柱的侧面积是( ).A .130B .140C .150D .16012.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1二、填空题13.光线由点P(2,3)射到直线x+y+1=0上,反射后过点Q(1,1) ,则反射光线方程为__________.14.已知,m n 为直线,,αβ为空间的两个平面,给出下列命题:①,//m n m nαα⊥⎧⇒⎨⊥⎩;②,////m n m n αβαβ⊂⎧⎪⊂⇒⎨⎪⎩;③,//m m ααββ⊥⎧⇒⎨⊥⎩;④,//m m n n ββ⊥⎧⇒⎨⊥⎩.其中的正确命题为_________________.15.已知直线:0l x my m ++=,且与以A (-1,1)、B (2,2)为端点的线段相交,实数m 的取值范围为___________.16.在平面直角坐标系xoy 中,ABC ∆的坐标分别为()1,1A --,()2,0B ,()1,5C ,则BAC ∠的平分线所在直线的方程为_______17.如图,已知圆锥的高是底面半径的2倍,侧面积为π,若正方形ABCD 内接于底面圆O ,则四棱锥P ABCD -侧面积为__________.18.在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,且三棱锥的最长的棱长为2,则此三棱锥的外接球体积为_____________.19.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ;④面1PDB 面1ACD .其中正确的命题的序号是__________.20.如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V,则21V V =__________.三、解答题21.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.22.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,AC 与BD 交于点O,E ,F 分别为AB ,PC 的中点.(Ⅰ)求证:EF ∥平面PAD ;(Ⅱ)求证:AF ⊥平面POD .23.已知直线1:20l ax y a +--=,22:0l x ay ++=,点(5,0)P -(1)当12//l l 时,求a 的值;(2)求直线1l 所过的定点Q ,并求当点P 到直线1l 的距离最大时直线1l 的方程.24.如图所示的等腰梯形ABCD 中,//AB CD ,12AB AD BC CD a ====,E 为CD 中点.若沿AE 将三角形DAE 折起,并连接DB ,DC ,得到如图所示的几何体D-ABCE ,在图中解答以下问题:(1)设G 为AD 中点,求证://DC 平面GBE ;(2)若平面DAE ⊥平面ABCE ,且F 为AB 中点,求证:DF AC ⊥.25.如图,直三棱柱111ABC A B C -的底面是边长为4的正三角形,M ,N 分别是BC ,1CC 的中点.(1)证明:平面AMN ⊥平面11B BCC ;(2)若直线1A C 与平面11A ABB 所成的角为30,试求三棱锥M ANC -的体积.26.如图,在直三棱柱111ABC A B C -中,90ABC ︒∠=,1AB AA =,,M N 分别为AC ,11B C 的中点.(1)求证://MN 平面11ABB A ;(2)求证:1AN A B ⊥.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】试题分析:线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.考点:空间点线面位置关系.2.D解析:D【解析】【分析】先求出球心O 到底面距离的最大值,从而可求顶点D 到底面的距离的最大值,利用该最大值可求体积的最大值.【详解】设外接球的球心为O ,半径为R ,则24128R ππ=,故42R =设球心O 在底面上的投影为E ,因为OA OC OB ==,故E 为ABC ∆的外心.因为4AB BC ==,42AC =222AC AB BC =+,故ABC ∆为直角三角形, 故E 为AC 的中点,所以2226OE OA AE =-=,设D 到底面ABC 的距离为h ,则2642h OE R ≤+=所以三棱锥D ABC -的体积的最大值为(11322166442642323⨯⨯⨯⨯=. 故选:D.【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,注意球心在底面上的投影为底面外接圆的圆心.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定. 3.A解析:A【解析】【分析】设底面ABCD 的边长为a ,四棱锥的高为h ,可得22122a h h =-,得出四棱锥的体积关于h 的函数()V h ,求出V 的极大值点,即可得到四棱锥的体积的最大值.【详解】正四棱锥P ABCD -的所有顶点都在同一球面上,若球的半径为3,设底面ABCD 的边长为a ,四棱锥的高为h ,设正四棱锥的底面ABCD 的中心为1O . 则22a OA =,1PO ⊥ 平面ABCD . 则22211OO O A OA +=,即()222233a h ⎛⎫+-= ⎪ ⎪⎝⎭,可得22122a h h =-. 则该四棱锥的体积为()221112233V a h h h h =⨯=- 令()()2122f h h h h =-,则()2246f h h h '=-当04h <<时,()0f h '>,f h 单调递增.当4h >时,()0f h '<,f h 单调递减.所以当4h =时,该四棱锥的体积有最大值,最大值为:()216412424433⨯⨯-⨯⨯= . 故选:A【点睛】本题考查了四棱锥与球的组合体,求椎体的体积,关键是利用了导数求体积的最值.属于中档题.4.C解析:C【解析】由题设,,αβ⊥ 则A. 若m α⊂,则m β⊥,错误;B. 若m α⊂,n β⊂,则m n ⊥ 错误;D. 若m αβ⋂=,n m ⊥,当n β⊄ 时不能得到n α⊥,错误.故选C.5.D解析:D【解析】【分析】当且仅当PC 垂直于()400kx y k ++=>时,四边形PACB 的面积最小,求出PC 后可得最小面积,从而可求k 的值. 【详解】 圆C 方程为()2211x y +-=,圆心()0,1C ,半径为1. 因为PA ,PB 为切线,221PC PA ∴=+且1=2122PACB S PA PA ⨯⨯⨯==四边形. ∴当PA 最小时,PACB S 四边形最小,此时PC 最小且PC 垂直于()400kx y k ++=>.又min 21PC k =+,222221+1k ⎛⎫∴= ⎪+⎝⎭,2k ∴=,故选D. 【点睛】圆中的最值问题,往往可以转化圆心到几何对象的距离的最值来处理,这类问题属于中档题. 6.B解析:B【解析】【分析】【详解】①a ∥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故①错误;②若a ∥b ,a ⊥α,由直线与平面垂直和判定定理得b ⊥α,故②正确;③a ⊥α,a ⊥b ⇒b 与α平行,相交或b ⊂α,故③错误;④若a ⊥α,b ⊥α,则由直线与平面垂直的性质得a ∥b ,故④正确.故选B .7.A解析:A【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==.设2AB BC CD ===,则PM =又1122MN BD NP AC ==== ∴PNM ∆为等边三角形,∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值. 8.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 9.D解析:D【解析】【分析】求出圆的标准方程,确定最短弦的条件,利用弦长公式进行求解即可.【详解】圆的标准方程为(x ﹣3)2+(y +1)2=10,则圆心坐标为C (3,﹣1),半径为过E 的最短弦满足E 恰好为C 在弦上垂足,则CE ==,则|AB |222(10)(5)25=-=,故选D .【点睛】本题主要考查圆的标准方程的求解,以及直线和圆相交的弦长问题,属于中档题.10.C解析:C【解析】【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面FGT ;(4)利用反证法,可推出//BC AE 不成立.【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又平面ABE 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则2AC a =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥,即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直,取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆是等边三角形,且D 为AB 的中点,DE AB ⊥∴.平面ABE ⊥平面ABC ,平面ABE 平面ABC AB =,DE ⊂平面ABE .DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴,DE ⊄平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT . G 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT .DE AB D =,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥,则AE AB ⊥,事实上60BAE ∠=, 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行.因此,可能正确命题的个数为3.故选:C.【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题. 11.D解析:D【解析】设直四棱柱1111ABCD A B C D -中,对角线119,15AC BD ==, 因为1A A ⊥平面,ABCD AC ,平面ABCD ,所以1A A AC ⊥,在1Rt A AC ∆中,15A A =,可得AC ==同理可得BD ===,因为四边形ABCD 为菱形,可得,AC BD 互相垂直平分,所以8AB ===,即菱形ABCD 的边长为8, 因此,这个棱柱的侧面积为1()485160S AB BC CD DA AA =+++⨯=⨯⨯=, 故选D.点睛:本题考查了四棱锥的侧面积的计算问题,解答中通过给出的直四棱柱满足的条件,求得底面菱形的边长,进而得出底面菱形的底面周长,即可代入侧面积公式求得侧面积,着重考查了学生分析问题和解答问题的能力,以及空间想象能力,其中正确认识空间几何体的结构特征和线面位置关系是解答的关键.12.B解析:B【解析】试题分析:①中AC⊥BE,由题意及图形知,AC⊥面DD1B1B,故可得出AC⊥BE,此命题正确;②EF∥平面ABCD,由正方体ABCD-A1B1C1D1的两个底面平行,EF在其一面上,故EF与平面ABCD无公共点,故有EF∥平面ABCD,此命题正确;③三棱锥A-BEF的体积为定值,由几何体的性质及图形知,三角形BEF的面积是定值,A点到面DD1B1B距离是定值,故可得三棱锥A-BEF的体积为定值,此命题正确;④由图形可以看出,B到线段EF的距离与A到EF的距离不相等,故△AEF的面积与△BEF的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质二、填空题13.4x-5y+1=0【解析】【分析】先求P点关于直线x+y+1=0对称点M再根据两点式求MQ方程即得结果【详解】因为P点关于直线x+y+1=0对称点为所以反射光线方程为【点睛】本题考查点关于直线对称问解析:4x-5y+1=0【解析】【分析】先求P点关于直线x+y+1=0对称点M,再根据两点式求 MQ方程,即得结果.【详解】因为P点关于直线x+y+1=0对称点为(4,3)M--,所以反射光线方程为13:1(1),451014MQ y x x y+-=--+=+.【点睛】本题考查点关于直线对称问题,考查基本分析求解能力,属基本题.14.③④【解析】关于①也会有的结论因此不正确;关于②也会有异面的可能的结论因此不正确;容易验证关于③④都是正确的故应填答案③④解析:③④【解析】关于①,也会有n⊂α的结论,因此不正确;关于②,也会有,m n异面的可能的结论,因此不正确;容易验证关于③④都是正确的,故应填答案③④.15.【解析】【分析】由直线系方程求出直线所过定点再由两点求斜率求得定点与线段两端点连线的斜率数形结合求得实数的取值范围【详解】解:由直线可知直线过定点又如图∵∴由图可知直线与线段相交直线的斜率或斜率不存 解析:21,32⎡⎤-⎢⎥⎣⎦【解析】【分析】由直线系方程求出直线所过定点,再由两点求斜率求得定点与线段两端点连线的斜率,数形结合求得实数m 的取值范围.【详解】 解:由直线:0l x my m ++=可知直线过定点()0,1P -,又()1,1A -,()2,2B ,如图∵()11201PA K --==---,123022PB K --==-, ∴由图可知,直线与线段相交,直线l 的斜率(]3,2,2k ⎡⎫∈-∞-+∞⎪⎢⎣⎭,或斜率不存在, ∴(]13,2,2m ⎡⎫-∈-∞-+∞⎪⎢⎣⎭,或0m =, 即203m -≤<或102m <≤,或0m =, ∴21,32m ⎡⎤∈-⎢⎥⎣⎦ 故答案为:21,32⎡⎤-⎢⎥⎣⎦. 【点睛】 本题主要考查直线系方程的应用,考查了直线的斜率计算公式,考查了数形结合的解题思想方法,属于中档题.16.【解析】【分析】设的平分线与交于根据角平分线与面积关系求出利用共线向量坐标关系求出点坐标即可求解【详解】设的角平分线与交于解得所以的平分线方程为故答案为:【点睛】本题考查角平分线方程向量共线坐标应用 解析:0x y -=【解析】【分析】设BAC ∠的平分线与BC 交于D ,根据角平分线与面积关系求出||||CD DB ,利用共线向量坐标关系,求出D 点坐标,即可求解.【详解】设BAC ∠的角平分线与BC 交于(,)D a b , 1||||sin ||210||221||||10||||sin 2ACD ABD AC AD CAD S AC CD S AB DB AB AD BAD ⋅⋅∠∴=====⋅⋅∠, 2,(1,5)2(2,)CD DB a b a b ∴=--=--,解得55,33a b ==, 55(,)33D ∴,所以BAC ∠的平分线AD 方程为0x y -=. 故答案为:0x y -=.【点睛】本题考查角平分线方程、向量共线坐标,应用角平分线性质是解题的关键,属于中档题. 17.【解析】分析:设圆锥底面半径为则高为母线长为由圆锥侧面积为可得结合利用三角形面积公式可得结果详解:设圆锥底面半径为则高为母线长为因为圆锥侧面积为设正方形边长为则正四棱锥的斜高为正四棱锥的侧面积为故答 65. 【解析】分析:设圆锥底面半径为r ,则高为2r 5r ,由圆锥侧面积为π,可得25r =,结合a =,利用三角形面积公式可得结果.详解:设圆锥底面半径为r ,则高为2h r =,因为圆锥侧面积为π,r ππ∴⨯=,2r =设正方形边长为a ,则2224,a r a ==,=,∴正四棱锥的侧面积为21462a r ⨯⨯==,. 点睛:本题主要考查圆锥的性质、正四棱锥的性质,以及圆锥的侧面积、正四棱锥的侧面积,属于中档题,解答本题的关键是求得正四棱锥底面棱长与圆锥底面半径之间的关系.18.【解析】【分析】根据题意可得平面所以得出为三棱锥的最长边根据直角三角形的性质边的中点到三棱锥的各顶点距离都相等所以为球心球直径即为【详解】平面平面平面所以三棱锥中最长边为设中点为在中所以三棱锥的外接 解析:43π 【解析】【分析】根据题意可得,BC ⊥平面PAC ,所以BC PC ⊥,得出PB 为三棱锥的最长边,PA AB ⊥,根据直角三角形的性质,PB 边的中点到三棱锥的各顶点距离都相等,所以为球心,球直径即为PB .【详解】PA ⊥平面ABC ,BC ⊂平面ABC ,PA BC ∴⊥,,,AC BC PA AC A BC ⊥=∴⊥平面PAC ,BC PC ⊥,,,,,PB BC PB PC PA AC PC AC PC PA ∴>>⊥∴>>,所以三棱锥中最长边为2PB =,设PB 中点为O ,在,Rt PAB Pt PBC ∆∆中,12AO CO PB ==,所以三棱锥的外接球的球心为O , 半径为41,3V π∴=. 故答案为:43π.【点睛】本题考查几何体的“切”“接”球问题,确定球心是解题的关键,考查空间垂直的应用,属于中档题.19.①②④【解析】对于①因为从而平面故上任意一点到平面的距离均相等以为顶点平面为底面则三棱锥的体积不变正确;对于②连接容易证明且相等由于①知:平面平面所以可得面②正确;对于③由于平面若则平面则为中点与动 解析:. ① ② ④【解析】对于①,因为11//AD BC ,从而1//BC 平面1AD C ,故1BC 上任意一点到平面1AD C 的距离均相等,∴以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,正确;对于②,连接111,A B A C 容易证明111//AC A D 且相等,由于①知:11//AD BC ,平面11//BA C 平面1ACD ,所以可得1//A P 面1ACD ,②正确;对于③,由于DC ⊥平面111,BCB C DC BC ∴⊥,若1DP BC ,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 动点矛盾,错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,由面面垂直的判定知平面1PDB ⊥平面1ACD ,④正确,故答案为①②④.20.【解析】分析:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 再求详解:设上下圆锥的高分别为圆柱的底面圆的半径为圆柱的高为h 则故答案为:点睛:(1)本题主要考查圆锥圆柱体积的计算意在考查学生对这 解析:23【解析】 分析:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h,再求21V V . 详解:设上下圆锥的高分别为12,,h h 圆柱的底面圆的半径为r ,圆柱的高为h, 则222212222111()233.3r h r h h r h r h V V r h r h ππππππ-+-===故答案为:23. 点睛:(1)本题主要考查圆锥圆柱体积的计算,意在考查学生对这些知识的掌握水平.(2)圆柱的体积为2V sh r h π==,圆锥的体积为21133V sh r h π==. 三、解答题21.(1)证明见解析(2)存在,理由见解析【解析】【分析】【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明.(2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可.详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.22.(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】【分析】(Ⅰ)取PD 中点G ,连接AG 、FG ,由题意结合中位线性质可得//FG AE 且FG AE =,即可得四边形FGAE 为平行四边形,进而可得//FE AG ,再由线面平行的判定即可得证;(Ⅱ)由线面垂直的性质和正方形的性质可得DO ⊥平面PAC ,进而可得DO AF ⊥,由平面几何知识可得AF PO ⊥,再由线面垂直的判定即可得证.【详解】(Ⅰ)证明:取PD 中点G ,连接AG 、FG ,E ,F 分别为AB ,PC 的中点,底面ABCD 为正方形∴//FG CD 且12FG CD =,//AE CD 且12AE CD =, ∴//FG AE 且FG AE =,∴四边形FGAE 为平行四边形,∴//FE AG ,又FE ⊄平面PAD ,AG ⊂平面PAD ,∴//EF 平面PAD .(Ⅱ)证明:底面ABCD 为正方形,PA ⊥平面ABCD ,∴PA DO ⊥,AC DO ⊥,PA AC A =,∴DO ⊥平面PAC , ∴DO AF ⊥,在PAC 中,设PO AF H =,如图,由题知90PAC ∠=, O ,F 分别为AC ,PC 的中点,∴AF FC =即CAF FCA , 设PA a =,则2AC a =,2AO =, ∴APO ACP ∽,∴APOPCA , ∴90AHP ∠=即AF PO ⊥,又PO OD O =,∴AF ⊥平面POD .【点睛】本题考查了线面平行和线面垂直的判定,考查了空间思维能力,属于中档题.23.(1)1a =±;(2)(1,2)Q ;350x y +-=.【解析】【分析】(1)由平行可知系数的关系为21a =,进而可求a 的值;(2)整理直线1l 方程可知()120a x y -+-=,由1020x y -=⎧⎨-=⎩可求得定点坐标. 由分析知,当当(5,0)P -在直线上的射影为(1,2)Q 时,点P 到直线1l 距离最大,由1PQ l ⊥可求出1l 的斜率,结合已知的1l 的方程,可求出此时a 的值,进而可求出直线1l 的方程.【详解】解:(1)12//l l ,21a ∴=,解得1a =±检验:当1a =时12:30:20l x y l x y +-=++=,符合12//l l当1a =-时12:10:20l x y l x y -+=-+=,符合12//l l综上:1a =±.(2)解:1:20l ax y a +--=整理可得()120a x y -+-= ,由1020x y -=⎧⎨-=⎩ , 解得12x y =⎧⎨=⎩ ,所以定点(1,2)Q .则当(5,0)P -在直线上的射影为(1,2)Q 时,距离最大. 此时1PQ l ⊥ ,直线PQ 的斜率为201153PQk -==+,则1l 的斜率113PQ k k =-=- , 即3a -=-,解得3a =,此时直线1l 的方程为350x y +-=.【点睛】本题考查了两点斜率的求解,考查了直线平行、垂直.本题的难点是分析何时点P 到直线1l 的距离最大.易错点是做第一问时,求出1a =± 后未检验.对于已知直线平行,根据系数关系求出参数值后,应带回直线方程进行验证.24.(1)证明见解析;(2)证明见解析【解析】【分析】(1)连接AC 交BE 于点O ,连接OG ,先证明四边形ABCE 为平行四边形,再通过证明//OG DC ,即可得到//DC 平面GBE ;(2)通过证明AC ⊥平面DFH ,即可得到DF AC ⊥.【详解】(1)连接AC 交BE 于点O ,连接OG .因为//AB CD ,12AB AD BC CD a ====, E 为CD 中点 所以AB CE =,即四边形ABCE 为平行四边形所以O 为AC 的中点因为G 分别为AD 的中点,所以//OG DC , 又因为OG ⊂平面GBE ,DC ⊄平面GBE ,所以//DC 平面GBE ;(2)取AE 中点H ,连接,DH FH .因为,F H 分别为,AB AE 中点,所以//FH BE ,易知,四边形ABCE 为菱形,所以AC BE ⊥,所以AC FH ⊥,又因为DA DE =,H 为AE 中点,所以DH AE ⊥,又平面DAE ⊥平面ABCE ,所以DH ⊥平面ABCE ,所以DH AC ⊥,又因为DH FH H ⋂=,所以AC ⊥平面DFH ,则DF AC ⊥.【点睛】本题主要考查线面平行和线线垂直的判定,考查学生的空间想象能力和推理证明能力,体现了数形结合的数学思想.25.(1)证明见解析(246 【解析】【分析】(1)先证明AM ⊥平面11BB C C ,即可由线面垂直推证面面垂直;(2)根据线面角求得棱柱的高,即可由棱锥的体积公式求得结果.【详解】(1)证明:如图,由直三棱柱111ABC A B C -知1AM BB ⊥,又M 为BC 的中点知AM BC ⊥,又1BB BC B =,所以AM ⊥面11B BCC ,又AM ⊂平面AMN ,所以平面AMN ⊥平面11B BCC . (2)如图:设AB 的中点为D ,连接1A D ,CD .因为ABC 是正三角形,所以CD AB ⊥.由直三棱柱111ABC A B C -知1CD AA ⊥.所以CD ⊥平面11A ABB ,所以1CA D ∠为直线1A C 与平面11A ABB 所成的角.即130CA D ∠=︒, 所以1322443A C CD ===,所以16A D =, 在1Rt AA D △中, 221136442AA A D AD =-=-=111422222AA NC =⨯== 三棱锥M ANC -的体积即为三棱锥N AMC -的体积,所以2113146422332AMC S V NC ⎫⋅=⨯⨯⨯=⎪⎪⎝⎭=△. 【点睛】本题考查由线面垂直推证面面垂直,以及由线面角求线段长,涉及棱锥的体积求解,属综合中档题.26.(1)见解析(2)见解析【解析】【分析】(1)取AB 的中点P ,连接1,PM PB ,通过中位线定理求证四边形1PMNB 是平行四边形,进而求证;(2)连接1AB ,,设法证明11A B AB ⊥,111A B B C ⊥,进而证明1A B ⊥平面1AB N ,求得1A B AN ⊥.【详解】解:(1)如图,取AB 的中点P ,连接1,PM PB ,,M P 分别是,AC AB 的中点,//PM BC ∴,且12PM BC =,在直三棱柱11t ABC A B C -中, 11//BC B C ,11BC B C =, N 是11B C 的中点,∴1PM B N =,且1//PM B N , ∴四边形1PMNB 是平行四边形,1//MN PB ∴, 而MN ⊄平面11ABB A ,1PB ⊂平面11ABB A , //MN ∴平面11ABB A .(2)如图,连接1AB ,由111ABC A B C -是直三棱柱,90ABC ︒∠=,1AB AA =可知,111B C BB ⊥,1111B C A B ⊥,1111BB B A B =, ∴11B C ⊥平面11A B BA ,111B C A B ∴⊥, 又侧面11A B BA 为正方形,11A B AB ∴⊥,1111AB B C B ⋂=,1A B ∴⊥平面11AB C , 又AN ⊂平面11AB C ,1A B AN ∴⊥【点睛】本题考查线面平行,线线垂直的证明,属于中档题.。
【典型题】高中必修二数学下期中第一次模拟试卷附答案(1)
【典型题】高中必修二数学下期中第一次模拟试卷附答案(1)一、选择题1.圆224470x y x y +--+=上的动点P 到直线0x y +=的最小距离为( ) A .1 B .221- C .22 D .22.已知,,,A B C D 是同一球面上的四个点,其中ABC ∆是正三角形,AD ⊥平面ABC ,26AD AB ==,则该球的体积为( )A .48πB .24πC .16πD .323π 3.已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f =2b (log 5),c (2)f f m ==,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<4.若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( ) A .9,34⎛⎫ ⎪⎝⎭ B .9,34⎡⎫⎪⎢⎣⎭ C .()1,3 D .()2,35.已知平面//α平面β,直线m αÜ,直线n βÜ,点A m ∈,点B n ∈,记点A 、B 之间的距离为a ,点A 到直线n 的距离为b ,直线m 和n 的距离为c ,则A .b a c ≤≤B .a c b ≤≤C . c a b ≤≤D .c b a ≤≤6.如图是某四面体ABCD 水平放置时的三视图(图中网格纸的小正方形的边长为1,则四面体ABCD 外接球的表面积为A .20πB .1256πC .25πD .100π7.已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ⊥n ,且n ∥βC .α⊥β,且m ∥αD .m ∥n ,且n ⊥β8.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为43角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20π B .40π C .80π D .160π9.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2 B .1- C .2 D .不存在10.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( )A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭ 11.点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256π B .8π C .2516π D .254π 12.已知点()1,2-和3,0⎛⎫ ⎪⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( )A .,43ππ⎛⎫⎪⎝⎭ B .2,33ππ⎛⎫ ⎪⎝⎭ C .25,36ππ⎛⎫ ⎪⎝⎭ D .30,,34πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭二、填空题13.如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点,现将AFD V 沿AF 折起,使平面ABD ⊥平面ABC ,在平面ABD 内过点D 作DK AB ⊥,K 为垂足,设AK t =,则t 的取值范围是__________.14.正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.15.三棱锥P ABC -中,5PA PB ==2AC BC ==AC BC ⊥,3PC =,则该三棱锥的外接球面积为________.16.直线10ax y ++=与连接A (4,5),B (-1,2)的线段相交,则a 的取值范围是___.17.底面边长为2的正三棱柱111ABC A B C -被不平行于底面的平面MNP 所截,其中3AM =,4BN =,5PC =,则多面体ABC MNP -体积为________18.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,﹣1)的距离之和最小的点的坐标是 .19.已知棱长等于23的正方体1111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.20.如图:点P 在正方体1111ABCD A B C D -的面对角线1BC 上运动,则下列四个命题: ①三棱锥1A D PC -的体积不变; ②1A P ∥面1ACD ;③1DP BC ^;④面1PDB ^面1ACD .其中正确的命题的序号是__________.三、解答题21.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)74l m x m y m +++--=0,(m ∈R ).(1)证明:无论m 取何值,直线l 过定点;(2)求直线l 被圆C 截得的弦长最短时m 的值及最短弦长.22.如图1,有一边长为2的正方形ABCD ,E 是边AD 的中点,将ABE △沿着直线BE 折起至A BE 'V 位置(如图2),此时恰好A E A C ''⊥,点A '在底面上的射影为O .(1)求证:A E BC '⊥;(2)求直线A B '与平面BCDE 所成角的正弦值.23.如图所示,四棱锥S ABCD -中,SA ⊥底面ABCD ,090ABC ∠=,23SA AB ==,1BC =,23AD =060ACD ∠=,E 为CD 的中点.(1)求证://BC 平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值.24.如图,在Rt AOB V 中,30OAB ∠=︒,斜边4AB =,Rt AOC V 可以通过Rt AOB V 以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.25.如图,正方形ABCD 所在平面与平面四边形ABEF 所在平面互相垂直,ABE ∆是等腰直角三角形,AB AE =,FA FE =,45AEF ∠=︒.(1)设线段CD AE 、的中点分别为P M 、,求证://PM 平面BCE ;(2)求二面角F BD A --所成角的正弦值.26.已知三角形ABC 的顶点坐标分别为A (4,1),B (1,5),C (3,2)-;(1)求直线AB 方程的一般式;(2)证明△ABC 为直角三角形;(3)求△ABC 外接圆方程.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出圆心到直线0x y +=的距离,根据距离的最小值为d r -,即可求解.【详解】由圆的一般方程可得22(2)(2)1x y -+-=, 圆心到直线的距离222d == 所以圆上的点到直线的距离的最小值为221-.故选B.【点睛】本题主要考查了点到直线的距离,圆的方程,属于中档题.2.D解析:D 【解析】【分析】根据球的性质可知球心O 与ABC ∆外接圆圆心O '连线垂直于平面ABC ;在Rt POE ∆和Rt OO A ∆'中利用勾股定理构造出关于半径R 和OO '的方程组,解方程组求得R ,代入球的体积公式可得结果. 【详解】设O '为ABC ∆的外心,如下图所示:由球的性质可知,球心O 与O '连线垂直于平面ABC ,作OE AD ⊥于E设球的半径为R ,OO x '=ABC ∆为等边三角形,且3AB = 3AO '∴=OO '⊥Q 平面ABC ,AD ⊥平面ABC ,OE AD ⊥OO AE x '∴==,3OE AO '==在Rt POE ∆和Rt OO A ∆'中,由勾股定理得:22222OE PE O O O A R ''+=+=,即()222363x x R +-=+= 解得:3x =,R =∴球的体积为:343V R π== 本题正确选项:D【点睛】本题考查棱锥外接球的体积求解问题,关键是能够确定棱锥外接球球心的位置,从而在直角三角形中利用勾股定理构造方程求得半径.3.B解析:B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.4.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:Q 函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩…单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 5.D解析:D【解析】【分析】根据平面与平面平行的判断性质,判断c 最小,再根据点到直线距离和点到直线上任意点距离判断a 最大.【详解】由于平面//α平面β,直线m 和n 又分别是两平面的直线,则c 即是平面之间的最短距离. 而由于两直线不一定在同一平面内,则b 一定大于或等于c ,判断a 和b 时,因为B 是上n 任意一点,则a 大于或等于b .故选D.【点睛】本题主要考查面面平行的性质以及空间距离的性质,考查了空间想象能力,意在考查灵活应用所学知识解答问题的能力,属于中档题.6.C解析:C【解析】【分析】【详解】由三视图可知,这是三棱锥的三视图,如下图所示,三角形BCD 为等腰直角三角形, 其外心为BD 中点1O ,设O 为AD 中点,则O 为外接球球心, 半径长度为1522AD =, 所以表面积为25π.7.D解析:D【解析】【分析】根据所给条件,分别进行分析判断,即可得出正确答案.【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立;//m n 且n β⊥⇒m β⊥,故D 成立;故选:D【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.8.C解析:C【解析】【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin a r A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案. 【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =.ABC ∆的外接圆半径为42sin a r A ==,设球O 的半径为R ,则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得R =O 的表面积为2480R ππ=. 故选:C .【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.9.C解析:C【解析】【分析】直接根据直线平行公式得到答案.【详解】直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除.故选:C .【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.10.D解析:D【解析】试题分析:A.}r rααββ⊥⇒⊥P 不正确,以墙角为例,,αβ可能相交;B.}m l l m ββ⇒⊥⊥P 不正确,,l β有可能平行;C.}m r m n n r⇒P P P 不正确,m,n 可能平行、相交、异面;故选D 。
【典型题】高中必修二数学下期中第一次模拟试题(附答案)
【典型题】高中必修二数学下期中第一次模拟试题(附答案)一、选择题1.直线(2)4y k x =-+与曲线2320x y y ++-=有两个不同的交点,则实数k 的取值范围是( ) A .53(,]124B .51(,]122C .13(,]24D .1[,)2+∞2.如图是水平放置的平面图形的斜二测直观图,其原来平面图形面积是( )A . 22B . 42C .4D .83.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离4.已知三棱锥S ABC -的每个顶点都在球O 的表面上,ABC ∆是边长为43的等边三角形,SA ⊥平面ABC ,且SB 与平面ABC 所成的角为6π,则球O 的表面积为( ) A .20πB .40πC .80πD .160π5.某几何体的三视图如图所示,图中的四边形都是边长为4的正方形,两条虚线互相垂直且相等,则该几何体的体积是( )A .1763B .1603C .1283D .326.已知三条直线,,m n l ,三个平面,,αβγ,下列四个命题中,正确的是( )A .||αγαββγ⊥⎫⇒⎬⊥⎭B .||m l l m ββ⎫⇒⊥⎬⊥⎭C .||||||m m n n γγ⎫⇒⎬⎭D .||m m n n γγ⊥⎫⇒⎬⊥⎭7.椭圆22221(0)x y a b a b+=>>的左右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为( ) A .312+ B .31-C .22D .512- 8.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则a 的值为( ) A .-2或2B .12或32C .2或0D .-2或09.若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦B .13,34⎛⎫⎪⎝⎭C .53,124⎛⎫⎪⎝⎭ D .53,12410.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ; (3)平面//EAB 平面FGT ;(4)直线//BC 直线AE . A .1个B .2个C .3个D .4个11.如图,平面四边形ABCD 中,1AB AD CD ===,2BD =,BD CD ⊥,将其沿对角线BD 折成四面体A BCD '-,使平面A BD '⊥平面BCD ,若四面体A BCD '-的顶点在同一个球面上,则该球的表面积为( )A.3πB.32πC.4πD.34π12.如图,在三棱柱111ABC A B C-中,1CC⊥平面ABC,ABC是等腰三角形,BA BC=,123AC CC==,,D是AC的中点,点F在侧棱1A上,若要使1C F⊥平面BDF,则1AFFA的值为( )A.1B.12或2C.2或2D.13或3二、填空题13.如图,正方体ABCD﹣A1B1C1D1的棱长为1,M为B1C1中点,连接A1B,D1M,则异面直线A1B和D1M所成角的余弦值为________________________.14.已知圆22(1)16x y++=,点(1,0),(1,0)E F-,过(1,0)E-的直线1l与过(1,0)F的直线2l垂直且圆相交于,A C和,B D,则四边形ABCD的面积的取值范围是_________. 15.点(5,2)到直线()1(21)5m x m y m-+-=-的距离的最大值为________.16.已知正三棱锥P-ABC,点P,A,B,C3PA,PB,PC两两互相垂直,则球心到截面ABC 的距离为________.17.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,①AB 与平面BCD 所成角的大小为60 ②ACD ∆是等边三角形 ③AB 与CD 所成的角为60 ④AC BD ⊥⑤二面角B AC D --为120︒ 则上面结论正确的为_______.18.已知直线:0l x my m ++=,且与以A (-1,1)、B (2,2)为端点的线段相交,实数m 的取值范围为___________.19.已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.20.如图,在体积为1V 的圆柱中挖去以圆柱上下底面为底面、共顶点的两个圆锥,剩余部分的体积为2V ,则21V V =__________.三、解答题21.如图,直角梯形BDFE 中,//,,2EF BD BE BD EF ⊥=ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.22.如图,在直三棱柱111ABC A B C -中,D 是BC 的中点.AB AC ⊥,1AB AC ==,12AA =.(Ⅰ)求直线1AC 与平面11BCC B 所成角的正弦值; (Ⅱ)求二面角1A A B C --的余弦值.23.如图,在四棱锥P ABCD -中,侧面PAD ⊥底面ABCD ,侧棱PA PD ⊥,底面ABCD 是直角梯形,其中//BC AD ,90BAD ∠=︒,3AD BC =,2AO OD =.(1)求证:平面PAB ⊥平面PCD .(2)试问在棱PA 上是否存在点E ,使得面//BOE 面PCD ,若存在,试指出点E 的位置并证明;若不存在,请说明理由.24.如图,在Rt AOB 中,30OAB ∠=︒,斜边4AB =,Rt AOC 可以通过Rt AOB 以直线AO 为轴旋转得到,且平面AOB ⊥平面AOC .动点D 在斜边AB 上.(1)求证:平面COD ⊥平面AOB ;(2)当D 为AB 的中点时,求异面直线AO 与CD 所成角的正切值.25.如图,直三棱柱111ABC A B C -的底面是边长为4的正三角形,M ,N 分别是BC ,1CC 的中点.(1)证明:平面AMN ⊥平面11B BCC ;(2)若直线1A C 与平面11A ABB 所成的角为30,试求三棱锥M ANC -的体积. 26.(1)用符号表示下来语句,并画出同时满足这四个语句的一个几何图形: ①直线l 在平面α内; ②直线m 不在平面α内; ③直线m 与平面α交于点A ; ④直线l 不经过点A .(2)如图,在长方体1111ABCD A B C D -中,E 为棱1BB 的中点,F 为棱1CC 的三等分点,画出由1,,D E F 三点所确定的平面β与平面ABCD 的交线.(保留作图痕迹)【参考答案】***试卷处理标记,请不要删除一、选择题1.B 解析:B 【解析】 【分析】利用数形结合,作出图象,计算得直线1l 与直线2l 的斜率,即可得到结论. 【详解】曲线可化简为()22(1)40x y x +-=≤,如图所示:直线()1:24l y k x =-+23221k k -=+,解得512k =, 直线()2:24l y k x =-+,此直线与曲线有两个交点,此时有12k =. 所以,过点()2,4的直线与该半圆有两个交点,数形结合,解得51122k <≤. 故选:B. 【点睛】本题考查了直线与圆相交的性质,涉及的知识有:恒过定点的直线方程,点到直线的距离公式,以及直线斜率的求法,利用了数形结合的思想,其中抓住两个关键点是解本题的关键.2.C解析:C 【解析】分析:由三视图还原实物图,再根据三角形面积公式求解.详解:在斜二测直观图中OB=2,OA=2, 所以在平面图形中OB=2,OA=4, OA ⊥OB , 所以面积为12442S =⨯⨯=. 选C.点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图. 2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.3.B解析:B 【解析】 化简圆到直线的距离,又两圆相交. 选B4.C解析:C 【解析】 【分析】根据线面夹角得到4SA =,计算ABC ∆的外接圆半径为42sin ar A==,2222SA R r ⎛⎫=+ ⎪⎝⎭,解得答案.【详解】SA ⊥平面ABC ,则SB 与平面ABC 所成的角为6SBA π∠=,故4SA =. ABC ∆的外接圆半径为42sin ar A==,设球O 的半径为R , 则2222SA R r ⎛⎫=+ ⎪⎝⎭,解得5R =O 的表面积为2480R ππ=. 故选:C . 【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.5.B解析:B 【解析】该几何体为一个正方体去掉一个倒四棱锥,其中正方体棱长为4,倒四棱锥顶点为正方体中心,底面为正方体上底面,因此体积是32116042433-⨯⨯=,选B. 点睛: 1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.6.D解析:D 【解析】 试题分析:A.}r rααββ⊥⇒⊥不正确,以墙角为例,,αβ可能相交;B.}m l l m ββ⇒⊥⊥不正确,,l β有可能平行;C.}m rm n n r⇒不正确,m,n 可能平行、相交、异面;故选D 。
【必考题】高中必修二数学下期中一模试题含答案
【必考题】高中必修二数学下期中一模试题含答案一、选择题1.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( )A .4330x y --=B .3430x y --=C .3440x y --=D .4340x y --=2.陀螺是汉族民间最早的娱乐工具之一,也称陀罗,北方叫做“打老牛”.陀螺的主体形状一般是由上面部分的圆柱和下面部分的圆锥组成.如图画出的是某陀螺模型的三视图,已知网格纸中小正方形的边长为1,则该陀螺模型的体积为( )A .1073π B .32453π+ C .16323π+ D .32333π+ 3.下列命题正确的是( )A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .两两相交且不共点的三条直线确定一个平面D .四边形确定一个平面4.设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( )A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 5.若直线20ax y +-=和直线()2140x a y +-+=平行,则a 的值为( ) A .1-或2 B .1- C .2 D .不存在6.矩形ABCD 中,4AB =,3BC =,沿AC 将矩形ABCD 折成一个直二面角B AC D --,则四面体ABCD 的外接球的体积是( )A .12512πB .1259πC .1256πD .1253π 7.点A 、B 、C 、D 在同一个球的球面上,AB=BC=2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256π B .8πC .2516πD .254π 8.若圆22240x y x y +--=的圆心到直线0x y a -+=的距离为22,则a 的值为( ) A .-2或2 B .12或32 C .2或0D .-2或0 9.如图1,ABC ∆是以B 为直角顶点的等腰直角三角形,T 为线段AC 的中点,G 是BC 的中点,ABE ∆与BCF ∆分别是以AB 、BC 为底边的等边三角形,现将ABE ∆与BCF ∆分别沿AB 与BC 向上折起(如图2),则在翻折的过程中下列结论可能正确的个数为( )图1 图2(1)直线AE ⊥直线BC ;(2)直线FC ⊥直线AE ;(3)平面//EAB 平面FGT ;(4)直线//BC 直线AE .A .1个B .2个C .3个D .4个10.某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13 B .12 C .16 D .111.如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π12.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .43B .1033C .23D .833二、填空题13.经过两条直线2310x y ++=和340x y -+=的交点,并且平行于直线3470x y +-=的直线方程是________.14.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M 分别是线段AB 、AD 、AA 1的中点,又P 、Q 分别在线段A 1B 1、A 1D 1上,且A 1P =A 1Q =x (0<x <1).设平面MEF ∩平面MPQ=l ,现有下列结论:①l ∥平面ABCD ;②l ⊥AC ;③直线l 与平面BCC 1B 1不垂直;④当x 变化时,l 不是定直线.其中不成立的结论是________.(写出所有不成立结论的序号)15.直线与圆交于两点,则________.16.已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD 所在平面的距离等于 .17.已知点1232M N (,),(,),点F 是直线l:3y x =-上的一个动点,当MFN ∠最大时,过点M ,N ,F 的圆的方程是__________.18.已知正三棱锥P -ABC ,点P ,A ,B ,C 都在半径为3的求面上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________.19.已知动点,A B 分别在x 轴和直线y x =上,C 为定点()2,1,则ABC ∆周长的最小值为_______.20.圆221x y +=上的点到直线34250x y +-=的距离的最小值是 .三、解答题21.如图,矩形ABCD 所在平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.22.如图,正方形ABCD 所在平面与三角形CDE 所在平面相交于CD ,AE ⊥平面CDE ,且1AE =,2AB =.(Ⅰ)求证:AB ⊥平面ADE ;(Ⅱ)求凸多面体ABCDE 的体积.23.已知圆C 的圆心坐标()1,1,直线l :1x y +=被圆C 截得弦长为2.(1)求圆C 的方程;(2)从圆C 外一点()2,3P 向圆引切线,求切线方程.24.已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点.(1)求k 的取值范围;(2)若OM ON ⋅=12,其中O 为坐标原点,求|MN |.25.如图,AB 是半圆O 的直径,C 是半圆O 上除A ,B 外的一个动点,DC 垂直于半圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)证明:平面ADE ⊥平面ACD ;(2)当C 点为半圆的中点时,求二面角D ﹣AE ﹣B 的余弦值.26.在平面直角坐标系xOy 中,直线2210x y +-=与圆C 相切,圆心C 的坐标为()2,1-(1)求圆C 的方程;(2)设直线y =x +m 与圆C 交于M 、N 两点.①若22MN ≥m 的取值范围;②若OM ⊥ON ,求m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.2.D解析:D【解析】【分析】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成.根据柱体、锥体的体积计算公式即得该陀螺模型的体积.【详解】由三视图可知,该陀螺模型是由一个正四棱锥、一个圆柱、一个圆锥组合而成. 所以该陀螺模型的体积222113242333233333V πππ=⨯⨯+⨯⨯+⨯⨯⨯=+. 故选:D .【点睛】本题考查三视图,考查学生的空间想象能力,属于基础题. 3.C解析:C【解析】【分析】根据确定一个平面的公理及推论即可选出.【详解】A 选项,根据平面基本性质知,不共线的三点确定一个平面,故错误;B 选项,根据平面基本性质公理一的推论,直线和直线外一点确定一个平面,故错误;C 选项,根据公理一可知,不共线的三点确定一个平面,而两两相交且不共点的三条直线,在三个不共线的交点确定的唯一平面内,所以两两相交且不共点的三条直线确定一个平面,正确;选项D,空间四边形不能确定一个平面,故错误;综上知选C.【点睛】本题主要考查了平面的基本性质公理一及其推论,属于中档题.4.B解析:B【解析】【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QO OPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO ,即满足2PO ,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的.【详解】由分析可得:22200PO x y =+ 又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO故22220000103634PO x y y y ==+-+ 解得0825y ,0605x 即0x 的取值范围是6[0,]5,故选:B .【点睛】解题的关键是充分利用几何知识,判断出2PO ,从而得到不等式求出参数的取值范围. 5.C解析:C【解析】【分析】直接根据直线平行公式得到答案.【详解】直线20ax y +-=和直线()2140x a y +-+=平行,则()12a a -=,解得2a =或1a =-.当1a =-时,两直线重合,排除.故选:C .【点睛】本题考查了根据直线平行求参数,意在考查学生的计算能力,多解是容易发生的错误.6.C解析:C【解析】【分析】由矩形的对角线互相平分且相等即球心到四个顶点的距离相等推出球心为AC 的中点,即可求出球的半径,代入体积公式即可得解.【详解】因为矩形对角线互相平分且相等,根据外接球性质易知外接球球心到四个顶点的距离相等,所以球心在对角线AC 上,且球的半径为AC 长度的一半,即22115222r AC AB BC ==+=,所以334451253326V r πππ⎛⎫==⋅= ⎪⎝⎭.故选:C 【点睛】本题考查球与几何体的切、接问题,二面角的概念,属于基础题.7.D解析:D【解析】试题分析:根据题意知,ABC 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D. 考点:球内接多面体,球的表面积. 8.C解析:C【解析】【分析】把圆的方程化为标准方程,找出圆心坐标,根据点到直线的距离公式列出关于a 的方程,求出方程的解得到a 的值即可.【详解】把圆的方程化为标准式为:22(1)(2)5x y -+-=,所以圆心坐标为(1,2).则圆心到直线0x y a -+=的距离2221(1)d ==+-, 即11a -=,化简得11a -=或11a -=-,解得:2a =或0a =.所以a 的值为0或2.故选C.【点睛】本题考查学生会将圆的一般式方程化为标准式方程,灵活运用点到直线的距离公式化简求值.9.C解析:C【解析】【分析】(1)翻折时使得平面ABE ⊥平面ABC ,由面面垂直的性质定理得出BC ⊥平面ABE ,从而使得(1)有可能;(2)翻折时使得点E 、F 两点重合,利用勾股定理可证得此时AE CE ⊥,即AE FC ⊥;(3)翻折时使得平面ABE 和平面BCF 同时与平面ABC 垂直,利用面面垂直的性质定理、直线与平面平行的判定定理以及面面平行的判定定理可证明出平面//EAB 平面FGT ;(4)利用反证法,可推出//BC AE 不成立.【详解】(1)翻折时,若平面ABE ⊥平面ABC ,由于ABC ∆是以B 为直角顶点的等腰直角三角形,则BC AB ⊥,又平面ABE 平面ABC AB =,BC ⊂平面ABC ,BC ∴⊥平面ABE ,AE ⊂平面ABC ,此时AE BC ⊥;(2)设AB BC a ==,则2AC a =,且有AE CF a ==,翻折时,若点E 、F 重合,则AE CE a ==,222AE CE AC ∴+=,此时,AE CE ⊥,即AE FC ⊥;(3)如下图所示:翻折时,若平面ABE 和平面BCF 同时与平面ABC 垂直,取AB 的中点D ,连接DE 、FG 、GT 、FT .ABE ∆是等边三角形,且D 为AB 的中点,DE AB ⊥∴.平面ABE ⊥平面ABC ,平面ABE 平面ABC AB =,DE ⊂平面ABE .DE ∴⊥平面ABC ,同理可证FG ⊥平面ABC ,//DE FG ∴,DE ⊄平面FGT ,FG ⊂平面FGT ,//DE ∴平面FGT . G 、T 分别为BC 、AC 的中点,//AB GT ∴,AB ⊄平面FGT ,GT ⊂平面FGT ,//AB ∴平面FGT .DE AB D =,∴平面//EAB 平面FGT ;(4)假设AE 与BC 可能平行,BC AB ⊥,则AE AB ⊥,事实上60BAE ∠=, 即AE 与AB 不垂直,假设不成立,因此,AE 与BC 不可能平行.因此,可能正确命题的个数为3.故选:C.【点睛】本题考查的是线面位置关系的判定,判断时要熟悉线面、面面平行与垂直的判定、性质定理,考查推理能力,属于中等题. 10.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】 由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.11.A解析:A【解析】【分析】【详解】由几何体的三视图分析可知,该几何体上部为边长为2的正方体,下部为底面半径为1、高为2的半圆柱体,故该几何体的表面积是20+3π,故选A.考点:1、几何体的三视图;2、几何体的表面积. 12.B解析:B 【解析】由题意可知该几何体为正三棱柱去掉一个小三棱锥,123V =⋅=. 故选:B.二、填空题13.【解析】【分析】先求出两相交直线的交点设出平行于直线的直线方程根据交点在直线上求出直线方程【详解】联立直线的方程得到两直线的交点坐标平行于直线的直线方程设为则所以直线的方程为:故答案为:【点睛】本题 解析:1934011x y ++= 【解析】 【分析】先求出两相交直线的交点,设出平行于直线3470x y +-=的直线方程,根据交点在直线上,求出直线方程. 【详解】 联立直线的方程23103470x y x y ++=⎧⎨+-=⎩,得到两直线的交点坐标135(,)1111-,平行于直线3470x y +-=的直线方程设为340x y c ++=, 则1353()4()+01111c ⋅-+⋅= 所以直线的方程为:1934011x y ++= 故答案为:1934011x y ++= 【点睛】本题考查了直线的交点,以及与已知直线平行的直线方程,考查了学生概念理解,转化与划归的能力,属于基础题.14.④【解析】【详解】连接BDB1D1∵A1P =A1Q =x ∴PQ ∥B1D1∥BD ∥EF 则P Q ∥平面MEF 又平面MEF∩平面MPQ =l ∴PQ ∥ll ∥EF ∴l ∥平面ABCD 故①成立;又EF ⊥AC ∴l ⊥AC 故解析:④ 【解析】 【详解】连接BD ,B 1D 1,∵A 1P =A 1Q =x ,∴PQ ∥B 1D 1∥BD ∥EF ,则PQ ∥平面MEF , 又平面MEF ∩平面MPQ =l ,∴PQ ∥l ,l ∥EF , ∴l ∥平面ABCD ,故①成立;又EF⊥AC,∴l⊥AC,故②成立;∵l∥EF∥BD,故直线l与平面BCC1B1不垂直,故③成立;当x变化时,l是过点M且与直线EF平行的定直线,故④不成立.即不成立的结论是④.15.22【解析】【分析】首先将圆的一般方程转化为标准方程得到圆心坐标和圆的半径的大小之后应用点到直线的距离求得弦心距借助于圆中特殊三角形半弦长弦心距和圆的半径构成直角三角形利用勾股定理求得弦长【详解】根解析:【解析】【分析】首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形半弦长、弦心距和圆的半径构成直角三角形,利用勾股定理求得弦长.【详解】根据题意,圆的方程可化为,所以圆的圆心为,且半径是,根据点到直线的距离公式可以求得,结合圆中的特殊三角形,可知,故答案为.【点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.16.【解析】【分析】【详解】设AC与BD交于点O在三角形ABD中因为∠A=12 0°AB=2可得AO=1过A作面BCD的垂线垂足E则AE即为所求由题得∠AOE=180°−∠AOC=180°−120°=603【解析】【分析】【详解】设AC 与BD 交于点O .在三角形ABD 中,因为∠A =120°,AB =2.可得AO =1. 过A 作面BCD 的垂线,垂足E ,则AE 即为所求. 由题得,∠AOE =180°−∠AOC =180°−120°=60°. 在RT △AOE 中,AE =AO•sin ∠AOE =32.17.【解析】【分析】【详解】试题分析:根据题意设圆心坐标为C (2a )当∠MFN 最大时过点MNF 的圆与直线y=x-3相切∴∴a=1或9a=1时r=∠MCN=90°∠MFN=45°a=9时r=∠MCN <90 解析:22(2)(1)2x y -+-=【解析】 【分析】 【详解】试题分析:根据题意,设圆心坐标为C (2,a ),当∠MFN 最大时,过点M ,N ,F 的圆与直线y=x-3相切. ()()22232122a a ---+-=,∴a=1或9,a=1时,2,∠MCN=90°,∠MFN=45°, a=9时,r=52MCN <90°,∠MFN <45°, 则所求圆的方程为22(2)(1)2x y -+-= 考点:圆的标准方程18.【解析】正三棱锥P-ABC 可看作由正方体PADC-BEFG 截得如图所示PF 为三棱锥P-ABC 的外接球的直径且设正方体棱长为a 则由得所以因为球心到平面ABC 的距离为考点定位:本题考查三棱锥的体积与球的 3【解析】正三棱锥P-ABC 可看作由正方体PADC-BEFG 截得,如图所示,PF 为三棱锥P-ABC 的外接球的直径,且PF ABC ⊥平面,设正方体棱长为a ,则2312,2,a a AB AC BC =====12ABC S ∆=⨯=由P ABC B PAC V V --=,得111••222332ABC h S ∆=⨯⨯⨯⨯,所以3h =,因为球心到平面ABC 考点定位:本题考查三棱锥的体积与球的几何性质,意在考查考生作图的能力和空间想象能力19.【解析】【分析】点C 关于直线y=x 的对称点为(12)点C 关于x 轴的对称点为(2﹣1)三角形PAB 周长的最小值为(12)与(2﹣1)两点之间的直线距离【详解】点C 关于直线y=x 的对称点为(12)点C 关【解析】 【分析】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离. 【详解】点C 关于直线y=x 的对称点为C '(1,2),点C 关于x 轴的对称点为C ''(2,﹣1).三角形PAB 周长的最小值为C '(1,2)与C ''(2,﹣1)两点之间的直线距离,|C C '''(2,﹣1).【点睛】本题考查点到直线的距离公式,解题时要认真审题,仔细解答,注意合理地进行等价转化.20.4【解析】试题分析:圆的圆心为圆心到直线的距离为所以点到直线的距离的最小值是5-1=4考点:直线和圆的位置关系解析:4 【解析】试题分析:圆的圆心为()0,0,1r =,圆心到直线34250x y +-=的距离为5d ==,所以点到直线34250x y +-=的距离的最小值是5-1=4考点:直线和圆的位置关系三、解答题21.(1)证明见解析 (2)存在,理由见解析 【解析】 【分析】 【详解】分析:(1)先证AD CM ⊥,再证CM MD ⊥,进而完成证明. (2)判断出P 为AM 中点,,证明MC ∥OP ,然后进行证明即可. 详解:(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD . 因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM . 因为M 为CD 上异于C ,D 的点,且DC 为直径,所以DM ⊥CM . 又BC ∩CM =C ,所以DM ⊥平面BMC . 而DM ⊂平面AMD ,故平面AMD ⊥平面BMC . (2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点. 连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .点睛:本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题. 22.(Ⅰ)见解析; (Ⅱ) 233ABCDE V = 【解析】 【分析】(1)推导出AE ⊥CD ,CD ⊥AD ,从而CD ⊥平面ADE ,再由AB ∥CD ,能证明AB ⊥平面ADE .(2)凸多面体ABCDE 的体积V=V B-CDE +V B-ADE ,由此能求出结果. 【详解】(1)证明:,AE CDE CD CDE ⊥⊂平面平面,AE CD ∴⊥又在正方形ABCD 中,CD AD ⊥AE AD A ⋂=CD ADE ∴⊥平面,又在正方形ABCD 中,//AB CD∴ //AB 平面ADE .(2) 连接BD ,设B 到平面CDE 的距离为h ,//,,AB CD CD CDE ⊂平面//AB CDE ∴平面,又AE CDE ⊥平面,∴ h AE = 1=又11222CDE S CD DE ∆=⨯=⨯=1133B CDE V -∴==又11112332B ADE ADE V S AB -∆=⨯⨯=⨯⨯=所以3ABCDE V = 【点睛】本题考查线面垂直的证明,考查多面体的体积的求法,是中档题,注意空间思维能力的培养.23.(1)()()22111x y -+-=;(2)2x =和3460x y -+=. 【解析】 【分析】()1设圆C 的半径为r ,根据圆心坐标写出圆的标准方程,利用点到直线的距离公式求出圆心到直线l 的距离即为弦心距,然后根据垂径定理得到其垂足为弦的中点,由弦长的一半,圆心距及半径构成的直角三角形,根据勾股定理列出关于r 的方程,求出方程的解即可得到r 的值,从而确定圆C 的方程;()2当切线方程的斜率不存在时,显然得到2x =为圆的切线;当切线方程的斜率存在时,设出切线的斜率为k ,由p 的坐标和k 写出切线方程,利用点到直线的距离公式求出圆心到所设直线的距离d ,根据直线与圆相切,得到d 等于圆的半径,列出关于k 的方程,求出方程的解即可得到k 的值,从而确定出切线的方程,综上,得到所求圆的两条切线方程. 【详解】(1)设圆C 的标准方程为: ()()22211x y r -+-= (0)r >圆心()1,1C 到直线10x y +-=的距离: 2d ==,则222111222r d ⎛=+=+= ⎝⎭∴圆C 的标准方程: ()()22111x y -+-=(2)①当切线斜率不存在时,设切线: 2x =,此时满足直线与圆相切. ②当切线斜率存在时,设切线: ()32y k x -=-,即23y kx k =-+ 则圆心()1,1C 到直线230kx y k --+=的距离:1d ==解得: 43k =,即34k =则切线方程为: 3460x y -+=综上,切线方程为: 2x =和3460x y -+= 24.(1);(2)2. 【解析】试题分析:(1)由题意可得,直线l 的斜率存在,用点斜式求得直线l 的方程,根据圆心到直线的距离等于半径求得k 的值,可得满足条件的k 的范围.(2)由题意可得,经过点M 、N 、A 的直线方程为y=kx+1,根据直线和圆相交的弦长公式进行求解试题解析:(1)由题意可得,直线l 的斜率存在, 设过点A (0,1)的直线方程:y=kx+1,即:kx-y+1=0. 由已知可得圆C 的圆心C 的坐标(2,3),半径R=1.1=,解得:12k k ==.k <<A (0,1)的直线与圆C :()()22231x y -+-=相交于M ,N 两点.(2)设M ()11,x y ;N ()22,x y ,由题意可得,经过点M 、N 、A 的直线方程为y=kx+1,代入圆C 的方程()()22231x y -+-=,可得()()2214170kxk x +-++=,∴()121222417,11k x x x x k k++==++, ∴()()()2212121212212411111k k y y kx kx k x x k x x k ++=++=+++=+, 由2121221248·121k k OM ON x x y y k++=+==+,解得 k=1, 故直线l 的方程为 y=x+1,即 x-y+1=0.圆心C 在直线l 上,MN 长即为圆的直径.所以|MN|=2考点:直线与圆的位置关系;平面向量数量积的运算 25.(1)证明见解析(2) 【解析】 【分析】(1)由BC ⊥AC ,BC ⊥CD 得BC ⊥平面ACD ,证明四边形DCBE 是平行四边形得DE ∥BC ,故而DE ⊥平面ACD ,从而得证面面垂直;(2)建立空间坐标系,求出两半平面的法向量,计算法向量的夹角得出二面角的大小. 【详解】(1)证明:∵AB 是圆O 的直径,∴AC ⊥BC , ∵DC ⊥平面ABC ,BC ⊂平面ABC , ∴DC ⊥BC ,又DC ∩AC =C , ∴BC ⊥平面ACD , ∵DC ∥EB ,DC =EB ,∴四边形DCBE 是平行四边形,∴DE ∥BC , ∴DE ⊥平面ACD , 又DE ⊂平面ADE , ∴平面ACD ⊥平面ADE.(2)当C 点为半圆的中点时,AC =BC =,以C 为原点,以CA ,CB ,CD 为坐标轴建立空间坐标系如图所示:则D (0,0,1),E (0,,1),A (,0,0),B (0,,0), ∴AB =(﹣,,0),BE =(0,0,1),DE =(0,,0),DA =(0,﹣1),设平面DAE 的法向量为m =(x 1,y 1,z 1),平面ABE 的法向量为n =(x 2,y 2,z 2),则00m DA m DE ⎧⋅=⎨⋅=⎩,00n AB n BE ⎧⋅=⎨⋅=⎩,即11100z ⎧-=⎪⎨=⎪⎩,22200z ⎧-+=⎪⎨=⎪⎩,令x 1=1得m =(1,0,22),令x 2=1得n =(1,1,0). ∴cos 1632m n m n m n ⋅===⨯<,>. ∵二面角D ﹣AE ﹣B 是钝二面角, ∴二面角D ﹣AE ﹣B 的余弦值为6-.【点睛】本题考查了面面垂直的判定,空间向量与二面角的计算,属于中档题. 26.(1)22(2)(1)4x y -++=;(2)①51m -≤≤-;②35m -+=或35m --=【解析】 【分析】(1)假设圆的方程,利用以()2,1C -为圆心的圆与直线210x y +-=相切,即可求得圆C 的方程;(2)①直线y x m =+圆C 交于M 、N 两点,根据圆心到直线的距离,半径,弦长之间的关系,得到关系式求出m 的范围.②设()()1122,,,M x y N x y ,联立直线与圆的方程,通过韦达定理以及判别式,通过OM ⊥ON ,求出m 的值即可. 【详解】解:(1)设圆的方程是222(2)(1)x y r -++=,依题意,直线210x y +-=与圆C 相切, ∴所求圆的半径2222r ==,∴所求的圆方程是22(2)(1)4x y -++=; (2)①圆心()2,1C -到直线y x m =+的距离121d ==+ ()2223224222m MN r d +∴=-=-≥解得51m -≤≤-;②设()()1122,,,M x y N x y ,22(2)(1)4y x mx y =+⎧⎨-++=⎩,消去y ,得到方程2222(1)210x m x m m +-+++=,由已知可得,判别式(224(1)422+1)0m m m ∆=--⨯+>, 化简得2610m m ++<,21212211,2m m x x m x x +++=-+=①, 由于OM ⊥ON ,可得12120x x y y += 又1122,y x m y x m ==++, 所以()2121220x x m x x m +++=②,由①,②得32m -=或32m -=,满足>0∆,故m =或m =. 【点睛】本题重点考查圆的标准方程,考查直线与圆的位置关系,考查圆中弦长的计算,合理运用圆的性质是关键.注意韦达定理及整体思想的运用,属中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.在平面直角坐标系 xoy 中, ABC 的坐标分别为 A1, 1 , B2,0 , C 1,5,则
BAC 的平分线所在直线的方程为_______
19.若直线 l : m 1 x 2m 1 y m 0 与曲线 C : y 4 x 22 2 有公共点,则
得最小面积,从而可求 k 的值.
【详பைடு நூலகம்】
圆 C 方程为 x2 y 12 1,圆心 C 0,1 ,半径为 1.
因为 PA , PB 为切线,
PC
2
PA 2
1
且
S四边形PACB
=2
1 2
PA
1
PA
2.
当 PA 最小时, S四边形PACB 最小,
此时 PC 最小且 PC 垂直于 kx y 4 0k 0 .
C. 3x 4y 4 0
D. 4x 3y 4 0
4.已知定义在 R 上的函数 f (x) 2 xm 1(m为实数) 为偶函数,记
a f (log0.5 3), b f (log2 5), c f (2m) ,则 a,b, c ,的大小关系为( )
A. a b c
B. c a b
C. a c b
D. c b a
5.已知点 P x, y 是直线 kx y 4 0k 0 上一动点, PA, PB 是圆
C : x2 y2 2 y 0 的两条切线,切点分别为 A, B ,若四边形 PACB 的面积最小值为 2 , 则 k 的值为( )
A.3
B. 21 2
C. 2 2
直线,则下列说法中错误的是( ).
A.若 m// 且 m// ,则 m//l
B.若 m 且 n ,则 m n
C.若 M m且 m//l ,则 m//
D.若 M m 且 m l ,则 m
二、填空题
13.在平面直角坐标系 xOy 中, A 为直线 l : y 2x 上在第一象限内的点, B5, 0 ,以
本题主要考查了直线与平面垂直的判定与证明,以及异面直线所成角的求解,其中解答中 牢记异面直线所成的求解方法和转化思想的应用是解答的关键,平时注意空间思维能力的 培养,着重考查了推理与论证能力,属于基础题.
7.B
解析:B 【解析】 【分析】 【详解】
因为线段 AB 的垂直平分线上的点 x, y 到点 A , B 的距离相等,
【常考题】高中必修二数学下期中第一次模拟试卷附答案
一、选择题
1.已知三棱锥 A BCD 中, AB CD 5 , AC BD 2, AD BC 3 ,若该
三棱锥的四个顶点在同一个球面上,则此球的体积为( )
A. 3 2
B. 24
C. 6
D. 6
2.已知三棱锥 D ABC 的外接球的表面积为128 , AB BC 4, AC 4 2 ,则三棱
(2)当 AB 中点在直线 y 1 x 上时,求直线 AB 的方程. 2
25.如图,在四棱锥 P ABCD 中, CB 平面 PBD , AD 平面 PBD , PH BD 于 H , CD 10 , BC AD 8 .
(1)求证: CD PH ;
(2)若 BH 1 BD , PH 1 BD ,在线段 PD 上是否存在一点 M ,使得 HM 平面
所以 (x 1)2 ( y 2)2
(x 3)2 ( y 1)2 . 即: x2 1 2x y2 4 4 y x2 9 6x y2 1 2y , 化简得: 4x 2y 5 . 故选 B . 8.B
a 2log0,5 3 1 2log2 3 1 3 1 2, b 2log2 5 1 5 1 4 , c 20 1 0 ,所以 c a b ,
故选 B. 考点:本题主要考查函数奇偶性及对数运算.
5.D
解析:D 【解析】 【分析】
当且仅当 PC 垂直于 kx y 4 0k 0 时,四边形 PACB 的面积最小,求出 PC 后可
锥 D ABC 体积的最大值为( )
A. 27 32
B. 10 8 6 3
C. 16 6 3
D. 32 2 16 6 3
3.已知直线 l 过点 (1, 0) ,且倾斜角为直线 l0 : x 2 y 2 0 的倾斜角的 2 倍,则直线 l
的方程为( )
A. 4x 3y 3 0
B. 3x 4y 3 0
③直线 BN 与 MB1 是异面直线;
④直线 AM 与 DD1 是异面直线.
其中正确的结论的序号为________. 15.《九章算术》中,将底面为长方形且由一条侧棱与底面垂直的四棱锥称之为阳马,将
四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥 P ABC 为鳖臑, PA 平面 ABC , PA AB 2, AC 4 ,三棱锥 P ABC 的四个顶点都在球 O 的球面上,则球 O
D.2
6.如图,已知正方体 ABCD A1B1C1D1 中,异面直线 AD1 与 A1C 所成的角的大小是 (
)
A. 30
B. 60
C. 90
D.120
7.已知点 A(1,2),B(3,1),则线段 AB 的垂直平分线的方程是( )
A. 4x 2y 5
B. 4x 2y 5
C. x 2y 5
D. x 2y 5
8.已知圆 C : x 32 y 42 1和两点 Am, m, Bm, m m 0 ,若圆 C 上
存在点 P ,使得 APB 90 ,则 m 的最大值为( )
A. 4 2
B. 3 2
C. 3 2 2
D. 2 2
9.已知圆 M: x2 +y2 +2 y 0 与直线 l: ax y 3a 5 0 ,则圆心 M 到直线 l 的最大距
3.D
解析:D 【解析】
设直线 l0
的倾斜角为
,则斜率 k0
tan
1 2
,所以直线 l
的倾斜角为 2
,斜率
k
tan 2
2 tan 1 tan2
4 3
,又经过点(1,0),所以直线方程为
y
4 3
(x 1) ,即
4x 3y 4 0 ,选 D.
4.B
解析:B 【解析】
由 f x 为偶函数得 m 0,所以
的表面积为__________.
16.已知三棱锥 P ABC 的四个顶点在球 O 的球面上, PA PB PC ,△ABC 是边长 为 2 正三角形, E, F 分别是 PA, AB 的中点, CEF 90 ,则球 O 的体积为
_________________。
17.已知直线 l : x my m 0,且与以 A(-1,1)、B(2,2)为端点的线段相交,实数 m 的取值
3
2
PAD ,且直线 HA 与平面 PAD 所成角的正弦值为 3 5 .若存在,求 PM 的长;若不存 25
在,请说明理由.
26.已知过点 P0, 2 的圆 M 的圆心 a, 0 在 x 轴的非负半轴上,且圆 M 截直线
x y 2 0 所得弦长为 2 2 . (1)求 M 的标准方程;
(2)若过点 Q0,1 且斜率为 k 的直线 l 交圆 M 于 A 、 B 两点,若△PAB 的面积为
直线 l 的斜率的最小值是_________. 20.正四棱锥 S-ABCD 的底面边长和各侧棱长都为 2 ,点 S、A、B、C、D 都在同一个球
面上,则该球的体积为______.
三、解答题 21.在平面直角坐标系 xOy 中,已知两直线 l1 : x 3y 3 0 和 l2 : x y 1 0 ,定点 A(1, 2) . (1)若 l1 与 l2 相交于点 P,求直线 AP 的方程; (2)若 l1 恰好是△ABC 的角平分线 BD 所在的直线, l2 是中线 CM 所在的直线,求△ABC
因此,此球的体积为
4 3
6 3 2
6 .
故选:C.
【点睛】
本题考查三棱锥外接球体积的计算,将三棱锥补成长方体,利用长方体的体对角线作为外
接球的直径是解题的关键,考查空间想象能力与计算能力,属于中等题.
2.D
解析:D
【解析】
【分析】
先求出球心 O 到底面距离的最大值,从而可求顶点 D 到底面的距离的最大值,利用该最大
此能求出结果. 【详解】
如图所示,在正方体 ABCD A1B1C1D1 中,连结 A1D ,则 AD1 DC , A1D AD1 , 由线面垂直的判定定理得 AD1 平面 A1DC ,所以 AD1 A1C , 所以异面直线 AD1 与 A1C 所成的角的大小是 90 .
故选 C.
【点睛】
3 3 ,求直线 l 的方程.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C 解析:C 【解析】 【分析】
作出三棱锥 A BCD 的外接长方体 AEBF GDHC ,计算出该长方体的体对角线长,即
可得出其外接球的半径,然后利用球体体积公式可计算出外接球的体积. 【详解】
作出三棱锥 A BCD 的外接长方体 AEBF GDHC ,如下图所示:
AB 为直径的圆 C 与直线 l 交于另一点 D .若 AB CD 0 ,则点 A 的横坐标为
________.
14.如图,在正方体 ABCD — A1B1C1D1 中, M,N 分别为棱 C1D1,C1C 的中点,有以下
四个结论:
①直线 AM 与 CC1 是相交直线;
②直线 AM 与 BN 是平行直线;
离为( )
A.5
B.6
C. 3 5
10.某几何体的三视图如图所示,则该几何体的体积为( )
D. 41
A.12
B.18
C.24
D.30
11.若圆锥的高等于底面直径,则它的底面积与侧面积之比为