高三数学一轮复习必备精品9:空间几何体的表面积和体积 【高三数学一轮复习必备精品共42讲 全部免
高三数学人教版A版数学(理)高考一轮复习教案空间几何体的表面积与体积
第二节空间几何体的表面积与体积表面积与体积了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式).知识点一空间几何体的表面积1.多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表(侧)面积名称侧面积表面积圆柱(底面半径r,母线长l)2πrl 2πr(l+r)圆锥(底面半径r,母线长l)πrl πr(l+r) 圆台(上、下底面半径r1,r2,母线长l)π(r1+r2)l π(r1+r2)l+π(r21+r22)球(半径为R)4πR2易误提醒(1)几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.(2)对侧面积公式的记忆,最好结合几何体的侧面展开图来进行,要特别留意根据几何体侧面展开图的平面图形的特点来求解相关问题.(3)组合体的表面积应注意重合部分的处理.[自测练习]1.正六棱柱的高为6,底面边长为4,则它的表面积为()A.48(3+3)B.48(3+23)C.24(6+2) D.144解析:正六棱柱的侧面积S侧=6×6×4=144,底面面积S底=2×6×34×42=483,S表=144+483=48(3+3).答案:A2.如图所示是一个几何体的三视图,根据图中数据,可得该几何体的表面积是()A .8+4 2B .10πC .11πD .12π解析:由三视图可知几何体是半径为1的球和底面半径为1,高为3的圆柱,故其表面积应为球的表面积与圆柱的表面积面积之和,即S =4π+2π+2π×3=12π,故选D.答案:D知识点二 空间几何体的体积空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh . (2)V 锥体=13Sh .(3)V 台体=13h (S +SS ′+S ′).(4)V 球=43πR 3(球半径是R ).易误提醒 (1)求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.(2)求与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.[自测练习]3.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm)可得这个几何体的体积是( )A.43 cm 3 B.83 cm 3 C .3 cm 3D .4 cm 3解析:由三视图可知该几何体是一个底面为正方形(边长为2)、高为2的四棱锥,如图所示.由四棱锥的体积公式知所求几何体的体积V =83cm 3.答案:B4.某一容器的三视图如图所示,则该几何体的体积为________.解析:依题意,题中的几何体是从一个棱长为2的正方体中挖去一个圆锥,其中该圆锥的底面半径是1、高是2,因此题中的几何体的体积等于23-13π×12×2=8-2π3.答案:8-2π3考点一 空间几何体的表面积|1.(2015·高考福建卷)某几何体的三视图如图所示,则该几何体的表面积等于( )A .8+2 2B .11+2 2C .14+2 2D .15解析:由题中三视图可知,该几何体是底面为直角梯形、高为2的直四棱柱,所以其表面积为S 表面积=S 侧面积+2S 下底面积=(1+1+2+2)×2+2×12×(1+2)×1=11+22,故选B.答案:B2.(2015·高考课标全国卷Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8解析:由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为πr 2+2πr 2+4r 2+2πr 2=20π+16,所以r =2.答案:B3.(2016·昆明模拟)一个圆锥过轴的截面为等边三角形,它的顶点和底面圆周在球O 的球面上,则该圆锥的表面积与球O 的表面积的比值为________.解析:设等边三角形的边长为2a ,则S 圆锥表=12·2πa ·2a +πa 2=3πa 2.又R 2=a 2+(3a -R )2(R 为球O 的半径),所以R =233a ,故S 球表=4π·⎝⎛⎭⎫233a 2=16π3a 2,故其表面积比为916. 答案:916(1)由三视图求相关几何体的表面积:,给出三视图时,依据“正视图反映几何体的长和高,侧视图反映几何体的高和宽,俯视图反映几何体的长和宽”来确定表面积公式中涉及的基本量.(2)根据几何体(常规几何体、组合体或旋转体)的特征求表面积:①求多面体的侧面积时,应对每一个侧面分别求解后再相加;求旋转体的侧面积时,一般要将旋转体展开为平面图形后再求面积.②对于组合体,要弄清它是由哪些简单几何体组成的,要注意“表面(和外界直接接触的面)”的定义,以确保不重复、不遗漏.考点二 空间几何体的体积|(1)(2015·高考山东卷)已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.22π3B.42π3C .22πD .42π(2)(2015·辽宁五校联考)某几何体的三视图如图所示,则该几何体的体积是________.[解析] (1)由题意,该几何体可以看作是两个底面半径为2、高为2的圆锥的组合体,其体积为2×13×π×(2)2×2=423π.(2)由三视图知,该几何体为长方体去掉一个三棱锥,其体积V =2×2×3-13×⎝⎛⎭⎫12×2×1×3=11.[答案] (1)B (2)11空间几何体体积问题的三种类型及解题策略(1)求简单几何体的体积.若所给的几何体为柱体、锥体或台体,则可直接利用公式求解.(2)求组合体的体积.若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解.(3)求以三视图为背景的几何体的体积.应先根据三视图得到几何体的直观图,然后根据条件求解.(2015·绵阳模拟)一个机器零件的三视图如图所示,其中俯视图是一个半圆内切于边长为2的正方形,则该机器零件的体积为( )A .8+π3B .8+2π3C .8+8π3D .8+16π3解析:依题意得,该机器零件的形状是在一个正方体的上表面放置了一个14的球体,其中正方体的棱长为2,相应的球半径是1,因此其体积等于23+14×43π×13=8+π3,选A.答案:A考点三 与球有关的切、接问题|与球相关的切、接问题是高考命题的热点,也是考生的难点、易失分点.命题角度多变.归纳起来常见的命题角度有:1.四面体的外接球. 2.四棱锥的外接球. 3.三棱柱的外接球. 4.圆锥的内切球与外接球. 5.四面体的内切球. 探究一 四面体的外接球问题1.(2016·唐山模拟)正三棱锥的高和底面边长都等于6,则其外接球的表面积为( ) A .64π B .32π C .16π D .8π解析:如图,作PM ⊥平面ABC 于点M ,则球心O 在PM 上,PM =6,连接AM ,AO ,则OP =OA =R (R 为外接球半径),在Rt △OAM 中,OM =6-R ,OA =R ,又AB =6,且△ABC 为等边三角形,故AM =2362-32=23,则R 2-(6-R )2=(23)2,则R =4,所以球的表面积S =4πR 2=64π.答案:A探究二 四棱锥的外接球问题2.已知四棱锥P -ABCD 的顶点都在球O 的球面上,底面ABCD 是矩形,平面P AD ⊥底面ABCD ,△P AD 为正三角形,AB =2AD =4,则球O 的表面积为( )A.323π B .32π C .64πD.643π 解析:依题意,AB ⊥平面P AD 且△P AD 是正三角形,过P 点作AB 的平行线,交球面于点E ,连接BE ,CE ,则可得到正三棱柱APD -BEC .因为△P AD 是正三角形,且AD =2,所以△P AD 的外接圆半径是23,球O 的半径R =22+⎝⎛⎭⎫232=43,球O 的表面积S =4πR 2=64π3,故选D.答案:D探究三 三棱柱的外接球问题3.(2016·长春模拟)已知三棱柱ABC -A 1B 1C 1的底面是边长为6的正三角形,侧棱垂直于底面,且该三棱柱的外接球的表面积为12π,则该三棱柱的体积为________.解析:设球半径为R ,上,下底面中心设为M ,N ,由题意,外接球心为MN 的中点,设为O ,则OA =R ,由4πR 2=12π,得R =OA =3,又易得AM =2,由勾股定理可知,OM =1,所以MN =2,即棱柱的高h =2,所以该三棱柱的体积为34×(6)2×2=3 3. 答案:3 3探究四 圆锥的内切球与外接球问题4.(2016·嘉兴模拟)若圆锥的内切球与外接球的球心重合,且内切球的半径为1,则圆锥的体积为________.解析:过圆锥的旋转轴作轴截面,得截面△ABC 及其内切圆⊙O 1和外接圆⊙O 2,且两圆同圆心,即△ABC 的内心与外心重合,易得△ABC 为正三角形,由题意知⊙O 1的半径为r =1,∴△ABC 的边长为23,圆锥的底面半径为3,高为3,∴V =13×π×3×3=3π.答案:3π探究五 四面体的内切球问题5.若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________.解析:设正四面体棱长为a ,则正四面体表面积为S 1=4·34·a 2=3a 2,其内切球半径为正四面体高的14,即r =14·63a =612a ,因此内切球表面积为S 2=4πr 2=πa 26,则S 1S 2=3a 2π6a 2=63π. 答案:63π求解与球有关的切、接问题的关键点解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的关系和数量关系,选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.21.补形法在空间几何体的体积、面积中的应用【典例】 已知某几何体的三视图如图所示,则该几何体的体积为( )A.8π3 B .3π C.10π3D .6π[思维点拨] 可考虑将几何体补完整,再分析求解.[解析] 法一:由三视图可知,此几何体(如图所示)是底面半径为1,高为4的圆柱被从母线的中点处截去了圆柱的14,所以V =34×π×12×4=3π.法二:由三视图可知,此几何体是底面半径为1,高为4的圆柱从母线的中点处截去了圆柱的14,直观图如图(1)所示,我们可用大小与形状完全相同的补成一个半径为1,高为6的圆柱,如图(2)所示,则所求几何体的体积为V =12×π×12×6=3π.[答案] B[方法点评] 某些空间几何体是某一个几何体的一部分,在解题时,把这个几何体通过“补形”补成完整的几何体或置于一个更熟悉的几何体中,巧妙地破解空间几何体的体积问题,这是一种重要的解题策略——补形法.常见的补形法有对称补形、联系补形与还原补形.对于还原补形,主要涉及台体中“还台为锥”问题.[跟踪练习] (2015·沈阳模拟)已知四面体P -ABC 的四个顶点都在球O 的球面上,若PB ⊥平面ABC ,AB ⊥AC ,且BC =1,PB =AB =2,则球O 的表面积为( )A .7πB .8πC .9πD .10π解析:依题意,记题中的球的半径是R ,可将题中的四面体补形成一个长方体,且该长方体的长、宽、高分别是2、1、2,于是有(2R )2=12+22+22=9,4πR 2=9π,所以球O 的表面积为9π,选C.答案:CA 组 考点能力演练1.(2016·长春模拟)如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为( )A.323 B .64 C.3233 D.643解析:由三视图可知,该多面体是一个四棱锥,且由一个顶点出发的三条棱两两垂直,长度都为4,∴其体积为13×4×4×4=643,故选D.答案:D2.如图是某几何体的三视图,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A.16π3B.8π3 C .43π D .23π解析:由对称性可知外接球球心在侧视图中直角三角形的高线上,设外接球的半径为R ,则(3-R )2+12=R 2,R =233,其表面积S =4πR 2=4π⎝⎛⎭⎫2332=16π3.答案:A3.(2016·唐山模拟)某几何体的三视图如图所示,则该几何体的体积为( ) A .8π+16 B .8π-16 C .8π+8 D .16π-8解析:由三视图可知:几何体为一个半圆柱去掉一个直三棱柱.半圆柱的高为4,底面半圆的半径为2,直三棱柱的底面为斜边是4的等腰直角三角形,高为4,故几何体的体积V =12π×22×4-12×4×2×4=8π-16.答案:B4.某几何体的三视图如图所示,则该几何体的体积为( )A.2π B .22π C.π3 D.2π3解析:依题意得,该几何体是由两个相同的圆锥将其底面拼接在一起所形成的组合体,其中该圆锥的底面半径与高均为1,因此题中的几何体的体积等于2×13π×12×1=2π3,选D.答案:D5.四面体ABCD 的四个顶点都在球O 的球面上,AB ⊥平面BCD ,△BCD 是边长为3的等边三角形.若AB =2,则球O 的表面积为( )A.323π B .12π C .16π D .32π 解析:设球心为O ,球心在平面BCD 的投影为O 1,则OO 1=AB2=1,因为△BCD 为等边三角形,故DO 1=23×323=3,因为△OO 1D 为直角三角形,所以球的半径R =OD =OO 21+O 1D 2=2,球O 的表面积S =4πR 2=16π,故选C.答案:C6.已知某四棱锥,底面是边长为2的正方形,且俯视图如图所示.若该四棱锥的侧视图为直角三角形,则它的体积为________.解析:由俯视图可知,四棱锥顶点在底面的射影为O (如图),又侧视图为直角三角形,则直角三角形的斜边为BC =2,斜边上的高为SO =1,此高即为四棱锥的高,故V =13×2×2×1=43.答案:437.(2016·台州模拟)某几何体的三视图如图所示,则该几何体的表面积为________.解析:该简单组合体由半球加上圆锥构成,故所求表面积S =4π×422+12×2π×4×5=52π.答案:52π8.(2016·南昌一模)已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,侧面BCC 1B 1的面积为2,则直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为________.解析:如图所示,设BC ,B 1C 1的中点分别为F ,E ,则知三棱柱ABC -A 1B 1C 1外接球的球心为线段EF 的中点O ,且BC ×EF =2.设外接球的半径为R ,则R 2=BF 2+OF 2=⎝⎛⎭⎫BC 22+⎝⎛⎭⎫EF 22=BC 2+EF 24≥14×2BC ×EF =1,当且仅当BC =EF =2时取等号.所以直三棱柱ABC -A 1B 1C 1外接球表面积的最小值为4π×12=4π.答案:4π9.已知某锥体的三视图(单位:cm)如图所示,求该锥体的体积.解:由三视图知,原几何体是一个五面体,由一个三棱柱截去一个四棱锥得到,其体积为V =V 三棱柱-V 四棱锥=12×2×2×2-13×12×(2+1)×2×2=2.10.已知一个几何体的三视图如图所示. (1)求此几何体的表面积;(2)如果点P ,Q 在正视图中所示位置:P 为所在线段中点,Q 为顶点,求在几何体表面上,从P 点到Q 点的最短路径的长.解:(1)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.S 圆锥侧=12(2πa )·(2a )=2πa 2,S 圆柱侧=(2πa )·(2a )=4πa 2,S 圆柱底=πa 2, 所以S 表面=2πa 2+4πa 2+πa 2=(2+5)πa 2.(2)沿P 点与Q 点所在母线剪开圆柱侧面,如图.则PQ =AP 2+AQ 2=a 2+(πa )2=a1+π2,所以从P 点到Q 点在侧面上的最短路径的长为a1+π2.B 组 高考题型专练1.(2015·高考陕西卷)一个几何体的三视图如图所示,则该几何体的表面积为( )A .3πB .4πC .2π+4D .3π+4解析:由所给三视图可知,该几何体是圆柱从底面圆直径处垂直切了一半,故该几何体的表面积为12×2π×1×2+2×12×π×12+2×2=3π+4,故选D.答案:D2.(2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:三棱锥V O -ABC =V C -OAB=13S △OAB×h ,其中h 为点C 到平面OAB 的距离,而底面三角形OAB 是直角三角形,顶点C 到底面OAB 的最大距离是球的半径,故V O -ABC =V C -OAB =13×12×R 3=36,其中R 为球O 的半径,所以R =6,所以球O 的表面积为S =4π×36=144π. 答案:C3.(2015·高考课标卷Ⅱ)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A.18 B.17 C.16D.15解析:如图,不妨设正方体的棱长为1,则截去部分为三棱锥A -A 1B 1D 1,其体积为16,又正方体的体积为1,则剩余部分的体积为56,故所求比值为15.故选D.答案:D4.(2015·高考浙江卷)某几何体的三视图如图所示(单位:cm),则该几何体的体积是( )A .8 cm 3B .12 cm 3 C.323cm 3 D.403cm 3 解析:该几何体的体积V =23+13×22×2=323(cm 3).答案:C5.(2015·高考四川卷)在三棱柱ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形.设点M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,则三棱锥P -A 1MN 的体积是________.解析:因为M ,N ,P 分别是棱AB ,BC ,B 1C 1的中点,所以MN ∥AC ,NP ∥CC 1, 所以平面MNP ∥平面CC 1A 1A ,所以A 1到平面MNP 的距离等于A 到平面MNP 的距离.根据题意有∠MAC =90°,AB =1, 可得A 到平面MNP 的距离为12.又MN =12,NP =1,所以VP -A 1MN =V A -MNP =13S △MNP ×12=13×12×12×1×12=124. 答案:124。
高三数学一轮复习 8.2 空间几何体的表面积与体积
考点1
考点2
考点3
-16-
对点训练1如图,某几何体的三视图是三个半径相等的圆及每个 圆中两条互相垂直的半径.若该几何体的体积是 283π, 则它的表面积 是( )
由三视图可知该几何体是球截去18后所得几何体, 则 所78以A×.它1473π的π×B表R.13面=8π2积83πC为,.解2078得×πD4Rπ.2R=82π2+, 34×πR2=14π+3π=17π.
(3)设正四面体棱长为 a,则正四面体表面积为 S1=4·43·a2= 3a2,
其内切球半径为正四面体高的14,即 r=14 ·36a=126a,因此内切球表面积
为 S2=4πr2=π6������2,则������������12 =
3������2 π6������2
=
6π3.
考点1
考点2
考点3
考点1
考点2
考点3
-28-
(2)设球半径为R,过AB作相互垂直的平面α,β,设圆M的直径为AC, 圆N的直径为AD,则BD⊥BC,BC2+BD2+4=(2R)2=12,
∴CD=2 2, ∵M,N分别是AC,AD的中点, ∴MN的长度是定值 2,故选B.
考点1
考点2
考点3
-29-
1.求柱体、锥体、台体与球的表面积的问题,要结合它们的结构 特点与平面几何知识来解决.
2.求三棱锥的体积时要注意三棱锥的每个面都可以作为底面. 3.与球有关的组合体问题,一种是内切,一种是外接.解题时要认 真分析图形,明确切点和接点的位置,确定有关元素间的数量关系, 并作出合适的截面图.
考点1
考点2
考点3
-27-
解析 (1)∵AB=AC=3,∠BAC=23π,
高考数学知识点:空间几何体的表面积和体积
高考数学知识点:空间几何体的表面积和体积第1篇:高考数学知识点之空间几何体的表面积和体积在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
下面小编给大家介绍高考数学知识点之空间几何体的表面积和体积,赶紧来看看吧!1、圆柱体:表面积:2πRr+2πRh体积:πRh(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR+πR[(h+R)的平方根]体积:πRh/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a,V=a4、长方体a-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/38、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr,S侧=Ch,S表=Ch+2S底,V=S底h=πrh10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R+Rr+r)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a+h)/6=πh(3r-h)/315、球台r1和r2-球台上、下底半径h-高V=πh[3(r1+r2)+h]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr=π2Dd/417、桶状体D-桶腹直径d-桶底直径h-桶高V=πh(2D+d)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D+Dd+3d/4)/15(母线是抛物线形)第2篇:高考数学知识点:空间几何体的表面积和体积数学是研究数量、结构、变化、空间以及信息等概念的一门学科,下面是小编整理的高考数学知识点:空间几何体的表面积和体积,希望对大家有帮助!1、圆柱体:表面积:2πRr+2πRh体积:πRh(R为圆柱体上下底圆半径,h为圆柱体高)2、圆锥体:表面积:πR+πR[(h+R)的平方根]体积:πRh/3(r为圆锥体低圆半径,h为其高,3、正方体a-边长,S=6a,V=aa-长,b-宽,c-高S=2(ab+ac+bc)V=abc5、棱柱S-底面积h-高V=Sh6、棱锥S-底面积h-高V=Sh/37、棱台S1和S2-上、下底面积h-高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体S1-上底面积,S2-下底面积,S0-中截面积h-高,V=h(S1+S2+4S0)/69、圆柱r-底半径,h-高,C—底面周长S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr,S侧=Ch,S表=Ch+2S底,V=S底h=πrh10、空心圆柱R-外圆半径,r-内圆半径h-高V=πh(R^2-r^2)11、直圆锥r-底半径h-高V=πr^2h/312、圆台r-上底半径,R-下底半径,h-高V=πh(R+Rr+r)/313、球r-半径d-直径V=4/3πr^3=πd^3/614、球缺h-球缺高,r-球半径,a-球缺底半径V=πh(3a+h)/6=πh(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=πh[3(r1+r2)+h]/616、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=2π2Rr=π2Dd/4D-桶腹直径d-桶底直径h-桶高V=πh(2D+d)/12,(母线是圆弧形,圆心是桶的中心)V=πh(2D+Dd+3d/4)/15(母线是抛物线形)第3篇:高考数学知识点:空间几何体的表面积和体积知识解析一、柱、锥、台和球的侧面积和体积典型例题1:1、几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2、求体积时应注意的几点:(1)、求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)、与三视图有关的体积问题注意几何体还原的准确*及数据的准确*.3、求组合体的表面积时注意几何体的衔接部分的处理.典型例题2:1、以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2、多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3、旋转体的表面积问题注意其侧面展开图的应用.典型例题3:1、计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2、注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3、等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.第4篇:空间几何体的表面积与体积的数学知识点一、课标要求:了解一些简单的几何体的表面积的计算方法,了解棱柱、棱锥、台的表面积计算公式(不要求记忆公式)二、教学目标:(1)了解平面展开图的概念及柱、锥、台的表面积公式;(2)会求一些简单几何体的表面积公式;(3)让学生经历空间几何体的侧面展开过程,感知几何体的形状;(4)让学生通过对照比较,理顺柱体、锥体、台体侧面积之间的转换关系,体会数和形的完美结合.(5)通过学习使学生感受到空间几何体侧面积的求解过程,对自己空间思维能力的影响,从而增强学习数学的信心.三、教学重点、难点:重点;空间几何体侧面积的计算难点;空间几何体侧面展开四、设计思路:借助多媒体,通过动态演示一些多面体的平面展开图的过程,让学生在直观感知的基础上了解平面展开图的概念,进而结合前面已研究的柱、锥、台这三类几何体的概念,介绍正棱柱、正棱锥、正棱台的概念,结合模型组织学生感知探索侧面展开图的形成过程及侧面展开图的构成,得出它们侧面积的计算公式。
2023年高考数学(文科)一轮复习课件——空间几何体的表面积和体积
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面展开图
侧面积公式 S圆柱侧=__2_π_r_l_____ S圆锥侧=___π_rl____ S圆台侧=____π_(_r1_+__r_2_)l__
索引
3.空间几何体的表面积与体积公式
几何体
名称
表面积
体积
柱体 (棱柱和圆柱) 锥体(棱锥和圆锥)
Q
522+62=123.
索引
(2)已知正三棱锥 S-ABC 的侧棱长为 4 3,底面边长为 6,则该正三棱锥外接球 的表面积是___6__4_π__.
解析 如图,过点S作SE⊥平面ABC于点E,记球心为O. ∵在正三棱锥 S-ABC 中,底面边长为 6,侧棱长为 4 3, ∴BE=23× 23×6=2 3, ∴SE= SB2-BE2=6.
∵球心O到四个顶点的距离相等,均等于该正三棱锥外接球的半径R, ∴OB=R,OE=6-R. 在Rt△BOE中,OB2=BE2+OE2,即R2=12+(6-R)2,解得R=4, ∴外接球的表面积为S=4πR2=64π.
索引
感悟提升
(1)求解多面体的外接球时,经常用到截面图.如图所 示,设球O的半径为R,截面圆O′的半径为r,M为截 面圆上任意一点,球心O到截面圆O′的距离为d,则在 Rt△OO′M中,OM2=OO′2+O′M2,即R2=d2+r2.
是( B )
A.158
B.162
C.182
D.324
索引
解析 由三视图可知,该柱体是一个直五棱柱,如图,棱柱的高为6,底面可 以看作由两个直角梯形组合而成,其中一个上底为4,下底为6,高为3,另一 个的上底为2,下底为6,高为3. 则底面面积 S=2+2 6×3+4+2 6×3=27. 因此,该柱体的体积V=27×6=162.
高三数学一轮复习 第九章《立体几何》9-1精品
• (4)能用向量方法解决线线、线面、面面的夹角的计算 问题,体会向量方法在研究几何问题中的作用.
精选版ppt
7
• ●命题趋势
• 1.空间几何体
• 空间几何体是立体几何初步的重要内容,高考非常重视 对这一部分的考查.一是在选择、填空题中有针对性地 考查空间几何体的概念、性质及主要几何量(角度、距 离、面积、体积)的计算等.二是在解答题中,以空间 几何体为载体考查线面位置关系的推理、论证及有关计 算.
精选版ppt
9
• 3.空间向量与立体几何(理)
• 高考试题中的立体几何解答题,包括部分选择、填空题, 大多都可以使用空间向量来解答.高考在注重对立体几 何中传统知识和方法考查的同时,加大了对空间向量的 考查.给考生展现综合利用所学知识解决实际问题的才 能提供更宽阔的舞台.
• 这一部分高考命题主要有以下几个方面:
精选版ppt
27
• 1°球面被经过球心的平面截得的圆叫做大圆. • 2°不过球心的截面截得的圆叫做球的小圆.
精选版ppt
28
• (3)球面距离:
• 1°定义:在球面上两点之间的最短距离,就是经过这
两点的 在这两点间的一段
的长度,这个弧
长叫做两大点圆的球面距离.
劣弧
• 2°地球上的经纬线
• 当把地球看作一个球时,经线是球面上从北极到南极的 半个大圆,纬线是与地轴垂直的平面与球面的交线,其
• ②棱锥的高、斜高和斜高在底面内的射影组成一个直角 三角形;棱锥的高、侧棱和侧棱在底面内的射影也组成 一个直角三角形.
• 4.棱台的概念及性质
• (1)定义:棱锥被 的部分叫做棱台.
空间几何的体积与表面积 高考数学一轮复习(提升版)(新高考地区专用)
7.2 空间几何的体积与表面积(提升版)思维导图考点一柱锥台表面积【例1-1】(2022·青海)以边长为4的正方形的一边所在直线为旋转轴,将该正方形旋转一周,所得圆柱的侧面积为()A.32πB.16πC.32D.16【答案】A【解析】以边长为4的正方形的一边所在直线为旋转轴,旋转一周得到的旋转体为圆柱,其底面半径4r=,高4h=,故其侧面积224432S r hπππ=⋅=⨯⨯=.故选:A【例1-2】(2022·天津·南开中学模拟预测)已知圆锥PO的母线长与底面直径都等于2,一个圆柱内接于这个圆锥,即圆柱的上底面是圆锥的一个截面,下底面在圆锥的底面内,则圆柱侧面积的最大值为()A.3π2B.3πC.()633π-D.3【答案】A【解析】如图,1AB=,2BE=,3AE=,则30AEB∠=,设DC r=,01r<<,则2EC r=,3DE r=,则33AD AE DE r=-=-,考点呈现例题剖析∴圆柱侧面积为:)()221132π2π3323π23π22S r AD r r r r ⎡⎤⎛⎫=⋅=⋅=-+≤-+=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当12r =时取等号.故选:A . 【一隅三反】1.(2023·全国·高三专题练习)《几何原本》是古希腊数学家欧几里得的一部不朽之作,其第十一卷中称轴截面为等腰直角三角形的圆锥为直角圆锥,若某直角圆锥内接于一球(圆锥的顶点和底面上各点均在该球面上),求此圆锥侧面积和球表面积之比( ) A .24B 22C 2D .24π【答案】A【解析】设直角圆锥底面半径为r 2r , ()222rr r -=,所以底面圆的圆心即为外接球的球心,所以外接球半径为r , 所以22224S rl r S r πππ==圆锥侧球故选:A. 2.(2022·福建三明·模拟预测)如图所示的建筑物是号称“神州第一圆楼”的福建土楼——二宜楼,其外形是圆柱形,圆楼直径为73.4m ,忽略二宜楼顶部的屋檐,若二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23,则二宜楼外层圆柱墙面的高度可能为( )A .16mB .17mC .18mD .19m【答案】A【解析】底面直径为40m ,高为77m ()2210772090m +=,所以该圆锥的侧面积为220901800cm ππ⋅⋅=,设二宜楼外层圆柱墙面的高度为h ,则由36.72h π⨯1200π=,解得16.3h ≈因为二宜楼的外层圆柱墙面的侧面积略小于底面直径为40m ,高为77的圆锥的侧面积的23, 所以二宜楼外层圆柱墙面的高度可能为16m , 故选:A3.(2022·江苏·阜宁县东沟中学模拟预测)民间娱乐健身工具陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺的立体结构图.已知.底面圆的直径16cm AB =,圆柱体部分的高8cm BC =,圆锥体部分的高6cm CD =,则这个陀螺的表面积是( )A .2192m c πB .2252m c πC .2272m c πD .2336m c π【答案】C【解析】由题意可得圆锥体的母线长为226810l =+=, 所以圆锥体的侧面积为10880ππ⨯=,圆柱体的侧面积为168128ππ⨯=,圆柱的底面面积为2864ππ⨯=, 所以此陀螺的表面积为8012864272ππππ++=(2cm ),故选:C考点二 柱锥台的体积【例2-1】(2022·全国·高三专题练习)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC 是边长为2的正三角形,SC 为球O 的直径,且4SC =,则此棱锥的体积为( )A 42B 43C 82D .42【答案】A【解析】解:因为ABC 是边长为2的正三角形,所以ABC 外接圆的半径12232sin 60r =⋅=︒所以点O 到平面ABC 的距离2226d R r -SC 为球O 的直径,点S 到平面ABC 的距离为462d =此棱锥的体积为2111464222sin 60332ABCV S d =⨯=⨯⨯,故选:A .【例2-2】(2022·天津·高考真题)如图,“十字歇山”是由两个直三棱柱重叠后的景象,重叠后的底面为正方形,直三棱柱的底面是顶角为120︒,腰为3的等腰三角形,则该几何体的体积为( )A .23B .24C .26D .27【答案】D【解析】该几何体由直三棱柱AFD BHC -及直三棱柱DGC AEB -组成,作HM CB ⊥于M ,如图, 因为3,120CH BH CHB ==∠=,所以3332CM BM HM ==, 因为重叠后的底面为正方形,所以33AB BC ==, 在直棱柱AFD BHC -中,AB ⊥平面BHC ,则AB HM ⊥, 由AB BC B ⋂=可得HM ⊥平面ADCB , 设重叠后的EG 与FH 交点为,I则132713813333,=3333=322224I BCDA AFD BHC V V --=⨯=⨯⨯则该几何体的体积为8127222742AFD BHC I BCDA V V V --=-=⨯-=.故选:D. 【例2-3】(2022·湖北·高三阶段练习)已知四面体D ABC -中,1AC BC AD BD ====,则D ABC -体积的最大值为( ) A 42B 32C 23D 3【答案】C【解析】设M 为CD 的中点,连接AM,BM , 设四面体A -BCD 的高为h ,则h AM ≤,由于1AC BC AD BD ====,故ACD BCD ≌ , 则ACD BCD ∠=∠,设π,(0,)2BCD ACD αα∈∠=∠=,则sin sin ,22cos 2cos AM BM BC CD CM BC αααα======, 所以1136D ABC A DBC BCDV V Sh CD BM AM --==⋅≤⋅⋅222222231112cos sin sin cos sin 2cos sin sin ()333232αααααααα++==⋅⋅23, 当且仅当平面ACD 与平面BCD 垂直且sin 2αα=即arctan 2α=时取等号,故选:C 【一隅三反】1.(2022·江苏)甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙( ) A 5B .22C 10D 510【答案】C【解析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl rS r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l +=,所以1221,33r l r l ==,所以甲圆锥的高221459h l l =-=,乙圆锥的高2221229h l l =-=,所以221122221453931011223r h l V V r h l l ππ==⨯甲乙故选:C. 2.(2022·广西桂林)一个三棱锥S -ABC 的侧棱上各有一个小洞D ,E ,F ,且SD :DA =SE :EB =CF :FS =3:1,则这个容器最多可盛放原来容器的( ) A .89B .49C .5564D .23【答案】C【解析】由题意,这个容器最多可盛放原来容器的比例为DEF ABC S ABC S DEFS ABC S ABC V V V V V ------=,设C 到平面SAB 的距离为h ,则13S ABC C ABS SAB V V Sh --==.又91991646464S DEF F SDE SABSAB C ABS V V S h S h V ---==⨯=⨯=,故915564164DEF ABC S ABC S DEFS ABC S ABCV V V V V -------=== 故选:C3.(2023·全国·高三专题练习)足球起源于中国古代的蹴鞠游戏.“蹴”有用脚蹴、踢的含义,“鞠”最早系外包皮革、内饰米糠的球,因而“蹴鞠”就是指古人以脚蹴、踢皮球的活动,如图所示.已知某“鞠”的表面上有四个点,,,P A B C,满足1,PA PA =⊥面ABC ,AC BC ⊥,若23P ABC V -=,则该“鞠”的体积的最小值为( )A .256π B .9πC .92πD .98π【答案】C【解析】取AB 中点为D ,过D 作//OD PA ,且11==22OD PA ,因为PA ⊥平面ABC,所以OD ⊥平面ABC .由于AC BC ⊥,故DA DB DC ==,进而可知OA OB OC OP ===,所以O 是球心,OA 为球的半径.由112==4323P ABC V AC CB PA AC CB -=⨯⋅⋅⇒⋅,又2222=8AB AC BC AC BC =+≥⋅,当且仅当2AC BC ==,等号成立,故此时22AB =所以球半径()2222113+2222R OA OD AB ⎛⎫⎛⎫==+≥ ⎪ ⎪⎝⎭⎝⎭,故min 3=2R ,体积最小值为334439πππ3322R ⎛⎫== ⎪⎝⎭故选:C4.(2023·全国·高三专题练习)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且333l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]【答案】C【解析】∴ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =-所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭,所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当326l ≤≤0V '>,当2633l ≤0V '<, 所以当26l =时,正四棱锥的体积V 取最大值,最大值为643, 又3l =时,274V =,33l =814V =,所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,.故选:C.考点三 球的体积与表面积【例3】(2022·甘肃省武威第一中学)如图,半径为4的球O 中有一内接圆柱,当圆柱的侧面积最大时,球的表面积与圆柱的表面积之差为( )A .64πB .48πC .32πD .16π【答案】D 【解析】如图.设圆柱底面半径为r ,球的半径与圆柱底面夹角为OMN α∠=,则cos 4cos MN r R αα==⋅=,sin 4sin ON R αα=⋅=,∴圆柱的高8sin h α=,∴圆柱的侧面积为232sin2S r h ππα=⋅⋅=⋅,当且仅当4πα=时,sin21α=,圆柱的侧面积最大,为32π, 球的表面积与圆柱的表面积之差为22422(22)64321616R rh πππππππ--⨯=--=.故选:D . 【一隅三反】1.(2022·全国·赣州市第三中学)已知某正三棱锥S ABC -的内切球与外接球的球心恰好重合,如果其内切球的半径为1,其外接球的体积为36π,那么这个三棱锥的表面积为( ) A .24 B .243C .48D .483【答案】B【解析】由题意可知,点S 在底面ABC 内的射影点D 为等边ABC 的中心,取线段BC 的中点E ,连接AE ,则2AD DE =,易知三棱锥S ABC -的外接球球心O 在线段SD 上,设正三棱锥S ABC -的外接球半径为R ,则34363R ππ=,解得3R =,设正三棱锥S ABC -的内切球的半径为r ,则1r =,故314SD R r =+=+=,SD ⊥平面ABC ,AD ⊂平面ABC ,SD AD ∴⊥,易知3OA R ==,则222222AD OA OD R r --=所以,122DE AD ==32AE =26sin 3AEAB π== 由勾股定理可得2226SA SD AD =+=所以,正三棱锥S ABC -是边长为6 因此,正三棱锥S ABC -的表面积为(23426=243故选:B.2.(2022·天津·耀华中学二模)一个圆锥的侧面展开图是一个半圆,则该圆锥的内切球的表面积和圆锥的侧面积的比为( ) A .2:3 B .3:2 C .1:2 D .3:4【答案】A【解析】设圆锥的底面半径为r ,母线长为l ,圆锥的高为h ,内切球的半径为R ,其轴截面如图所示,设O 为内切球球心,因为圆锥的侧面展开图是一个半圆, 所以2l r ππ=,得2l r =,即2PA PB r ==, 所以222243PD PB BD r r r =--, 所以3PO PD OD r R =-=-, 因为POE △∴PBD △,所以PO OEPB BD=, 3r R Rr -=,得3R =, 所以圆锥的内切球的表面积和圆锥的侧面积的比为 22214:4:22:33R rl r r ππππ=⋅=,故选:A3.(2022·山东青岛·二模)《九章算术》中记录的“羡除”是算学和建筑学术语,指的是一段类似隧道形状的几何体,如图,羡除ABCDEF 中,底面ABCD 是正方形,EF ∥平面ABCD ,2EF =,其余棱长都为1,则这个几何体的外接球的体积为( )A 2B .4π3C 82D .4π【答案】B【解析】连接AC ,BD 交于点M ,取EF 的中点O ,则OM ⊥平面ABCD ,,取BC 的中点G ,连接FG ,作GH EF ⊥,垂足为H ,如图所示由题意可知,13,2HF FG ==222HG FG HF =- 所以2OM HG ==2AM =所以221OA OM AM +=,又1OE =, 所以1OA OB OC OD OE OF ======,即这个几何体的外接球的球心为O ,半径为1, 所以这个几何体的外接球的体积为33444ππ1π333V R ==⨯⨯=.故选:B.考点四 空间几何的截面【例4-1】(2022·全国·高三专题练习)已知圆锥的母线长为2,侧面积为23π,则过顶点的截面面积的最大值等于( ) A 3B 2C .3 D .2【答案】D【解析】由圆锥的母线长为2,侧面积为3π,假设底面圆周长为l ,因此12232l π⨯⨯=,故底面圆周长为23π3由于轴截面为腰长为2,底边长为底面圆直径32π3.故当截面为顶角是π2的等腰三角形时面积最大,此时1π22sin 222S =⋅⋅⋅=.故选:D【例4-2】.(2022·湖南·长沙一中模拟预测)(多选)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为22543⎡+⎣,【答案】BCD【解析】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积 为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得125225OG ==设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S=⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确;由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ',则2222222,2,2,16PP PE P E PF P F P E P F '''''==+++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,222216PE PF t t +++-所以()222222216241680PE PF t tt t +=++-=+-++()224281442485,48t ⎡⎤=+--++⎣⎦,所以225,43PE PF ⎡+∈+⎣,故D 正确.故选:BCD.【一隅三反】1.(2022·江西鹰潭·二模)《算数术》竹简于上世纪八十年代出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:“置如其周,令相乘也,叉以高乘之,三十六成一."该术相当于给出了由圆锥的底面周长L 与高h ,计算其体积V 的近似公式2136V L h ≈.它实际上是将圆锥体积公式中的圆周率π近似取为3.现有一圆锥底面周长为563,侧面面积为1123,其体积的近似公式为23112V L h ≈,用此π的近似取值(用分数表示)计算过该圆锥顶点的截面面积的最大值为( ) A .15 B .37C .8821D .8【答案】D【解析】若圆锥母线长为l ,底面半径为r ,则156112233l ⨯=,故4l,又5623r π=,故283r π=, 而22133112V r h L h π=≈,则2228356()()31123ππ⨯≈⨯,可得289π=, 所以3r =,若截面顶角θ,当截面为轴截面时2221cos 108r l θ=-=-<,此时2πθπ<<,又截面面积为21sin 8sin 2l θθ=,故当2πθ=时截面面积的最大值为8.故选:D2.(2022·河南·方城第一高级中学)某中学开展劳动实习,学生对圆台体木块进行平面切割,已知圆台的上底面半径为1,下底面半径为2,要求切割面经过圆台的两条母线且使得切割面的面积最大.3则切割面的面积为______3______. 【答案】 2 33【解析】解法一:如图,将圆台1O O 补成圆锥PO ,设圆台1O O 的上、下底面半径分别为r ,R ,高和母线长分别为h ,l ,则()222l h R r =+-.因为等腰梯形ABCD 为过两条母线的截面,设PC x =.APB θ∠=,则r x R x l=+,得rl x R r=-,则()()2221sin sin 22PAB PCD ABCD R r S S S x l x l R r θθ+⎡⎤=-=+-=⎣⎦-△△梯形.∴若33h ,则23l =,0120θ︒<≤︒,当90θ=︒时,切割面的面积最大,最大面积2S =;∴若3h =2l =,060θ︒<︒≤,当60θ=︒时,切割面的面积最大,最大面积33S =解法二:如图,设圆台上底面圆心为1O ,下底面圆心为O ,过两条母线的截面为四边形11ABB A ,可得四边形11ABB A 为等腰梯形.设111AO B AOB θ∠=∠=,圆台的高1O O h =,取11A B ,AB 的中点分别为1C ,D ,连接11O C ,1C D ,OD ,则四边形11O C DO 为直角梯形,过1C 作11C C O O ∥交OD 于点C.因为111O B =,2OB =,所以11cos2O C θ=,111122sin2A B B C θ==,2cos2OD θ=,24sin 2AB BD θ==,所以11cos 2CD OD O C θ=-=,所以221cos 2DC h θ=+则()11221111cos 222ABB A S S AB A B DC h θθ==+⋅=+梯形令sin 2t θ=,因为(]0,θπ∈,所以(]0,1t ∈,则2231S t h =-+(]0,1t ∈.∴当3h 时,2222244333232t t S t t ⎛⎫+- ⎪⎛⎫=-≤= ⎪ ⎪⎝⎭ ⎪⎝⎭,当且仅当2243t t =-,即6t =max 2S =.∴当3h =()22423434S t t t t =--+令2t x =,则(]0,1x ∈,()24224424t t x x x -+=-+=--+,当1x =时,取最大值3.此时max 33S =故答案为:2;333.(2022·青海·海东市第一中学)已知圆锥的底面直径为2323则该圆锥的体积为________. 5π【解析】由题意知:圆锥的底面半径3r =设圆锥的母线长为l ,则2213sin 2323l π⋅==22l =∴圆锥的高22835h l r =--=∴圆锥的体积2153V r h ππ=⋅=.5π.。
2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(知识点讲解)含详解
专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R=2. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1∶4,则该圆台外接球的表面积为( )A .56πB .64πC .112πD .128πh r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( )AB .CD 例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.73B.143C.3D.6例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【总结提升】求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A. B. C. D例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .34πC .2πD .4π 例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.例18. (2019年高考天津卷理)的正方形,侧棱长均若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方25体确定直径解决外接问题.专题8.2 空间几何体的表面积和体积(知识点讲解)【知识框架】 【核心素养】1.通过考查几何体体积和表面积的计算,主要考查棱柱、棱锥或不规则几何体的特征及体积与表面积的计算,凸显数学运算、直观想象的核心素养.2.结合三视图、直观图、展开图、轴截面等,考查球的切、接问题,主要考查几何体与球的组合体的识辨,球的体积、表面积的计算,凸显数学运算、直观想象的核心素养.【知识点展示】(一)几何体的表面积圆柱的侧面积圆柱的表面积圆锥的侧面积圆锥的表面积圆台的侧面积圆台的表面积球体的表面积 柱体、锥体、台体的侧面积,就是各个侧面面积之和;表面积是各个面的面积之和,即侧面积与底面积之和.把柱体、锥体、台体的面展开成一个平面图形,称为它的展开图,圆柱、圆锥、圆台的侧面展开图分别是矩形、扇形、扇环形它的表面积就是展开图的面积.(二)几何体的体积圆柱的体积rl S π2=)(2l r r S +=πrl S π=)(l r r S +=πl r r S )(+'=π)(22rl l r r r S +'++'=π24R S π=h r V 2π=圆锥的体积 圆台的体积 球体的体积 正方体的体积正方体的体积(三)常用结论多面体的内切球与外接球常用的结论(1)设正方体的棱长为a ,则它的内切球半径r =2a ,外接球半径R=2a . (2)设长方体的长、宽、高分别为a ,b ,c ,则它的外接球半径R. (3)设正四面体的棱长为a ,则它的高为H=3a ,内切球半径r =14H=12a ,外接球半径R =34H=4a . 【常考题型剖析】题型一:空间几何体的表面积例1.(2021·全国·高考真题)北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为36000km (轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O ,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为α,记卫星信号覆盖地球表面的表面积为22(1cos )S r πα=-(单位:2km ),则S 占地球表面积的百分比约为( )A .26%B .34%C .42%D .50%【答案】C【解析】【分析】由题意结合所给的表面积公式和球的表面积公式整理计算即可求得最终结果.【详解】由题意可得,S 占地球表面积的百分比约为: 226400164003600002(1.cos )1cos 44242%22r r πααπ---+==≈=.h r V 231π=)(3122r r r r h V '++'=π334R V π=3a V =abc V =故选:C.例2.(2020·全国·高考真题(理))已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π 【答案】A【解析】【分析】由已知可得等边ABC 的外接圆半径,进而求出其边长,得出1OO 的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====,∴球O 的表面积2464S R ππ==.故选:A例3.(2022·青海·海东市第一中学模拟预测(文))已知某圆台的母线长为2,母线与轴所在直线的夹角是60︒,且上、下底面的面积之比为1⊙4,则该圆台外接球的表面积为( ) A .56πB .64πC .112πD .128π 【答案】C【解析】【分析】作出圆台的轴截面等腰梯形,其外接圆是圆台外接球的大圆,在这个轴截面中进行计算可得.【详解】如图等腰梯形ABCD 是圆台的轴截面,EF 是圆台的对称轴,圆台上、下底面的面积之比为1:4,则半径比为1:2,设圆台上、下底面半径分别为r ,2r ,因母线与轴的夹角是60︒,母线长为2,可得圆台的高为1,r =R ,球心到下底面(大圆面)的距离为x ,若球心在圆台两底面之间,如图点M 位置,则222R x =+且222(1)R x =-+,无解;若圆台两底面在球心同侧,如图点O 位置,则222R x =+且222(1)R x =++,解得4x =,则228R =, 则该圆台外接球的表面积为2112R 4π=π.故选:C .【总结提升】几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和.(2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应搞清各构成部分,并注意重合部分的删、补.(4)若以三视图形式给出,解题的关键是根据三视图,想象出原几何体及几何体中各元素间的位置关系及数量关系.题型二:空间几何体的体积例4. (2023·河南·洛宁县第一高级中学一模(文))若圆锥的母线与底面所成的角为π6,则该圆锥的体积为( )A .π2B .πC .2πD .3π【答案】B【解析】【分析】设圆锥的高为h ,利用母线与底面所成角求出高即可得解.【详解】设圆锥的高为h , 因为母线与底面所成的角为π6,所以πtan 61h =.圆锥的体积2π1π3=⨯⨯=V . 故选:B例5.(2022·全国·高考真题)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .时,2.65)( )A .931.010m ⨯B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯ 【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为157.5148.59MN =-=(m),所以增加的水量即为棱台的体积V .棱台上底面积262140.014010S ==⨯km m ,下底面积262180.018010S '==⨯km m ,∴((66119140101801033V h S S =+=⨯⨯⨯+⨯' ()()679933320607109618 2.6510 1.43710 1.410(m )=⨯+⨯≈+⨯⨯=⨯≈⨯.故选:C .例6.(2022·全国·高考真题(理))甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=V V 甲乙( ) AB.CD【答案】C【解析】【分析】 设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r , 则11222S rl r S r l r ππ===甲乙, 所以122r r =, 又12222r r l lπππ+=, 则121r r l +=, 所以1221,33r l r l ==,所以甲圆锥的高1h ==,乙圆锥的高2h ==,所以221122214313r h l V V r h ππ==甲乙 故选:C.例7.(2022·湖北·黄石市有色第一中学模拟预测)阿基米德多面体也称为半正多面体,是以边数不全相同的正多边形为面围成的多面体.如图,已知阿基米德多面体的所有顶点均是一个棱长为2的正方体各条棱的中点,则该阿基米德多面体的体积为______;若M ,N 是该阿基米德多面体表面上任意两点,则M ,N 两点间距离的最大值为______.【答案】 203##263 22##322 【解析】【分析】第一空,将该多面体置于正方体中,由此可知该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,由此可求得其体积;第二空,结合阿基米德多面体的外接球刚好是补形后正方体的棱切球,再求M ,N 两点间距离的最大值即可.【详解】依题意,可将该多面体补成一个棱长为2的正方体,如图,所以该阿基米德多面体是由正方体切掉8个全等的三棱锥形成,其体积112088111323V =-⨯⨯⨯⨯⨯=; 该阿基米德多面体的外接球刚好是正方体的棱切球,即与正方体的各条棱相切于棱的中点的球,该球直径为M ,N 两点间距离的最大值为外接球的直径,则max MN =故答案为:203; 【总结提升】1.处理体积问题的思路(1)“转”:指的是转换底面与高,将原来不易求面积的底面转换为易求面积的底面,或将原来不易看出的高转换为易看出并易求解长度的高,即等体积法;(2)“拆”:指的是将一个不规则的几何体拆成几个简单的几何体,便于计算,即分割法;(3)“拼”:指的是将小几何体嵌入一个大几何体中,如将一个三棱锥复原成一个三棱柱,将一个三棱柱复原成一个四棱柱,这些都是拼补的方法,即补形法.2.求体积的两种方法:①割补法:求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.②等积法:等积法包括等面积法和等体积法.等体积法的前提是几何图形(或几何体)的面积(或体积)通过已知条件可以得到,利用等积法可以用来求解几何图形的高或几何体的高,特别是在求三角形的高和三棱锥的高时,这一方法回避了通过具体作图得到三角形(或三棱锥)的高,而通过直接计算得到高的数值.题型三:三视图与几何体的面积、体积例8.(2020·全国·高考真题(文))下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDBS S S===⨯⨯=△△△根据勾股定理可得:AB AD DB===∴ADB△是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△该几何体的表面积是:632⨯++ 故选:C.例9. (2020·浙江·高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】【分析】根据三视图还原原图,然后根据柱体和锥体体积计算公式,计算出几何体的体积.【详解】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A例10.(2022·浙江省春晖中学模拟预测)某几何体的三视图如图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是___________,体积是___________.【答案】232π+33π##3π3【解析】【分析】先画出直观图,再求出圆锥的高,求出两个半圆锥的侧面积之和,从而求出此几何体的表面积和体积.【详解】该几何体为两个底面半径为1,母线长为2的半圆锥拼接而成,设圆锥的高为h,由勾股定理得:413h=-=,则两个半圆锥的侧面积之和为12π22π2⨯⨯=,如图,AB =2CD =,且AB CD ⊥,所以四边形ADBC 的面积为22÷=, 该几何体的表面积为232π+,该几何体的体积为21π13⨯=故答案为:2π 【总结提升】 求空间几何体体积的常见类型及思路(1)规则几何体:若所给定的几何体是柱体、锥体或台体等规则几何体,则可直接利用公式进行求解.其中,求三棱锥的体积常用等体积转换法(2)不规则几何体:若所给定的几何体是不规则几何体,则将不规则的几何体通过分割或补形转化为规则几何体,再利用公式求解.题型四:简单几何体的外接球与内切球问题例11.(2021·天津·高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为( )A .3πB .4πC .9πD .12π 【答案】B【解析】作出图形,计算球体的半径,可计算得出两圆锥的高,利用三角形相似计算出圆锥的底面圆半径,再利用锥体体积公式可求得结果.【详解】如下图所示,设两个圆锥的底面圆圆心为点D ,设圆锥AD 和圆锥BD 的高之比为3:1,即3AD BD =,设球的半径为R ,则343233R ππ=,可得2R =,所以,44AB AD BD BD =+==, 所以,1BD =,3AD =,CD AB ⊥,则90CAD ACD BCD ACD ∠+∠=∠+∠=,所以,CAD BCD ∠=∠,又因为ADC BDC ∠=∠,所以,ACD CBD △∽△,所以,AD CD CD BD=,CD ∴= 因此,这两个圆锥的体积之和为()21134433CD AD BD πππ⨯⋅+=⨯⨯=. 故选:B.例12.(2020·全国高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A B .32 C .1 D .2【答案】C【解析】 设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C.例13.(2020·全国·高考真题(理))已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )AB .32C .1D 【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离d = 【详解】设球O 的半径为R ,则2416R ππ=,解得:2R =.设ABC 外接圆半径为r ,边长为a ,ABC212a ∴=3a =,2233r ∴==∴球心O 到平面ABC 的距离1d .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.例14.(2019·全国·高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D . 解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,2212122x x x ∴+=∴==PA PB PC ∴=====2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴R ∴=,34433V R ∴=π==,故选D. 例15.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B .34π C .2π D .4π 【答案】B 【解析】设圆柱的底面半径为r ,球的半径为R ,且R =1,由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.∴2r ==. ∴圆柱的体积为V =πr 2h =34π×1=34π. 故选B .例16.(2016·全国卷Ⅲ)在封闭的直三棱柱ABC A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A .4πB .9π2C .6πD .32π3【答案】B【解析】由题意得要使球的体积最大,则球与直三棱柱的若干面相切.设球的半径为R ,∵△ABC 的内切圆半径为68102+-=2,∴R ≤2. 又2R ≤3,∴R ≤32,∴V ma x =3439()322ππ=.故选B . 点睛:解答本题的关键是当V 取得最大值时,球与上下底面还是与侧面相切的问题.例17.(2021·福建·厦门大学附属科技中学高三阶段练习)某同学在参加魔方实践课时,制作了一个工艺品,如图所示,该工艺品可以看成是一个球被一个棱长为(球心与正方体的中心重合),若其中一个截面圆的周长为6π,则该球的表面积是______.【答案】144π【解析】【分析】设球心为O ,作出过球心的截面图如图所示,然后根据已知条件结合球的性质求解即可.【详解】 设球心为O,作出过球心的截面图如图所示,则OA =由截面圆的周长为6π,得26AB ππ⨯=,∴3AB =,6.所以该球的表面积为246=144ππ⨯.故答案为:144π.例18. (2019年高考天津卷理)的正方形,侧棱长若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.【答案】,借助勾股定理,可知四棱锥的高.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为,圆柱的底面半径为, 故圆柱的体积为. 例19.(2020·全国·高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值.【详解】 25π42=11221ππ124⎛⎫⨯⨯= ⎪⎝⎭易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O , 由于223122AM =-=,故1222222S =⨯⨯=△ABC , 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:343V r π==.. 【总结提升】1.常见类型:(1)利用长方体的体对角线探索外接球半径;(2)利用长方体的面对角线探索外接球半径;(3)利用底面三角形与侧面三角形的外心探索球心;(4)利用直棱柱上下底面外接圆圆心的连线确定球心;(5)锥体的内切球问题;(6)柱体的内切球问题2.与球有关的组合体问题,一种是内切,一种是外接.球与旋转体的组合通常是作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心,或“切点”、“接点”作出截面图,把空间问题化归为平面问题.3.若球面上四点P ,A ,B ,C 中PA ,PB ,PC 两两垂直或三棱锥的三条侧棱两两垂直,可构造长方体或正方体确定直径解决外接问题.。
高考一轮复习第七章 第二节 空间几何体的表面积和体积
法等,它们是解决一些不规则几何体体积计算常用的
方法,应熟练掌握.
返回
3.等积变换法:利用三棱锥的任一个面可作为三棱锥
的底面.①求体积时,可选择容易计算的方式来计
算;②利用“等积法”可求“点到面的距离”.
返回
[精析考题] [例3] (2011· 陕西高考)如图,在△ABC中,∠ABC=
45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD 折起,使∠BDC=90°.
(1)证明:平面ADB⊥平面BDC;
(2)若BD=1,求三棱锥D-ABC的表面积. 返回
[自主解答]
(1)∵折起前AD是BC边上的高,
∴当△ABD折起后,AD⊥DC,AD⊥DB. 又DB∩DC=D,
∴AD⊥平面BDC.
又AD⊂平面ABD, ∴平面ABD⊥平面BDC.
返回
(2)由(1)知,DA⊥DB,DC⊥DA, ∵DB=DA=DC=1,DB⊥DC, ∴AB=BC=CA= 2. 1 1 从而S△DAB=S△DBC=S△DCA=2×1×1=2, 1 3 S△ABC=2× 2× 2×sin60° 2 , = 1 3 3+ 3 ∴三棱锥的表面积S=2×3+ 2 = 2 .
返回
[巧练模拟]—————(课堂突破保分题,分分必保!)
5.(2012· 大连模拟)矩形ABCD中,AB=4,BC=3,沿AC将矩形 ABCD折起,使面BAC⊥面DAC,则四面体A-BCD的外接球 的体积为 125 A. 12 π 125 C. 6 π 125 B. 9 π 125 D. 3 π ( )
第 七 章
立 体 几 何
第 二 节 空 间 几 何 体 的 表 面 积和 体积
抓 基 础
明 考 向
教 你 一 招 我 来 演 练
高三数学第一轮复习知识点
高三数学第一轮复习知识点高三数学第一轮复习知识点总结第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
主要是考函数和导数,这是我们整个高中阶段里最核心的板块,在这个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析就是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点掌握公式,重点掌握五组基本公式。
第二,是三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列这个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是计算。
第五:概率和统计。
这一板块主要是属于数学应用问题的范畴,当然应该掌握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,计算量最高的题,当然这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该掌握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2008年高考已经考过的一点,第五类重点问题,这类题时往往觉得有思路,但是没有答案,当然这里我相等的是,这道题尽管计算量很大,但是造成计算量大的原因,往往有这个原因,我们所选方法不是很恰当,因此,在这一章里我们要掌握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
考生在备考复习时,应该重点不等式计算的方法,虽然说难度比较大,我建议考生,采取分部得分整个试卷不要留空白。
这是高考所考的七大板块核心的考点。
2023年新高考数学一轮复习8-2 空间几何体的表面积和体积(真题测试)解析版
专题8.2 空间几何体的表面积和体积(真题测试)一、单选题1.(2020·天津·高考真题)若棱长为 ) A .12π B .24π C .36π D .144π【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R =,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.2.(2020·北京·高考真题)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为(). A .63+ B .623+ C .123+ D .1223+【答案】D【解析】【分析】首先确定几何体的结构特征,然后求解其表面积即可.【详解】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D.【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.3.(2022·浙江·高考真题)某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A .22πB .8πC .22π3D .16π3【答案】C【解析】【分析】根据三视图还原几何体可知,原几何体是一个半球,一个圆柱,一个圆台组合成的几何体,即可根据球,圆柱,圆台的体积公式求出.【详解】由三视图可知,该几何体是一个半球,一个圆柱,一个圆台组合成的几何体,球的半径,圆柱的底面半径,圆台的上底面半径都为1cm ,圆台的下底面半径为2cm ,所以该几何体的体积(322214122ππ1π122π2π12333V =⨯⨯+⨯⨯+⨯⨯⨯+⨯=3cm .故选:C .4.(2022·全国·高考真题)已知正三棱台的高为1,上、下底面边长分别为面上,则该球的表面积为( )A .100πB .128πC .144πD .192π【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径12,r r ,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径12,r r ,所以123432,260sin 60r r ==,即123,4r r ==,设球心到上下底面的距离分别为12,d d ,球的半径为R ,所以1d =2d =121d d -=或121d d +=,即1=1,解得225R =符合题意,所以球的表面积为24π100πS R ==. 故选:A .5.(2021·浙江·高考真题)某几何体的三视图如图所示,则该几何体的体积是( )A .32B .3C .2D .【答案】A【解析】【分析】根据三视图可得如图所示的几何体,根据棱柱的体积公式可求其体积.【详解】几何体为如图所示的四棱柱1111ABCD A B C D -,其高为1,底面为等腰梯形ABCD ,1=故1111131222ABCD A B C D V -=⨯⨯=, 故选:A. 6.(2021·全国·高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D A 【解析】【分析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 1, 设O 到平面ABC 的距离为d ,则2d =所以11111332O ABC ABC V S d -=⋅=⨯⨯⨯= 故选:A.7.(2022·全国·高考真题(文))已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为( )A .13B .12CD 【答案】C【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α, 则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅= (当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r又22r h 1+=则2123O ABCDV r h -=⋅⋅=当且仅当222r h =即h 时等号成立,故选:C8.(2022·全国·高考真题)已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤ ) A .8118,4⎡⎤⎢⎥⎣⎦ B .2781,44⎡⎤⎢⎥⎣⎦ C .2764,43⎡⎤⎢⎥⎣⎦ D .[18,27]【答案】C【解析】【分析】设正四棱锥的高为h ,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵ 球的体积为36π,所以球的半径3R =,设正四棱锥的底面边长为2a ,高为h ,则2222l a h =+,22232(3)a h =+-,所以26h l =,2222a l h =- 所以正四棱锥的体积42622411214()=333366936l l l V Sh a h l l ⎛⎫==⨯⨯=⨯-⨯- ⎪⎝⎭, 所以5233112449696l l V l l ⎛⎫⎛⎫-'=-= ⎪ ⎪⎝⎭⎝⎭,当3l ≤≤0V '>,当l ≤0V '<,所以当l =V 取最大值,最大值为643,又3l =时,274V =,l =814V =, 所以正四棱锥的体积V 的最小值为274, 所以该正四棱锥体积的取值范围是276443⎡⎤⎢⎥⎣⎦,. 故选:C.二、多选题9.(2022·广东茂名·二模)某一时段内,从天空降落到地面上的液态或固态的水,未经蒸发,而在水平面上积聚的深度称为这段时间的降雨量.24h 降雨量的等级划分如下:在一次暴雨降雨过程中,小明用一个大容量烧杯(如图,瓶身直径大于瓶口直径,瓶身高度为50cm ,瓶口高度为3cm )收集雨水,容器内雨水的高度可能是( )A .20cmB .22cmC .25cmD .29cm【答案】CD【解析】【分析】设降雨量为x ,容器内雨水高度为h,根据雨水的体积相等关系可得到h,x 之间的关系49h x =,结合题意可得4200400[,)999x ∈,由此判断出答案. 【详解】设降雨量为x ,容器内雨水高度为h,根据体积相等关系可得:22π100π150x h ⨯=⨯,解得49h x = , 由于[50,100)x ∈ ,故4200400[,)999x ∈, 故20040020040020,22[,),25,29[,)9999∉∈故选:CD .10.(2023·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为42B .体积为5023π C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22【答案】AC【解析】 【分析】设圆台的上底面半径为r ,下底面半径为R ,求出1,3r R ==,即可判断选项A 正确;利用公式计算即可判断选项BCD 的真假得解.【详解】解:设圆台的上底面半径为r ,下底面半径为R ,则11223,22933r R ππππ=⨯⨯=⨯⨯,解得1,3r R ==.圆台的母线长6l =,圆台的高为h ==,则选项A 正确;圆台的体积()22133113π=⨯+⨯+=,则选项B 错误; 圆台的上底面积为π,下底面积为9π,侧面积为()13624ππ+⨯=,则圆台的表面积为92434ππππ++=,则C 正确;由前面可知上底面积、下底面积和侧面积之比为1:9:24,则选项D 错误.故选:AC .11.(2022·湖南·长沙一中模拟预测)传说古希腊数学家阿基米德的墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等.“圆柱容球”是阿基米德最为得意的发现;如图是一个圆柱容球,12O O ,为圆柱上下底面的圆心,O 为球心,EF 为底面圆1O 的一条直径,若球的半径2r =,则( )A .球与圆柱的表面积之比为12:B .平面DEF 截得球的截面面积最小值为165π C .四面体CDEF 的体积的取值范围为3203⎛⎤ ⎥⎝⎦,D .若P 为球面和圆柱侧面的交线上一点,则PE PF +的取值范围为2⎡+⎣【答案】BCD【解析】【分析】利用球的表面积公式及圆柱的表面积公式可判断A ,由题可得O 到平面DEF 的距离为1d 平面DEF 截得球的截面面积最小值可判断B ,由题可得四面体CDEF 的体积等于12E DCO V -可判断C ,设P 在底面的射影为P ',设2t P E '=,PE PF +PE PF +的取值范围可判断D.【详解】由球的半径为r ,可知圆柱的底面半径为r ,圆柱的高为2r ,则球表面积为24r π,圆柱的表面积222226r r r r πππ+⋅=, 所以球与圆柱的表面积之比为23,故A 错误;过O 作1OG DO ⊥于G ,则由题可得12OG == 设O 到平面DEF 的距离为1d ,平面DEF 截得球的截面圆的半径为1r ,则1d OG ≤,22221114164455r r d d =-=-≥-=, 所以平面DEF 截得球的截面面积最小值为165π,故B 正确; 由题可知四面体CDEF 的体积等于12E DCO V -,点E 到平面1DCO 的距离(0,4]d ∈, 又114482DCO S =⨯⨯=,所以123228(0,]33E DCO V d -=⨯∈,故C 正确; 由题可知点P 在过球心与圆柱的底面平行的截面圆上,设P 在底面的射影为P ', 则2222222,2,2,16PP PE P E PF P F P E P F '''''==+=++=,设2t P E '=,则20,4t ⎡⎤∈⎣⎦,PE PF +所以()2224PE PF +==+2424⎡⎤=++⎣⎦,所以2PE PF ⎡+∈+⎣,故D 正确.故选:BCD.12.(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =【答案】CD【解析】【分析】直接由体积公式计算12,V V ,连接BD 交AC 于点M ,连接,EM FM ,由3A EFM C EFM V V V --=+计算出3V ,依次判断选项即可.【详解】设22AB ED FB a ===,因为ED ⊥平面ABCD ,FB ED ,则()2311114223323ACD V ED S a a a =⋅⋅=⋅⋅⋅=, ()232111223323ABC V FB S a a a =⋅⋅=⋅⋅⋅=,连接BD 交AC 于点M ,连接,EM FM ,易得BD AC ⊥, 又ED ⊥平面ABCD ,AC ⊂平面ABCD ,则ED AC ⊥,又ED BD D =,,ED BD ⊂平面BDEF ,则AC ⊥平面BDEF ,又12BM DM BD ==,过F 作FG DE ⊥于G ,易得四边形BDGF 为矩形,则,FG BD EG a ===,则,EM FM ===,3EF a =,222EM FM EF +=,则EM FM ⊥,212EFM SEM FM =⋅=,AC =, 则33123A EFM C EFM EFM V V V AC S a --=+=⋅=,则3123V V =,323V V =,312V V V =+,故A 、B 错误;C 、D 正确.故选:CD.三、填空题 13.(2021·全国·高考真题(文))已知一个圆锥的底面半径为6,其体积为30π则该圆锥的侧面积为________.【答案】39π【解析】【分析】利用体积公式求出圆锥的高,进一步求出母线长,最终利用侧面积公式求出答案.【详解】∵216303V h ππ=⋅=∴52h =∴132l =∴136392S rl πππ==⨯⨯=侧. 故答案为:39π.14.(2020·江苏·高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是 ____ cm 3. 【答案】1232π-【解析】【分析】先求正六棱柱体积,再求圆柱体积,相减得结果.【详解】正六棱柱体积为262⨯ 圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π15.(2019·天津·高考真题(文)若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为__________. 【答案】4π. 【解析】【分析】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.【详解】借助勾股定理,2=,.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,圆柱的底面半径为12,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,故圆柱的体积为21124ππ⎛⎫⨯⨯= ⎪⎝⎭. 16.(2022·吉林·长春市第二实验中学高三阶段练习)在三棱锥P ABC -中,点P 在底面的射影是ABC 的外心,2,3BAC BC PA π∠===___________. 【答案】12548π 【解析】【分析】先由正弦定理得,ABC 外接圆的半径,再由勾股定理,即可求出半径,从而可得外接球体积.【详解】解:设ABC 的外心为1O ,连接1PO ,则球心O 在1PO 上,连接1O A ,则1O A 为ABC 外接圆的半径r ,连接OA ,设外接球的半径为R ,则OA OP R ==,在ABC 中,由正弦定理得2,BC r sin BAC ==∠解得1r =,即11O A =, 在1Rt PAO 中,12,PO =在1Rt AOO ,中22211OO AO AO +=,即()22221R R -+=,解得:54R =, 所以外接球的体积为:3344125334854R V πππ⎛⎫⋅ ⎪⎝⎭===, 故答案为:12548π 四、解答题17.(2022·安徽芜湖·高一期末)如图①,有一个圆柱形状的玻璃水杯,底面圆的直径为20cm ,高为30cm ,杯内有20cm 深的溶液.如图①,现将水杯倾斜,且倾斜时点B 始终不离开桌面,设直径AB 所在直线与桌面所成的角为α.要使倾斜后容器内的溶液不会溢出,求α的最大值. 【答案】4π【解析】【分析】当水杯倾斜过程中,溶液恰好不溢出时,此时α最大;在这个临界条件下,结合溶液的体积不变,可以得到关于α的一个不等式,即可求出α的取值范围,得到最大值.【详解】如图所示,在Rt △CDE 中20tan DE α=,()2221020tan 103020tan 10202παπαπ⨯⨯⨯⨯-+≥⨯⨯解得tan 1α≤,即α的最大值4π. 18.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面;(2)求图2中三棱锥C BDG -的体积.【答案】(1)证明见解析【解析】【分析】(1)依题意可得//AB FG ,//AB CD ,即可得到//AB GE ,从而得到//CD EG ,即可得证;(2)依题意可得AE AD ⊥、AE AB ⊥,即可得到AE ⊥平面ABCD 从而得到BG ⊥平面ABCD ,再根据13C BDG G BCD BCD V V BG S --==⋅计算可得;(1)证明:在矩形ABGF 和菱形ABCD 中,//AB FG ,//AB CD ,所以//AB GE ,所以//CD EG ,所以C 、D 、E 、G 四点共面;(2)解:在Rt ADE △中AE AD ⊥,矩形ABGE 中AE AB ⊥,AD AB A ⋂=,,AD AB ⊂平面ABCD ,所以AE ⊥平面ABCD ,又//BG EA ,所以BG ⊥平面ABCD ,又11sin 2222BCD S BC CD BCD =⋅⋅∠=⨯⨯=所以11133C BDG G BCD BCD V V BG S --==⋅=⨯ 19.(2022·山西吕梁·高一期末)如图是某种水箱用的“浮球”,它是由两个半球和一个圆柱筒组成.已知球的半径是2cm ,圆柱筒的高是2cm .(1)求这种“浮球”的体积;(2)要在100个这种“浮球”的表面涂一层防水漆,每平方厘米需要防水漆0.5g ,共需多少防水漆?【答案】(1)356(cm)3π (2)1200g π【解析】【分析】(1)由球的体积公式和圆柱的体积公式求解即可;(2)由球的表面积公式和圆柱的侧面积公式求解即可.(1)因为该“浮球”的圆柱筒底面半径和半球的半径2cm r =,圆柱筒的高为2cm ,所以两个半球的体积之和为331432(cm)33V r ππ==, 圆柱的体积2328(cm)V r h ππ==,∴该“浮球”的体积是31256(cm)3V V V π=+=; (2)根据题意,上下两个半球的表面积是221416(cm)S r ππ==,而“浮球”的圆柱筒侧面积为2228(cm)S rh ππ==,∴“浮球”的表面积为21224(cm)S S S π=+=;所以给100个这种浮球的表面涂一层防水漆需要100240.51200g ππ⨯⨯=.20.(2022·全国·高三专题练习)如图1,在直角梯形ABCD 中,//AD BC ,∠BAD =90°,12AB BC AD a ,E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图2中1A BE 的位置,使平面1A BE ⊥平面BCDE ,得到四棱锥1A BCDE -.当四棱锥1A BCDE -的体积为a 的值.【答案】6a =.【解析】【分析】在直角梯形ABCD 中,证明BE AC ⊥,在四棱锥1A BCDE -中,由面面垂直的性质证得1A O ⊥平面BCDE ,再利用锥体体积公式计算作答.【详解】如图,在直角梯形ABCD 中,连接CE ,因E 是AD 的中点,12BC AD a ,有//,AE BC AE BC =,则四边形ABCE 是平行四边形,又,90BAD AB BC ∠==,于是得ABCE 是正方形,BE AC ⊥,在四棱锥1A BCDE -中,1BE AO ⊥,因平面1A BE ⊥平面BCDE ,且平面1A BE 平面BCDE BE =,1A O ⊂平面1A BE ,因此1A O ⊥平面BCDE ,即1A O 是四棱锥1A BCDE -的高,显然112AO AO CO AC ====,平行四边形BCDE 的面积2S CO BE a =⋅==,因此,四棱锥1A BCDE -的体积为2311133V S AO a =⋅===6a =, 所以a 的值是6.21.(2022·北京·高一期末)《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑 (四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,已知3AB =,4BC =,5AC =.当阳马111C ABB A -体积等于24时, 求:(1)堑堵111ABC A B C -的侧棱长;(2)鳖臑1C ABC -的体积;(3)阳马111C ABB A -的表面积.【答案】(1)6(2)12 (3)51313【解析】【分析】(1)设堑堵111ABC A B C -的侧棱长为x ,根据阳马111C ABB A -体积等于24求解即可;(2)根据棱锥的体积计算即可;(3)分别计算111C ABB A -的侧面积与底面积即可(1)因为3AB =,4BC =,5AC =,所以222AB BC AC +=.所以△ABC 为直角三角形.设堑堵111ABC A B C -的侧棱长为x ,则113A ABB S x 矩形,则111143243AA BB V x C , 所以6x =,所以堑堵111ABC A B C -的侧棱长为6.(2)因为13462ABC S =⨯⨯=△, 所以1111661233ABC ABC V S CC C . 所以鳖臑1C ABC -的体积为12.(3) 因为11113462A B C S,11164122BB C S , 11165152AA C S ,1132133132ABC S , 113618A ABB S 矩形,所以阳马111C ABB A -的表面积的表面积为612151831351313. 22.(2022·重庆市巫山大昌中学校高一期末)如图,AB 是圆柱OO '的一条母线,BC 过底面圆心O ,D 是圆O 上一点.已知5,3AB BC CD ===,(1)求该圆柱的表面积;(2)将四面体ABCD 绕母线AB 所在的直线旋转一周,求ACD △的三边在旋转过程中所围成的几何体的体积.【答案】(1)75π2(2)15π【解析】【分析】(1)由题意求出柱的底面圆的半径即可求解;(2)ACD △绕AB 旋转一周而成的封闭几何体的体积为两个圆锥的体积之差,结合圆锥体积公式求解即可(1)由题意知AB 是圆柱OO '的一条母线,BC 过底面圆心O ,且5AB BC ==, 可得圆柱的底面圆的半径为52R =, 则圆柱的底面积为221525πππ24S R ⎛⎫==⨯= ⎪⎝⎭, 圆柱的侧面积为252π2π525π2S Rl ==⨯⨯= 所以圆柱的表面积为12257522π25ππ42S S S =+=⨯+=. (2) 由线段AC 绕AB 旋转一周所得几何体为以BC 为底面半径,以AB 为高的圆锥,线段AD 绕AB 旋转一周所得的几何体为BD 为底面半径,以AB 为高的圆锥,所以以ACD △绕AB 旋转一周而成的封闭几何体的体积为:22221111πππ55π4515π3333V BC AB BD AB =⋅⋅-⋅⋅=⋅⋅-⋅⋅=.。
高三数学空间几何体的表面积与体积试题答案及解析
高三数学空间几何体的表面积与体积试题答案及解析1.如图, 四棱柱的底面ABCD是正方形, O为底面中心, ⊥平面ABCD,.(1)证明: // 平面;(2)求三棱柱的体积.【答案】(1)证明详见解析;(2)体积为1.【解析】本题主要考查线线平行、面面平行、线面垂直、柱体的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由图象可得到,,,所以得到四边形为平行四边形,所以,利用面面平行的判定得证;第二问,由面ABCD,所以得到是三棱柱的高,利用体积转化法,得到三棱柱的体积.试题解析:(1)设线段的中点为,∵BD和是的对应棱,∴,同理,∵AO和是棱柱的对应线段,∴,且,且四边形为平行四边形且,面面.(2)∵面ABCD,∴是三棱柱的高,在正方形ABCD中,,在中,,,所以,.【考点】线线平行、面面平行、线面垂直、柱体的体积.2.(正四棱锥与球体积选做题)棱长为1的正方体的外接球的体积为________.【答案】.【解析】正方体的体对角线,就是正方体的外接球的直径,所以球的直径为:所以球的半径为:,∴正方体的外接球的体积V=.【考点】1.球的体积;2.球内接多面体.3.如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD.(1)求证:BF∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)求几何体ABCDEF的体积.【答案】(1)见解析;(2)见解析;(3)2【解析】(1)利用线线平行,推证线面平行;(2)利用一个面内一条直线与另一个平面垂直,则这两个平面垂直,证明面面垂直;(3)将不规则几何体转化为主题或椎体的体积求解.试题解析:(1)证明:记AC与BD的交点为O,则DO=BO=BD,连接EO,∵EF∥BD且EF=BD,∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,∴BF∥EO,又∵面ACE,面ACE,∴BF∥平面ACE;(2)证明:∵ED⊥平面ABCD,平面ABCD,∴ED⊥AC.∵ABCD为正方形,∴BD⊥AC,又ED∩BD=D,∴AC⊥平面BDEF,又平面EAC,∴平面EAC⊥平面BDEF;(3)解:∵ED⊥平面ABCD,∴ED⊥BD,又∵EF∥BD且EF=BD,∴BDEF是直角梯形,又∵ABCD是边长为2的正方形,BD=2,EF=,∴题型BDEF的面积为,由(1)知AC⊥平面BDEF,∴几何体的体积VABCDEF =2VA-BDEF=2×S BDEF·AO=.【考点】空间直线与平面位置关系,几何体的体积4.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.5.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.6.棱长为的正四面体的外接球半径为.【答案】【解析】记正四面体棱长为,外接球半径为,在正四面体中,利用棱,与棱共顶点的高及这条棱在对面上的射影构成的直角三角形可解得,因此中本题中.【考点】正四面体(正棱锥的性质).7.如图,已知平面,,,且是的中点,.(1)求证:平面;(2)求证:平面平面;(3)求此多面体的体积.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)取的中点,连结、,利用中位线证明,利用题中条件得到,进而得到,于是说明四边形为平行四边形,得到,最后利用直线与平面平行的判定定理证明平面;(2)由平面得到,再利用等腰三角形三线合一得到,利用直线与平面垂直的判定定理证明平面,结合(1)中的结论证明平面,最后利用平面与平面垂直的判定定理证明平面平面;(3)利用已知条件得到平面平面,然后利用平面与平面垂直的性质定理求出椎体的高,最后利用椎体的体积公式计算该几何体的体积.(1)取中点,连结、,为的中点,,且,又,且,且,为平行四边形,,又平面,平面,平面;(2),,所以为正三角形,,平面,,平面,又平面,,又,,平面,又,平面,又平面,平面平面;(3)此多面体是一个以为定点,以四边形为底边的四棱锥,,平面平面,等边三角形边上的高就是四棱锥的高,.【考点】1.直线与平面平行;2.平面与平面垂直;3.椎体体积的计算8.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以. (1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.9.棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为 .【答案】【解析】 .【考点】几何体的表面积.10.已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).(1)证明:平面PAD⊥平面PCD.(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.【答案】(1)见解析(2)M为线段PB的中点时(3)不平行【解析】(1)因为PDCB为等腰梯形,PB=3,DC=1,PA=1,则PA⊥AD,CD⊥AD.又因为面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD⊂面ABCD,故CD⊥面PAD. 又因为CD⊂面PCD,所以平面PAD⊥平面PCD.(2)所求的点M即为线段PB的中点.证明如下:设三棱锥M-ACB的高为h1,四棱锥P-ABCD的高为h2,当M为线段PB的中点时,==,所以===,所以截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)当M为线段PB的中点时,直线PD与面AMC不平行.证明如下:(反证法)假设PD∥面AMC,连接DB交AC于点O,连接MO.因为PD⊂面PBD,且面AMC∩面PBD=MO,所以PD∥MO.因为M为线段PB的中点时,则O为线段BD的中点,即=,而AB∥DC,故==,故矛盾.所以假设不成立,故当M为线段PB的中点时,直线PD与平面AMC不平行.11.棱长为2的三棱锥的外接球的表面积为()A.6πB.4πC.2πD.π【答案】A【解析】由题意知,此三棱锥为正四面体,以此正四面体的各棱为正方形的对角线拓展出一个正方体,则三棱锥外接球的半径为正方体外接球的半径.因三棱锥棱长为2,所以正方体棱长为,其外接球的直径为所以三棱锥的外接球的表面积为6π.12.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。
高考一轮复习第7章立体几何第2讲空间几何体的表面积与体积
第二讲 空间几何体的表面积与体积知识梳理·双基自测 知识梳理知识点一 柱、锥、台和球的侧面积和体积侧面积 体积圆柱 S 侧=2πrh V =_S 底·h__=πr 2h圆锥 S 侧=_πrl __ V =13S 底·h=13πr 2h =13πr 2l 2-r 2 圆台 S 侧=π(r 1+r 2)l V =13(S 上+S 下+S 上·S 下)·h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=_ch__ V =_S 底h__ 正棱锥 S 侧=12ch′V =13S 底h 正棱台 S 侧=12(c +c′)h′V =13(S 上+S 下+S 上·S 下)h 球S 球面=_4πR 2V =43πR 3 (1)棱柱、棱锥、棱台的表面积就是_各面面积之和__.(2)圆柱、圆锥、圆台的侧面展开图分别是_矩形__、_扇形__、_扇环形__;它们的表面积等于_侧面积__与底面面积之和.重要结论1.长方体的外接球:球心:体对角线的交点;半径:r =_a 2+b 2+c22__(a ,b ,c 为长方体的长、宽、高).2.正方体的外接球、内切球及与各条棱相切的球: (1)外接球:球心是正方体中心;半径r =_32a__(a 为正方体的棱长); (2)内切球:球心是正方体中心;半径r =_a2__(a 为正方体的棱长);(3)与各条棱都相切的球:球心是正方体中心;半径r =_22a__(a 为正方体的棱长). 3.正四面体的外接球与内切球(正四面体可以看作是正方体的一部分):(1)外接球:球心是正四面体的中心;半径r =_64a__(a 为正四面体的棱长); (2)内切球:球心是正四面体的中心;半径r =_612a__(a 为正四面体的棱长). 双基自测题组一 走出误区1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)多面体的表面积等于各个面的面积之和.( √ ) (2)台体的体积可转化为两个锥体的体积之差.( √ ) (3)锥体的体积等于底面积与高之积.( × )(4)已知球O 的半径为R ,其内接正方体的棱长为a ,则R =32a.( √ ) (5)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS.( × ) 题组二 走进教材2.(必修2P 27T1)已知圆锥的表面积等于12π cm 2,其侧面展开图是一个半圆,则底面圆的半径为( B ) A .1 cm B .2 cm C .3 cmD .32cm [解析] 由条件得:⎩⎪⎨⎪⎧πrl+πr 2=12π2πrl =π,∴3r 2=12,∴r =2.题组三 走向高考3.(2020·天津卷)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( C ) A .12π B .24π C .36πD .144π[解析] 这个球是正方体的外接球,其半径等于正方体的体对角线长的一半, 即R =232+232+2322=3,所以,这个球的表面积为S =4πR 2=4π×32=36π.故选:C .4.(2018·课标全国Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( B )A .122πB .12πC .82πD .10π[解析] 设圆柱底面半径为r ,则4r 2=8,即r 2=2.∴S 圆柱表面积=2πr 2+4πr 2=12π.5.(2020·浙江卷)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( A )A .73 B .143C .3D .6[解析] 由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面.棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:13×⎝ ⎛⎭⎪⎫12×2×1×1+⎝ ⎛⎭⎪⎫12×2×1×2=13+2=73.故选:A .考点突破·互动探究考点一 几何体的表面积——自主练透例1 (1)(2021·北京模拟)某三棱锥的三视图如图所示,则该三棱锥的表面积是( C )A .2+ 5B .4+ 5C .2+2 5D .5(2)(2021·安徽江南十校联考)已知某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为( B )A .78-9π2B .78-9π4C .78-πD .45-9π2(3)(多选题)(2021·山东潍坊期末)等腰直角三角形直角边长为1,现将该三角形绕其某一边旋转一周,则所形成的几何体的表面积可以为( AB )A .2πB .(1+2)πC .22πD .(2+2)π[解析] (1)由三视图知,该几何体是底面为等腰三角形,其中一条侧棱与底面垂直的三棱锥(SA ⊥平面ABC),如图所示,由三视图中的数据可计算得S △ABC =12×2×2=2,S △SAC =12×5×1=52,S △SAB =12×5×1=52,S △SBC =12×2×5=5,所以S 表面积=2+2 5.故选C .(2)由三视图可知该几何体是一个长方体中挖去一个18球,如图所示.∴S =3×3×2+3×5×4-27π4+9π2=78-94π.故选B .(3)若绕直角边旋转一周形成的几何体是圆锥,其表面积为π+2π;若绕斜边旋转一周形成的几何体是两同底圆锥构成的组合体,其表面积为2π,故选A 、B .名师点拨空间几何体表面积的求法(1)旋转体的表面积问题注意其轴截面及侧面展开图的应用.(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.(3)已知几何体的三视图求其表面积,一般是先根据三视图判断空间几何体的形状,再根据题目所给数据与几何体的表面积公式,求其表面积.〔变式训练1〕(2020·河南开封二模)已知某个几何体的三视图如图所示,根据图中标出的数据,可得出这个几何体的表面积是( C )A .6B .8+4 6C .4+2 6D .4+ 6[解析] 由三视图得几何体如图所示,该几何体是一个三棱锥,底面是一个底和高均为2的等腰三角形,一个侧面是一个底和高均为2的等腰三角形,另外两个侧面是腰长为AC =AB =22+12=5, 底边AD 长为22的等腰三角形, 其高为52-22=3,故其表面积为S =2×12×22+2×12×22×3=4+2 6.故选C .考点二 几何体的体积——师生共研例2 (1)(2021·浙江金色联盟百校联考)一个空间几何体的三视图(单位:cm)如图所示,则该几何体的体积为( )cm 3.( A )A .π6+13B .π3+16C .π6+16D .π3+13(2)(2021·云南师大附中月考)如图,某几何体的三视图均为边长为2的正方形,则该几何体的体积是( D )A .56 B .83 C .1D .163(3)(2021·湖北武汉部分学校质检)某圆锥母线长为4,其侧面展开图为半圆面,则该圆锥体积为_83π3__.(4)(2020·江苏省南通市通州区)如图,在正四棱柱ABCD -A 1B 1C 1D 1中,P 是侧棱CC 1上一点,且C 1P =2PC .设三棱锥P - D 1DB 的体积为V 1,正四棱柱ABCD -A 1B 1C 1D 1的体积为V ,则V 1V 的值为_16__.[解析] (1)由三视图可知该几何体是由底面半径为1 cm ,高为1 cm 的半个圆锥和三棱锥S -ABC 组成的,如图,三棱锥的高为SO =1 cm ,底面△ABC 中,AB =2 cm ,AC =1 cm ,AB ⊥AC .故其体积V =13×12×π×12×1+13×12×2×1×1=⎝ ⎛⎭⎪⎫π6+13cm 3.故选A .(2)由题意三视图对应的几何体如图所示,所以几何体的体积为正方体的体积减去2个三棱锥的体积,即V =23-2×13×12×2×2×2=163,故选D .(3)该圆锥母线为4,底面半径为2,高为23, V =13×π×22×23=83π3. (4)设正四棱柱ABCD -A 1B 1C 1D 1的底面边长AB =BC =a ,高AA 1=b , 则VABCD -A 1B 1C 1D 1=S 四边形ABCD ×AA 1=a 2b ,VP -D 1DB =VB -D 1DP =13S △D 1DP·BC=13×12ab·a=16a 2b ,∴VP -D 1DB VABCD -A 1B 1C 1D 1=16,即V 1V =16.[引申]若将本例(2)中的俯视图改为,则该几何体的体积为_83__,表面积为_83__.[解析] 几何体为如图所示的正三棱锥(棱长都为22). ∴V =8-4×43=83,S =4×34×(22)2=8 3.名师点拨求体积的常用方法直接法对于规则的几何体,利用相关公式直接计算割补法首先把不规则的几何体分割成规则的几何体,然后进行体积计算;或者把不规则的几何体补成规则的几何体,不熟悉的几何体补成熟悉的几何体,便于计算等体 积法选择合适的底面来求几何体体积,常用于求三棱锥的体积,即利用三棱锥的任一个面可作为三棱锥的底面进行等体积变换注:若以三视图的形式给出的几何体问题,应先得到直观图,再求解. 〔变式训练2〕(1)(2020·海南)已知正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,则三棱锥A -NMD 1的体积为_13__.(2)(2021·开封模拟)如图所示,正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 的中点,则三棱锥A -B 1DC 1的体积为( C )A .3B .32 C .1D .32(3)(2017·浙江)某三棱锥的三视图如图所示,则该三棱锥的体积为( A )A .16 B .13 C .12D .1(4)(2021·浙北四校模拟)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( B )A .8B .8πC .16D .16π[解析] (1)如图,∵正方体ABCD -A 1B 1C 1D 1的棱长为2,M 、N 分别为BB 1、AB 的中点,∴S △ANM =12×1×1=12,∴VA -NMD 1=VD 1-AMN =13×12×2=13,故答案为:13.(2)如题图,在正△ABC 中,D 为BC 的中点,则有AD =32AB =3,又因为平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,由面面垂直的性质定理可得AD ⊥平面BB 1C 1C ,即AD 为三棱锥A -B 1DC 1的底面B 1DC 1上的高,所以V 三棱锥A -B 1DC 1=13·S△B 1DC 1·AD=13×12×2×3×3=1,故选C .(3)由三视图可画出三棱锥的直观图如图所示.其底面是等腰直角三角形ACB ,直角边长为1,三棱锥的高为1,故体积V =13×12×1×1×1=16.故选A .(4)由三视图的图形可知,几何体是等边圆柱斜切一半,所求几何体的体积为:12×22π×4=8π.故选B .考点三 球与几何体的切、接问题——多维探究角度1 几何体的外接球例3 (1)(2021·河南中原名校质量测评)已知正三棱锥P -ABC 的底面边长为3,若外接球的表面积为16π,则PA =_23或2__.(2)(2020·新课标Ⅰ)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( A )A .64πB .48πC .36πD .32π(3)(2019·全国)已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E 、F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为( D )A .86πB .46πC .26πD .6π[解析] (1)由外接球的表面积为16π,可得其半径为2,设△ABC 的中心为O 1,则外接球的球心一定在PO 1上,由正三棱锥P -ABC 的底面边长为3,得AO 1=3,在Rt △AOO 1中,由勾股定理可得(PO 1-2)2+(3)2=22,解得PO 1=3或PO 1=1,又PA 2=PO 21+AO 21,故PA =9+3=23或PA =1+3=2,故答案为:23或2.(2)由题意可知图形如图:⊙O 1的面积为4π, 可得O 1A =2, 则ABsin60°=2O 1A =4,∴AB =4sin60°=23,∴AB=BC=AC=OO1=23,外接球的半径为:R=AO21+OO21=4,球O的表面积为:4×π×42=64π,故选A.(3)∵PA=PB=PC,△ABC为边长为2的等边三角形,∴P-ABC为正三棱锥,∴PB⊥AC,又E,F分别为PA、AB中点,∴EF∥PB,∴EF⊥AC,又EF⊥CE,CE∩AC=C,∴EF⊥平面PAC,∴PB⊥平面PAC,∴∠APB=90°,∴PA=PB=PC=2,∴P-ABC为正方体一部分,2R=2+2+2=6,即R=62,∴V=43πR3=43π×668=6π.名师点拨几何体外接球问题的处理(1)解题关键是确定球心和半径,其解题思维流程是:(R—球半径,r—截面圆的半径,h—球心到截面圆心的距离).注:若截面为非特殊三角形可用正弦定理求其外接圆半径r.(2)三条侧棱两两垂直的三棱锥,可以补成长方体,它们是同一个外接球.注意:不共面的四点确定一个球面.角度2 几何体的内切球例4 (1)(2020·新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_23π__. (2)(2021·安徽蚌埠质检)如图,E ,F 分别是正方形ABCD 的边AB ,AD 的中点,把△AEF ,△CBE ,△CFD 折起构成一个三棱锥P -CEF(A ,B ,D 重合于P 点),则三棱锥P -CEF 的外接球与内切球的半径之比是_26__.[解析] (1)因为圆锥内半径最大的球应该为该圆锥的内切球, 如图,圆锥母线BS =3,底面半径BC =1, 则其高SC =BS 2-BC 2=22, 不妨设该内切球与母线BS 切于点D , 令OD =OC =r ,由△SOD ∽△SBC ,则OD OS =BCBS ,即r22-r =13,解得r =22,V =43πr 3=23π,故答案为:23π.(2)不妨设正方形的边长为2a ,由题意知三棱锥P -CEF 中PC 、PF 、PE 两两垂直,∴其外接球半径R =PC 2+PF 2+PE 22=62a ,下面求内切球的半径r ,解法一(直接法):由几何体的对称性知,内切球的球心在平面PCH(H 为EF 的中点)内,M 、N 、R 、S 为球与各面的切点,又22=tan ∠CHP =tan2∠OHN , ∴tan ∠OHN =22=rNH,∴NH =2r , 又PN =2r ,∴22r =PH =22a ,∴r =a 4. 解法二(体积法):V C -PEF =13r·(S △PEF +S △PCE +S △PCF +S △CEF ),∴a 3=r·⎝ ⎛⎭⎪⎫a 22+a 2+a 2+2a 2×32a 2,∴r =a 4,故R r =6a 2·4a=2 6.名师点拨几何体内切球问题的处理(1)解题时常用以下结论确定球心和半径:①球心在过切点且与切面垂直的直线上;②球心到各面距离相等.(2)利用体积法求多面体内切球半径. 〔变式训练3〕(1)(角度1)(2020·南宁摸底)三棱锥P -ABC 中,△ABC 为等边三角形,PA = PB = PC =3,PA ⊥PB ,三棱锥P -ABC 的外接球的体积为( B )A .27π2B .273π2C .273πD .27π(2)(角度1)(2021·山西运城调研)在四面体ABCD 中,AB =AC =23,BC =6,AD ⊥平面ABC ,四面体ABCD 的体积为 3.若四面体ABCD 的顶点均在球O 的表面上,则球O 的表面积是( B )A .49π4B .49πC .49π2D .4π(3)(角度2)棱长为a 的正四面体的体积与其内切球体积之比为_63π__.[解析] (1)因为三棱锥P -ABC 中,△ABC 为等边三角形,PA =PB =PC =3,所以△PAB ≌△PBC ≌△PAC .因为PA ⊥PB ,所以PA ⊥PC ,PC ⊥PB .以PA ,PB ,PC 为过同一顶点的三条棱作正方体(如图所示),则正方体的外接球同时也是三棱锥P -ABC 的外接球.因为正方体的体对角线长为32+32+32=33,所以其外接球半径R =332.因此三棱锥P -ABC 的外接球的体积V =4π3×⎝ ⎛⎭⎪⎫3323=273π2.故选B .(2)如图,H 为BC 的中点,由题意易知AH =3,设△ABC 外接圆圆心为O 1,则|O 1C|2=32+(3-|O 1C|)2,∴|O 1C|=23,又12×6×3×|AD|3=3,∴|AD|=1,则|OA|2=|O 1C|2+⎝ ⎛⎭⎪⎫122=494,∴S 球O =4πR 2=49π,故选B .(3)如图,将正四面体纳入正方体中,显然正四面体内切球的球心O(也是外接球的球心)、△BCD 的中心O 1都在正方体的对角线上,设正四面体的棱长为a ,则|AO|=64a ,又|O 1A|=a 2-⎝⎛⎭⎪⎫33a 2=63a ,∴内切球半径|OO 1|=612a ,∴V 正四面体V 内切球=13×34a 2×63a4π3⎝ ⎛⎭⎪⎫612a 3=63π.名师讲坛·素养提升 最值问题、开放性问题例5 (1)(最值问题)(2018·课标全国Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( B )A .12 3B .18 3C .24 3D .54 3(2)(2021·四川凉山州模拟)已知长方体ABCD -A 1B 1C 1D 1的体积V =12,AB =2,若四面体A -B 1CD 1的外接球的表面积为S ,则S 的最小值为( C )A .8πB .9πC .16πD .32π[解析] (1)设等边△ABC 的边长为a ,则有S △ABC =12a·a·sin 60°=93,解得a =6.设△ABC 外接圆的半径为r ,则2r =6sin 60°,解得r =23,则球心到平面ABC 的距离为42-232=2,所以点D 到平面ABC 的最大距离为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=183,故选B .(2)设BC =x ,BB 1=y ,由于V =12,所以xy =6.根据长方体的对称性可知四面体A -B 1CD 1的外接球即为长方体的外接球, 所以r =4+x 2+y22,所以S =4πr 2=π(4+x 2+y 2)≥π(4+2xy)=16π, (当且仅当x =y =6,等号成立). 故选C .名师点拨立体几何中最值问题的解法(1)观察图形特征,确定取得最值的条件,计算最值.(2)设出未知量建立函数关系,利用基本不等式或导数计算最值.例6 (开放性问题)若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值为_116⎝ ⎛⎭⎪⎫或1412等__(只需写一个可能值). [解析] 如图,若AB =AC =BD =CD =AD =2,BC =1,取AD 的中点H ,则CH =BH =3,且AH ⊥平面BCH ,又S △BCH =114,∴V A -BCD =13S △BCH ×2=116. 如图,若AB =AC =BD =CD =2,AD =BC =1,同理可求得V A -BCD =1412.〔变式训练4〕(2021·河南阶段测试)四面体ABCD 中,AC ⊥AD ,AB =2AC =4,BC =25,AD =22,当四面体的体积最大时,其外接球的表面积是_28π__.[解析] 由已知可得BC 2=AC 2+AB 2,所以AC ⊥AB ,又因为AC ⊥AD ,所以AC ⊥平面ABD ,四面体ABCD 的体积V =13AC·12AB·ADsin∠BAD ,当∠BAD =90°时V 最大,把四面体ABCD 补全为长方体,则它的外接球的直径2R 即长方体的体对角线,(2R)2=AD 2+AC 2+AB 2=28,所以外接球的表面积为4πR 2=28π.。
新高考一轮复习人教版 空间几何体的表面积和体积 作业
专题八 立体几何8.1 空间几何体的表面积和体积基础篇 固本夯基考点一 空间几何体的结构特征1.(2022届山东烟台一中开学考,2)已知圆锥的表面积等于12πcm 2,其侧面展开图是一个半圆,则圆锥的底面半径为( )A.1cmB.2cmC.3cmD.32cm 答案 B2.(2021新高考Ⅰ,3,5分)已知圆锥的底面半径为√2,其侧面展开图为一个半圆,则该圆锥的母线长为( )A.2B.2√2C.4D.4√2 答案 B3. (2020课标Ⅰ理(文),3,5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.√5−14B.√5−12C.√5+14D.√5+12答案 C4.(2020浙江,14,4分)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是 . 答案 1考点二 空间几何体的表面积与体积1.(2022届河北邢台入学考,4)六氟化硫,化学式为SF 6,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫分子结构为正八面体(每个面都是正三角形的八面体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点.若相邻两个氟原子间的距离为2a,则六氟化硫分子中6个氟原子构成的正八面体的体积是(不计氟原子的大小)( )A.4√23a 3 B.8√23a 3C.4√2a 3D.8√2a 3答案 B2.(2021全国甲理,11,5分)已知A,B,C 是半径为1的球O 的球面上的三个点,且AC ⊥BC,AC=BC=1,则三棱锥O-ABC 的体积为( ) A.√212B.√312C.√24D.√34答案 A3.(2018课标Ⅰ,10,5分)在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A.8B.6√2C.8√2D.8√3 答案 C4.(2020山东泰安期末,8)已知正三棱锥S-ABC 的侧棱长为4√3,底面边长为6,则该正三棱锥外接球的表面积是( )A.16πB.20πC.32πD.64π 答案 D5.(多选)(2021河北保定二模,9)如图,一个圆柱和一个圆锥的底面直径和它们的高都与一个球的直径2R相等,则下列结论正确的是()A.圆柱的体积为4πR3B.圆锥的侧面积为√5πR2C.圆柱的侧面积与圆锥的表面积相等D.圆柱、圆锥、球的体积之比为3∶1∶2答案BD6.(2021福建泉州二模,6)如图是一个由6个正方形和8个正三角形围成的十四面体,其所有顶点都在球O 的球面上,若十四面体的棱长为1,则球O的表面积为()A.2πB.4πC.6πD.8π答案B7.(2021全国甲文,14,5分)已知一个圆锥的底面半径为6,其体积为30π,则该圆锥的侧面积为. 答案39π8.(2020新高考Ⅱ,13,5分)棱长为2的正方体ABCD-A1B1C1D1中,M,N分别为棱BB1,AB的中点,则三棱锥A1-D1MN 的体积为.答案 19.(2019江苏,9,5分)如图,长方体ABCD-A1B1C1D1的体积是120,E为CC1的中点,则三棱锥E-BCD的体积是.10.(2020江苏,9,5分)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是 cm 3.答案(12√3−π2)11.(2018天津文,11,5分)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为 .答案13综合篇 知能转换A 组考法一 空间几何体的表面积和体积1.(2021新高考Ⅱ,5,5分)正四棱台的上、下底面的边长为2,4,侧棱长为2,则四棱台的体积为( ) A.56 B.28√2 C.563 D.28√23答案 D2.(2021济南一模,7)已知菱形ABCD,AB=BD=2,将△ABD 沿BD 折起,使二面角A-BD-C 的大小为60°,则三棱锥A-BCD 的体积为( ) A.√32B.2√23 C.3√32D.2√2 答案 A3.(2018课标Ⅲ,文12,理10,5分)设A,B,C,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为9√3,则三棱锥D-ABC 体积的最大值为( ) A.12√3 B.18√3 C.24√3 D.54√34.(2020湖南衡阳联考,10)在三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,且AB=2.若三棱锥P-ABC的外接球体积为36π,则当该三棱锥的体积最大时,其表面积为()A.6+6√3B.8+6√3C.8+8√5D.6+8√5答案C5.(2022届浙江浙南名校联盟联考一,15)一圆锥母线长为定值a(a>0),母线与底面所成角大小为θ(0<θ<π2),当圆锥体积V最大时,sinθ=.答案√336.(2019天津,文12,理11,5分)已知四棱锥的底面是边长为√2的正方形,侧棱长均为√5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为.答案π47.(2018课标Ⅱ理,16,5分)已知圆锥的顶点为S,母线SA,SB所成角的余弦值为78,SA与圆锥底面所成角为45°.若△SAB的面积为5√15,则该圆锥的侧面积为.答案40√2π8.(2018天津理,11,5分)已知正方体ABCD-A1B1C1D1的棱长为1,除面ABCD外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥M-EFGH的体积为.答案1129.(2017课标Ⅰ文,16,5分)已知三棱锥S-ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA ⊥平面SCB,SA=AC,SB=BC,三棱锥S-ABC的体积为9,则球O的表面积为.答案36π考法二 与球有关的切、接问题1.(多选)(2022届河北神州智达省级联测二,12)已知三棱柱ABC-A 1B 1C 1的6个顶点全部在球O 的表面上,AB=AC,∠BAC=120°,三棱柱ABC-A 1B 1C 1的侧面积为8+4√3,则球O 的表面积可能是( ) A.4π B.8π C.16π D.32π 答案 CD2.(2020天津,5,5分)若棱长为2√3的正方体的顶点都在同一球面上,则该球的表面积为( ) A.12π B.24π C.36π D.144π 答案 C3.(2020课标Ⅱ理,10,5分)已知△ABC 是面积为9√34的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A.√3 B.32C.1D.√32答案 C4.(2019课标Ⅰ理,12,5分)已知三棱锥P-ABC 的四个顶点在球O 的球面上,PA=PB=PC,△ABC 是边长为2的正三角形,E,F 分别是PA,AB 的中点,∠CEF=90°,则球O 的体积为 ( ) A.8√6π B.4√6π C.2√6π D.√6π 答案 D5.张衡(78年—139年)是中国东汉时期伟大的天文学家、文学家、数学家,他的数学著作有《算罔论》,他曾经得出结论:圆周率的平方除以十六等于八分之五.已知正方体的外接球与内切球上各有一个动点A,B,若线段AB 的最小值为√3-1,利用张衡的结论可得该正方体的外接球的表面积为( ) A.30 B.10√10 C.12√10 D.36 答案 C6.(2017天津理,10,5分)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为 . 答案92π 7.(2017课标Ⅱ文,15,5分)长方体的长,宽,高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为 . 答案 14π8.(2021山东烟台一模,16)已知正三棱锥P-ABC 的底面边长为2,侧棱长为√13,其内切球与两侧面PAB,PBC 分别切于点M,N,则MN 的长度为 . 答案56B 组(2022届江苏海安高级中学期中,8)如图所示,在直三棱柱ABC-A 1B 1C 1中,AA 1=1,AB=BC=√3,cos ∠ABC=13,P 是A 1B 上的一动点,则AP+PC 1的最小值为( )A.√5B.√7C.1+√3D.3 答案 B应用篇 知行合一应用 与立体几何有关的实际应用问题1.(多选)(2022届河北9月联考,10生活实践情境)“端午节”为中国国家法定节假日之一,已被列入世界非物质文化遗产名录,吃粽子是端午节的习俗之一.全国各地的粽子包法各有不同.如图,粽子可包成棱长为6cm 的正四面体状的三角粽,也可做成底面半径为32cm,高为6cm(不含外壳)的圆柱状竹筒粽.现有两碗馅料,若一个碗的容积等于半径为6cm 的半球的体积,则(参考数据:√2π≈4.44)( )A.这两碗馅料最多可包三角粽35个B.这两碗馅料最多可包三角粽36个C.这两碗馅料最多可做竹筒粽21个D.这两碗馅料最多可做竹筒粽20个 答案 AC2.(2021新高考Ⅱ,4,5分科技发展)卫星导航系统中,地球静止同步轨道卫星的轨道位于地球赤道所在平面,轨道高度为36000km(轨道高度指卫星到地球表面的最短距离),把地球看成一个球心为O,半径r 为6400km 的球,其上点A 的纬度是指OA 与赤道所在平面所成角的度数,地球表面能直接观测到的一颗地球静止同步轨道卫星的点的纬度的最大值记为α,该卫星信号覆盖的地球表面面积S=2πr 2(1-cos α)(单位:km 2),则S 占地球表面积的百分比约为( )A.26%B.34%C.42%D.50% 答案 C3.(多选)(2021辽宁开原三模,12生产实践)国家统计局公布的全国夏粮生产数据显示,2020年全国夏粮总产量达14281万吨,创历史新高.粮食储藏工作关系着军需民食,也关系着国家安全和社会稳定.某粮食加工企业设计了一种容积为63000π立方米的粮食储藏容器,如图1所示.已知该容器分上下两部分,其中上部分是底面半径和高都为r(r ≥10)米的圆锥,下部分是底面半径为r 米、高为h 米的圆柱体,如图2所示.经测算,圆锥的侧面每平方米的建造费用为√2a 元,圆柱的侧面、底面每平方米的建造费用均为a 元,设每个容器的制造总费用为y 元,则下面说法正确的是( )A.10≤r<40B.h 的最大值为1 8803C.当r=21时,y=7029a πD.当r=30时,y 有最小值,最小值为6300a π 答案 BCD4.(2021山东青岛二模,15劳动教育)某校学生去工厂进行劳动实践,加工制作某种零件.如图,将边长为10√2cm 的正方形铁皮剪掉阴影部分(四个全等的等腰三角形),然后将△P 1AB,△P 2BC,△P 3CD,△P 4DA 分别沿AB,BC,CD,DA 翻折,使得P 1,P 2,P 3,P 4重合并记为点P,制成正四棱锥P-ABCD 形状的零件.当该四棱锥体积最大时,AB= cm;此时该四棱锥外接球的表面积S= cm 2.答案 8;6765π 创新篇 守正出奇创新一 数学文化下的立体几何问题1.(2022届长沙长郡中学第一次月考,5)公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(D)的立方成正比”,即V=kD 3,欧几里得未给出k 的值.17世纪日本数学家们对球的体积的方法还不了解,他们将体积公式V=kD 3中的常数k 称为“立圆率”或“玉积率”.类似地,对于等边圆柱(轴截面是正方形的圆柱),正方体也可利用公式V=kD 3求体积(在等边圆柱中,D 表示底面圆的直径;在正方体中,D 表示棱长).假设运用此体积公式求得球(直径为a),等边圆柱(底面圆的直径为a),正方体(棱长为a)的“玉积率”分别为k 1、k 2、k 3,那么k 1∶k 2∶k 3=( ) A.π3∶π2∶2 B.π6∶π4∶2 C.π3∶π2∶1 D.π6∶π4∶1 答案 D2.(2019课标Ⅱ理,16,5分)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有 个面,其棱长为 .(本题第一空2分,第二空3分)图1图2答案26;√2-14.(2021河北张家口一模,16)早期的毕达哥拉斯学派学者注意到:用等边三角形或正方形为表面可构成四种规则的立体图形,即正四面体、正六面体、正八面体和正二十面体,它们的各个面和多面角都全等.如图,正二十面体是由20个等边三角形组成的正多面体,共有12个顶点,30条棱,20个面,是五个柏拉图多面体之计算,则该正二十面体的表面积与该正二十面体的外接球表面积之比等于.一.如果把sin36°按35答案55√336π创新二圆锥曲线与立体几何的综合1.(2021山东青岛二模,7)已知正方体ABCD-A1B1C1D1的棱长为2,点P在矩形ACC1A1区域(包含边界)内运动,且∠PBD=45°,则动点P的轨迹长度为()A.πB.√2πC.2πD.2√2π答案B2.(2021山东德州二模,7)我国南北朝时期的著名数学家祖暅提出了祖暅原理:“幂势既同,则积不容异.”意思是夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即12V 球=πR 2·R-13πR 2·R=23πR 3.现将椭圆x 24+y 29=1绕y 轴旋转一周后得一橄榄球形状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A.8πB.16πC.24πD.32π答案 B3.(2022届广东深圳七中10月月考,14)如图,已知正方体ABCD-A 1B 1C 1D 1的棱长为3,点H 在棱AA 1上,且HA 1=1,P 是侧面BCC 1B 1内一动点,HP=√13,则CP 的最小值为 .答案 √13-2。
高考数学一轮复习教学案空间几何体的表面积和体积
第二节空间几何体的表面积和体积[知识能否忆起]柱、锥、台和球的侧面积和体积面积 体积 圆柱 S 侧=2πrl V =Sh =πr 2h圆锥S 侧=πrlV =13Sh =13πr 2h =13πr 2l 2-r 2圆台 S 侧=π(r 1+r 2)lV =13(S 上+S 下+S 上·S 下)h=13π(r 21+r 22+r 1r 2)h 直棱柱 S 侧=Ch V =Sh 正棱锥 S 侧=12Ch ′V =13Sh正棱台 S 侧=12(C +C ′)h ′V =13(S 上+S 下+S 上·S 下)h球 S 球面=4πR 2V =43πR 3[小题能否全取]1.(教材习题改编)侧面都是直角三角形的正三棱锥,底面边长为a 时,该三棱锥的全面积是( )A.3+34a 2B.34a 2C.3+32a 2D.6+34a 2解析:选A ∵侧面都是直角三角形,故侧棱长等于22a , ∴S 全=34a 2+3×12×⎝⎛⎭⎫22a 2=3+34a 2. 2.已知正四棱锥的侧棱与底面的边长都为32,则这个四棱锥的外接球的表面积为( )A .12πB .36πC .72πD .108π解析:选B 依题意得,该正四棱锥的底面对角线长为32×2=6,高为 (32)2-⎝⎛⎭⎫12×62=3,因此底面中心到各顶点的距离均等于3,所以该四棱锥的外接球的球心为底面正方形的中心,其外接球的半径为3,所以其外接球的表面积等于4π×32=36π.3.某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为5的等腰三角形,侧视图是一个底边长为6,高为5的等腰三角形,则该几何体的体积为( )A .24B .80C .64D .240解析:选B 结合题意知该几何体是四棱锥,棱锥底面是长和宽分别为8和6的矩形,棱锥的高是5,可由锥体的体积公式得V =13×8×6×5=80.4.(教材习题改编)表面积为3π的圆锥,它的侧面展开图是一个半圆,则该圆锥的底面直径为________.解析:设圆锥的母线为l ,圆锥底面半径为r , 则πrl +πr 2=3π,πl =2πr . 解得r =1,即直径为2. 答案:25.某几何体的三视图如图所示,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是________.解析:由三视图可知此几何体的表面积分为两部分:底面积即俯视图的面积,为23;侧面积为一个完整的圆锥的侧面积,且圆锥的母线长为2,底面半径为1,所以侧面积为2π.两部分加起来即为几何体的表面积,为2(π+3).答案:2(π+3)1.几何体的侧面积和全面积:几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.2.求体积时应注意的几点:(1)求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.(2)与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.3.求组合体的表面积时注意几何体的衔接部分的处理.几何体的表面积典题导入[例1](·安徽高考)某几何体的三视图如图所示,该几何体的表面积是________.[自主解答]由几何体的三视图可知,该几何体是底面为直角梯形的直四棱柱(如图所示).在四边形ABCD中,作DE⊥AB,垂足为E,则DE=4,AE=3,则AD=5.所以其表面积为2×12×(2+5)×4+2×4+4×5+4×5+4×4=92.[答案]92由题悟法1.以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.2.多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.3.旋转体的表面积问题注意其侧面展开图的应用.以题试法1.(·河南模拟)如图是某宝石饰物的三视图,已知该饰物的正视图、侧视图都是面积为32,且一个内角为60°的菱形,俯视图为正方形,那么该饰物的表面积为( )A.3 B .2 3 C .43 D .4解析:选D 依题意得,该饰物是由两个完全相同的正四棱锥对接而成,正四棱锥的底面边长和侧面上的高均等于菱形的边长,因此该饰物的表面积为8×⎝⎛⎭⎫12×1×1=4.几何体的体积典题导入[例2] (1)(·广东高考)某几何体的三视图如图所示,它的体积为( )A .72πB .48πC .30πD .24π(2)(·山东高考)如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 为线段B 1C 上的一点,则三棱锥A -DED 1的体积为________.[自主解答] (1)由三视图知,该几何体是由圆锥和半球组合而成的,直观图如图所示,圆锥的底面半径为3,高为4,半球的半径为3.V =V 半球+V 圆锥=12·43π·33+13·π·32·4=30π.(2)VA -DED 1=VE -ADD 1=13×S △ADD 1×CD =13×12×1=16.[答案] (1)C (2)16本例(1)中几何体的三视图若变为:其体积为________.解析:由三视图还原几何体知,该几何体为圆柱与圆锥的组合体,其体积V =V 圆柱-V 圆锥=π×32×4-13π×32×4=24π.答案:24π由题悟法1.计算柱、锥、台体的体积,关键是根据条件找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.2.注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.3.等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.以题试法2.(1)(·长春调研)四棱锥P -ABCD 的底面ABCD 为正方形,且PD 垂直于底面ABCD ,N 为PB 中点,则三棱锥P -ANC 与四棱锥P -ABCD 的体积比为( )A .1∶2B .1∶3C .1∶4D .1∶8解析:选C 设正方形ABCD 面积为S ,PD =h ,则体积比为13Sh -13·12S ·12h -13·12Sh 13Sh =14.(·浙江模拟)如图,是某几何体的三视图,则这个几何体的体积是( )A .32B .24C .8D.323解析:选B 此几何体是高为2的棱柱,底面四边形可切割成为一个边长为3的正方形和2个直角边分别为3,1的直角三角形,其底面积S =9+2×12×3×1=12,所以几何体体积V =12×2=24.与球有关的几何体的表面积与体积问题典题导入[例3] (·新课标全国卷)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,△ABC 是边长为1的正三角形,SC 为球O 的直径,且SC =2,则此棱锥的体积为( )A.26 B.36C.23D.22[自主解答] 由于三棱锥S -ABC 与三棱锥O -ABC 底面都是△ABC ,O 是SC 的中点,因此三棱锥S -ABC 的高是三棱锥O -ABC 高的2倍,所以三棱锥S -ABC 的体积也是三棱锥O -ABC 体积的2倍. 在三棱锥O -ABC 中,其棱长都是1,如图所示, S △ABC =34×AB 2=34, 高OD =12-⎝⎛⎭⎫332=63,∴V S -ABC =2V O -ABC =2×13×34×63=26.[答案] A由题悟法1.解决与球有关的“切”、“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.2.记住几个常用的结论:(1)正方体的棱长为a ,球的半径为R , ①正方体的外接球,则2R =3a ; ②正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为1∶3.以题试法3.(1)(·琼州模拟)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的外接球的表面积为( )A .23π B.8π3 C .4 3D.16π3(2)(·潍坊模拟)如图所示,已知球O 的面上有四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA =AB =BC =2,则球O 的体积等于________.解析:(1)由三视图可知几何体的直观图如图所示.其中侧面DBC ⊥底面ABC ,取BC 的中点O 1,连接AO 1,DO 1知DO 1⊥底面ABC 且DO 1=3,AO 1=1,BO 1=O 1C =1.在Rt △ABO 1和Rt △ACO 1中,AB =AC =2, 又∵BC =2,∴∠BAC =90°.∴BC 为底面ABC 外接圆的直径,O 1为圆心, 又∵DO 1⊥底面ABC ,∴球心在DO 1上, 即△BCD 的外接圆为球大圆,设球半径为R , 则(3-R )2+12=R 2,∴R =23. ∴S 球=4πR 2=4π×⎝⎛⎭⎫232=16π3.(2)如图,以DA ,AB ,BC 为棱长构造正方体,设正方体的外接球球O 的半径为R ,则正方体的体对角线长即为球O 的直径,所以|CD |=(2)2+(2)2+(2)2=2R ,所以R =62. 故球O 的体积V =4πR 33=6π.答案:(1)D (2)6π1.(·北京西城模拟)某几何体的三视图如图所示,该几何体的体积是( )A .8 B.83 C .4D.43解析:选D 将三视图还原,直观图如图所示,可以看出,这是一个底面为正方形(对角线长为2),高为2的四棱锥,其体积V =13S 正方形ABCD ×P A =13×12×2×2×2=43. 2.(·山西模拟)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB =3,BC =2,则棱锥O -ABCD 的体积为( )A.51 B .351 C .251D .651解析:选A 依题意得,球心O 在底面ABCD 上的射影是矩形ABCD 的中心,因此棱锥O -ABCD 的高等于42-⎝⎛⎭⎫1232+222=512,所以棱锥O -ABCD 的体积等于13×(3×2)×512=51. 3.(·马鞍山二模)如图是一个几何体的三视图,则它的表面积为( )A .4π B.154π C .5πD.174π 解析:选D 由三视图可知该几何体是半径为1的球被挖出了18部分得到的几何体,故表面积为78·4π·12+3·14·π·12=174π. 4.(·济南模拟)用若干个大小相同,棱长为1的正方体摆成一个立体模型,其三视图如图所示,则此立体模型的表面积为( )A .24B .23C .22D .21解析:选C 这个空间几何体是由两部分组成的,下半部分为四个小正方体,上半部分为一个小正方体,结合直观图可知,该立体模型的表面积为22.5. (·江西高考)若一个几何体的三视图如下图所示,则此几何体的体积为( )A.112 B .5 C.92D .4解析:选D 由三视图可知,所求几何体是一个底面为六边形,高为1的直棱柱,因此只需求出底面积即可.由俯视图和主视图可知,底面面积为1×2+2×12×2×1=4,所以该几何体的体积为4×1=4.6.如图,正方体ABCD -A ′B ′C ′D ′的棱长为4,动点E ,F 在棱AB 上,且EF =2,动点Q 在棱D ′C ′上,则三棱锥A ′-EFQ 的体积( )A .与点E ,F 位置有关B .与点Q 位置有关C .与点E ,F ,Q 位置都有关D .与点E ,F ,Q 位置均无关,是定值解析:选D 因为V A ′-EFQ =V Q -A ′EF =13×⎝⎛⎭⎫12×2×4×4=163,故三棱锥A ′-EFQ 的体积与点E ,F ,Q 的位置均无关,是定值.7.(·湖州模拟)如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.解析:由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V =13×1×1×22=26. 答案:268.(·上海高考)若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的体积为________.解析:因为半圆的面积为2π,所以半圆的半径为2,圆锥的母线长为2.底面圆的周长为2π,所以底面圆的半径为1,所以圆锥的高为3,体积为33π.答案:33π 9.(·郑州模拟)在三棱锥A -BCD 中,AB =CD =6,AC =BD =AD =BC =5,则该三棱锥的外接球的表面积为________.解析:依题意得,该三棱锥的三组对棱分别相等,因此可将该三棱锥补形成一个长方体,设该长方体的长、宽、高分别为a 、b 、c ,且其外接球的半径为R ,则⎩⎪⎨⎪⎧a 2+b 2=62,b 2+c 2=52,c 2+a 2=52,得a 2+b 2+c 2=43,即(2R )2=a 2+b 2+c 2=43,易知R 即为该三棱锥的外接球的半径,所以该三棱锥的外接球的表面积为4πR 2=43π.答案:43π10.(·江西八校模拟)如图,把边长为2的正六边形ABCDEF 沿对角线BE 折起,使AC = 6.(1)求证:面ABEF ⊥平面BCDE ; (2)求五面体ABCDEF 的体积.解:设原正六边形中,AC ∩BE =O ,DF ∩BE =O ′,由正六边形的几何性质可知OA =OC =3,AC ⊥BE ,DF ⊥BE .(1)证明:在五面体ABCDE 中,OA 2+OC 2=6=AC 2, ∴OA ⊥OC ,又OA ⊥OB ,∴OA ⊥平面BCDE .∵OA ⊂平面ABEF , ∴平面ABEF ⊥平面BCDE .(2)由BE ⊥OA ,BE ⊥OC 知BE ⊥平面AOC ,同理BE ⊥平面FO ′D ,∴平面AOC ∥平面FO ′D ,故AOC -FO ′D 是侧棱长(高)为2的直三棱柱,且三棱锥B -AOC 和E -FO ′D 为大小相同的三棱锥,∴V ABCDEF =2V B -AOC +V AOC -FO ′D =2×13×12×(3)2×1+12×(3)2×2=4.11.(·大同质检)如图,在四棱锥P -ABCD 中,底面是直角梯形ABCD ,其中AD ⊥AB ,CD ∥AB ,AB =4,CD =2,侧面P AD 是边长为2的等边三角形,且与底面ABCD 垂直,E 为P A 的中点.(1)求证:DE ∥平面PBC ; (2)求三棱锥A -PBC 的体积.解:(1)证明:如图,取AB 的中点F ,连接DF ,EF .在直角梯形ABCD 中,CD ∥AB ,且AB =4,CD =2,所以BF 綊CD . 所以四边形BCDF 为平行四边形. 所以DF ∥BC .在△P AB 中,PE =EA ,AF =FB ,所以EF ∥PB . 又因为DF ∩EF =F ,PB ∩BC =B , 所以平面DEF ∥平面PBC .因为DE ⊂平面DEF ,所以DE ∥平面PBC . (2)取AD 的中点O ,连接PO . 在△P AD 中,P A =PD =AD =2, 所以PO ⊥AD ,PO = 3.又因为平面P AD ⊥平面ABCD ,平面P AD ∩平面ABCD =AD , 所以PO ⊥平面ABCD .在直角梯形ABCD 中,CD ∥AB ,且AB =4,AD =2, AB ⊥AD ,所以S △ABC =12×AB ×AD =12×4×2=4.故三棱锥A -PBC 的体积V A -PBC =V P -ABC =13×S △ABC ×PO =13×4×3=433.12.(·湖南师大附中月考)一个空间几何体的三视图及部分数据如图所示,其正视图、俯视图均为矩形,侧视图为直角三角形.(1)请画出该几何体的直观图,并求出它的体积;(2)证明:A1C⊥平面AB1C1.解:(1)几何体的直观图如图所示,四边形BB1C1C是矩形,BB1=CC1=3,BC=B1C1=1,四边形AA1C1C是边长为3的正方形,且平面AA1C1C垂直于底面BB1C1C,故该几何体是直三棱柱,其体积V=S△ABC·BB1=12×1×3×3=3 2.(2)证明:由(1)知平面AA1C1C⊥平面BB1C1C且B1C1⊥CC1,所以B1C1⊥平面ACC1A1.所以B1C1⊥A1C.因为四边形ACC1A1为正方形,所以A1C⊥AC1.而B1C1∩AC1=C1,所以A1C⊥平面AB1C1.1.(·潍坊模拟)已知矩形ABCD的面积为8,当矩形ABCD周长最小时,沿对角线AC 把△ACD折起,则三棱锥D-ABC的外接球表面积等于()A.8πB.16πC.482πD.不确定的实数解析:选B设矩形长为x,宽为y,周长P=2(x+y)≥4xy=82,当且仅当x=y=22时,周长有最小值.此时正方形ABCD沿AC折起,∵OA=OB=OC=OD,三棱锥D-ABC的四个顶点都在以O为球心,以2为半径的球上,此球表面积为4π×22=16π.2.(·江苏高考)如图,在长方体ABCD-A1B1C1D1中,AB=AD=3 cm,AA1=2 cm,则四棱锥A-BB1D1D的体积为________cm 3.解析:由题意得VA -BB 1D 1D =23VABD -A 1B 1D 1=23×12×3×3×2=6.答案:63.(·深圳模拟)如图,平行四边形ABCD 中,AB ⊥BD ,AB =2,BD =2,沿BD 将△BCD 折起,使二面角A -BD -C 是大小为锐角α的二面角,设C 在平面ABD 上的射影为O .(1)当α为何值时,三棱锥C -OAD 的体积最大?最大值为多少? (2)当AD ⊥BC 时,求α的大小.解:(1)由题知CO ⊥平面ABD ,∴CO ⊥BD , 又BD ⊥CD ,CO ∩CD =C ,∴BD ⊥平面COD . ∴BD ⊥OD .∴∠ODC =α.V C -AOD =13S △AOD ·OC =13×12·OD ·BD ·OC=26·OD ·OC =26·CD ·cos α·CD ·sin α =23·sin 2α≤23, 当且仅当sin 2α=1,即α=45°时取等号.∴当α=45°时,三棱锥C -OAD 的体积最大,最大值为23.(2)连接OB ,∵CO ⊥平面ABD ,∴CO ⊥AD , 又AD ⊥BC , ∴AD ⊥平面BOC . ∴AD ⊥OB .∴∠OBD +∠ADB =90°.故∠OBD =∠DAB ,又∠ABD =∠BDO =90°, ∴Rt △ABD ∽Rt △BDO . ∴OD BD =BD AB. ∴OD =BD 2AB =(2)22=1,在Rt △COD 中,cos α=OD CD =12,得α=60°.1.两球O 1和O 2在棱长为1的正方体ABCD -A 1B 1C 1D 1的内部,且互相外切,若球O 1与过点A 的正方体的三个面相切,球O 2与过点C 1的正方体的三个面相切,则球O 1和O 2的表面积之和的最小值为( )A .(6-33)πB .(8-43)πC .(6+33)πD .(8+43)π解析:选A 设球O 1、球O 2的半径分别为r 1、r 2, 则3r 1+r 1+3r 2+r 2=3, r 1+r 2=3-32,从而4π(r 21+r 22)≥4π·(r 1+r 2)22=(6-33)π. 2.已知某球半径为R ,则该球内接长方体的表面积的最大值是( ) A .8R 2 B .6R 2 C .4R 2D .2R 2解析:选A 设球内接长方体的长、宽、高分别为a 、b 、c ,则a 2+b 2+c 2=(2R )2,所以S 表=2(ab +bc +ac )≤2(a 2+b 2+c 2)=8R 2,当且仅当a =b =c =233R 时,等号成立.3.右图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π解析:选A 根据几何体的三视图可知,该几何体是一个正方体和一个半圆柱的组合体,其中,正方体的棱长为2,半圆柱的底面半径为1,母线长为2.故该几何体的表面积为4×5+2×π+2×12π=20+3π.4.(·湖北高考)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积V ,求其直径d 的一个近似公式d ≈ 3169V .人们还用过一些类似的近似公式,根据π=3.141 59…判断,下列近似公式中最精确的一个是( )A .d ≈ 3169VB .d ≈ 32V C .d ≈3300157V D .d ≈32111V 解析:选D ∵V =43πR 3,∴2R =d = 36V π,考虑到2R 与标准值最接近,通过计算得6π-169≈0.132 08,6π-2≈-0.090 1,6π-300157≈-0.001 0,6π-2111≈0.000 8,因此最接近的为D 选项.5.(·上海高考)如图,AD 与BC 是四面体ABCD 中互相垂直的棱,BC =2.若AD =2c ,且AB +BD =AC +CD =2a ,其中a ,c 为常数,则四面体ABCD 的体积的最大值是________.解析:如图过点B 在平面BAD 中作BE ⊥AD ,垂足为E ,连接CE ,因为BC ⊥AD ,所以AD ⊥平面BCE .所以四面体ABCD 的体积为13S △BCE ·AD .当△BCE 的面积最大时,体积最大.因为AB +BD =AC +CD =2a ,所以点B ,C 在一个椭圆上运动,由椭圆知识可知当AB =BD =AC =CD =a 时,BE =CE =a 2-c 2为最大值,此时截面△BCE 面积最大,为12×2a 2-c 2-1=a 2-c 2-1,此时四面体ABCD 的体积最大,最大值为13S △BCE ·AD =2c3·a 2-c 2-1.答案:23c a 2-c 2-1。
高三数学一轮复习必备:空间几何体
~高三数学(人教版A版)第一轮复习资料第8讲空间几何体一.【课标要求】1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构;2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图;3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式;4.完成实习作业,如画出某些建筑的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求);二.【命题走向】近几年来,立体几何高考命题形式比较稳定,题目难易适中,解答题常常立足于棱柱、棱锥和正方体位置关系的证明和夹角距离的求解,而选择题、填空题又经常研究空间几何体的几何特征和体积表面积。
因此复习时我们要首先掌握好空间几何体的空间结构特征。
培养好空间想能力。
预测高考对该讲的直接考察力度可能不大,但经常出一些创新型题目,具体预测如下:(1)题目多出一些选择、填空题,经常出一些考察空间想象能力的试题;解答题的考察位置关系、夹角距离的载体使空间几何体,我们要想像的出其中的点线面间的位置关系;(2)研究立体几何问题时要重视多面体的应用,才能发现隐含条件,利用隐蔽条件解题。
三.【要点精讲】1.柱、锥、台、球的结构特征(1)柱棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。
底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱……圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线棱柱与圆柱统称为柱体;(2)锥棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。
高中数学一轮复习 空间几何体的表面积与体积55页PPT
谢谢!
高中数学一轮复习 空间几何体的表面 Байду номын сангаас与体积
21、静念园林好,人间良可辞。 22、步步寻往迹,有处特依依。 23、望云惭高鸟,临木愧游鱼。 24、结庐在人境,而无车马喧;问君 何能尔 ?心远 地自偏 。 25、人生归有道,衣食固其端。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
高三数学一轮复习必备:空间几何体的表面积和体积
~高三数学(人教版A 版)第一轮复习资料第9讲 空间几何体的表面积和体积一.【课标要求】了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.【命题走向】近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.【要点精讲】1.多面体的面积和体积公式名称 侧面积(S 侧) 全面积(S 全) 体 积(V)棱 柱 棱柱 直截面周长×lS 侧+2S 底 S 底·h=S 直截面·h直棱柱 ch S 底·h棱 锥 棱锥 各侧面积之和S 侧+S 底 31S 底·h 正棱锥 21ch ′ 棱 台棱台 各侧面面积之和S 侧+S 上底+S 下底31h(S 上底+S 下底+下底下底S S )正棱台21(c+c ′)h ′ 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。
2.旋转体的面积和体积公式 名称 圆柱 圆锥 圆台 球S 侧 2πrl πrl π(r 1+r 2)l S 全2πr(l+r) πr(l+r)π(r 1+r 2)l+π(r 21+r 22)4πR 2Vπr 2h(即πr 2l)31πr 2h 31πh(r 21+r 1r 2+r 22) 34πR 3表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径四.【典例解析】题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第9讲 空间几何体的表面积和体积备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一.【课标要求】了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。
二.【命题走向】近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。
即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。
由于本讲公式多反映在考题上,预测2010年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式;(2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题;三.【要点精讲】名称 侧面积(S 侧) 全面积(S 全)体 积(V)棱 柱棱柱 直截面周长×lS 侧+2S 底S 底·h=S 直截面·h直棱柱 ch S 底·h棱 锥棱锥 各侧面积之和S 侧+S 底31S 底·h 正棱锥 21ch ′ 棱 台棱台各侧面面积之和S 侧+S 上底+S 下底 31h(S 上底+S 下底+下底下底S S )正棱台21 (c+c ′)h ′ 表中S 表示面积,c ′、c 分别表示上、下底面周长,h 表斜高,h ′表示斜高,l 表示侧棱长。
名称圆柱 圆锥 圆台 球 S 侧 2πrl πrl π(r 1+r 2)lS 全2πr(l+r) πr(l+r)π(r 1+r 2)l+π(r 21+r 22)4πR 2Vπr 2h(即πr 2l)31πr 2h 31πh(r 21+r 1r 2+r 22) 34πR 3表中l 、h 分别表示母线、高,r 表示圆柱、圆锥与球冠的底半径,r 1、r 2分别表示圆台 上、下底面半径,R 表示半径四.【典例解析】题型1:柱体的体积和表面积例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:⎩⎨⎧=++=++24)(420)(2z y x zx yz xy )2()1(由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3)由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。
点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。
我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。
例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD=3π。
(1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积图1 图2解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。
作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。
由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。
∵∠A 1AM=∠A 1AN ,∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。
∴点O 在∠BAD 的平分线上。
(2)∵AM=AA 1cos3π=3×21=23∴AO=4cosπAM =223。
又在Rt △AOA 1中,A 1O 2=AA 12 – AO 2=9-29=29, ∴A 1O=223,平行六面体的体积为22345⨯⨯=V 230=。
题型2:柱体的表面积、体积综合问题例3.一个长方体共一顶点的三个面的面积分别是6,3,2,这个长方体对角线的长是( ) A .23B .32C .6D .6解析:设长方体共一顶点的三边长分别为a =1,b =2,c =3,则对角线l 的长为l =6222=++c b a ;答案D 。
PAB C DO E点评:解题思路是将三个面的面积转化为解棱柱面积、体积的几何要素—棱长。
例4.如图,三棱柱ABC —A 1B 1C 1中,若E 、F 分别为AB 、AC 的中点,平面EB 1C 1将三棱柱分成体积为V 1、V 2的两部分,那么V 1∶V 2= ____ _。
解:设三棱柱的高为h ,上下底的面积为S ,体积为V ,则V=V 1+V 2=Sh 。
∵E 、F 分别为AB 、AC 的中点,∴S △AEF =41S, V 1=31h(S+41S+41⋅S )=127ShV 2=Sh-V 1=125Sh , ∴V 1∶V 2=7∶5。
点评:解题的关键是棱柱、棱台间的转化关系,建立起求解体积的几何元素之间的对应关系。
最后用统一的量建立比值得到结论即可 题型3:锥体的体积和表面积例5. 7. (2009山东卷理)一空间几何体的三视图如图所示,则该几何体的体积为( ).A.223π+B. 423π+C.2323π+ D. 2343π+【解析】:该空间几何体为一圆柱和一四棱锥组成的,圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面边长为2,高为3,所以体积为()21232333⨯⨯=所以该几何体的体积为2323π+. 答案:C【命题立意】:本题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地 计算出.几何体的体积.(2009四川卷文)如图,已知六棱锥ABCDEF P -的底面是正六边形,AB PA ABC PA 2,=⊥平面则下列结论正确的是A. AD PB ⊥B. PAB 平面PBC 平面⊥C. 直线BC ∥PAE 平面22侧(左)视图22 2正(主)视图D. 直线ABC PD 与平面所成的角为45°【答案】D【解析】∵AD 与PB 在平面的射影AB 不垂直,所以A 不成立,又,平面PAB ⊥平面PAE ,所以PAB 平面PBC 平面⊥也不成立;BC ∥AD ∥平面PAD, ∴直线BC ∥PAE 平面也不成立。
在PAD Rt ∆中,PA =AD =2AB ,∴∠PDA =45°. ∴D 正确(2009全国卷Ⅱ文)设OA 是球O 的半径,M 是OA 的中点,过M 且与OA 成45°角的平面截球O 的表面得到圆C 。
若圆C 的面积等于47π,则球O 的表面积等于 × 答案:8π解析:本题考查立体几何球面知识,注意结合平面几何知识进行运算,由.8)14474(4422πππππ===R S例61.(2009年广东卷文)(本小题满分13分)某高速公路收费站入口处的安全标识墩如图4所示,墩的上半部分是正四棱锥P -EFGH,下半部分是长方体ABCD -EFGH.图5、图6分别是该标识墩的正(主)视图和俯视图. (1)请画出该安全标识墩的侧(左)视图; (2)求该安全标识墩的体积 (3)证明:直线BD ⊥平面PEG 【解析】(1)侧视图同正视图,如下图所示.(2)该安全标识墩的体积为:P EFGH ABCD EFGH V V V --== (3)如图,连结EG,HF 及 BD ,EG 与HF 相交于O,连结PO. 由正四棱锥的性质可知,PO ⊥平面EFGH , PO HF ∴⊥ 又EG HF ⊥ HF ∴⊥平面PEG 又BD HF BD ∴⊥平面PEG ;例7.ABCD 是边长为4的正方形,E 、F 分别是AB 、AD 的中点,GB 垂直于正方形ABCD 所在的平面,且GC =2,求点B 到平面EFC 的距离?解:如图,取EF 的中点O ,连接GB 、GO 、CD 、FB 构造三棱锥B -EFG 。
设点B 到平面EFG 的距离为h ,BD =42,EF =22,CO =344232×=。
GO CO GC =+=+=+=222232218422()。
而GC ⊥平面ABCD ,且GC =2。
由V V B EFG G EFB --=,得16EF GO h ··=13S EFB △· 点评:该问题主要的求解思路是将点面的距离问题转化为体积问题来求解。
构造以点B为顶点,△EFG 为底面的三棱锥是解此题的关键,利用同一个三棱锥的体积的唯一性列方程是解这类题的方法,从而简化了运算。
例8.2009年上海卷理)已知三个球的半径1R ,2R ,3R 满足32132R R R =+,则它们的表面积1S ,2S ,3S ,满足的等量关系是___________.【答案】12323S S S += 【解析】2114R S π=,112R S π=,同理:222R S π=332R S π=,即R 1=π21S ,R 2=π22S ,R 3=π23S ,由32132R R R =+得12323S S S +=例9.(2009安徽卷文)(本小题满分13分)如图,ABCD 的边长为2的正方形,直线l 与平面ABCD 平行,g 和F 式l 上的两个不同点,且EA=ED ,FB=FC , 和是平面ABCD 内的两点,和都与平面ABCD 垂直,(Ⅰ)证明:直线垂直且平分线段AD :(Ⅱ)若∠EAD=∠EAB=60°,EF=2,求多面 体ABCDEF 的体积。
【思路】根据空间线面关系可证线线垂直,由分割法可求得多面体体积,体现的是一种部分与整体的基本思想【解析】(1)由于EA=ED 且'''ED ABCD E D E C ⊥∴=面∴点E '在线段AD 的垂直平分线上,同理点F '在线段BC 的垂直平分线上. 又ABCD 是四方形∴线段BC 的垂直平分线也就是线段AD 的垂直平分线 即点E 'F '都居线段AD 的垂直平分线上. 所以,直线E 'F '垂直平分线段AD.(2)连接EB 、EC 由题意知多面体ABCD 可分割成正四棱锥E —ABCD 和正四面体E —BCF 两部分.设AD 中点为M,在Rt △MEE '中,由于ME '=1, 3'2ME EE =E V ∴—ABCD 21142'2233S ABCD EE =⋅⋅=⨯四方形 又E V —BCF=V C -BEF=V C -BEA=V E -ABC 211122'223323ABCS EE =⋅=⨯⨯= DBAOCEF∴多面体ABCDEF 的体积为V E —ABC D +V E —BCF=22例10.(1)(2009浙江卷理)如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 . 答案:1,12⎛⎫⎪⎝⎭【解析】此题的破解可采用二个极端位置法,即对于F 位于DC 的中点时,1t =,随着F 点到C 点时,因,,CB AB CB DK CB ⊥⊥∴⊥平面ADB ,即有CB BD ⊥,对于2,1,3CD BC BD ==∴=,又1,2AD AB ==,因此有AD BD ⊥,则有12t =,因此t 的取值范围是1,12⎛⎫⎪⎝⎭例11.3.(2009浙江卷文)若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .【命题意图】此题主要是考查了几何体的三视图,通过三视图的考查充分体现了几何体直观的考查要求,与表面积和体积结合的考查方法.【解析】该几何体是由二个长方体组成,下面体积为1339⨯⨯=,上面的长方体体积为3319⨯⨯=,因此其几何体的体积为18例12.2009全国卷Ⅰ理)直三棱柱111ABC A B C -的各顶点都在同一球面上,若12AB AC AA ===,120BAC ∠=︒,则此球的表面积等于 。