物理模型专项--滑块、子弹打木块模型之一
“子弹打木块”模型和“滑块—木板”模型-高考物理复习课件
B.子弹对木块做的功W=50 J
C.木块和子弹系统机械能守恒
D.子弹打入木块过程中产生的热量Q=350 J
图3
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 根据动量守恒可得 mv0=(M+m)v,解得子弹打入木块后子弹和木块的 共同速度为 v=Mm+v0m=10 m/s,故 A 正确;根据动能定理可知,子弹对木块做 的功为 W=12Mv2-0=45 J,故 B 错误;根据能量守恒可知,子弹打入木块过 程中产生的热量为 Q=21mv20-21(M+m)v2=450 J,可知木块和子弹系统机械能 不守恒,故 C、D 错误。
(A)
图4
01 02 03 04 05 06 07 08
目录
提升素养能力
解析 木板碰到挡板前,物块与木板一直做匀速运动,速度为 v0;木板碰到挡 板后,物块向右做匀减速运动,速度减至零后向左做匀加速运动,木板向左做 匀减速运动,最终两者速度相同,设为 v1。设木板的质量为 M,物块的质量为 m,取向左为正方向,则由动量守恒定律得 Mv0-mv0=(M+m)v1,解得 v1= MM- +mmv0<v0,故 A 正确,B、C、D 错误。
01 02 03 04 05 06 07 08
目录
提升素养能力
4.如图4所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板 质量大于物块质量,t=0时两者从图中位置以相同的水平速度v0向右运动,碰 到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物 块一直未离开木板,则关于物块运动的速度v随时间t变化的图像可能正确的是
“子弹打木块”模型和“滑块—木板”模型
学习目标
1.会用动量观点和能量观点分析计算子弹打木块模型。 2.会用动量观点和能量观点分析计算滑块—木板模型。
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题-⼦弹打⽊块模型动量定理、动能定理专题----⼦弹打⽊块模型⼀、模型描述:此模型主要是指⼦弹击中未固定的光滑⽊块的物理场景,如图所⽰。
其本质是⼦弹和⽊块在⼀对⼒和反作⽤⼒(系统内⼒)的作⽤下,实现系统内物体动量和能量的转移或转化。
⼆、⽅法策略:(1) 运动性质:在该模型中,默认⼦弹撞击⽊块过程中的相互作⽤⼒是恒恒⼒,则⼦弹在阻⼒的作⽤下会做匀减速直线性运动;⽊块将在动⼒的作⽤下做匀加速直线运动。
这会存在两种情况:(1)最终⼦弹尚未穿透⽊块,(2)⼦弹穿透⽊块。
(2) 基本规律:如图所⽰,研究⼦弹未穿透⽊块的情况:三、图象描述:在同⼀个v-t坐标中,两者的速度图线如图甲所⽰。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分⾯积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图⼄所⽰。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对⽐出物块的对地位移和⼦弹的相对位移,从⽽从能量的⾓度快速分析出系统产⽣的热量⼀定⼤于物块动能的⼤⼩。
四、模型迁移⼦弹打⽊块模型的本质特征是物体在⼀对作⽤⼒与反作⽤⼒(系统内⼒)的冲量作⽤下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙⽊板上滑动、⼀静⼀动的同种电荷追碰运动,⼀静⼀动的导体棒在光滑导轨上切割磁感线运动、⼩球从光滑⽔平⾯上的竖直平⾯内弧形光滑轨道最低点上滑等等,如图所⽰。
(1)典型例题:例1.如图所⽰,质量为M的⽊块静⽌于光滑的⽔平⾯上,⼀质量为m、速度为的⼦弹⽔平射⼊⽊块且未穿出,设⽊块对⼦弹的阻⼒恒为F,求:(1)⼦弹与⽊块相对静⽌时⼆者共同速度为多⼤?(2)射⼊过程中产⽣的内能和⼦弹对⽊块所做的功分别为多少?(3)⽊块⾄少为多长时⼦弹才不会穿出?1. ⼀颗速度较⼤的⼦弹,以速度v ⽔平击穿原来静⽌在光滑⽔平⾯上的⽊块,设⽊块对⼦弹的阻⼒恒定,则当⼦弹⼊射速度增⼤为2v 时,下列说法正确的是( )A. ⼦弹对⽊块做的功不变B. ⼦弹对⽊块做的功变⼤C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:⼦弹的⼊射速度越⼤,⼦弹击中⽊块所⽤的时间越短,⽊块相对地⾯的位移越⼩,⼦弹对⽊块做的功W =fs 变⼩,选项AB 错误;⼦弹相对⽊块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产⽣的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
专题10 子弹打木块模型(1)-高考物理模型法之实物模型法(解析版)
模型界定本模型主要是指子弹击中非固定的、光滑木块的物理情景,包括一物块在木板上滑动、小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动、一静一动的同种电荷追碰运动等等,本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。
模型破解运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动(在其他一动一静情景中物体可做变加速运动甚至是曲线运动)。
图象描述:从子弹击中木块时刻开始,在同一个v —t 坐标中,两者的速度图线如图1中甲(子弹穿出木块)或乙(子弹停留在木块中).上图中,图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移,两种情况下都有M m s s d -=。
1.子弹未击穿木块(如图2)(i )木块的长度不小于二者位移之差21s s d L -=≥。
图1图2(ii )二者作用时间非常短暂,在某一方向上动量守恒。
(iii)作用结束时二者以同一速度开始新的运动mM mv v +=。
(iv )二者速度相同时木块的速度最大,相对位移(即子弹射入的深度)最大)(22m M f Mmv d +=。
(v )子弹射入木块的深度大于木块的对地位移22s s mmM d >+=。
(vi )当m M >>时d s <<2,这说明,一般情况在子弹射入木块过程中,木块的位移很小,可以忽略不计,即作用结束时系统以相同的速度从作用前的位置开始新的运动。
(vii )系统在只通过摩擦力实现动量的转移及能量的转化时,系统的机械能不守恒,其动能的变化量20)(2v m M Mm E k +=∆等于摩擦产生的热量,也等于摩擦力与相对位移的乘积Q =fs 相对。
(系统间无摩擦而通过其它力作用时,系统动能的减少量等于其它形式的能量的增加,如小球在置于光滑水平面上的竖直平面内弧形光滑轨道上,滑动中系统动能的减少量等于小球增加的重力势能;在一静一动的同种电荷追碰运动中系统动能的减少量等于系统电势能的增加量等) (viii )涉及动态分析判定时用图象较为方便。
第7单元动量专题九“子弹打木块”模型和“滑块—木板”模型-2025年物理新高考备考课件
的运动过程中,系统动量守恒,有 − = + +1 = 1,2,3, ⋯
解得+1 =
1
5
= 1,2,3, ⋯
设第一次碰撞后小车向左运动的最大距离为1 ,对小车,根据动能定理有
−1 = 0 −
解得1 = 0.6 m
1
2
1
2
热点题型探究
设第次碰撞后小车向左运动的最大距离为 ,对小车根据动能定理有
、碰撞时损失的机械能为
Δ =
1
2
0
2
−
1
2
2
+
1
2
2
= 12 J
热点题型探究
(3)要保证滑块不脱离长木板,长木板的最小长度.
[答案] 1.5 m
[解析] 在、碰撞后到、再次共速的过程中,、相互作用的时间为
=
0 −共
=1s
长木板的长度至少为 = − =
[答案] 12 J
[解析] 、碰撞瞬间,由动量守恒定律可得
0 = +
在、碰撞后到、再次共速的过程中,、组成的系统由动量守恒可得
+ 0 = + 共
根据题意有共 =
联立解得共 = = 3 m/s, = 2 m/s
A.3 J B.4 J C.6 J D.20 J
教师备用习题
[解析]设铁块与木板共速时速度大小为v,铁块相对木板向右运动的最大距离为L,
铁块与木板之间的摩擦力大小为Ff,铁块压缩弹簧使弹簧最短时,由能量守恒定
1
1
2
律得 m0 =FfL+ (M+m)v2+Ep,由动量守恒定律得mv0=(M+m)v,从铁块开始运动
专题四 子弹打木块模型 滑块—木板模型(课件)-高二物理(沪科版2020上海选择性必修第一册)
0~2 s内,对滑块有IF-μmgt1=mv1′, 由 IF=0.52+1×2 N·s=1.5 N·s, 解得 v1′=3.5 m/s; 对木板有μmgt1=Mv2,解得v2=1 m/s. 2~4 s 内,对滑块有 a1=F-mμmg=1-0.20.4 m/s2=3 m/s2,x1=v1′t2+12a1t22=13 m; 对 M 有 a2=μMmg=0.5 m/s2,x2=v2t2+12a2t22=3 m, 所以s相对=x1-x2=10 m,Q=μmg·s相对=4 J,故D正确.
例2 如图所示,光滑水平轨道上放置长木板A(上表面粗糙)和滑块C,滑 块B置于A的左端(B、C可视为质点),三者质量分别为mA=2 kg、mB=1 kg、mC=2 kg,A与B间的动摩擦因数为μ=0.5;开始时C静止,A、B一 起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)并粘在一 起,经过一段时间,B刚好滑至A的右端而没掉下来.求: (1)A、C碰撞刚结束时A的速度大小;
答案
Mmv02 2M+mF
解析 设木块最小长度为L,由能量守恒定律得: FL=Q 得木块的最小长度为:L=2MMm+vm02F.
二、滑块—木板模型
1.把滑块、木板看成一个整体,摩擦力为内力,在光滑水平面上滑块 和木板组成的系统动量守恒. 2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,根据能量 守恒定律,机械能的减少量等于因摩擦而产生的热量,ΔE=Ff·s相对, 其中s相对为滑块和木板相对滑动的路程. 3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械 能损失最多.
归纳总结
滑块—木板模型与子弹打木块模型类似,都是通过系统内的滑动摩擦 力相互作用,系统所受的外力为零或内力远大于外力,动量守恒.当 滑块不滑离木板或子弹不穿出木块时,两物体最后有共同速度,相当 于完全非弹性碰撞,机械能损失最多.
滑块、子弹打木块模型之一
lv 0 v Sv 0A B滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -∙ ④ ②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=--由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
v 0 AB v 0 lA 2v 0 v 0B CA v 0 5m B2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
2020版高考一轮物理复习数字课件第6章专题七 动量观点和能量观点综合应用的“四个模型”
模型一 “子弹打木块”模型
解析:(1)第一颗子弹射入木块的过程,系统动量守恒,即 mv0=(m+M)v1 系统由 O 到 C 的运动过程中机械能守恒,即12(m+M)v21=(m+M)gR m+M 联立以上两式解得 v0= m 2gR=31 m/s。 (2)由动量守恒定律可知,第 2 颗子弹射入木块后,木块的速度为 0 当第 3 颗子弹射入木块时,由动量守恒定律得 mv0=(3m+M)v3 解得 v3=3mm+v0M=2.4 m/s。
设长木板 B 的质量为 M,对长木板 B, 由牛顿第二定律,μmg=Ma2,解得 M
积,即为 ΔE=μmgL=0.1×2×10×1 J =2 J,选项 D 错误。
=2 kg,选项 B 正确;根据 v -t 图线与 答案: AB 横轴所围的面积等于位移可知,木块 A
模型二 滑块——木板模型问题
[多维练透] 2.如图所示,质量为 m=245 g 的物块(可视为质点)放在质量为 M=0.5 kg 的木板左 端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为 μ=0.4。质 量为 m0=5 g的子弹以速度 v0=300 m/s 沿水平方向射入物块并留在其中(时间极短), g 取 10 m/s2。子弹射入后,求: (1)物块相对木板滑行的时间。 (2)物块相对木板滑行的位移。
模型一 “子弹打木块”模型
(2019·福建龙岩质检)(多选)如图所示,两个质量和速度均相同的子弹分别水平射入 静止在光滑水平地面上质量相同、材料不同的两矩形滑块 A、B 中,射入 A 中的深度是射 入 B 中深度的两倍。上述两种射入过程相比较( ) A.射入滑块 A 的子弹速度变化大 B.整个射入过程中两滑块受到的冲量一样大 C.两个过程中系统产生的热量相同 D.射入滑块 A 中时阻力对子弹做功是射入滑块 B 中时的两倍
动量定理、动能定理专题-子弹打木块模型
动量定理、动能定理专题----子弹打木块模型一、模型描述:此模型主要是指子弹击中未固定的光滑木块的物理场景,如图所示。
其本质是子弹和木块在一对力和反作用力(系统内力)的作用下,实现系统内物体动量和能量的转移或转化。
二、方法策略:(1) 运动性质:在该模型中,默认子弹撞击木块过程中的相互作用力是恒恒力,则子弹在阻力的作用下会做匀减速直线性运动;木块将在动力的作用下做匀加速直线运动。
这会存在两种情况:(1)最终子弹尚未穿透木块,(2)子弹穿透木块。
(2) 基本规律:如图所示,研究子弹未穿透木块的情况:三、图象描述:在同一个v-t坐标中,两者的速度图线如图甲所示。
图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。
两图线间阴影部分面积则对应了两者间的相对位移:d=s1-s2。
如果打穿图象如图乙所示。
点评:由此可见图象可以直观形象反映两者的速度的变化规律,也可以直接对比出物块的对地位移和子弹的相对位移,从而从能量的角度快速分析出系统产生的热量一定大于物块动能的大小。
四、模型迁移子弹打木块模型的本质特征是物体在一对作用力与反作用力(系统内力)的冲量作用下,实现系统内物体的动量、能量的转移或转化。
故物块在粗糙木板上滑动、一静一动的同种电荷追碰运动,一静一动的导体棒在光滑导轨上切割磁感线运动、小球从光滑水平面上的竖直平面内弧形光滑轨道最低点上滑等等,如图所示。
(1)典型例题:例1.如图所示,质量为M的木块静止于光滑的水平面上,一质量为m、速度为的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F,求:(1)子弹与木块相对静止时二者共同速度为多大?(2)射入过程中产生的内能和子弹对木块所做的功分别为多少?(3)木块至少为多长时子弹才不会穿出?1. 一颗速度较大的子弹,以速度v 水平击穿原来静止在光滑水平面上的木块,设木块对子弹的阻力恒定,则当子弹入射速度增大为2v 时,下列说法正确的是( )A. 子弹对木块做的功不变B. 子弹对木块做的功变大C. 系统损耗的机械能不变D. 系统损耗的机械能增加解析:子弹的入射速度越大,子弹击中木块所用的时间越短,木块相对地面的位移越小,子弹对木块做的功W =fs 变小,选项AB 错误;子弹相对木块的位移不变,由Q =f s 相对知Q 不变,系统损失的机械能等于产生的热量,则系统损耗的机械能不变,选项C 正确,D 错误。
动量守恒之滑块子弹打木块模型
lv 0 v S动量守恒定律的应用1—— 子弹打木块模型模型:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ②对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v Mm M -• ④ ②+④得 f l =})]([2121{2121212120220222v v Mm M mv mv MV mv mv -+-=-- 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即Q=ΔE 系统= fS 相问题:①若要子弹刚好能(或刚好不能)穿出木块,试讨论需满足什么条件②作出作用过程中二者的速度-时间图像,你会有什么规律发现例题:一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A .)(2102v v v m - B.)(00v v mv - C.s vd v v m 2)(0- D.vd S v v m )(0-v 0A Bv 0 AB v 0 lA 2v 0 v 0B C滑块、子弹打木块模型练习1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
动量守恒定理应用之滑块、子弹打木块模型
动量守恒定理应用之滑块、子弹打木块模型l v 0 vS 浅析动量守恒定理应用的几种模型动量守恒定律中常常涉及这样几种模型:人船模型,子弹打木块模型,滑块模型,弹簧模型等1人船模型:是利用平均动量守恒求解的一类问题。
在解题时要画出个物体的位移关系草图,找出物体间的位移关系。
【例1】质量为M 的小船长为L 浮在静水中。
开始时质量为m 的人站在船头,人和船均处于静止状态。
若此人从船头走到船尾,不计水的阻力,则船将前进的距离为A 、mL/(m+M)B 、ML/(m+M)C 、mL/(M-m)D 、ML/(M-m)【解析】以人和船组成的系统为研究对象,由于人从船头走向船尾,系统在水平方向上不受外力作用,所以水平方向动量守恒,人起步前人和船均静止系统的总动量为零。
以河岸为参考系有0=MV 船→岸+mV 人→岸人走船走人停船停。
整个过程中,每一时刻系统都满足动量守恒定律,位移x=V 平均t ,所以0=ML 船→岸+mL 人→岸,根据位移关系可知L=L 船→岸+L 人→岸,解得L 船→岸= mL/(m+M)【答案】A人船模型往往会涉及速度,在解决物体时一定要分析清楚是相对哪一个参考系,如果给出的速度不是同一参考系,则必须化为同一参考系。
2.子弹打木块模型:此类问题以系统为研究对象,水平方向满足动量守恒条件,但由于有摩擦,故系统的机械能不守恒,而损失的机械能等于摩擦力与相对位移的乘积,解题时最好画出运动草图,物体位移间的关系就很直观。
【例题2】:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
【解析】:如图,设子弹穿过木块时所受阻力为f ,射出时木块速度为V ,位移为S ,则子弹位移为(S+l)以子弹木块为系统,由动量守恒定律得:mv 0=mv+MV(1)由动能定理,对子弹-f(s+l )=2022121mv mv - (2)对木块fs=0212-MV (3)由①式得v=)(0v v M m - 代入③式有fs=2022)(21v v M mM -? ④②+④得 f l =})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=-- 注意:这类问题存在临界条件,即子弹射出和留在滑块中。
浅析高中物理教学中的“子弹打木块”模型
样
y .
子弹
■_
、
,
其分 量式 为 : s 1 2 相 +…… + s且 Q= 相 +, . 2 s . n 丰
=
△E系统
j婴 (初 平
一 圈 2
3 涉 及 绝 对 位 移 ( 物 体 相 对 地 面 的 位 . 即 移) ——可运用动能定理 。 4 涉及时间——可对单个物体运用动量定理 。 . 5 受力分析 , 体受恒 力—— 物体做匀 变速运 . 物 动, 可用动力学规律求解 。 ( 力 分 析一 受 求 合 外 力一 求 加 速 度 求速度 、 位移 、 时间等等) 。
一
弹速 度 为 , 子 弹 与 才 求 械能。 k -—
厂] 嗣 D
四、 题 例
质量为 的木块放 在光滑的水 平面上 , 一质 量 r 的子弹以初速度 0 r t 水平飞来 打进木 块并 留在 其 中, 设相互作用力 为 厂 。 问题 1子弹 、 : 木块相对静止 时的速度 由动量 守恒得 :
:
豳 1
Q =△ 系 相 E 统= 其 分量式 为 Q = S + 2 相+… …,S =△ 系 相l f S n栅。 E 统
六 、 结 小
对木块:2 {M ห้องสมุดไป่ตู้ = y
M m
子弹打木块这类问题, 关键是要抓住动量与能 量这两条主线, 相 弄清系统内参与做功的是什么力 其
一
由动量守恒定律得 n 0 W =删 +朋 v 由动 能 定 理 , 子 弹 对
一
①
删 n ^ +m) :( f 问题 2子 弹在木 块 内运 : 动的时 间 由动 量定理 得 : 对 木 块 厂t ・ =My 0 一
动量.能量物理模型
浅谈涉及动量、能量的模型动量与能量的综合问题一直是高中物理的重点和难点,也是高考的热点。
在近几年的高考中,每年都有这类试题的出现。
这类试题往往涉及到两个〔或两个以上的〕物体,物体与物体之间通过相互挤压、相互摩擦或者借助弹簧、绳子等相互作用,物理过程较为复杂,有较高的思维起点,需要学生具有综合运用所学知识,以及对物理过程进行全面、深入分析的能力。
因而成为近年来理科综合能力测试〔物理〕中考查学生能力的重要素材。
为了便于老师讲解和学生学习,可将常见的一些物理情景模块化,而相关的综合性的题目大多是这些模型的综合。
模型一:子弹打木块模型[模型概述]子弹打木块的两种常见类型:① 木块固定在水平面,子弹以初速度v 0射击木块。
由于物块固定在水平面,子弹在滑动摩擦力作用下在静止的木块中做匀减速直线运动。
所以可对子弹利用动能定理,得: 2022121mv mv d F t f -=- 〔其中d 为子弹在木块中的位移〕 ②木块放在光滑的水平面上,子弹以初速度v 0射击木块。
这种类型又包括两种常见情况:①子弹留在木块中。
最终子弹与木块到达共同速度。
②子弹打穿木块。
子弹与木块有各自的速度。
这两种情况均可把子弹和木块看成一个系统,且由系统水平方向动量守恒,列出方程,求解出速度。
并可与匀变速直线运动、平抛运动以及圆周运动相结合。
[模型讲解]质量为M 的木块静止在光滑水平面上,一质量为m 速度为0v 的子弹水平射入木块中,如果子弹所受阻力的大小恒为f ,子弹没有穿出木块,木块和子弹的最终速度为共v ,在这个过程中木块相对地面的位移为木s ,子弹相对与地面的位移为子s ,子弹相对与木块的位移为s ∆。
分析:画出运动草图〔如下〕作用下相对地面做匀加速运动。
解:把子弹和木块看成一个系统。
〔1〕由系统水平方向动量守恒,得:共v m M mv )(0+=mM mv v +∴0=共 ① 〔2〕对木块和子弹分别利用动能定理。
对木块用动能定理 ,得:212fs Mv 木共= ②对子弹用动能定理 ,得:2022121mv mv fs -=-共子 ③ 由②+③,得到s f mv v m s s f ∆-=-20221)M 21(-+()=-共木子 ④ 观察方程④式,等式的左边表示摩擦力对系统做的功,右边表示系统动能的变化。
2024年高中物理新教材同步 选择性必修第一册 第1章 专题强化4 子弹打木块模型 滑块—木板模型
专题强化4 子弹打木块模型 滑块—木板模型[学习目标] 1.进一步理解动量守恒条件。
2.会分析两物体在相对运动过程中的能量转换(重点)。
3.能够从动量和能量的观点分析子弹打木块模型、滑块—木板模型(重难点)。
一、子弹打木块模型1.如图所示,质量为M =1 kg 的木块静止于粗糙的水平面上,木块与水平面间的动摩擦因数为0.2,一质量为m =20 g 、速度为v 0=600 m/s 的子弹水平射入木块,穿出时的速度为v =100 m/s ,若木块的宽度为d =0.1 m ,重力加速度g =10 m/s 2,试求子弹与木块间的平均作用力与木块和地面间的滑动摩擦力之比,并根据结果分析在解决此类问题时应如何处理?答案 由动能定理可得-F ·d =12m v 2-12m v 02解得F =3.5×104 N木块与地面间的滑动摩擦力F f =μMg =2 N 两者之比为FF f=17 500由此可知,子弹与木块间的平均作用力远大于木块与地面间的作用力,因此子弹和木块组成系统在相互作用过程中满足动量守恒的条件。
2.如图所示,质量为M 的木块静止于光滑的水平面上,一质量为m 、速度为v 0的子弹水平射入木块且未穿出,设木块对子弹的阻力恒为F ,则(1)子弹与木块相对静止时二者共同速度为多大; (2)子弹射入过程中产生的内能为多少? (3)木块至少为多长时子弹不会穿出?答案 (1)子弹与木块组成的系统动量守恒,以子弹的初速度方向为正方向,由动量守恒定律得:m v 0=(m +M )v 解得:v =m v 0m +M(2)由能量守恒定律可知:12m v 02=Q +12(m +M )v 2得产生的热量为:Q=Mm v022(M+m)(3)设木块最小长度为L,由能量守恒定律:FL=Q得木块的最小长度为:L=Mm v022(M+m)F.1.模型特点(1)子弹打木块的过程很短暂,认为该过程内力远大于外力,系统动量守恒。
滑块木板、子弹木块、滑块弹簧、滑块斜(曲)面问题(学生版)--高考物理热点模型
滑块木板、子弹木块、滑块弹簧、滑块斜(曲)面问题学校:_________班级:___________姓名:_____________模型概述1.滑块木板模型1)模型图示2)模型特点①把滑块、木板看成一个整体,摩擦力为内力,若水平面光滑,滑块和木板组成的系统动量守恒。
若地面粗糙,系统的总动量将发生变化。
②由于摩擦生热,机械能转化为内能,系统机械能不守恒,根据能量守恒定律,机械能的减少量等于因摩擦而产生的热量,即ΔE =F f ·s 相对,其中s 相对为滑块和木板相对滑动的路程。
③若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大.此过程相当于完全非弹性碰撞过程3)求解方法①求速度:根据动量守恒定律求解,研究对象为一个系统;②求时间:根据动量定理求解,研究对象为一个物体;③求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.2.子弹木块模型1)模型图示2)模型特点①子弹水平打进木块的过程中,系统的动量守恒。
②系统的机械能有损失。
3)两种情景①子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:mv 0=(m +M )v能量守恒:Q =F f ·s =12mv 20-12(M +m )v 2②子弹穿透木块动量守恒:mv 0=mv 1+Mv 2能量守恒:Q =Ff ·d =12mv 20-12mv 21+12Mv 223.滑块弹簧模型1)模型图示2)模型特点①动量守恒:两个物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒;②机械能守恒:系统所受的外力为零或除弹簧弹力以外的内力不做功,系统机械能守恒;③弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型);④弹簧恢复原长时,弹性势能为零,系统动能最大(完全弹性碰撞拓展模型,相当于碰撞结束时).4.滑块斜(曲)面模型1)模型图示2)模型特点①上升到最大高度:m与M具有共同水平速度v共,此时m的竖直速度v y=0.系统水平方向动量守恒,mv0=(M+m)v共;系统机械能守恒,12mv20=12(M+m)v2共+mgh,其中h为滑块上升的最大高度,不一定等于弧形轨道的高度(相当于完全非弹性碰撞,系统减少的动能转化为m的重力势能).②返回最低点:m与M分离点.水平方向动量守恒,mv0=Mv1+mv2;系统机械能守恒12mv20=12Mv21+12mv22相当于完成了弹性碰撞).典题攻破1.滑块木板模型1.(2024·全国·一模)如图甲所示,长木板放置在光滑的水平地面上,木块(视为质点)放置在木板的正中央,现突然给木块一个水平向右的速度v0,经过一段时间t0=v02μg,木块刚好不从木板的最右端离开,已知木块与木板的质量相等;把长木板放置在粗糙的水平地面上,木块放置在木板的最左端,已知木板与地面间的动摩擦因数为1.5μ,如图乙所示,现同时给木块、木板水平向右的速度2v0,重力加速度为g。
动量守恒定律的应用之子弹打木块问题(滑块类问题)(解析版)
动量守恒定律的应用之子弹打木块问题(滑块类问题)子弹射击木块的两种典型情况1.木块放置在光滑的水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
处理方法:把子弹和木块看成一个系统,①系统水平方向动量守恒;②系统的机械能不守恒;③对木块和子弹分别利用动能定理。
2.木块固定在水平面上运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块静止不动。
处理方法:对子弹应用动能定理或牛顿第二定律。
两种类型的共同点:(1)系统内相互作用的两物体间的一对滑动摩擦力做功的总和恒为负值(因为有一部分机械能转化为内能);(2)摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程,大小为Q=fs,其中f是滑动摩擦力的大小,s是两个物体的相对路程(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者的相对路程,所以说是一个相对运动问题)。
【典例】如图所示,在光滑水平面上有一辆质量M=8 kg的平板小车,车上有一个质量m=1.9 kg的木块,木块距小车左端6 m(木块可视为质点),车与木块一起以v=1 m/s的速度水平向右匀速行驶.一颗质量m0=0.1 kg的子弹以v0=179 m/s的初速度水平向左飞,瞬间击中木块并留在其中.如果木块刚好不从车上掉下,求木块与平板小车之间的动摩擦因数μ(g=10 m/s2).【答案】:0.54Q =μ(m +m 0)gs =12(m +m 0)v 21+12Mv 2-12(m +m 0+M )v 22 ③ 联立①②③并代入数据解得μ=0.54. 总结提升对于滑块类问题,往往通过系统内摩擦力的相互作用而改变系统内的物体的运动状态,既可由两大定理和牛顿运动定律分析单个物体的运动,又可由守恒定律分析动量的传递、能量的转化,在能量转化方面往往用到ΔE 内=ΔE 机=F 滑x 相。
【跟踪短训】1.(多选)如图所示,质量为m 的子弹水平射入质量为M 、放在光滑水平地面上静止的木块,子弹未穿透木块,则从子弹接触木块到随木块一起匀速运动的过程中木块动能增加了5 J ,那么此过程中系统产生的内能可能为( )A .16 JB .11.2 JC .4.8 JD .3.4 J 【答案】AB.【解析】法二:本题也可用图象法,画出子弹和木块的v -t 图象如图所示,根据v -t 图象与坐标轴所围面积表示位移,ΔOAt 的面积表示木块的位移s ,ΔOAv 0的面积表示子弹相对木块的位移d ,系统产生的内能Q =fd ,木块得到的动能E k1=fs ,从图象中很明显可以看出d >s ,故系统产生的内能大于木块得到的动能.2. 如图所示。
第一章 专题强化 子弹打木块模型 滑块—木板模型
专题强化 子弹打木块模型 滑块—木板模型[学习目标] 1.进一步理解动量定理、动量守恒定律、动能定理的内容和含义以及解题步骤.2.通过学习,培养应用动量观点和能量观点分析综合问题的能力.一、子弹打木块模型1.子弹打木块的过程很短暂,认为该过程内力远大于外力,系统动量守恒. 2.在子弹打木块过程中摩擦生热,系统机械能不守恒,机械能转化为内能. 3.若子弹不穿出木块,二者最后有共同速度,机械能损失最多.例1 如图1所示,在水平地面上放置一质量为M 的木块,一质量为m 的子弹以水平速度v 射入木块(时间极短且未穿出),若木块对子弹的阻力大小恒为f ,木块与地面间的动摩擦因数为μ,求:(重力加速度为g )图1(1)子弹射入木块的过程中,系统损失的机械能; (2)子弹射入木块的深度d ;(3)子弹射入后,木块在地面上前进的距离. 答案 (1)Mm v 22(M +m ) (2)Mm v 22(M +m )f(3)m 2v 22(M +m )2μg解析 (1)设子弹射入木块后,二者的共同速度为v ′,取子弹的初速度方向为正方向,则由动量守恒得: m v =(M +m )v ′①射入过程中系统损失的机械能 ΔE =12m v 2-12(M +m )v ′2②由①②两式解得:ΔE =Mm v 22(M +m ).(2)子弹射入木块的过程,由能量守恒得:fd =12m v 2-12(M +m )v ′2③由①③两式解得d =Mm v 22(M +m )f.(3)子弹射入木块后,二者一起沿地面滑行,设滑行的距离为x ,由动能定理得: -μ(M +m )gx =0-12(M +m )v ′2④由①④两式解得:x =m 2v 22(M +m )2μg.子弹打木块模型是通过系统内的滑动摩擦力相互作用,系统所受的外力为零(或内力远大于外力),动量守恒.当子弹不穿出木块时,两物体最后有共同速度,相当于完全非弹性碰撞,机械能损失最多. 二、滑块—木板模型1.把滑块、木板看成一个整体,摩擦力为内力,在光滑水平面上滑块和木板组成的系统动量守恒.2.由于摩擦生热,机械能转化为内能,系统机械能不守恒,根据能量守恒定律,机械能的减少量等于因摩擦而产生的热量,ΔE =f ·s 相对,其中s 相对为滑块和木板相对滑动的路程. 3.注意:若滑块不滑离木板,就意味着二者最终具有共同速度,机械能损失最多. 例2 如图2所示,一质量为m =1 kg 的滑块以初速度v 0从光滑平台滑上静止的质量为M =9 kg 的小车,小车和滑块间的动摩擦因数为μ=0.2,小车长L =1 m ,水平地面光滑,若滑块不滑出小车,滑块初速度v 0应满足什么条件?图2答案 v 0≤2103m/s解析 滑块以初速度v ′从平台滑上小车,刚好滑到小车的最右端,此时两者速度相同(均为v ).由动量守恒得,m v ′=(M +m )v从滑块滑上小车到两者速度相同,系统损失的动能等于因摩擦产生的热量,Q =μmgL = 12m v ′2-12(M +m )v 2解得v ′=2103m/s即滑块不滑出小车,滑块的初速度v 0≤v ′, 即v 0≤2103m/s.针对训练1 如图3所示,B 是放在光滑的水平面上质量为3m 的一块木板,物块A (可看成质点)质量为m ,与木板间的动摩擦因数为μ.最初木板B 静止,物块A 以水平初速度v 0滑上木板,木板足够长.求:(重力加速度为g )图3(1)木板B 的最大速度的大小;(2)从刚滑上木板到A 、B 速度刚好相等的过程中,物块A 所发生的位移大小; (3)若物块A 恰好没滑离木板B ,则木板至少多长? 答案 (1)v 04 (2)15v 0232μg (3)3v 028μg解析 (1)由题意知,A 向右减速,B 向右加速,当A 、B 速度相等时B 速度最大.以v 0的方向为正方向,根据动量守恒定律:m v 0=(m +3m )v 得:v =v 04(2)A 向右减速的过程,根据动能定理有 -μmgx 1=12m v 2-12m v 02则物块A 所发生的位移大小为x 1=15v 0232μg(3)方法一 B 向右加速过程的位移设为x 2. 则μmgx 2=12×3m v 2解得:x 2=3v 0232μg木板的最小长度:L =x 1-x 2=3v 028μg方法二 从A 滑上B 至达到共同速度的过程中,由能量守恒得:μmgL =12m v 02-12(m +3m )v 2得:L =3v 028μg.三、动量和能量观点的综合应用 动量观点和能量观点的选取原则 1.动量观点(1)对于不涉及物体运动过程中的加速度而涉及物体运动时间的问题,特别对于打击一类的问题,因时间短且冲力随时间变化,应用动量定理求解,即Ft =m v -m v 0.(2)对于碰撞、爆炸、反冲一类的问题,若只涉及初、末速度而不涉及力、时间,应用动量守恒定律求解.2.能量观点(1)对于不涉及物体运动过程中的加速度和时间问题,无论是恒力做功还是变力做功,一般都利用动能定理求解.(2)如果物体只有重力和弹簧弹力做功而又不涉及运动过程中的加速度和时间问题,则采用机械能守恒定律求解.(3)对于相互作用的两物体,若明确两物体相对滑动的距离,应考虑选用能量守恒定律建立方程.例3 (2020·广东省实验中学、广雅中学、佛山一中高二下期末)如图4所示,一质量为M B =6 kg 的木板B 静止于光滑的水平面上,物块A 的质量M A =6 kg ,停在B 的左端,一质量为m =1 kg 的小球用长为l =0.8 m 的轻绳悬挂在固定点O 上.将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A 发生碰撞后反弹,反弹所能达到的最大高度h =0.2 m ,物块A 与小球均可视为质点,A 、B 达到共同速度后A 还在木板上,不计空气阻力,g 取10 m/s 2.图4(1)小球和物块A 碰后瞬间物块A 的速度大小; (2)A 、B 组成的系统因摩擦损失的机械能. 答案 (1)1 m/s (2)1.5 J解析 (1)对于小球,在运动的过程中机械能守恒, 则有mgl =12m v 12,得v 1=2gl =4 m/s ,mgh =12m v 1′2,得v 1′=2gh =2 m/s小球与物块A 碰撞过程中,系统的动量守恒,以向右为正方向,则有:m v 1=-m v 1′+M A v A , 解得v A =1 m/s(2)物块A 与木板B 相互作用过程中: M A v A =(M A +M B )v 共,解得v 共=0.5 m/s. A 、B 组成的系统因摩擦而损失的机械能 ΔE =12M A v A 2-12(M A +M B )v 共2代入数据,解得ΔE =1.5 J针对训练2 (多选)如图5所示,水平轻质弹簧的一端固定在墙上,另一端与质量为m 的物体A 相连,A 放在光滑水平面上,有一质量与A 相同的物体B ,从离水平面高h 处由静止开始沿固定光滑曲面滑下,与A 相碰后一起将弹簧压缩,弹簧恢复原长后某时刻B 与A 分开且沿原曲面上升.下列说法正确的是(重力加速度为g )( )图5A .弹簧被压缩时所具有的最大弹性势能为mghB .弹簧被压缩时所具有的最大弹性势能为mgh 2C .B 与A 分开后能达到的最大高度为h4D .B 与A 分开后能达到的最大高度不能计算 答案 BC解析 根据机械能守恒定律可得B 刚到达水平面的速度v 0=2gh ,根据动量守恒定律m v 0=2m v 可得A 与B 碰撞后的速度为v =12v 0,所以弹簧被压缩时所具有的最大弹性势能为E pm=12×2m v 2=12mgh ,故A 错误,B 正确;当弹簧再次恢复原长时,A 与B 分开,B 以大小为v 的速度向左沿曲面上滑,根据机械能守恒定律可得mgh ′=12m v 2,解得B 能达到的最大高度为h ′=14h ,故C 正确,D 错误.1.(子弹打木块模型)(多选)矩形滑块由不同材料的上、下两层粘合在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度v 0水平射向滑块,若射击下层,子弹刚好不射出,若射击上层,则子弹刚好能射穿一半厚度,如图6所示,则上述两种情况相比较,下列说法正确的是( )图6A .子弹的末速度大小相等B .系统产生的热量一样多C .子弹对滑块做的功相同D .子弹和滑块间的水平作用力一样大 答案 ABC解析 以v 0的方向为正方向,子弹与滑块组成的系统动量守恒,由动量守恒定律得:m v 0=(m +M )v ,可得滑块最终获得的速度:v =m v 0M +m,可知两种情况下子弹的末速度是相同的,故A 正确;子弹嵌入下层或上层过程中,系统产生的热量都等于系统减少的动能,而子弹减少的动能一样多(两种情况下子弹初、末速度都相等),滑块增加的动能也一样多,则系统减少的动能一样,故系统产生的热量一样多,故B 正确;根据动能定理,滑块动能的增量等于子弹对滑块做的功,所以两次子弹对滑块做的功一样多,故C 正确;由Q =f ·x相对知,由于相对位移x 相对不相等,所以两种情况下子弹和滑块间的水平作用力不一样大,故D 错误. 2.(滑块—木板模型)如图7所示,质量为M 、长为L 的长木板放在光滑的水平面上,一个质量也为M 的物块(视为质点)以一定的初速度从左端冲上长木板,如果长木板是固定的,物块恰好停在长木板的右端,如果长木板不固定,则物块冲上长木板后在长木板上相对长木板最多能滑行的距离为( )图7A .L B.3L 4 C.L 4 D.L 2答案 D解析 长木板固定时,由动能定理得:-μMgL =0-12M v 02,若长木板不固定,以物块初速度的方向为正方向,有M v 0=2M v ,μMgs =12M v 02-12×2M v 2,得s =L2,D 项正确,A 、B 、C项错误.3.(动量和能量观点的综合应用)如图8所示,在光滑水平地面上的木块紧挨水平轻弹簧放置,弹簧右端与墙连接.一子弹以速度v 0沿水平方向射入木块并在极短时间内相对于木块静止下来,然后木块压缩劲度系数未知的弹簧至弹簧最短.已知子弹质量为m ,木块质量M =9m ;弹簧最短时弹簧被压缩了Δx ,弹簧始终在弹性限度内;劲度系数为k 、形变量为x 的弹簧的弹性势能可表示为E p =12kx 2.求:图8(1)子弹射入木块到刚相对于木块静止的过程中损失的机械能; (2)弹簧的劲度系数. 答案 (1)9m v 0220 (2)m v 0210(Δx )2解析 (1)设子弹刚相对于木块静止时的速度为v ,以v 0的方向为正方向,由动量守恒定律得m v 0=(m +M )v ,解得v =v 010.设子弹射入木块到刚相对于木块静止的过程中损失的机械能为ΔE ,由能量守恒定律得ΔE =12m v 02-12(m +M )v 2,代入数据得ΔE =9m v 0220.(2)弹簧最短时弹簧被压缩了Δx ,其弹性势能可表示为E p =12k (Δx )2.木块压缩弹簧至最短的过程,由机械能守恒定律得12(m +M )v 2=E p ,解得:k =m v 0210(Δx )2.1.(多选)如图1所示,小车在光滑的水平面上向左运动,木块水平向右在小车的水平车板上运动,且未滑出小车,下列说法正确的是( )图1A .若小车的动量大于木块的动量,则木块先减速再加速后匀速B .若小车的动量大于木块的动量,则小车先加速再减速后匀速C .若小车的动量小于木块的动量,则木块先减速后匀速D .若小车的动量小于木块的动量,则小车先加速后匀速答案AC解析小车和木块组成的系统动量守恒.若小车的动量大于木块的动量,则最后相对静止时整体向左运动,故木块先向右减速,再向左加速,最后与小车同速,小车先减速后匀速.若小车的动量小于木块的动量,则最后相对静止时整体向右运动,故木块先减速后匀速,小车先向左减速再向右加速最后与木块同速.2.(多选)用不可伸长的细线悬挂一质量为M的小木块,木块静止,如图2所示.现有一质量为m的子弹自左向右水平射向木块,并停留在木块中,子弹初速度为v0,重力加速度为g,则下列说法正确的是()图2A.从子弹射向木块到一起上升到最高点的过程中系统的机械能守恒B.子弹射入木块瞬间动量守恒,故子弹射入木块后瞬间子弹和木块的共同速度为m v0M+m C.忽略空气阻力,子弹和木块一起上升过程中系统机械能守恒,其机械能等于子弹射入木块前的动能D.子弹和木块一起上升的最大高度为m2v022g(M+m)2答案BD解析从子弹射向木块到一起运动到最高点的过程可以分为两个阶段:子弹射入木块的瞬间系统动量守恒,但机械能不守恒,有部分机械能转化为系统内能,之后子弹在木块中与木块一起上升,该过程只有重力做功,机械能守恒但总能量小于子弹射入木块前的动能,故A、C错误;规定向右为正方向,由子弹射入木块瞬间系统动量守恒可知:m v0=(m+M)v′,所以子弹射入木块后瞬间的共同速度为:v′=m v0M+m,故B正确;之后子弹和木块一起上升,该阶段根据机械能守恒得:12(M+m)v′2=(M+m)gh,可得上升的最大高度为:h=m2v022g(M+m)2,故D正确.3.质量为M、内壁间距为L的箱子静止于光滑的水平面上,箱子中间有一质量为m的小物块,小物块与箱子底板间的动摩擦因数为μ,初始时小物块停在箱子正中间,如图3所示.现给小物块一水平向右的初速度v ,小物块与箱壁碰撞N 次后恰又回到箱子正中间,并与箱子保持相对静止.设碰撞都是弹性碰撞,重力加速度为g ,则整个过程中,系统损失的动能为( )图3A.12m v 2 B .μmgL C.12NμmgL D.mM v 22(m +M )答案 D解析 由于箱子放在光滑的水平面上,则箱子和小物块组成的系统动量始终是守恒的,直到箱子和小物块的速度相同时,小物块与箱子之间不再发生相对滑动,以v 的方向为正方向,有m v =(m +M )v 1,系统损失的动能是因为摩擦力做负功,E 损=μmg ·NL =12m v 2-12(M +m )v 12=mM v 22(m +M ),故D 正确,A 、B 、C 错误.4.如图4所示,质量为M 的小车静止在光滑的水平面上,小车上AB 部分是半径为R 的四分之一光滑圆弧,BC 部分是粗糙的水平面.今把质量为m 的小物体从A 点由静止释放,小物体与BC 部分间的动摩擦因数为μ,最终小物体与小车相对静止于B 、C 之间的D 点,则B 、D 间的距离x 随各量变化的情况是( )图4A .其他量不变,R 越大x 越大B .其他量不变,μ越大x 越大C .其他量不变,m 越大x 越大D .其他量不变,M 越大x 越大 答案 A解析 小车和小物体组成的系统水平方向的动量守恒且为零,所以当小车和小物体相对静止时,系统水平方向的总动量仍为零,则小车和小物体相对于光滑的水平面也静止,由能量守恒得μmgx =mgR ,得x =Rμ,选项A 正确,B 、C 、D 错误.5.(多选)(2020·福州十一中高二下学期期中)如图5所示,质量为M的长木板A静止在光滑的水平面上,有一质量为m的小滑块B以初速度v0从左侧滑上木板,且恰能滑离木板,滑块与木板间的动摩擦因数为μ.下列说法中正确的是()图5A.若只增大v0,则滑块滑离木板过程中系统产生的热量增加B.若只增大M,则滑块滑离木板过程中木板所受到的冲量减小C.若只减小m,则滑块滑离木板时木板获得的速度减小D.若只减小μ,则滑块滑离木板过程中滑块对地的位移减小答案BCD解析滑块滑离木板过程中系统产生的热量等于滑动摩擦力与相对位移的乘积Q=fx相=μmgx相,因为相对位移没变,所以产生的热量不变,故A错误;由极限法,当M很大时,长木板运动的位移x M会很小,滑块的位移等于x M+L很小,对滑块,根据动能定理:-μmg(x M +L)=12-12m v02,可知滑块滑离木板时的速度v1较大,滑块动量变化较小,由动量守恒2m v1定律知,木板动量变化也较小,再根据动量定理知,木板受到的冲量较小,故B正确;由极限法,当m很小时,摩擦力也很小,m的动量变化很小,把长木板和小滑块看成一个系统,满足动量守恒,那么长木板的动量变化也很小,故C正确;当μ很小时,摩擦力也很小,长木板运动的位移x M会很小,滑块的位移等于x M+L也会很小,故D正确.6.(多选)如图6所示,图甲表示光滑平台上物体A以初速度v0滑到上表面粗糙的水平小车上,车与水平面间的摩擦不计;图乙为物体A与小车B的v-t图像,已知当地的重力加速度为g,由此可求()图6A.小车上表面长度B.物体A与小车B的质量之比C.物体A与小车B上表面间的动摩擦因数D.小车B获得的动能答案 BC解析 由题图乙可知,A 、B 最终以共同速度v 1做匀速运动,不能确定小车上表面长度,故A 错误;以v 0的方向为正方向,由动量守恒定律得,m A v 0=(m A +mB )v 1,解得:m A m B =v 1v 0-v 1,故可以确定物体A 与小车B 的质量之比,故B 正确;由题图乙可知A 相对小车B 的位移Δx =12v 0t 1,根据能量守恒定律得:μm A g Δx =12m A v 02-12(m A +m B )v 12,根据求得的质量关系,可以解出A 与小车B 上表面间的动摩擦因数,故C 正确;由于小车B 的质量未知,故不能确定小车B 获得的动能,故D 错误.7.(2020·嘉兴一中期中)如图7所示,ABC 是光滑轨道,其中BC 部分是半径为R 的竖直放置的半圆,AB 部分与BC 部分平滑连接.一质量为M 的小木块放在轨道水平部分,木块被水平飞来的质量为m 的子弹射中,子弹留在木块中.子弹击中木块前的速度为v 0.若被击中的木块能沿轨道滑到最高点C ,重力加速度为g ,忽略空气阻力,求:图7(1)子弹击中木块并留在其中的过程中子弹和木块产生的热量Q ;(2)木块从C 点飞出后落地点离B 点的距离s .答案 (1)Mm v 022(M +m ) (2)2m 2v 02R g (M +m )2-4R 2 解析 (1)子弹击中木块的过程满足动量守恒定律,以v 0的方向为正方向,有m v 0=(M +m )v 1解得v 1=m v 0M +m根据能量守恒定律可得Q =12m v 02-12(M +m )v 12 联立解得Q =Mm v 022(M +m )(2)从子弹击中木块后到木块运动到C 点的过程,由动能定理有12(M +m )v 12=12(M +m )v C 2+2(M +m )gR解得v C=v12-4gR木块离开C点后做平抛运动,s=v C t,2R=122gt-4R2.解得s=2m2v02Rg(M+m)28.如图8所示,光滑水平面上有一辆质量为M=1 kg的小车,小车的上表面有一个质量为m =0.9 kg的滑块,滑块与小车的挡板用水平轻弹簧相连接,滑块与小车上表面间的动摩擦因数为μ=0.2,整个系统一起以v1=10 m/s的速度向右做匀速直线运动,此时弹簧长度恰好为原长.现在用一质量为m0=0.1 kg的子弹,以v0=50 m/s的速度向左射入滑块且不穿出,所用时间极短.当弹簧压缩到最短时,弹簧被锁定,测得此时弹簧的压缩量为d=0.50 m,g=10 m/s2.求:图8(1)子弹射入滑块后的瞬间,子弹与滑块的共同速度;(2)弹簧被压缩到最短时,弹簧弹性势能的大小.答案(1)4 m/s,方向水平向右(2)8 J解析(1)设子弹射入滑块瞬间的共同速度为v2,取向右为正方向,对子弹与滑块组成的系统应用动量守恒定律得m v1-m0v0=(m+m0)v2解得v2=4 m/s,方向水平向右.(2)设子弹、滑块与小车三者的共同速度为v3,当三者达到共同速度时弹簧的压缩量最大,弹性势能最大.对子弹、滑块、小车及弹簧组成的系统,由动量守恒定律得M v1+(m+m0)v2=(M+m+m0)v3解得v3=7 m/s设最大弹性势能为E pmax,对系统应用能量守恒定律有12+12(m+m0)v22-12(M+m+m0)v322M v1=E pmax+Q,其中Q=μ(m+m0)gd解得E pmax=8 J.9.如图9所示,C是放在光滑的水平面上的一块木板,木板的质量为3m,在木板的上表面有两块质量均为m 的小木块A 和B ,它们与木板间的动摩擦因数均为μ.最初木板静止,A 、B 两木块同时以相向的水平初速度v 0和2v 0滑上长木板,木板足够长,A 、B 始终未滑离木板也未发生碰撞.求:图9(1)此后运动过程中木块B 的最小速度是多少?(2)木块A 从刚开始运动到A 、B 、C 速度刚好相等的过程中,木块A 发生的位移是多少? 答案 见解析解析 (1)由题知,B 向右减速,A 向左减速,此时C 静止不动;A 先减速到零后与C 一起反向向右加速,B 向右继续减速,三者共速时,B 的速度最小.取向右为正方向,根据动量守恒定律有m ·2v 0-m v 0=5m v解得B 的最小速度v =v 05. (2)A 向左减速的过程,根据动能定理有-μmgx 1=0-12m v 02 向左的位移为x 1=v 022μgA 、C 一起向右加速的过程,根据动能定理有μmgx 2=12×4m ⎝⎛⎭⎫v 052 向右的位移为x 2=2v 0225μg取向右为正方向,整个过程A 发生的位移为x =x 2-x 1=-21v 0250μg即此过程中A 发生的位移向左,大小为21v 0250μg.。
动量守恒定理应用之滑块 子弹打木块模型 题型答案解析汇编
lv 0 vS v 0 A Bv 0 A B v 0 l 动量守恒定理应用之滑块、子弹打木块模型子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )=2022121mv mv - ② 对木块 fs=0212-MV ③由①式得 v=)(0v v M m - 代入③式有 fs=2022)(21v v M m M -∙ ④ ②+④得 f l =})]([2121{21212121202202220v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
动量专题复习滑块子弹打木块模型
滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
一 模型理解质量为m 的子弹,以速度V 0水平射入光滑水平面上质量为M 的木块中未穿出。
子弹深入木块时所受的阻力大小恒为f符合规律:动量守恒定律:mV 。
=(M+m )V动能定理:子弹-f S m = mV 2/2-mV 02/2木块-f S M = MV 2/2-0功能关系:fd= mV 02/2-(M+m)V 2/2能量转化:子弹动能减少:f S m = mV 02/2- mV 2/2木块动能增加:f S M = MV 2/2系统机械能减少:f S m -f S M =mV 02/22内能增量:f S m -f S M = mV 02/2- 产生热量:f d=f S m -f S M =mV 02/2- 二 典型例题1 如图所示,质量为M 小铁块,小铁块与平板车之间的动摩擦因数为μ其获得大小为v 0的初速度而在小车上向右滑动,车上的滑行时间是多少?2如图所示,质量m=2kg 的物体,以水平速度小车,小车质量M=8kg 设小车足够长,求:(1)(2)物体相对小车滑行的时间距离是多少?(3)3.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度(如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系。
v 0A B v 0 AB v 0 l A 2v 0 v 0B C A v 05m B L v 0 m v ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向;⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。
动量专题复习滑块子弹打木块模型练习参考答案
参考答案 1.M m mv +0()gM m Mv μ+0 2.3.⑴A 恰未滑离B 板,则A 达B 最左端时具有相同速度v ,有 Mv 0-mv 0=(M+m)v ∴0v m M m M v +-= M >m, ∴ v >0,即与B 板原速同向。
⑵A 的速度减为零时,离出发点最远,设A 的初速为v 0,A 、B 摩擦力为f ,向左运动对地最远位移为S ,则02120-=mv fS 而v 0最大应满足 Mv 0-mv 0=(M+m)v 220)(21)(21v m M v m M fl +-+= 解得:l M m M s 4+=4.子弹射入木块时,可认为木块未动。
子弹与木块构成一个子系统,当此系统获共同速度v 1时,小车速度不变,有 m 0v 0-mv=(m 0+m)v 1① 此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1-Mv=(m 0+m+M)v 2②22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ③ 联立化简得: v 02+0.8v 0-22500=0 解得 v 0=149.6m/s 为最大值, ∴v 0≤149.6m/s5.金属块在板上滑动过程中,统动量守恒。
金属块最终停在什么位置要进行判断。
假设金属块最终停在A 上。
三者有相同速度v ,相对位移为x ,则有⎪⎩⎪⎨⎧⋅-==2200321213mv mv mgx mv mv μ 解得:L m x 34=,因此假定不合理,金属块一定会滑上B 。
设x 为金属块相对B 的位移,v 1、v 2表示A 、B 最后的速度,v 0′为金属块离开A 滑上B 瞬间的速度。
有:在A 上 ⎪⎩⎪⎨⎧⋅-'-=+'=21201010022121212mv v m mv mgL mv v m mv μ 全过程 ⎪⎩⎪⎨⎧⋅--=++=2221202102212121)(2mv mv mv x L mg mv mv mv μ 联立解得:⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=s m s m v s m v v s m s m v /65/21/34)(0/31/12001或或舍或∴⎪⎪⎪⎩⎪⎪⎪⎨⎧===m x s m v s m v 25.0/65/3121 *解中,整个物理过程可分为金属块分别在A 、B 上滑动两个子过程,对应的子系统为整体和金属块与B 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
l v 0 v Sv 0 A Bv 0 A B v 0 l 滑块、子弹打木块模型之一子弹打木块模型:包括一物块在木板上滑动等。
μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。
②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。
小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。
例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。
解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。
水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ①由动能定理,对子弹 -f(s+l )= ② 对木块 fs= ③ 由①式得 v= 代入③式有 fs= ④ ②+④得 f l = 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。
即Q=f l ,l 为子弹现木块的相对位移。
结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。
即 Q=ΔE 系统=μNS 相其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。
求两木板的最后速度。
2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系。
⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向;⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。
2022121mv mv -0212-MV )(0v v M m -2022)(21v v Mm M -∙})]([2121{21212121202202220v v Mm M mv mv MV mv mv -+-=--A 2v 0 v 0B CA v 05m BL v 0 m v v 0 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板C 两端相向水平地滑上长木板。
如图示。
设物块A 、B 与长木板 C 间的动摩擦因数为μ,A 、B 、C 三者质量相等。
⑴若A 、B 两物块不发生碰撞,则由开始滑上C 到A 、B 都静止在C 上为止,B 通过的总路程多大?经历的时间多长?⑵为使A 、B 两物块不发生碰撞,长木板C 至少多长? 4.在光滑水平面上静止放置一长木板B ,B 的质量为M=2㎏同,B 右端距竖直墙5m ,现有一小物块 A ,质量为m=1㎏,以v 0=6m/s 的速度从B 左端水平地滑上B 。
如图所示。
A 、B 间动摩擦因数为μ=0.4,B 与墙壁碰撞时间极短,且 碰撞时无能量损失。
取g=10m/s 2。
求:要使物块A 最终不脱离B木板,木板B 的最短长度是多少? 5.如图所示,在光滑水平面上有一辆质量为M=4.00㎏的平板小车,车上放一质量为m=1.96㎏的木块,木块到平板小车左端的距离L=1.5m ,车与木块一起以v=0.4m/s 的速度 向右行驶,一颗质量为m 0=0.04㎏的子弹以速度v 0从右方射入木块并留 在木块内,已知子弹与木块作用时间很短,木块与小车平板间动摩擦因数μ=0.2,取g=10m/s 2。
问:若要让木块不从小车上滑出,子弹初速度应满足什么条件?6.一质量为m 、两端有挡板的小车静止在光滑水平面上,两挡板间距离为1.1m ,在小车正中放一质量为m 、长度为0.1m 的物块,物块与小车间动摩擦因数μ=0.15。
如图示。
现给物块一个水平向右的瞬时冲量,使物块获得v 0 =6m/s 的水平初速度。
物块与挡板碰撞时间极短且无能量损失。
求:⑴小车获得的最终速度;⑵物块相对小车滑行的路程;⑶物块与两挡板最多碰撞了多少次;⑷物块最终停在小车上的位置。
7.一木块置于光滑水平地面上,一子弹以初速v 0射入静止的木块,子弹的质量为m ,打入木块的深度为d ,木块向前移动S 后以速度v 与子弹一起匀速运动,此过程中转化为内能的能量为A . B. C. D.参考答案1. 金属块在板上滑动过程中,统动量守恒。
金属块最终停在什么位置要进行判断。
假设金属块最终停在A 上。
三者有相同速度v ,相对位移为x ,则有 解得:,因此假定不合理,金属块一定会滑上B 。
设x 为金属块相对B 的位移,v 1、v 2表示A 、B 最后的速度,v 0′为金属块离开A 滑上B 瞬间的速度。
有:在A 上 全过程 联立解得: ∴ *解中,整个物理过程可分为金属块分别在A 、B 上滑动两个子过程,对应的子系统为整体和金属块与B 。
可分开列式,也可采用子过程→全过程列式,实际上是整体→部分隔离法的一种变化。
2.⑴A 恰未滑离B 板,则A 达B 最左端时具有相同速度v ,有 Mv 0-mv 0=(M+m)v ∴ M >m, ∴ v >0,即与B 板原速同向。
⑵A 的速度减为零时,离出发点最远,设A 的初速为v 0,A 、B 摩擦力为f ,向左运动对地最远位移为S ,则而v 0最大应满足 Mv 0-mv 0=(M+m)v 解得: 3.⑴由A 、B 、C 受力情况知,当B 从v 0减速到零的过程中,C 受力平衡而保持不动,此子过程中B 的位移S 1和运动时间t 1分别为: 。
然后B 、C 以μg 的加速度一起做加速运动。
A 继续减速,直到它们达到相同速度v 。
对全过程:)(21020v v v m -)(00v v mv -s vd v v m 2)(0-vd Sv v m )(0-⎪⎩⎪⎨⎧⋅-==2200321213mv mv mgx mv mv μL m x 34=⎪⎩⎪⎨⎧⋅-'-=+'=21201010022121212mv v m mv mgL mv v m mv μ⎪⎩⎪⎨⎧⋅--=++=2221202102212121)(2mv mv mv x L mg mv mv mv μ⎪⎪⎪⎩⎪⎪⎪⎨⎧=='='=s m s m v s m v v s m s m v /65/21/34)(0/31/12001或或舍或⎪⎪⎪⎩⎪⎪⎪⎨⎧===m x s m v s m v 25.0/65/31210v m M m M v +-=02120-=mv fS 220)(21)(21v m M v m M fl +-+=l M m M s 4+=gv t g v S μμ01201,2==m A ·2v 0-m B v 0=(m A +m B +m C )v ∴ v=v 0/3B 、C 的加速度 ,此子过程B 的位移∴ 总路程 ⑵A 、B 不发生碰撞时长为L ,A 、B 在C 上相对C 的位移分别为L A 、LB ,则 L=L A +L B*对多过程复杂问题,优先考虑钱过程方程,特别是ΔP=0和Q=fS 相=ΔE 系统。
全过程方程更简单。
4.A 滑上B 后到B 与墙碰撞前,系统动量守恒,碰前是否有相同速度v 需作以下判断:mv 0=(M+m)v, ①v=2m/s此时B 对地位移为S 1,则对B : ②S=1m <5m,故在B 与墙相撞前与A 已达到相同速度v ,设此时A 在B 上滑行L 1距离,则 ③ L 1=3m【以上为第一子过程】此后A 、B 以v 匀速向右,直到B 与墙相碰(此子过程不用讨论),相碰后,B 的速度大小不变,方向变为反向,A 速度不变(此子过程由于碰撞时间极短且无能量损失,不用计算),即B 以v 向左、A 以v 向右运动,当A 、B 再次达到相同速度v ′时:Mv-mv=(M+m)v ′ ④ v ′=2/3 m/s 向左,即B 不会再与墙相碰,A 、B 以v ′向左匀速运动。
设此过程(子过程4)A 相对B 移动L 2,则⑤ L 2=1、33m L=L 1+L 2=4.33m 为木板的最小长度。
*③+⑤得 实际上是全过程方程。
与此类问题相对应的是:当P A 始终大于P B 时,系统最终停在墙角,末动能为零。
5.子弹射入木块时,可认为木块未动。
子弹与木块构成一个子系统,当此系统获共同速度v 1时,小车速度不变,有 m 0v 0-mv=(m 0+m)v 1 ① 此后木块(含子弹)以v 1向左滑,不滑出小车的条件是:到达小车左端与小车有共同速度v 2,则 (m 0+m)v 1-Mv=(m 0+m+M)v 2 ② ③ 联立化简得: v 02+0.8v 0-22500=0 解得 v 0=149.6m/s 为最大值, ∴v 0≤149.6m/s6. ⑴当物块相对小车静止时,它们以共同速度v 做匀速运动,相互作用结束,v 即为小车g m m gm a C B A μμ21=+=gv g v t g v g v S μμμ32292022022====运动时间gv t t t g v S S S μμ35,181********=+==+=总时间gv L v m m m v m v m gL m gL m C B A B A B B A A μμμ37)(2121)2(212022020=++-+=+解得:2121Mv mgS =μ2201)(2121v m M mv mgL +-=μ222)(21)(21v m M v m M mgL '+-+=μ220)(2121v m M mv mgL '+-=μ22022100)(2121)(21)(v M m m Mv v m m gL m m ++-++=+μ最终速度mv 0=2mv v=v 0/2=3m/s⑵ S=6m ⑶ ⑷物块最终仍停在小车正中。
*此解充分显示了全过程法的妙用。
7.AC A : C : 22022121mv mv mgS ⋅-=μ次65.615.0==+--=d l S n ⎪⎩⎪⎨⎧+-=+=2200)(2121)(v m M mv Q vm M mv ⎪⎩⎪⎨⎧⋅=-==d f Q v m v mv Mv fS 202)(2121。