子弹打木块、弹簧模型学案

合集下载

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型” 讲义

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型” 讲义

物理模型——“子弹打木块模型”“碰撞模型”“弹簧模型”动量守恒定律在高中物理占有非常重要的位置,也是多年来选修3-5考查的热点.2017年选修3-5列为必考内容后,对于力学三大观点的问题就得到了解决.模型的核心是对动量定理和动量守恒定律的应用,可对力学知识综合考查.一、“子弹打木块模型”[范例1] (18分)一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为F f .试求从木块开始运动到子弹与木块相对静止的过程中:(1)子弹、木块相对静止时的速度v ;(2)子弹、木块发生的位移s 1、s 2以及子弹打进木块的深度l 相分别为多少? (3)系统损失的机械能、系统增加的内能分别为多少?[解析] (1)由动量守恒得mv 0=(M +m )v (2分) 子弹与木块的共同速度v =mM +m v 0.(2分)(2)对子弹利用动能定理得 -F f s 1=12mv 2-12mv 20(2分)所以s 1=Mm (M +2m )v 202F f (M +m )2.(2分)同理对木块有:F f s 2=12Mv 2(2分) 故木块发生的位移为s 2=Mm 2v 202F f (M +m )2(2分) 子弹打进木块的深度为:l 相=s 1-s 2=Mmv 202F f (M +m ).(2分)(3)系统损失的机械能ΔE k =12mv 20-12(M +m )v 2=Mmv 202(M +m )(2分) 系统增加的内能:Q =ΔE k =Mmv 202(M +m ).(2分)[答案] (1)mM +m v 0(2)Mm (M +2m )v 202F f (M +m )2 Mm 2v 202F f (M +m )2 Mmv 202F f (M +m ) (3)Mmv 202(M +m ) Mmv 202(M +m )“子弹打木块模型”是碰撞中常见模型,其突出特征是在子弹打击木块的过程中有机械能损失,此类问题的一般解法可归纳如下:(1)分析子弹打击木块的过程,弄清楚子弹是停留在木块中和木块一起运动还是穿透木块和木块各自运动;(2)子弹在打击木块的过程中,由于时间较短,内力远远大于外力,故在打击的过程中动量守恒;(3)子弹在打击木块过程中产生的机械能损失,一般有两种求解方法:一是通过计算打击前系统的机械能与打击后系统的机械能的差值得出机械能的损失;二是通过计算在子弹打击木块的过程中,子弹克服阻力做的功与阻力对木块做的功的差值进行求解. 二、“碰撞模型”[范例2] (18分)如图所示,打桩机锤头质量为M ,从距桩顶h 高处自由下落,打在质量为m 的木桩上,且在极短时间内便随桩一起向下运动,使得木桩深入泥土的距离为s ,试求在木桩下陷过程中泥土对木桩的平均阻力是多少?[解析] 设锤头刚与木桩接触时的速度大小为v 0,则由运动学规律可得:v 20=2gh .由于锤头与木桩碰撞时,作用时间极短,系统的内力远远大于外力,动量守恒.设两者碰撞后的共同速度大小为v ,则由动量守恒定律可得:Mv 0=(M +m )v(6分)设在木桩下陷过程中泥土对木桩的平均阻力大小为F f ,则由动能定理可得: (M +m )gs -F f s =0-12(M +m )v 2(6分)以上各式联立求解得:F f =(M +m )g +M 2gh(M +m )s.(6分)[答案] 见解析抓住“三个原则、三个定律”速解碰撞问题(1)判断两物体碰撞瞬间的情况:当两物体相碰时,首先要判断碰撞时间是否极短、碰撞时的相互作用(内力)是否远远大于外力.(2)碰撞的“三个原则”:①动量守恒原则,即碰撞前后两物体组成的系统满足动量守恒定律;②能量不增加原则,即碰撞后系统的总能量不大于碰撞前系统的总能量;③物理情境可行性原则,即两物体碰撞前后的物理情境应与实际相一致.(3)根据两物体碰撞时遵循的物理规律,列出相对应的物理方程:如果物体间发生的是弹性碰撞,则一般是列出动量守恒方程和机械能守恒方程进行求解;如果物体间发生的不是弹性碰撞,则一般应用动量守恒定律和能量守恒定律(功能关系)进行求解.三、“弹簧模型”[范例3] (18分)(2017·肇庆质检)如图所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,滑板右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,可视为质点的小木块A 质量m =1 kg ,原来静止于滑板的左端,滑板与木块A 之间的动摩擦因数μ=0.2.当滑板B 受水平向左恒力F =14 N 作用时间t 后,撤去F ,这时木块A 恰好到达弹簧自由端C 处,此后运动过程中弹簧的最大压缩量为x =5 cm.g 取10 m/s 2,求:(1)水平恒力F 的作用时间t ;(2)木块A 压缩弹簧过程中弹簧的最大弹性势能;(3)当小木块A 脱离弹簧且系统达到稳定后,整个运动过程中系统所产生的热量. [解析] (1)木块A 和滑板B 均向左做匀加速直线运动,由牛顿第二定律可得:a A =μmgm ,a B =F -μmg M根据题意有: s B -s A =L(2分)即:12a B t 2-12a A t 2=L将数据代入并联立解得:t =1s .(2分)(2)1 s 末木块A 和滑板B 的速度分别为: v A =a A t ,v B =a B t当木块A 和滑板B 的速度相同时,弹簧压缩量最大,具有最大弹性势能. 根据动量守恒定律有:mv A +Mv B =(m +M )v(2分)由能的转化与守恒得:12mv 2A +12Mv 2B =12(m +M )v 2+E p +μmgx (2分) 代入数据求得最大弹性势能E p =0.3 J .(2分)(3)二者同速之后,设木块相对滑板向左运动离开弹簧后系统又能达到共同速度v ′,相对滑板向左滑动距离为s ,有:mv A +Mv B =(m +M )v ′解得:v ′=v(2分)由能的转化与守恒定律可得:E p =μmgs 解得:s =0.15 m(2分)由于x +L >s 且s >x ,故假设成立整个过程系统产生的热量为:Q =μmg (L +s +x ) (2分) 解得:Q =1.4 J .(2分)[答案] (1)1 s (2)0.3 J (3)1.4 J利用弹簧进行相互作用的碰撞模型,一般情况下均满足动量守恒定律和机械能守恒定律,此类试题的一般解法是:(1)首先判断弹簧的初始状态是处于原长、伸长还是压缩状态;(2)分析碰撞前后弹簧和物体的运动状态,依据动量守恒定律和机械能守恒定律列出方程;(3)判断解出的结果是否满足“实际情境可行性原则”,如果不满足,则要舍掉该结果. 注意:(1)由于弹簧的弹力是变力,所以弹簧的弹性势能通常利用机械能守恒或能量守恒求解;(2)要特别注意弹簧的三个状态:原长(此时弹簧的弹性势能为零)、压缩到最短或伸长到最长的状态(此时弹簧连接的两个物体具有共同的速度,弹簧具有最大的弹性势能),这往往是解决此类问题的突破点.[预测押题]1.如图所示,在固定的足够长的光滑水平杆上,套有一个质量为m =0.5 kg 的光滑金属圆环,轻绳一端拴在环上,另一端系着一个质量为M =1.98 kg 的木块,现有一质量为m 0=20 g 的子弹以v 0=100 m/s 的水平速度射入木块并留在木块中 (不计空气阻力和子弹与木块作用的时间,g =10 m/s 2),求:(1)圆环、木块和子弹这个系统损失的机械能; (2)木块所能达到的最大高度.解析:(1)子弹射入木块过程,动量守恒,有 m 0v 0=(m 0+M )v在该过程中机械能有损失,损失的机械能为 ΔE =12m 0v 20-12(m 0+M )v 2解得:ΔE =99 J.(2)木块(含子弹)在向上摆动过程中,木块(含子弹)和圆环在水平方向动量守恒,有 (m 0+M )v =(m 0+M +m )v ′又木块(含子弹)在向上摆动过程中,机械能守恒,有 (m 0+M )gh =12(m 0+M )v 2-12(m 0+M +m )v ′2联立解得:h =0.01 m.答案:见解析2.(2017·湖北八校联考)如图所示,质量为m3=2 kg 的滑道静止在光滑的水平面上,滑道的AB 部分是半径为R =0.3 m 的四分之一圆弧,圆弧底部与滑道水平部分相切,滑道水平部分右端固定一个轻弹簧.滑道CD 部分粗糙,其他部分均光滑.质量为m 2=3 kg 的物体2(可视为质点)放在滑道的B 点,现让质量为m 1=1 kg 的物体1(可视为质点)自A 点由静止释放.两物体在滑道上的C 点相碰后粘在一起(g =10 m/s 2).(1)求物体1从释放到与物体2相碰的过程中,滑道向左运动的距离.(2)若CD =0.2 m ,两物体与滑道的CD 部分的动摩擦因数都为μ=0.15,求在整个运动过程中,弹簧具有的最大弹性势能.(3)在(2)的条件下,物体1、2最终停在何处?解析:(1)物体1从释放到与物体2碰撞的过程中,物体1和滑道组成的系统在水平方向上动量守恒,设物体1水平位移大小为s 1,滑道的水平位移大小为s 3,有0=m 1s 1-m 3s 3,s 1=R解得s 3=m 1s 1m 3=0.15 m.(2)设物体1、物体2刚要相碰时物体1的速度大小为v 1,滑道的速度大小为v 3,由机械能守恒定律有m 1gR =12m 1v 21+12m 3v 23由动量守恒定律有0=m 1v 1-m 3v 3物体1和物体2相碰后的共同速度大小设为v 2,由动量守恒定律有 m 1v 1=(m 1+m 2)v 2弹簧第一次压缩至最短时由动量守恒定律可知物体1、2和滑道速度为零,此时弹性势能最大,设为E pm .从物体1、2碰撞后到弹簧第一次压缩至最短的过程中,由能量守恒定律有12(m 1+m 2)v 22+12m 3v 23-μ(m 1+m 2)g ·CD =E pm 联立以上方程,代入数据解得E pm =0.3 J.(3)分析可知物体1、2和滑道最终将静止,设物体1、2相对滑道CD 部分运动的路程为s ,由能量守恒定律有12(m 1+m 2)v 22+12m 3v 23=μ(m 1+m 2)gs 代入数据可得s =0.25 m所以物体1、物体2最终停在C 点和D 点之间与D 点间的距离为0.05 m 处. 答案:见解析。

高三物理知识复习课教案“子弹打木块”专题

高三物理知识复习课教案“子弹打木块”专题
车间动摩擦因数μ=0.15。如图示。现给物块一个水平向右的瞬时冲
量,使物块获得v0=6m/s的水平初速度。物块与挡板碰撞时间极短
且无能量损失。求:
⑴小车获得的最终速度;
⑵物块相对小车滑行的路程;
⑶物块与两挡板最多碰撞了多少次;
⑷物块最终停在小车上的位置。
6. ⑴当物块相对小车静止时,它们以共同速度v做匀速运动,
师:等式的右边表示什么含义?生:系统动能的减少量
(指出)系统减少的动能转化为系统的内能,通过系统内阻力做功来实现。所以这个表达式可理解为能量守恒定律而得到的。题目若只求相对滑动位移时,采用能量守恒定律和动量守恒定律求解将更加简单。而题目要求木块或子弹相对地发生多大位移时,就必须用动能定理求解,所以大家要注意灵活选择公式。
高三复习课教案
“子弹打木块”专题
高中理综组
【教学目的】
1、“子弹打木块”是高考中非常普遍的一类题型,此类问题的实质在于考核学生如何运用动量和能量观点去研究动力学问题。
2、通过问题研究,掌握解决此类问题的基本思路和方法。
【教学重点】
运用动量和能量观点去解决动力学问题
【教学难点】
根据题目,建构物理情境
【教学过程】
一、课题提出,复习导入
(投影)“子弹打木块”是高考中非常普遍的一类题型,此类问题的实质在于考核大家如何运用动量和能量观点去研究动力学问题。
师:下面请大家回忆一下我们前面复习过的“动量以及功和能”这两章中的一些重要规律
(投影)1、动量定理的内容:物体所受合外力的冲量等于物体动量的变化量。
表达式:F合t=mvt-mv0
(启发1)小球与小车组成的系统,水平方向上
有没有受外力作用?
生:没有,水平方向动量守恒

2024届高考一轮复习物理教案(新教材粤教版):动量守恒在子弹打木块模型和板块模型中的应用

2024届高考一轮复习物理教案(新教材粤教版):动量守恒在子弹打木块模型和板块模型中的应用

专题强化十一动量守恒在子弹打木块模型和板块模型中的应用目标要求 1.会用动量观点和能量观点分析计算子弹打木块模型.2.会用动量观点和能量观点分析计算滑块—木板模型.题型一子弹打木块模型1.模型图示2.模型特点(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.3.两种情景(1)子弹嵌入木块中,两者速度相等,机械能损失最多(完全非弹性碰撞)动量守恒:m v 0=(m +M )v能量守恒:Q =f ·s =12m v 02-12(M +m )v 2(2)子弹穿透木块动量守恒:m v 0=m v 1+M v 2能量守恒:Q =f ·d =12m v 02-(12M v 22+12m v 12)例1(多选)如图所示,两个质量和速度均相同的子弹分别水平射入静止在光滑水平地面上质量相等、材料不同的两矩形滑块A 、B 中,射入A 中的深度是射入B 中深度的两倍.已知A 、B 足够长,两种射入过程相比较()A .射入滑块A 的子弹速度变化大B .整个射入过程中两滑块受的冲量一样大C .射入滑块A 中时阻力对子弹做功是射入滑块B 中时的两倍D .两个过程中系统产生的热量相等答案BD解析子弹射入滑块过程中,子弹与滑块构成的系统动量守恒,有m v 0=(m +M )v ,两个子弹的末速度相等,所以子弹速度的变化量相等,A 错误;滑块A 、B 动量变化量相等,受到的冲量相等,B 正确;对子弹运用动能定理,有W f =12m v 2-12m v 02,由于末速度v 相等,所以阻力对子弹做功相等,C 错误;对系统,由能量守恒可知,产生的热量满足Q =12m v 02-12(m+M )v 2,所以系统产生的热量相等,D 正确.例2(多选)(2023·四川成都市树德中学高三检测)水平飞行的子弹打穿固定在水平面上的木块,经历时间为t 1,子弹损失的动能为ΔE k1损,系统机械能的损失为E 1损,穿透后系统的总动量为p 1;同样的子弹以同样的速度打穿放在光滑水平面上的同样的木块,经历时间为t 2,子弹损失的动能为ΔE k2损,系统机械能的损失为E 2损,穿透后系统的总动量为p 2.设木块给子弹的阻力为恒力且上述两种情况下该阻力大小相等,则下列结论正确的是()A .t 2>t 1B .ΔE k2损>ΔE k1损C .E 2损>E 1损D .p 2>p 1答案ABD解析两次打穿木块过程中,子弹受到的阻力f 相等,根据牛顿第二定律有a =fm,两次子弹的加速度相等;第二次以同样的速度击穿放在光滑水平面上同样的木块,由于在子弹穿过木块的过程中,木块会在水平面内滑动,所以第二次子弹的位移s 2要大于第一次的位移s 1,即s 2>s 1;子弹做减速运动,由位移公式s =v 0t +12at 2和s 2>s 1可得,t 2>t 1,故A 正确.两次打穿木块过程中,子弹受到的阻力相等,阻力对子弹做的功等于子弹损失的动能,即ΔE k 损=fs ,由于s 2>s 1,所以ΔE k2损>ΔE k1损,故B 正确.两次打穿木块过程中,子弹受到的平均阻力相等,系统摩擦产生的热量Q =fd ,其中f 为阻力,d 为子弹相对于木块的位移大小,由于两次子弹相对于木块的位移大小都是木块的长度,所以系统机械能的损失相等,即E 2损=E 1损,故C 错误.p 1小于子弹的初动量,第二次子弹穿透木块的过程,系统的动量守恒,则p 2等于子弹的初动量,所以p 2>p 1,故D 正确.例3如图所示,在光滑的水平桌面上静止放置一个质量为980g 的长方形匀质木块,现有一质量为20g 的子弹以大小为300m/s 的水平速度沿木块的中心轴线射向木块,最终留在木块中没有射出,和木块一起以共同的速度运动.已知木块沿子弹运动方向的长度为10cm ,子弹打进木块的深度为6cm.设木块对子弹的阻力保持不变.(1)求子弹和木块的共同速度以及它们在此过程中所产生的内能.(2)若子弹是以大小为400m/s 的水平速度从同一方向水平射向该木块,则在射中木块后能否射穿该木块?答案(1)6m/s882J(2)能解析(1)设子弹射入木块后与木块的共同速度为v ,对子弹和木块组成的系统,由动量守恒定律得m v 0=(M +m )v ,代入数据解得v =6m/s此过程系统所产生的内能Q =12m v 02-12(M +m )v 2=882J.(2)假设子弹以v 0′=400m/s 的速度入射时没有射穿木块,则对以子弹和木块组成的系统,由动量守恒定律得m v 0′=(M +m )v ′解得v ′=8m/s此过程系统损失的机械能为ΔE ′=12m v 0′2-12(M +m )v ′2=1568J由功能关系有Q =ΔE =F 阻s 相=F 阻d ΔE ′=F 阻s 相′=F 阻d ′则ΔE ΔE ′=F 阻d F 阻d ′=d d ′解得d ′=1568147cm 因为d ′>10cm ,所以能射穿木块.题型二滑块—木板模型1.模型图示2.模型特点(1)系统的动量守恒,但机械能不守恒,摩擦力与两者相对位移的乘积等于系统减少的机械能.(2)若滑块未从木板上滑下,当两者速度相同时,木板速度最大,相对位移最大.3.求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统;(2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =f Δs 或Q =E 初-E 末,研究对象为一个系统.例4如图所示,质量m 1=0.3kg 的小车静止在光滑的水平面上,车长L =1.5m ,现有质量m 2=0.2kg 可视为质点的物块,以水平向右的速度v 0从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10m/s 2,则()A .物块滑上小车后,系统动量守恒、机械能守恒B .增大物块与车面间的动摩擦因数,摩擦生热变大C .若v 0=2.5m/s ,则物块在车面上滑行的时间为0.24sD .若要保证物块不从小车右端滑出,则v 0不得大于5m/s 答案D解析物块与小车组成的系统所受合外力为零,系统动量守恒;物块滑上小车后在小车上滑动过程中克服摩擦力做功,部分机械能转化为内能,系统机械能不守恒,A 错误;系统动量守恒,以向右为正方向,由动量守恒定律得m 2v 0=(m 1+m 2)v ,系统产生的热量Q =12m 2v 02-12(m 1+m 2)v 2=m 1m 2v 022(m 1+m 2),则增大物块与车面间的动摩擦因数,摩擦生热不变,B 错误;若v 0=2.5m/s ,由动量守恒定律得m 2v 0=(m 1+m 2)v ,解得v =1m/s ,对物块,由动量定理得-μm 2gt =m 2v -m 2v 0,解得t =0.3s ,C 错误;要使物块恰好不从小车右端滑出,需物块到车面右端时与小车有共同的速度v ′,以向右为正方向,由动量守恒定律得m 2v 0′=(m 1+m 2)v ′,由能量守恒定律得12m 2v 0′2=12(m 1+m 2)v ′2+μm 2gL ,解得v 0′=5m/s ,D 正确.例5如图所示,可看成质点的A 物体叠放在上表面光滑的B 物体上,一起以v 0的速度沿光滑的水平轨道匀速运动,B 与静止在同一光滑水平轨道上的木板C 发生完全非弹性碰撞,B 、C 的上表面相平且B 、C 不粘连,A 滑上C 后恰好能到达C 板的最右端,已知A 、B 、C 质量均相等,且为m ,木板C 长为L ,求:(1)A 物体的最终速度的大小;(2)A 、C 之间的摩擦力的大小;(3)A 在木板C 上滑行的时间t .答案(1)34v 0(2)m v 0216L(3)4Lv 0解析(1)B 、C 碰撞过程中动量守恒,由题意分析知,B 、C 碰后具有相同的速度,设B 、C碰后的共同速度为v 1,以B 的初速度方向为正方向,由动量守恒定律得m v 0=2m v 1,解得v 1=v 02,B 、C 共速后A 以v 0的速度滑上C ,A 滑上C 后,B 、C 脱离,A 、C 相互作用过程中动量守恒,设最终A 、C 的共同速度为v 2,以向右为正方向,由动量守恒定律得m v 0+m v 1=2m v 2,解得v 2=34v 0.(2)在A 、C 相互作用过程中,由能量守恒定律得fL =12m v 02+12m v 12-12×2m v 22,解得f =m v 0216L.(3)A 与C 相互作用过程中,对C 由动量定理得ft =m v 2-m v 1,解得t =4Lv 0.例6(2023·天津市和平区高三模拟)如图所示,质量为M =2kg 的长木板放在光滑的水平面上,质量为m =1kg 的物块(可视为质点)放在长木板的左端,用大小为10N 、方向斜向右上与水平方向成θ=53°角的拉力F 作用在物块上,使物块从静止开始运动,物块运动1s 的时间,撤去拉力,如果物块刚好不滑离木板,物块与木板间的动摩擦因数为0.5,重力加速度g =10m/s 2,sin 53°=0.8,cos 53°=0.6,求:(1)撤去拉力时物块和木板的速度大小;(2)木板的长度.答案(1)5m/s0.5m/s(2)3.6m解析(1)对物块根据牛顿第二定律有F cos θ-μ(mg -F sin θ)=ma 1对木板根据牛顿第二定律有μ(mg -F sin θ)=Ma 2撤去拉力时,物块的速度大小v 1=a 1t =5m/s 木板的速度大小v 2=a 2t =0.5m/s.(2)拉力撤去之前,物块相对木板的位移s 1=12a 1t 2-12a 2t 2撤去拉力后,根据动量守恒定律有m v 1+M v 2=(m +M )v 由能量守恒定律有μmgs 2=12m v 12+12M v 22-12(M +m )v 2联立解得木板的长度L =s 1+s 2=3.6m.课时精练1.(2023·广东广州市模拟)如图所示,子弹以水平速度v 0射向原来静止在光滑水平面上的木块,并留在木块中和木块一起运动.在子弹射入木块的过程中,下列说法中正确的是()A .子弹对木块的冲量一定大于木块对子弹的冲量B .子弹对木块的冲量和木块对子弹的冲量大小一定相等C .子弹速度的减小量一定等于木块速度的增加量D .子弹动量变化的大小一定大于木块动量变化的大小答案B解析水平方向上,子弹所受合外力与木块受到的合外力为作用力与反作用力,它们大小相等、方向相反、作用时间t 相等,根据I =Ft ,可知子弹对木块的冲量与木块对子弹的冲量大小相等、方向相反,故A 错误,B 正确;子弹与木块组成的系统所受合外力为零,系统动量守恒,由动量守恒定律可知,子弹动量变化量大小等于木块动量变化量大小,由于子弹与木块的质量不一定相同,子弹速度的减小量不一定等于木块速度的增加量,故C 、D 错误.2.(多选)如图所示,质量为M 的木块放在光滑的水平面上,质量为m 的子弹(可视为质点)以水平速度v 0射中木块,并最终留在木块中与木块一起以速度v 运动,已知当子弹相对木块静止时,木块前进距离为L ,子弹进入木块的深度为s ,此过程经历的时间为t .若木块对子弹的阻力大小f 视为恒定,则下列关系式中正确的是()A .fL =12M v 2B .ft =m v 0-m vC .v =m v 0M D .fs =12m v 02-12m v 2答案AB解析由动能定理,对木块可得fL =12M v 2,选项A 正确;以向右为正方向,由动量定理,对子弹可得-ft =m v -m v 0,则ft =m v 0-m v ,选项B 正确;对木块、子弹整体,根据动量守恒定律得m v 0=(M +m )v ,解得v =m v 0M +m ,选项C 错误;对整体,根据能量守恒定律得fs =12m v 02-12(M +m )v 2,选项D 错误.3.(多选)(2023·江西吉安市高三模拟)如图所示,质量m =2kg 的物块A 以初速度v 0=2m/s 滑上放在光滑水平面上的长木板B ,A 做匀减速运动,B 做匀加速运动,经过时间t =1s ,物块A 、长木板B 最终以共同速度v =1m/s 做匀速运动,重力加速度g 取10m/s 2,由此可求出()A .长木板B 的质量为2kgB .物块A 与长木板B 之间的动摩擦因数为0.1C .长木板B 的长度至少为2mD .物块A 与长木板B 组成的系统损失的机械能为2J 答案ABD解析A 做匀减速运动,B 做匀加速运动,最后一起做匀速运动,共同速度v =1m/s ,取向右为正方向,设B 的质量为M ,根据动量守恒定律得m v 0=(m +M )v ,解得M =2kg ,故A 正确;木板B 匀加速运动的加速度a B =ΔvΔt=1m/s 2,根据牛顿第二定律,对B 有μmg =Ma B ,解得μ=0.1,故B 正确;前1s 内B 的位移s B =0+v 2·t =0+12×1m =0.5m ,A 的位移s A =2+12×1m =1.5m ,所以木板B 的最小长度L =s A -s B =1m ,故C 错误;A 、B 组成的系统损失的机械能ΔE =12m v 02-12(m +M )v 2=2J ,故D 正确.4.如图所示,光滑水平面上有一矩形长木板,木板左端放一小物块,已知木板质量大于物块质量,t =0时两者从图中位置以相同的水平速度v 0向右运动,碰到右面的竖直挡板后木板以与原来等大反向的速度被反弹回来,运动过程中物块一直未离开木板,则关于物块运动的速度v 随时间t 变化的图像可能正确的是()答案A解析木板碰到挡板前,物块与木板一直做匀速运动,速度为v0;木板碰到挡板后,物块向右做匀减速运动,速度减至零后向左做匀加速运动,木板向左做匀减速运动,最终两者速度相同,设为v1.设木板的质量为M,物块的质量为m,取向左为正方向,则由动量守恒得:v0<v0,故A正确,B、C、D错误.M v0-m v0=(M+m)v1,得v1=M-mM+m5.(多选)如图所示,一质量M=8.0kg的长方形木板B放在光滑水平地面上,在其右端放一个质量m=2.0kg的小木块A.给A和B大小均为5.0m/s、方向相反的初速度,使A开始向左运动,B开始向右运动,A始终没有滑离B板,A、B之间的动摩擦因数为0.5,重力加速度g取10m/s2.则在整个过程中,下列说法正确的是()A.小木块A的速度减为零时,长木板B的速度大小为3.75m/sB.小木块A的速度方向一直向左,不可能为零C.小木块A与长木板B共速时速度大小为3m/sD.长木板的长度可能为10m答案ACD解析木块与木板组成的系统动量守恒,由于初速度大小均为v0=5.0m/s,所以木板的动量大于小木块的动量,系统合动量方向向右,所以木块A先向左做减速运动,速度减为零后反向向右做加速运动,最后木块与木板一起做匀速直线运动,以向右为正方向,由动量守恒定律得,当木块A的速度减为零时,M v0-m v0=M v B,代入数据解得v B=3.75m/s,故A正确,B错误;最终木块与木板速度相同,根据动量守恒定律可得M v0-m v0=(M+m)v,代入数据解得v =3m/s ,故C 正确;最终木块与木板相对静止,一起做匀速直线运动,对系统由能量守恒定律可知12M v 02+12m v 02-12(M +m )v 2=μmgs ,代入数据解得s =8m ,木板的最小长度为8m ,可能为10m ,故D 正确.6.(2023·广东佛山市模拟)如图甲所示,长木板A 静止放在光滑的水平面上,质量m B =1kg 的小物块B 以p =3kg·m/s 的初动量滑上长木板A 的上表面,由于A 、B 间存在摩擦,之后A 、B 的动量随时间变化的情况如图乙所示(B 最终没滑离A ).g 取10m/s 2,则下列说法正确的是()A .长木板A 的质量为1kgB .系统损失的机械能为2JC .长木板A 的最小长度为2mD .A 、B 间的动摩擦因数为0.1答案D解析因为B 的初动量为p =3kg·m/s ,初速度v 0=3m/s ,最终两者共速,可知最终速度为v=p B m B =21m/s =2m/s ,则由A 、B 系统动量守恒可知p =(m A +m B )v ,解得m A =0.5kg ,选项A 错误;系统损失的机械能为ΔE =12m B v 02-12(m A +m B )v 2=12×1×32J -12×(1+0.5)×22J =1.5J ,选项B 错误;由功能关系可得μm B gL =ΔE =1.5J ,经过1s 两者共速,则对A 由动量定理有μm B gt =m A v ,解得L =1.5m ,μ=0.1,选项C 错误,D 正确.7.(2023·广东茂名市模拟)如图所示,质量为m =245g 的物块(可视为质点)放在质量为M =0.5kg 的木板左端,足够长的木板静止在光滑水平面上,物块与木板间的动摩擦因数为μ=0.4,质量为m 0=5g 的子弹以速度v 0=300m/s 沿水平方向射入物块并留在其中(时间极短),g 取10m/s 2.子弹射入后,求:(1)子弹进入物块后与物块达到共速时的速度v 1的大小;(2)木板向右滑行的最大速度v 2的大小;(3)物块在木板上滑行的时间t .答案(1)6m/s(2)2m/s(3)1s解析(1)子弹射入物块的过程,以子弹和物块组成的系统为研究对象,取向右为正方向,由动量守恒定律得m0v0=(m0+m)v1代入数据解得子弹进入物块后与物块达到共速时的速度v1=6m/s.(2)当子弹、物块、木板三者同速时,木板的速度最大,由动量守恒定律可得(m0+m)v1=(m0+m+M)v2代入数据解得v2=2m/s.(3)对物块在木板上滑动时,由动量定理得-μ(m0+m)gt=(m0+m)(v2-v1)代入数据解得物块在木板上滑行的时间t=1s.8.如图所示,一质量m1=0.45kg的平板小车静止在光滑的水平轨道上.车顶右端放一质量m2=0.5kg的小物块,小物块可视为质点,小物块与小车上表面之间的动摩擦因数μ=0.5.现有一质量m0=0.05kg的子弹以v0=100m/s的水平速度射中小车左端,并留在小车中,子弹与小车相互作用时间很短.g取10m/s2,求:(1)子弹刚射入小车后,小车的速度大小v1;(2)要使小物块不脱离小车,小车的长度至少为多少.答案(1)10m/s(2)5m解析(1)子弹射入小车的过程中,子弹与小车组成的系统动量守恒,由动量守恒定律得m0v0=(m0+m1)v1,代入数据解得v1=10m/s.(2)子弹、小车、小物块组成的系统动量守恒,设当小物块与小车共速时,共同速度为v2,两者相对位移大小为L,由动量守恒定律和能量守恒定律有(m0+m1)v1=(m0+m1+m2)v2,μm2gL=12(m0+m1)v12-12(m0+m1+m2)v22,联立解得L=5m,故要使小物块不脱离小车,小车的长度至少为5m.9.(2023·山西省模拟)如图所示,质量M=1kg的平板车A放在光滑的水平面上,质量m=0.5kg的物块B放在平板车右端上表面,质量m=0.5kg的小球C用长为6.4m的细线悬挂于O点,O点在平板车的左端正上方,距平板车上表面的高度为6.4m,将小球向左拉到一定高度,细线拉直且与竖直方向的夹角为60°,由静止释放小球,小球与平板车碰撞后,物块刚好能滑到平板车的左端,物块相对平板车滑行的时间为0.5s,物块与平板车间的动摩擦因数为0.6,忽略小球和物块的大小,重力加速度g 取10m/s 2,求:(1)平板车的长度;(2)小球与平板车碰撞过程损失的机械能.答案(1)1.125m (2)5.625J 解析(1)设物块在平板车上滑动时的加速度大小为a ,根据牛顿第二定律有μmg =ma 代入数据解得a =6m/s 2设物块与平板车最后的共同速度为v ,根据运动学公式有v =at =3m/s设小球与平板车相碰后瞬间,平板车的速度为v 1,根据动量守恒定律有M v 1=(m +M )v 解得v 1=4.5m/s设平板车的长度为L ,根据能量守恒定律有μmgL =12M v 12-12(m +M )v 2代入数据解得L =1.125m(2)设小球与平板车相碰前瞬间速度为v 0,根据机械能守恒定律有mg (l -l cos 60°)=12m v 02解得v 0=8m/s设碰撞后瞬间小球的速度为v 2,取水平向右为正方向,根据动量守恒定律有m v 0=M v 1+m v 2解得v 2=-1m/s小球与平板车碰撞过程损失的机械能为ΔE =12m v 02-12m v 22-12M v 12=5.625J.。

专题复习-子弹打木块教案

专题复习-子弹打木块教案

专题复习:“子弹打木块”教学目标:“子弹打木块”是中学物理中十分典型的物理模型,几乎可以涉及力学的全部定理、规律.因此,可以从解题的角度对力学知识、方法概括和总结,以提高分析、解决问题的能力.用拓宽的方法可以达到培养学生一题多解、多题一法融会贯通的效果.教学重点:掌握“子弹打木块”典型的物理模型的力学规律以及解答基本思路。

教学难点:“子弹打木块”模型动量、能量规律。

德育目标:培养学生严谨的科学态度和认真细致的科学精神。

教学过程:[子弹打木块原型] 题1.设质量为m 的子弹以初速度v0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,设木块对子弹的阻力恒为f,求: 木块至少多长子弹才不会穿出?子弹在木块中运动了多长时间?分析:子弹射入木块后,m 受M 的阻力做匀减速运动,M 受m 的阻力而从静止开始做匀加速运动,经一段时间t,两者达到相同的速度v 处于相对静止,m 就不至于从M 中穿出,在此过程中,子弹在木块中进入的深度L 即为木块的最短长度,皮后,m 和M 以共同速度v 一起做匀速直线运动.(1)解:以m 和M 组成的系统为研究对象,根据动量守恒()v m M mv +=0从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为s1、s2,如图所示,显然有s1-s2=L 对子弹用动能定理: 22012121mv mv s f -=⋅ ……①对木块用动能定理:2221Mv s f =⋅ ……②①、②相减得:()()2022022121v m M Mm v m M mv L f +=+-=⋅ ……③由上式可得: ()202v m M f Mm L +=(2)以子弹为研究对象,由牛顿运动定律和运动学公式可得:v()m M f Mmv a v v t +=-=00[变化1]若已知木块长度为L,欲使子弹穿透木块,子弹的速度至少为多少? 答: ()Mm Lm M f v +>=20 [变化2]若原题型中子弹在木块中刚好”停”时,木块运动距离为S,子弹射入木块的深度为d,则d S(填>、=、<) 分析:以木块为研究对象有: 对子弹用动能定理:22012121mv mv s f -=⋅ ……①以系统为研究对象::()()2022022121v m M Mm v m M mv d f +=+-=⋅ ……② 再结合动量守恒:()vm M mv +=0 ……③ 可解出:m m M S d += 即d>S [变化3]若不固定木块时,子弹穿透木块后的速度为30v ,现固定木块,其它条件相同,则子弹穿过木块时的速度为多少?分析:设木块不固定时,子弹穿透后木块的速度为V,由动量守恒得MV v m mv +⋅=300再由功能关系得:2202021)3(2121MV v m mv L f --=⋅ 当木块固定时,由动能定理得:2022121mv mv L f -=⋅-由以上三式得:M m v v 4130+=“于弹打木块”问题具有下列几条主要的力学规律:1.动力学规律 由于组成系统的两物体受到大小相同、方向相反的一对恒力,故两物体的加速度大小与质量成反比,方向相反。

2023届高考一轮复习学案:三大力学观点中的三类典型题

2023届高考一轮复习学案:三大力学观点中的三类典型题

“三大力学观点”中的三类典型题学案1内容归纳:1.解动力学问题的三个基本观点(1)力的观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题。

(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题。

(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题。

2.力学中的五大规律规律公式表达=ma牛顿第二定律F合W合=ΔE k动能定理W合=m v-m vE1=E2机械能守恒定律mgh1+m v=mgh2+m vF合t=p′-p动量定理I合=Δp动量守恒定律m1v1+m2v2=m1v1′+m2v2′突破一“滑块—弹簧”模型模型图示模型特点(1)两个或两个以上的物体与弹簧相互作用的过程中,若系统所受外力的矢量和为零,则系统动量守恒。

(2)在能量方面,由于弹簧形变会使弹性势能发生变化,系统的总动能将发生变化;若系统所受的外力和除弹簧弹力以外的内力不做功,系统机械能守恒。

(3)弹簧处于最长(最短)状态时两物体速度相等,弹性势能最大,系统动能通常最小(完全非弹性碰撞拓展模型)。

(4)弹簧恢复原长时,弹性势能为零,系统动能最大(弹性碰撞拓展模型,相当于碰撞结束时)[典例1]两物块A、B用轻弹簧相连,质量均为2 kg,初始时弹簧处于原长,A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,质量为4 kg的物块C静止在前方,如图所示,B与C碰撞后二者会粘连在一起运动。

则下列说法正确的是()A.B、C碰撞刚结束时的共同速度为3 m/sB..弹簧的弹性势能最大时,物块A的速度为3 m/s C.弹簧的弹性势能最大值为36 JD.弹簧再次恢复原长时A、B、C三物块速度相同[练习1]如图所示,A、B、C三个木块的质量均为m,置于光滑的水平面上,B、C 之间有一轻质弹簧,弹簧的两端与木块接触但不固连,将弹簧压缩到不能再压缩时用细线把B、C紧连,使弹簧不能伸展,以至于B、C可视为一个整体。

现A以初速度v0沿B、C的连线方向朝B运动,与B相碰并黏合在一起。

子弹打木块、弹簧模型

子弹打木块、弹簧模型
(3)弹簧的最大弹性势能?
(4)弹簧恢复原长时,AB的速度?
(5) A的最大速度? (6)B的最小速度如何?
注意:弹簧状态的把握
由于弹簧的弹力随形变量变化,所以弹簧弹力联系 的“两体模型”,一般都是作加速度变化的复杂运动 ,所以通常需要用“动量关系”和“能量关系”分析 求解。复杂的运动过程不容易明确,特殊的状态必须 把握;弹簧最长(短)时两体的速度相同;弹簧自由 时两体的速度最大(小)。
2、质量为m的物块甲以3m/s的速度在光滑水平面上运动,有 一轻弹簧固定于其左端,另一质量也为m的物块乙以4m/s的速 度与甲相向运动,如图所示.则( AD)
A.甲、乙两物块在弹簧压缩过程中,由于弹力属于内力作用, 故系统动量守恒
B.当两物块相距最近时,甲物块的速率为零 C.甲物块的速率可能达到5m/s D.当甲物块的速率为1m/s时,乙物块的速率可能为2m/s, 也可能为0
例1、
总结求解方法:
1、动量守恒——关键看系统的合外力是否为零 2、受力分析,“子弹打木块”模型实质是两个物体在一对作用 力和反作用力(认为是恒力)作用下的运动,物体做匀变速运 动,可用动力学规律求解 3、求时间——单个物体运用动量定理或牛顿运动定律和运动学 关系 4、求位移——单个物体运用动能定理或牛顿运动定律和运动学 关系 5、涉及相对位移——有机械能向内能转化 E损=Q=fS相 6、匀变速运动---可利用v-t图像(定性分析时多用到)
二、弹簧模型的特点与方法
1、注意弹簧弹力特点及运动过程。 弹簧弹力不能瞬间变化
2、弹簧连接两种形式:连接或不连接。 连接:可以表现为拉力和压力 不连接:只表现为压力。
3、动量问题:动量守恒。 4、能量问题:机械能守恒(弹性碰撞)。
动能和弹性势能之间的转化

子弹打木块模型PPT学习教案

子弹打木块模型PPT学习教案
第9页/共53页
变式2:(1)滑块由高处运动到轨道底端,机械能守恒。
mgH
1 2
mv
0
2
v0 2gH
(2)滑块滑上平板车后,系统水平方向动量守恒。小车最
大速度为与滑块共速的速度。 m v0=(m+M)v
v m v0 m 2gH M m M m
(3)由能量守恒定律可知,产生的内能Q为
Q mQgH mg1H(M 1(mM)v2 m)QvM2 mmMgHgHm 1 g(MH m)v2 M m gH
变形1 “子弹”放在上面
2:如图所示,质量为m的小物块以水平速度v0滑上原来静止在光 滑水平面上质量为M的小车上,物块与小车间的动摩擦因数为μ, 小车足够长。求:(列表达式即可)
(1)求m、M的加速度 (2)小物块相对小车静止时的速度; (3)滑块与小车相对静止所经历的时间; (4)到相对小车静止时,小车对地面通过的位移; (5)系统产生热量;(6)物块相对小车滑行距离L
(3)由能量守恒可知系统产生的内即能摩等擦于系力统对 木 块 做 的 功 为 W2 =
机械能的减少量.由②③式可得
m2(v0-v1)2
变形1 “子弹”放在上面 如图:质量为m的物块,以水平速度v0 滑到静止在 光滑水平面上的长木板的左端,已知长木板的质 量为M,其上表面与小物体的动摩擦因数为μ
第7页/共53页
动量守恒定律: m v0 (m M )v
动能定理:子弹 木块
fsm
fs
1 mv 2
1
2
Mv
2
0
1 2
mv
2
0
子弹动能减少:
Ekm
1 2
2 mv
0
2
1 mv 2 2

高中物理子弹打木块模型经典学案

高中物理子弹打木块模型经典学案

子弹打木块模型1.如图所示,质量为M的木块放在光滑水平面上,质量为m的子弹以速度v0沿水平方向射中木块,并最终留在木块中与木块一起以速度v运动。

已知当子弹相对木块静止时木块前进的距离为L,若木块对子弹的阻力f视为恒定,求子弹进入木块深度s2.将质量为m = 2 kg 的物块,以水平速度v0 = 5m/s 射到静止在光滑水平面上的平板车上, 小车的质量为M = 8 kg ,物块与小车间的摩擦因数μ= 0.4 ,取g = 10 m/s2.(1)物块抛到小车上经过多少时间两者相对静止?(2)在此过程中小车滑动的距离是多少?(3)整个过程中有多少机械能转化为内能?v3.子弹水平射入停在光滑水平地面上的木块中,子弹和木块的质量分别为m和M,从子弹开始接触木块到子弹相对木块静止这段时间内,子弹和木块的位移分别为s1和s2(均为相对地面的位移),则s1:s2=__________。

4.如图所示,在光滑水平面上静止地放一长L=10cm、质量M=50g的金属板,在金属板上有一质量m=50g的小铅块,铅块与金属板间的摩擦因数μ=0.03,现让铅块在金属板上从A端以速度v0=0.40m/s开始运动。

求:(1)铅块从开始运动到脱离金属板所经历的时间。

(2)上述过程中摩擦力对铅块所做的功。

(3)上述过程中摩擦力对金属板所做的功。

说明本题(1)问中摩擦力与相对位移的积等于系统损失的机械能。

人船模型适用条件:初状态时人和船都处于静止状态解题方法:画出运动过程示意图,找出速度、位移关系。

5.如图所示,质量为M的小船长L,静止于水面,质量为m的人从船左端走到船右端,不习题1:如图所示,质量为M,长为L的平板小车静止于光滑水平面上,质量为m的人从习题2:如图所示,总质量为M的气球下端悬着质量为m的人而静止于高度为h的空中,欲使人能沿着绳安全着地,人下方的绳至少应为多长?3.如图示,一辆平板车上竖直固定着一个光滑的1/4弧形轨道,轨道半径为R,轨道与平板相切于A,车的平板部分粗糙。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动量守恒、能量守恒定律的综合应用
“子弹打木块、弹簧”模型
学习目标
1.动量守恒与能量守恒的综合运用
2.物理模型的建立
学习重点:能用动量守恒与能量守恒解决一些问题
一、 子弹打木块模型
引入:子弹质量为m ,以速度水平打穿质量为M 、厚为d 的放在光滑水平面上的木块,子弹的速度变为v ,求此过程木块获得的速度及动能。

例1、一质量为m 的子弹,以水平初速度v 0 射向静止在光滑水平面上的质量为M 的木块内,设木块对子弹的阻力恒为f ,且子弹并未穿出,求: (1)子弹、木块相对静止时的速度v (2)子弹在木块内运动的时间
(3)子弹、木块发生的位移以及子弹打进木块的深度
(4)系统损失的机械能、系统增加的内能
(5)要使子弹不穿出木块,木块至少多长?
总结求解方法:
1、 动量守恒——关键看系统的合外力是否为零
2、 受力分析,“子弹打木块”模型实质是两个物体在一对作用力和反作用力(认为是恒力)作用下的运动,物体做匀变速运动,可用动力学规律求解
3、 求时间——单个物体运用动量定理或牛顿运动定律和运动学关系
4、 求位移——单个物体运用动能定理或牛顿运动定律和运动学关系
5、 涉及相对位移——有机械能向内能转化 E 损=Q =fS 相
6、 匀变速运动---可利用v-t 图像(定性分析时多用到)
二、 弹簧模型的特点与方法
1. 注意弹簧弹力特点及运动过程。

弹簧弹力不能瞬间变化
2. 弹簧连接两种形式:连接或不连接。

连接:可以表现为拉力和压力
不连接:只表现为压力。

3. 动量问题:动量守恒。

4. 能量问题:机械能守恒(弹性碰撞)。

动能和弹性势能之间的转化 0V 1图1s M
相S 2S
题型一:判断动量是否守恒
例2、物块A 、B 用一根轻质弹簧连接起来,放在光滑水平面上,A 紧靠墙壁,在B 上施加向左的水平力使弹簧压缩,如图7-25所示,当撤去此力后,下列说法正确的是:( )
A.A 尚未离开墙壁前,弹簧和B 的机械能守恒
B.A 尚未离开墙壁前,A 和B 的总动量守恒
C.A 离开墙壁后,A 和B 的系统的总动量守恒
D.A 离开墙壁后,弹簧和A 、B 系统的机械能守恒 题型二:两个物体的问题
例3、如图所示质量分别为m 1和m 2的两个物体A 和B, B 以v 在光滑的地面上匀速运动,与静止的A 发生碰撞,A 与一弹簧相连,则
(1)A 、B 两物体的运动状态如何?
(2)两者最近时,A 、B 的速度是多少?
(3)弹簧的最大弹性势能?
(4)弹簧恢复原长时,A 、B 的速度各是多少?
(5) A 的最大速度?
(6)B 的最小速度如何?
注意:弹簧状态的把握
由于弹簧的弹力随形变量变化,所以弹簧弹力联系的“两体模型”,一般都是作加速度变化的复杂运动,所以通常需要用“动量关系”和“能量关系”分析求解。

复杂的运动过程不容易明确,特殊的状态必须把握;弹簧最长(短)时两体的速度相同;弹簧自由时两体的速度最大(小)。

题型三:三个物体及综合问题的问题(下节习题课7、8、9三个题目)
课堂练习
1矩形滑块由不同材料的上下两层粘结在一起组成,将其放在光滑的水平面上,质量为m 的子弹以速度水平射向滑块,若射击上层,则子弹恰好不射出;若射击下层,则子弹整个儿恰好嵌入,则上述两种情况相比较( )
A. 两次子弹对滑块做的功一样多
B. 子弹击中上层过程中,系统产生的热量较多
C. 子弹嵌入下层过程中,系统产生的热量较多
D. 两次滑块所受冲量一样大;
2、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定于
其左端,另一质量也为m 的物块乙以4m/s 的速度与甲相向运动,如图所示.则( )
A . 甲、乙两物块在弹簧压缩过程中,由于弹力属于内力作用,故系统动量守恒
B . 当两物块相距最近时,甲物块的速率为零
C . 甲物块的速率可能达到5m/s
D . 当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 A B F。

相关文档
最新文档