LINGO练习题-1及答案
lingo例题
例1.1.1某工厂有两条生产线,分别用生产M 和P 两种型号的产品,利润分别为200元/个和300元/个,生产线的最大生产能力分别为每日100和120,生产线每生产一个M 产品需要1个劳动日(1个工人工作8小时成为1个劳动日)进行调试、检测等工作,而每个P 产品需要2个劳动日,该厂工人每天共计能提供160劳动日,假如原材料等其他条件不受限制,问应如何安排生产计划,才能使获得的利润最大?解:设两种产品的生产量分别为1x 和2x ,则目标函数 12max 200300z x x =+约束条件 1212100,120,2160,0,1,2.i x x x x x i ≤⎧⎪≤⎪⎨+≤⎪⎪≥=⎩ 例1.1.2 基金的优化使用(2001年数学建模竞赛C 题)假设某校基金会得到了一笔数额为M 万元的基金,打算将其存入银行,校基金会计划在n 年末仍保留原基金数额.银行存款税后利率见表元,5n =年的情况下设计具体存款方案.解:分析:假定首次发放奖金的时间是在基金到位后一年,以后每隔一年发放一次,每年发放的时间大致相同,校基金会希望获得最佳的基金使用计划,以提高每年的奖金额,且在n 年末仍保留原基金数额M ,实际上n 年中发放的奖金额全部来自于利息。
如果全部基金都存为一年定期,每年都用到期利息发放奖金,则每年的奖金数为50000.01890⨯=万元,这是没有优化的存款方案。
显然,准备在两年后使用的款项应当存成两年定期,比存两次一年定期的收益高,以此类推。
目标是合理分配基金的存款方案,使得n 年的利息总额最多。
定义:收益比a =(本金+利息)/本金。
于是存2年的收益比为21 2.16%2 1.0432a =+⨯=。
按照银行存款税后利率表计算得到各存款年限对应的最优收益比见表(1) 一次性存成最长期,优于两个(或两个以上)比较短期的组合(中途转存)(2) 当存款年限需要组合时,收益比与组合的先后次序无关。
建立模型 把总基金M 分成5+1份,分别用123456,,,,,x x x x x x 表示,其中12345,,,,x x x x x 分别存成15 年定期,到期后本息合计用于当年发放奖金,6x 存5年定期,到期的本息合计等于原基金总数M 。
lingo练习题
1:SAILCO 公司需要决定下四个季度的帆船生产量。
下四个季度的帆船需求量分别是40 条,60 条,75 条,25 条,这些需求必须按时满足。
每个季度正常的生产能力是40 条帆船,每条船的生产费用为400 美元。
如果加班生产,每条船的生产费用为450 美元。
每个季度末,每条船的库存费用为20 美元。
假定生产提前期为0,初始库存为10 条船。
如何安排生产可使总费用最小?
例2:某公司有6 个建筑工地要开工,每个工地的位置(用平面坐标a, b 表示,距离单位:公里)及水泥日用量d(吨)依次为3,5,4,7,6,11。
目前有两个临时料场位于P (5, 1), Q (2, 7) ,日储量各有20 吨。
假设从料场到工地之间均有直线道路相连,试制定每天的供应计划,即从A, B 两料场分别向各工地运送多少吨水泥,使总的吨公里数最小。
为了进一步减少吨公里数,打算舍弃两个临时料场,改建两个新的,日储量仍各为20吨,问应建在何处,节省的吨公里有多大。
例3 最短路问题在公路网中,司机希望找到一条从一个城市到另一个城市的最短路. 假设图表示的是该公路网, 节点表示货车可以停靠的城市,弧上的权表示两个城市之间的距离(百公里). 那么,货车从城市S 出发到达城市T,如何选择行驶路线,使所经过的路程
最短?。
Lingo精选题目及参考答案
Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134maxx x z += s.t.(约束条件)⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Max x x z +=⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||min 4321x x x x z +++=s.t. ⎪⎪⎩⎪⎪⎨⎧-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
6.1 指派问题有四个工人,要指派他们分别完成4项工作,每人做各项工作所消耗的时间如下表:问指派哪个人去完成哪项工作,可使总的消耗时间为最小?6.2 分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小?1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+0.4*x2+0.8*x3+1.5*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for(ss(i):@free(S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end6.1、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:⎩⎨⎧=其他件工作个工人去做第指派第01j i f ijmin∑∑==⨯4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/;worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略;[obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e !每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略;!@for(time(i,j):@bin(f(i,j))); end6.2设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j 的煤量为ij g那么可以列出如下优化方程式∑∑==⨯=3121min j i ij ij L gs.t ()3,2,121==∑=j d gi jij()2,131=≤∑=i s gj iijmodel : sets :supply/1,2/:s; demand/1,2,3/:d;link(supply,demand):road,sd; endsets data :road=10 5 6 4 8 12; d=50 70 40; s=60 100; enddata[obj] min =@sum (link(i,j):road(i,j)*sd(i,j)); @for (demand(i):@sum (supply(j):sd(j,i))=d(i)); @for (supply(i):@sum (demand(j):sd(i,j))<s(i));end1.线性规划模型。
lingo题目与答案(附程序)
Lingo软件题目与答案1.一奶产品加工厂用牛奶生产A1,A2两种奶产品,1桶牛奶可以在甲类设备上用12h加工,成3kg A1,或者在乙类设备上用8h加工成4kg A2。
根据市场需求,生产的A1,A2全部能售出,且每千克A1获利24元,每千克A2获利16元。
现在加工厂每天能得到50桶牛奶供应,每天正式工人的劳动时间为480h,并且甲类设备每天最多加工100kg A1,乙类设备的加工时间没有限制,讨论以下问题1)若35元可以买一桶牛奶,做这项投资是否值得?若投资,每天最多购买多少桶牛奶?2)若聘用临时工人以增加劳动时间,付给临时工人的工资最多是多少?3)由于市场需求变化,每千克A1的获利增加到30元,是否改变原有的生产计划?Lingo程序:model:max=72*x+64*y;x+y<50;12*x+8*y<480;3*x<100;end2.一汽车厂生产小、中、大三种类型的的汽车,已知各类型每辆车对钢材、劳动时间的需求,利润以及每月工厂钢材、劳动时间如下表。
1)制定生产计划,使工厂利润最大;2)若生产某类型车,则至少需生产80辆,求改变后的生产计划。
3.建筑工地的位置(a,b)和水泥日用量d如下表,目前有两个临时料场位于P(5,1),Q(2,7),日储量各有20t。
1)求从P,Q两料场分别向各工地运送多少吨水泥,使总的吨公里数最小;2)现打算舍弃原有料场,新建两个料场A,B,求新料场的位置,使新的吨公里数最小,此时与P,Q相比能节省多少吨公里。
4.设从4个产地Ai往3个销地Bj运送物资,产量、销量和单位运费如下表,求总运费最少的运输方案和总运费。
Lingo程序:Model:sets:warehouse/1..3/:a;customer/1..4/:b;link(warehouse,customer):c,x;endsetsdata:a=30,25,21;b=15,17,22,12;c=6,2,6,7,4,9,5,3,8,8,1,5;enddata[OBJ]min=@sum(link:c*x);@for(warehouse(i): @sum(customer(j):x(i,j))<a(i));@for(customer(j):@sum(warehouse(i):x(i,j))=b(j));end5.求下图中v1到v11的最短路Lingo程序:Model:sets:cities/1..11/;roads(cities,cities):p,w,x; endsetsdata: !半连通图和权图;p=0 1 1 1 0 0 0 0 0 0 00 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 10 0 0 0 1 1 1 1 0 1 10 0 0 0 0 0 1 0 1 0 10 0 0 0 0 0 0 1 1 1 0;w=0 2 8 1 0 0 0 0 0 0 02 0 6 0 1 0 0 0 0 0 08 6 0 7 5 1 2 0 0 0 01 0 7 0 0 0 9 0 0 0 00 1 5 0 0 3 0 2 9 0 00 0 1 0 3 0 4 0 6 0 00 0 2 9 0 4 0 0 3 1 00 0 0 0 2 0 0 0 7 0 90 0 0 0 9 6 3 7 0 1 20 0 0 0 0 0 1 0 1 0 40 0 0 0 0 0 0 0 9 2 4;enddatan=@size(cities);min=@sum(roads:w*x);@for(cities(i)|I # ne # 1 # and # I # ne # n: @sum(cities(j):p(i,j)*x(i,j))=@sum(cities(j):p(j,i)*x(j,i)));@sum(cities(j):p(1,j)*x(1,j))=1;end6.露天矿里有若干个爆破生成的石料堆,每堆称为一个铲位,每个铲位已预先根据铁含量将石料分成矿石和岩石。
lingo习题及答案
第一题:一、摘要本文是一篇关于基金的使用计划模型。
在现实经济高速发展的背景下,人们越来越清醒地意识到:一个合理的数学应用模型对于现今生产、投资、规划等实际应用项目的重要性。
本文所建立的存款模型就是个很好的例子,此模型最终要解决的是选择最佳基金使用计划,使得学校基金会能够有充分的资金在基金会运转。
这个模型的解决是我们更清楚掌握了最优化模型的解决方法及LINGO软件求解线性规划的方法。
二、问题的提出某校基金会有一笔数额为M元的基金,打算将其存入银行或购买国库券。
当前银行存款及各期国库券的利率见下表。
假设国库券每年至少发行一次,发行时间不定。
取款政策参考银行的现行政策。
校基金会计划在n年内每年用部分本息奖励优秀师生,要求每年的奖金额大致相同,且在n年末仍保留原基金数额。
校基金会希望获得最佳的基金使用计划,以提高每年的奖金额。
请你帮助校基金会在如下情况下设计基金使用方案,并对M=5000万元,n=10年给出具体结果:1.只存款不购国库券;2.可存款也可购国库券。
3.学校在基金到位后的第3年要举行百年校庆,基金会希望这一年的奖金二、模型的假设(1)银行利息和国库券结算方式为单利;(2) 定期存款和国库券不到期均不能取款;(3)国库券每年发行一期,发行月份不定,但于发行月一号发行;(4)基金结算后马上又进行投资(存入银行或买国库券)中间间隔时间不予考虑;(5)定期存款实际收益利率为公布利率的80%(20%为利息税上交国库)国库券存款利率与同期的定期存款利率相同,但不交利息税;(6)每年年初评奖且奖金数目相同(除第三问),N年后本金仍为M;三、符号的说明x第i年所存入银行的j年期的存款;ijy第i年说购买的j年期的国库券;ij'r银行同期活期利率;r银行同期活期税后利率;'r银行同期j年期固定利率;jr银行同期j年期固定利率税后利率;jM本金=5000万元,Z=每年的奖金四、模型的建立与求解第一种情况:只存款不买国库券我们考虑到这种情况下,存款的时间是一定的,所以活期和三个月,半年的利率都太低,所以在这种情况下,我们直接考虑一年的利率,这样才能获得较多的利息,从而使得每年发放的奖金数目尽可能多——即我们要实现的目标。
数学建模lingo作业-习题讲解
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
Lingo精选题目及答案
Lingo精选题目及答案Lingo 精选题目及答案答题要求:将Lingo 程序复制到Word 文档中,并且附上最终结果。
1、简单线性规划求解(目标函数)2134m axx x z += s.t.(约束条件)≥≤≤+≤+0,781022122121x x x x x x x2、整数规划求解219040Maxx x z +=≥≤+≤+0,702075679212121x x x x x x 3、0-1规划求解Max 432215.18.04.0x x x x f +++=10106234321≤+++x x x x10,,,4321或=x x x x4、非线性规划求解||4||3||2||m in4321x x x x z +++=s.t.-=+--=-+-=+--2132130432143214321x x x x x x x x x x x x5、集合综合应用产生一个集合5052--=x x y ,(10,...,2,1=x ),求y 前6个数的和S 1,后6个数的和S 2,第2~8个数中的最小值S 3,最大值S 4。
6、综合题要求列出具体的目标函数和约束条件,然后附上Lingo 程序和最终结果。
6.1 指派问题问指派哪个人去完成哪项工作,可使总的消耗时间为最小?6.2 分配问题某两个煤厂A1,A2每月进煤数量分别为60t和100t,联合供应3个居民区B1,B2,B3。
3个居民区每月对煤的需求量依次分别为50t,70t,40t,煤厂A1离3个居民区B1,B2,B3的距离依次分别为10km,5km,6km,煤厂A2离3个居民区B1,B2,B3的距离分别为4km,8km,12km。
问如何分配供煤量使得运输量(即t·km)达到最小?1、model:max=4*x1+3*x2;2*x1+x2<10;x1+x2<8;x2<7;end2、model:max=40*x1+90*x2;9*x1+7*x2<56;7*x1+20*x2<70;@gin(x1);@gin(x2);end3、model:max=x1^2+0.4*x2+0.8*x3+1.5*x4;3*x1+2*x2+6*x3+10*x4<10;@bin(x1); @bin(x2);@bin(x3); @bin(x4);end4、model:max=@abs(x1)+2*@abs(x2)+3*@abs(x3)+4*@abs(x4);x1-x2-x3+x4=0;x1-x2+x3-3*x4=1;x1-x2-2*x3+3*x4=-1/2;end5、model:sets:jihe/1..10/:y;ss/1..4/:S;endsets!由于y和s中部分有负数,所以要先去掉这个约束;@for(jihe:@free(y));@for (ss(i):@free (S));!产生元素;@for (jihe(x):y(x)=x^2-5*x-50); S(1)=@sum (jihe(i)|i#le#6:y(i)); S(2)=@sum (jihe(i)|i#ge#5:y(i));S(3)=@min (jihe(i)|i#ge#2 #and# i#le#8:y(i)); S(4)=@max (jihe(i)|i#ge#2 #and# i#le#8:y(i)); end6.1、设:第i 个工人做第j 项工作用时ij t ,标志变量ij f 定义如下:=其他件工作个工人去做第指派第01j i f ijmin∑∑==?4141i j ij ijt fs.t. 141=∑=i ijf()4,3,2,1=j 每份工作都有一人做∑==411j ijf()4,3,2,1=i 每人都只做一项工作model : sets :work/A B C D/;worker/jia yi bing ding/; time(worker,work):t,f; endsets!目标函数可以用[obj]标志出,也可以省略;[obj] min =@sum (time(i,j):t(i,j)*f(i,j)); data :!可以直接复制表格,但是在最后要有分号; t=; e nddata!每份工作都有一人做;@for (work(j):@sum (time(i,j):f(i,j))=1); !每人都只做一项工作;@for (worker(i):@sum (time(i,j):f(i,j))=1); !让f 取0-1值,此条件可以省略;!@for(time(i,j):@bin(f(i,j))); end6.2设:煤厂进煤量i s ,居民区需求量为i d ,煤厂i 距居民区j 的距离为ij L ,煤厂i 供给居民区j 的煤量为ij g那么可以列出如下优化方程式∑∑==?=3121min j i ij ij L gs.t ()3,2,121==∑=j d gi jij()2,131=≤∑=i s gj iijmodel : sets :supply/1,2/:s; demand/1,2,3/:d;link(supply,demand):road,sd; endsets data :road=10 5 6 4 8 12; d=50 70 40; s=60 100; enddata[obj] min =@sum (link(i,j):road(i,j)*sd(i,j)); @for (demand(i):@sum (supply(j):sd(j,i))=d(i)); @for (supply(i):@sum (demand(j):sd(i,j))<s(i));< p="">end1.线性规划模型。
lingo练习
数学规划模型及lingo 求解练习: 1.考虑下述不平衡指派问题。
现有7个人指派给他们5项任务,效率矩阵如下表。
约定:①一个任务只能被一个人完成;②一个人在某时刻只能做一项任务;③所(1) lingo 代码求解,给出最优指派以及最优值; 1. 模型的建立:设:题干中有i 个人共要完成j 件事情,可建立以下模型:i=1,2,3…..m j=1,2,3…..n=0或1xij=1:指派第i 人做第j 事 xij=0: 不指派第i 人做第j 事 ( cij )称为系数矩阵。
2. 详细代码: Model: SETS:Chandi/1..7/:cl; Xiaodi/1..5/:xl;ChanXiao(Chandi,Xiaodi):c,x; ENDSETS DATA:c=2 15 13 1 8 10 4 14 15 7 9 14 16 13 8 7 8 11 9 4 8 4 15 8 6 12 4 6 8 13 5 16 8 5 10;m nij iji=1j=1min =c x Z •∑∑11nijj x==∑11miji x==∑ijx[obj] min=@sum(ChanXiao:c*x);@for(Chandi(i):@sum(Xiaodi(j):x(i,j))<1); @for(Xiaodi(j):@sum(Chandi(i):x(i,j))=1);@for(Chandi(i):@sum(Xiaodi(j):c(i,j)*x(i,j))<Cmax); @for(ChanXiao(i,j):@bin(x(i,j))); End(2) 目标是任务尽早完工。
建立数学规划模型,并编写lingo 代码求解,给出最优指派以及最优值; 1.模拟建立:设:题干中有i 个人共要完成j 件事情,可建立以下模型: min max Z C =•j=1,2,3,….ni=1,2,3,….mi=1,2,3…..m 0或1xij=1:指派第i 人做第j 事 xij=0: 不指派第i 人做第j 事 ( cij )称为系数矩阵。
lingo练习题目
Lingo培训计划培训目的:了解线性规划、非线性规划和整数规划的基本概念和性质,掌握把一个实际问题转化为规划问题的步骤和思想。
掌握lingo软件的使用方法,熟悉把一个规划问题输入lingo软件的方法,理解输出结果的含意。
进度安排:第一天上午-理论学习1.Lingo12简介2.线性规划的概念3.线性规划求解方法4.线性规划例题5. Lingo软件各部分功能介绍6.求解线性规划例题7.对例题结果的解释8.整数规划的概念与特点9.整数规划例题10.软件求解整数规划问题第一天下午-机房练习1.安装Lingo软件,复习上午的理论知识2.熟悉软件的各种菜单和工具3.输入上午的例题,观察结果4.完成下列习题:1)一家餐厅24小时全天候营业,在各时间段中所需要的服务员数量分别为:2:00~6:00 3人6:00~10:00 9人10:00~14:00 12人14:00~18:00 5人18:00~22:00 18人22:00~ 2:00 4人设服务员在各时间段的开始时点上上班并连续工作八小时,问该餐厅至少配备多少服务员,才能满足各个时间段对人员的需要。
试构造此问题的数学模型。
2)现要截取2.9米、2.1米和1.5米的元钢各100根,已知原材料的长度是7.4米,问应如何下料,才能使所消耗的原材料最省。
试构造此问题的数学模型。
3)某糖果厂用原料A、B、C加工成三种不同牌号的糖果甲、乙、丙。
已知各种牌号糖果中A、B、C三种原料的含量要求、各种原料的单位成本、各种原料每月的限制用量、三种牌号糖果的单位加工费及售价如表1所示。
问该厂每月生产这三种牌号糖果各多少千克,才能使该厂获利最大?试建立这个问题的线性规划模型。
4)某厂在今后4个月内需租用仓库存放物资,已知各个月所需的仓库面积如表2所示。
租金与租借合同的长短有关,租用的时间越长,享受的优惠越大,具体数字见表3。
租借仓库的合同每月初都可办理,每份合同具体规定租用面积数和期限。
Lingo软件训练题
L i n g o软件训练题一、基础训练答题要求:将Lingo程序复制到Word文档中,并且附上最终结果。
1、简单线性规划求解答案:程序:Model:min=13*x1+9*x2+10*x3+11*x4+12*x5+8*x6;x1+x4=400;x2+x5=600;x3+x6=500;0.4*x1+1.1*x2+x3<=800;0.5*x4+1.2*x5+1.3*x6<=900;x1>=0;x2>=0;x3>=0;x4>=0;x5>=0;x6>=0;End结果:Global optimal solution found.Objective value: 13800.00Total solver iterations: 0Variable Value Reduced CostX1 0.000000 2.000000X2 600.0000 0.000000X3 0.000000 2.000000X4 400.0000 0.000000X5 0.000000 3.000000X6 500.0000 0.000000Row Slack or Surplus Dual Price1 13800.00 -1.0000002 0.000000 -11.000003 0.000000 -9.0000004 0.000000 -8.0000005 140.0000 0.0000006 50.00000 0.0000007 0.000000 0.0000008 600.0000 0.0000009 0.000000 0.00000010 400.0000 0.00000011 0.000000 0.00000012 500.0000 0.0000002、整数规划求解s.t. ⎪⎩⎪⎨⎧≥≤+≤+0,702075679212121x x x x x x答:程序:Model :max =9*x1+7*x2;9*x1+7*x2<=56;7*x1+20*x2<=70;x1>=0;x2>=0;end结果:Global optimal solution found.Objective value: 355.8779Total solver iterations: 2Variable Value Reduced CostX1 4.809160 0.000000X2 1.816794 0.000000Row Slack or Surplus Dual Price1 355.8779 1.0000002 0.000000 1.2977103 0.000000 4.0458024 4.809160 0.0000005 1.816794 0.000000二、综合训练答题要求:写出目标函数与约束条件,将Lingo 程序复制到Word 文档中,并且附上最终结果。
LINGO练习题
1、 在以色列,为分享农业技术服务和协调农业生产,常常由几个农庄组成一个公共农业社区。
在本课题中的这个公共农业社区由三个农庄组成,我们称之为南方农庄联盟。
南方农庄联盟的全部种植计划都由技术协调办公室制订。
当前,该办公室正在制订来年的农业生产计划。
南方农庄联盟的农业收成受到两种资源的制约。
一是可灌溉土地的面积,二是灌溉用水量。
这些数据由下表给出。
表1 南方农庄联盟可用资源数据注:英亩-英尺是水容积单位,1英亩-英尺就是面积为1英亩,深度为1英尺的体积;1英亩-英尺≈1233.48立方米。
南方农庄联盟种植的作物是甜菜、棉花和高粱,这三种作物的纯利润及耗水量不同。
农业管理部门根据本地区资源的具体情况,对本联盟农田种植规划制定的最高限额数据由下表给出。
表2 南方农庄联盟农作物种植数据三家农庄达成协议:各家农庄的播种面积与其可灌溉耕地面积之比相等;各家农庄种植何种作物并无限制。
所以,技术协调办公室面对的任务是:根据现有的条件,制定适当的种植计划帮助南方农庄联盟获得最大的总利润,现请你替技术协调办公室完成这一决策。
对于技术协调办公室的上述安排,你觉得有何缺陷,请提出建议并制定新的种植计划。
模型建立: 符号假设:第i 个农庄的可灌溉根地面积为si 英亩(i=1,2,3…n);第i 个农庄分配的用水量为vi 英亩-英尺(i=1,2,3…n); 第j 种作物最大的种植面积为Mj 英亩(j=1,2,3…n);第j 种作物的耗水量为aj 英亩-英尺/英亩(j=1,2,3…n); 第j 种作物的纯利润为yj 美元/英亩(j=1,2,3…n);第i 个农庄所种植的第j 种作物的面积为xij 英亩(i,j=1,2,3…n); 常数c ;目标函数: 1m ax *ni xij yi ==∑约束条件:,1,1,1,1*ni jni jni jni jxij sixij M jxij aj vixijcsi====⎧≤⎪⎪⎪≤⎪⎪⎪⎨≤⎪⎪⎪⎪⎪=⎪⎩∑∑∑∑代入数值:Max=(x11+x21+x31)*400+(x12+x22+x32)*300+(x13+x23+x33)*100;x11+x12+x13<400;x21+x22+x23<600;x31+x32+x33<300;x11+x21+x31<600;x12+x22+x32<500;x13+x23+x33<325;3*x11+2*x12+x13<600;3*x21+2*x22+x23<800;3*x31+2*x32+x33<375;(x11+x12+x13)/400=( x21+x22+x23)/600;( x21+x22+x23)/600=( x31+x32+x33)/300;运行结果;Global optimal solution found.Objective value: 253333.3Infeasibilities: 0.000000Total solver iterations: 8Variable Value Reduced CostX11 133.3333 0.000000X21 100.0000 0.000000X31 25.00000 0.000000X12 100.0000 0.000000X22 250.0000 0.000000X32 150.0000 0.000000X13 0.000000 33.33333X23 0.000000 33.33333X33 0.000000 33.33333Row Slack or Surplus Dual Price1 253333.3 1.0000002 166.6667 0.0000003 250.0000 0.0000004 125.0000 0.0000005 341.6667 0.0000006 0.000000 33.333337 325.0000 0.0000008 0.000000 133.33339 0.000000 133.333310 0.000000 133.333311 0.000000 0.00000012 0.000000 0.0000002、某农场有100公顷土地及15000元资金可用于发展生产。
三组 LINGO问题
max = 2*h1 / (x^2 + h1^2)^(3/2) + 3*h2 / ((20-x)^2 + h2^2)^(3/2); x>=0; x<=20; data: h1 = 5; h2 = 6; enddata end
1
5.00
2
6.00
19.97
最暗 model:
min = 2*h1 / (x^2 + h1^2)^(3/2) + 3*h2 / ((20-x)^2 + h2^2)^(3/2); x>=0; x<=20; data: h1 = 5; h2 = 6; enddata end
② 表示:生产一件晶体管需要占用晶体管质量控制区域 0.5h 的时间,生产一件 微型模块需要占用质量控制区域 0.4h 的时间,总时间不超过 200h;
③ 表示:生产一件电路集成器需要占用测试与包装区域 0.5h 的时间,总时间不 超过 200h;
④ 表示:生产一件电路集成器需要占用电路印刷区域 0.1h 的时间,总时间不超 过 200h; 将③和④合并后约束条件变为:
v(t)
������������ ������������
−
������������ ������������
������
−������������������������
对速度积分可以得到下落位移关于时间的函数
������(������)
������������ ������������
������
/ ((20-x(j))^2 + h2(i)^2)^(3/2)));
ans = @max(set(i):m(i));
lingo程序练习题
lingo程序练习题Lingo是一种编程语言,它的特点在于简单易用和高效。
为了更好地掌握和理解Lingo编程,我们可以通过练习题的方式来提升我们的实战能力。
下面将给出一些适用于Lingo程序的练习题,以帮助读者熟悉和掌握这门语言。
1. 输出"Hello, World!"编写一个Lingo程序,输出“Hello, World!”。
这是Lingo程序入门的经典练习题,通过完成这道题目,你可以熟悉Lingo的基本语法和输出功能。
2. 计算两个数的和编写一个Lingo程序,输入两个数,然后计算它们的和并将结果输出。
这道题目可以帮助你熟练使用Lingo的输入和计算功能。
3. 判断奇偶数编写一个Lingo程序,输入一个数,判断它是奇数还是偶数,并输出对应的结果。
这道题目可以帮助你理解和掌握Lingo的判断语句和逻辑判断。
4. 字符串连接编写一个Lingo程序,输入两个字符串,将它们连接起来并输出。
这道题目可以帮助你熟悉Lingo的字符串处理功能。
5. 猜数游戏编写一个Lingo程序,生成一个1到100的随机数,然后让用户进行猜数游戏,直到猜对为止。
每次猜数时,程序都会给出相应的提示,比如“猜的数太大了”或“猜的数太小了”。
完成这道题目可以帮助你运用到Lingo的随机数生成和循环控制等功能。
6. 查找素数编写一个Lingo程序,输入一个数,判断它是否为素数,并输出判断结果。
这道题目可以练习你对素数的判断和Lingo的循环控制能力。
总结:通过完成上述练习题,你可以逐渐熟悉和掌握Lingo编程语言,提升你的实战能力。
同时,这些练习题也可以帮助你加深对Lingo编程语言各个方面的理解,如输入输出、数学运算、条件判断、字符串处理、循环控制等。
希望你能够享受编程的乐趣,并在实践中不断提升自己。
加油!。
Lingo考核试题(
Lingo考核试题1、Lingo模型一般由几段构成?分别是什么?一般由5段构成;(1)集合段(SETS):以“SETS:” 开始,“ENDSETS”结束,定义必要的集合变量(SET)及其元素(MEMBER,含义类似于数组的下标)和属性(ATTRIBUTE,含义类似于数组)。
(2)目标与约束段:目标函数、约束条件等,没有段的开始和结束标记,因此实际上就是除其它四个段(都有明确的段标记)外的LINGO 模型。
(3)数据段(DATA):以“DATA:” 开始, “ENDDATA”结束,对集合的属性(数组)输入必要的常数数据。
(4)初始段(INIT):以“INIT: ”开始,“ENDINIT”结束,对集合的属性(数组)定义初值(5)计算段(CALC):以“CALC: ”开始,“ENDCALC”结束,对一些原始数据进行计算处理。
2、如何激活全局最优解程序?Use Global Solver使用全局最优求解程序选择该选项,LINGO将用全局最优求解程序求解模型,尽可能得到全局最优解(求解花费的时间可能很长);否则不使用全局最优求解程序,通常只得到局部最优解Variable Upper Bound变量上界有两个域可以控制变量上界(按绝对值):1、 Value:设定变量的上界,缺省值为1010;2、 Application列表框设置这个界的三种应用范围:•None: 所有变量都不使用这个上界;•All: 所有变量都使用这个上界;•Selected:先找到第1个局部最优解,然后对满足这个上界的变量使用这个上界(缺省设置)Tolerances误差限有两个域可以控制变量上界(按绝对值):1、 Optimality:只搜索比当前解至少改进这么多个单位的解(缺省值为10-6);2、 Delta:全局最优求解程序在凸化过程中增加的约束的误差限(缺省值为10-7)。
3、Lingo能解决什么类型的数学问题?1.基本运算符:包括算术运算符、逻辑运算符和关系运算符2.数学函数:三角函数和常规的数学函数3.金融函数:LINGO 提供的两种金融函数4.概率函数:LINGO 提供了大量概率相关的函数5.变量界定函数:这类函数用来定义变量的取值范围6.集操作函数:这类函数为对集的操作提供帮助7.集循环函数:遍历集的元素,执行一定的操作的函数8.数据输入输出函数:这类函数允许模型和外部数据源相联系,进行数据的输入输出9.辅助函数:各种杂类函数4、Lingo能保存什么类型的文件?请列举。
LINGO练习题-1及答案
LINGO练习题-1及答案LINGO练习题-1及答案LINGO测试-11、用LINGO软件解方程组(1)221212222359 x x x x?+=??-=-??。
model:x^2+2*y^2=22;3*x-5*y=-9;endSolution is locally infeasible Infeasibilities:0.5417411E-04Extended solver steps:5Total solver iterations:20Variable ValueX 2.000005Y 3.000003Row Slack or Surplus1-0.5417411E-0420.0000002、用LINGO软件解线性规划问题model:max=2*x+3*y;4*x+3*y<=10;3*x+5*y<=12;x>0;y>0;endGlobal optimal solution found.Objective value:7.454545Infeasibilities:0.000000Total solver iterations:2Variable Value Reduced CostY 1.6363640.000000Row Slack or Surplus Dual Pricemax23,..4310,3512,,0.z x y s t x y x y x y=++≤+≤≥17.454545 1.00000020.0000000.9090909E-0130.0000000.54545454 1.2727270.0000005 1.6363640.0000003、用LINGO软件二次规划问题(1)min2212z=x-3-2x+()()22121212..-50,24,,0s tx x x x x x+≤+≤≥。
model:min=(x1-3)^2+(x2-2)^2;x1^2+x2^2-5<=0;x1+2*x2<=4;x1>=0;x2>=0;endLocal optimal solution found. Objective value: 2.000000 Infeasibilities:0.5384996E-06 Extended solver steps:5 Total solver iterations:64 Variable Value Reduced CostX1 2.0000000.000000X20.99999990.000000Row Slack or Surplus Dual Price 1 2.000000-1.0000002-0.5384996E-060.333333130.0000000.666667050.99999990.000000(2)model:22221212334412132344max23x x x2x x5x,..25,12,,{0,1},2,0.z x x s t x x x x x x x x=-+-++-≤≤≤∈Z∈≥>max=x1^2-2*x2^2+3*x1*x2-x3^2+2*x3*x4+5*x4^2;x1-2*x2<=5;1<=x1;x1<=2;x3/x4>=2;x4>0;@gin(x2);@bin(x3);endLinearization components added:Constraints:4Variables:1Local optimal solution found.Objective value:9.250000Objective bound:9.250000Infeasibilities:0.000000Extended solver steps:2Total solver iterations:39Variable Value Reduced Cost X1 2.0000000.000000X2 1.000000-1.999996X3 1.000000199997.5X40.5000000 0.000000Row Slack or Surplus Dual Price19.250000 1.0000002 5.0000000.00000040.0000007.00000350.000000-1.74999760.50000000.0000004、用LINGO软件分别产生序列(1){1,3,5,7,9,11};model:sets:set1/1..6/:x;endsets@for(set1(i):x(i)=2*i-1);endFeasible solution found. Total solver iterations:0 Variable ValueX(1) 1.000000X(2) 3.000000X(3) 5.000000X(4)7.000000X(5)9.000000X(6)11.00000Row Slack or Surplus10.00000020.00000030.00000040.00000050.00000060.000000(2)1111{1,,,,}6122030model:sets:set2/1..5/:x;endsets@for(set2(i):x(i)=1/(i*(i+1))); endFeasible solution found.Total solver iterations:0Variable ValueX(1)0.5000000X(2)0.1666667X(3)0.8333333E-01X(4)0.5000000E-01X(5) 0.3333333E-01Row Slack or Surplus10.00000020.00000030.00000040.00000050.0000005、已知向量c={1,3,0.5,7,5,2},用LINGO软件解答下列问题。
lingo例题
LINGO是一个用于求解线性规划问题的优化软件。
以下是一个简单的LINGO例题:
问题描述:
某公司生产A、B两种产品,生产A产品需要10个单位劳动力和2个单位资本,生产B产品需要15个单位劳动力和3个单位资本。
该公司拥有劳动力200个单位和资本150个单位。
A产品的售价为20元,B产品的售价为30元。
目标:最大化总收入。
约束条件:
1.劳动力不超过200个单位。
2.资本不超过150个单位。
3.A产品的产量为整数。
4.B产品的产量为整数。
使用LINGO求解该问题,可以建立以下模型:
目标函数:最大化总收入
@max=20x+30y; // 总收入等于A产品售价乘以A产品产量加上B产品售价乘以B产品产量
约束条件:
@bin(x); // A产品产量为整数
@bin(y); // B产品产量为整数
10x+15y<=200; // 劳动力不超过200个单位
2x+3y<=150; // 资本不超过150个单位
x>=0; // A产品产量非负
y>=0; // B产品产量非负
在LINGO中输入以上模型,即可求解该问题。
数学建模lingo作业-习题讲解
基础题:1.目标规划问题最近,某节能灯具厂接到了订购16000套A 型和B 型节能灯具的订货合同,合同中没有对这两种灯具的各自数量做要求,但合同要求工厂在一周内完成生产任务并交货。
根据该厂的生产能力,一周内可以利用的生产时间为20000min ,可利用的包装时间为36000min 。
生产完成和包装一套A 型节能灯具各需要2min ;生产完成和包装完成一套B 型节能灯具各需要1min 和3min 。
每套A 型节能灯成本为7元,销售价为15元,即利润为8元;每套B 型节能灯成本为14元,销售价为20元,即利润为6元。
厂长首先要求必须按合同完成订货任务,并且即不要有足量,也不要有超量。
其次要求满意销售额达到或者尽量接近275000元。
最后要求在生产总时间和包装总时间上可以有所增加,但过量尽量地小。
同时注意到增加生产时间要比包装时间困难得多。
试为该节能灯具厂制定生产计划。
解:将题中数据列表如下:根据问题的实际情况,首先分析确定问题的目标级优先级。
第一优先级目标:恰好完成生产和包装完成节能灯具16000套,赋予优先因子p1;第二优先级目标:完成或者尽量接近销售额为275000元,赋予优先因子p2; 第三优先级目标:生产和包装时间的增加量尽量地小,赋予优先因子p3; 然后建立相应的目标约束。
在此,假设决策变量12,x x 分别表示A 型,B 型节能灯具的数量。
(1) 关于生产数量的目标约束。
用1d -和1d +分别表示未达到和超额完成订货指标16000套的偏差量,因此目标约束为1111211min ,..16000z d d s t x x d d -+-+=+++-=要求恰好达到目标值,即正、负偏差变量都要尽可能地小(2) 关于销售额的目标约束。
用2d -和2d +分别表示未达到和超额完成满意销售指标275000元的偏差值。
因此目标约束为221222min ,..1520-275000.z d s t x x d d --+=++=要求超过目标值,即超过量不限,但必须是负偏差变量要尽可能地小,(另外:d +要求不超过目标值,即允许达不到目标值,就是正偏差变量要尽可能地小) (3) 关于生产和包装时间的目标约束。
Lingo考试
解:最初表
1 1 1 1 2 0 2 1 1
最优表
1 0 0 1
0 1 0 0
6 x4 4 x5 6 x1 1 10 x5 0
1
1 0 0
hw
1 3 3
1
1 1 1 2
习题2.12(a)
1 0 1 0 1 最优基 B 1 1 , 其逆 B 1 1 (a) 因x1是基变量,由最优表可得
5
0 2/3 0 2/3 1 1/ 3 0 5/3
*
新的最优值
z 28 / 3
习题2.16(a)
解:最初表
3 5 1 0 450 x4 6 3 4 5 0 1 300 x 5 30 10 40 0 0 最优表 1 1/ 3 0 1/ 3 1/ 3 50 x1 1 1 1/ 5 2 / 5 30 x3 0 0 20 0 2 6
1 50 b1 3 1 B b 0 30 1 b 1 5 得 150 b1 150,所以雇佣150h为宜。
hw
9
最优生产计划:A、C分别生产50、30件,不生产B 最大利润为2700元
6
hw
习题2.16(b)
因x1是基变量,由最优表可得
1 1 1 20 1 2 1 6 1 0 3 3 3
从而
6 1 18
即当 24 C1 48 时, 上述最优计划不变;
当 C3 (, 2] 时,问题的最优解不变 。
hw
2
习题2.12(b)
6 1 0 1 6 1 由 10 1 1 0 10 0 1 得 1 6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LINGO练习题-1及答案LINGO测试-1
1、用LINGO软件解方程组(1)221212222359 x x x x?+=??-=-??。
model:
x^2+2*y^2=22;
3*x-5*y=-9;
end
Solution is locally infeasible Infeasibilities:0.5417411E-04
Extended solver steps:5
Total solver iterations:20
Variable Value
X 2.000005
Y 3.000003
Row Slack or Surplus
1-0.5417411E-04
20.000000
2、用LINGO软件解线性规划问题
model:
max=2*x+3*y;
4*x+3*y<=10;
3*x+5*y<=12;
x>0;y>0;
end
Global optimal solution found.
Objective value:7.454545
Infeasibilities:0.000000
Total solver iterations:2
Variable Value Reduced Cost
X 1.2727270.000000
Y 1.6363640.000000
Row Slack or Surplus Dual Price
max23,..4310,3512,,0.z x y s t x y x y x y=++≤+≤≥17.454545 1.000000
20.0000000.9090909E-01
30.0000000.5454545
4 1.2727270.000000
5 1.6363640.000000
3、用LINGO软件二次规划问题
(1)min2212z=x-3-2x+()()
22121212..-50,
24,
,0s t
x x x x x x+≤+≤≥。
model:
min=(x1-3)^2+(x2-2)^2;
x1^2+x2^2-5<=0;
x1+2*x2<=4;
x1>=0;
x2>=0;
end
Local optimal solution found. Objective value: 2.000000 Infeasibilities:0.5384996E-06 Extended solver steps:5
Total solver iterations:64 Variable Value Reduced Cost
X1 2.0000000.000000
X20.99999990.000000
Row Slack or Surplus Dual Price 1 2.000000-1.000000
2-0.5384996E-060.3333331
30.0000000.6666670
4 2.0000000.000000
50.99999990.000000
(2)
model:22221212334412132344
max23x x x2x x5x,..25,
12,
,{0,1},2,0.z x x s t x x x x x x x x=-+-++-≤≤≤∈Z∈≥>
max=x1^2-2*x2^2+3*x1*x2-x3^2+2*x3*x4+5*x4^2;
x1-2*x2<=5;
1<=x1;
x1<=2;
x3/x4>=2;
x4>0;
@gin(x2);
@bin(x3);
end
Linearization components added:
Constraints:4
Variables:1
Local optimal solution found.
Objective value:9.250000
Objective bound:9.250000
Infeasibilities:0.000000
Extended solver steps:2
Total solver iterations:39
Variable Value Reduced Cost X1 2.0000000.000000X2 1.000000-1.999996X3 1.000000199997.5X40.5000000 0.000000
Row Slack or Surplus Dual Price
19.250000 1.000000
2 5.0000000.000000
3 1.0000000.000000
40.0000007.000003
50.000000-1.749997
60.50000000.000000
4、用LINGO软件分别产生序列
(1){1,3,5,7,9,11};
model:
sets:
set1/1..6/:x;
endsets
@for(set1(i):x(i)=2*i-1);
end
Feasible solution found.
Total solver iterations:0
Variable Value
X(1) 1.000000
X(2) 3.000000
X(3) 5.000000
X(4)7.000000
X(5)9.000000
X(6)11.00000
Row Slack or Surplus
10.000000
20.000000
30.000000
40.000000
50.000000
60.000000
(2)
1111{1,,,,}6122030
model:
sets:
set2/1..5/:x;
endsets
@for(set2(i):x(i)=1/(i*(i+1))); end
Feasible solution found.
Total solver iterations:0
Variable Value
X(1)0.5000000
X(2)0.1666667
X(3)0.8333333E-01X(4)0.5000000E-01X(5) 0.3333333E-01
Row Slack or Surplus
10.000000
20.000000
30.000000
40.000000
50.000000
5、已知向量c={1,3,0.5,7,5,2},用LINGO软件解答下列问题。
(1)求向量c前5个数中的最大值;(2)求向量c后4个数平方中的最小值;(3)求向量c中所有数的和。
model:
data:
N=7;
enddata
sets:
number/1..N/:x;
endsets
data:
x=1305752;
enddata
maxv=@max(number(I)|I#le#5:x);
minv=(@min(number(I)|I#ge#N-3:x))^2; sumv=@sum(number(I)|I#ge#1:x);
end
Feasible solution found.
Total solver iterations:0
Variable Value
N7.000000
MAXV7.000000
MINV 4.000000
SUMV23.00000
X(1) 1.000000
X(2) 3.000000
X(3)0.000000
X(4) 5.000000
X(5)7.000000
X(6) 5.000000
X(7) 2.000000
Row Slack or Surplus 10.000000
20.000000
30.000000。