2014年高考广西文科数学试题及答案(word解析版)

合集下载

2014年高考新课标全国2卷数学(文)

2014年高考新课标全国2卷数学(文)

2014年普通高等学校招生全国统一考试(新课标Ⅱ卷)数学试题卷(文史类)注意事项1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的、号填写在本试卷和答题卡相应位置上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合A={2-,0,2},B={x |022=--x x },则A B= (A )∅ (B ){}2 (C ){}0 (D ){}2-(2)131ii+=- (A )12i + (B )12i -+ (C )12i - (D )12i --(3)函数()f x 在0x x =处导数存在.若p :0'()0f x =;q :0x x =是()f x 的极值点,则 (A )p 是q 的充分必要条件(B )p 是q 的充分条件,但不是q 的必要条件 (C )p 是q 的必要条件,但不是q 的充分条件 (D )p 既不是q 的充分条件,也不是q 的必要条件(4)设向量a ,b 满足||a b +=,||a b -=,则a b =(A )1 (B )2 (C )3 (D )5(5)等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S =(A )()1n n + (B )()1n n -(C )()12n n + (D )()12n n -(6)如图,网格纸上正方形小格的边长为1(表示1cm ), 图中粗线画出的是某零件的三视图,该零件由一个 底面半径为3cm ,高为6c m 的圆柱体毛坯切削得 到,则切削掉部分的体积与原来毛坯体积的比值为 (A )1727 (B )59 (C )1027 (D )13(7)正三棱柱的底面边长为2,D 为BC 中点,则三棱锥11DC B A -的体积为(A )3 (B )32(C )1 (D)2(8)执行右面的程序框图,如果如果输入的x ,t 均为2,则输出的S = (A )4 (B )5 (C )6 (D )7(9)设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为(A )8 (B )7 (C )2 (D )1(10)设F 为抛物线C :23y x =的焦点,过F 且倾斜角为°30的直线交于C 于,A B 两点,则AB =(A(B )6 (C )12 (D)(11)若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值围是(A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞(12)设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得°45OMN ∠=,则0x 的取值围是(A )[]1,1- (B )1122⎡⎤-⎢⎥⎣⎦, (C)⎡⎣ (D)⎡⎢⎣⎦ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个考试考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大概题共4小题,每小题5分.(13)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服种选择1种,则他们选择相同颜色运动服的概率为________.(14)函数()sin()2sin cos f x x x ϕϕ=+-的最大值为________.(15)偶函数)(x f y =的图像关于直线x =2对称,3)3(=f ,则(1)f -=________. (16)数列{}n a 满足111n na a +=-,82a =,则1a =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. (17)(本小题满分12分)四边形ABCD 的角A 与C 互补,AB =1,BC =3,CD =DA =2. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA 平面ABCD ,E 为PD 的点. (Ⅰ)证明:PB //平面AEC ;(Ⅱ)设AP=1,AD =3,三棱锥P-ABD 的体积V =43,求A 到平面PBC 的距离.(19)(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(Ⅰ)分别估计该市的市民对甲、乙部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.(20)(本小题满分12分)设F 1,F 2分别是椭圆C :12222=+by a x (0>>b a )的左、右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N . (Ⅰ)若直线MN 的斜率为43,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2且|MN |=5|F 1N |,求a ,b .(21)(本小题满分12分)已知函数()f x =3232x x ax -++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.4 97 97665332110 98877766555554443332100 6655200 632220 甲部门 乙部门 59 0448 122456677789 011234688 00113449 123345 011456 000 3 4 56 7 8910请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清题号. (22)(本小题满分10分)选修4-1:几何证明选讲如图,P 是⊙O 外一点,PA 是切线,A 为切点,割线PBC 与⊙O 相交于点B ,C ,PC =2PA ,D 为PC 的中点,AD 的延长线交⊙O 于点E .证明: (Ⅰ)BE =EC ; (Ⅱ)AD ·DE =2PB 2.(23)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cosθ,θ∈[0,2π].(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l:2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.(24)(本小题满分10分)选修4-5:不等式选讲 设函数()f x =|x +a1|+|x a -|(a >0). (Ⅰ)证明:()f x ≥2;(Ⅱ)若(3)5f <,求a 的取值围.2014年普通高等学校招生全国统一考试(课标卷Ⅱ卷)数学(文科)参考答案一、选择题 1.B解析:把2-,0,2代入202x x --=验证,只有2满足不等式.故选B . 考点:考查集合的知识.简单题. 2.B 解析:13(13)(1)121(1)(12)42i i i i i i i i+++===-+---++.故选B . 考点:考查复数的基本知识.简单题.3.C解析:函数()f x 在0x=x 处导数存在,则极值点必为导函数的根,而导函数的根不一定是极值点,即,q p p q ⇒⇒/,从而p 是q 的必要但不充分的条件.故选C .考点:考查充要条件与极值的基础知识.简单题. 4.A解析:222210,226,a a b b a a b b ⋅-+++=⋅=44a b ∴⋅=,1a b ∴⋅=.故选A . 考点:考查平面向量的数量积.中等题. 5.A解析:∵数列{}n a 是等差数列,公差等于2,∴2141812,6,14a a a a a a =+=+=+.∵248,,a a a 成等比数列,∴22428111()6)214()(a a a a a a ⋅⇒=++=+,解得122(221)n a a n n ==+-⇒⋅=,∴(1)(222)=n n nS n n ⋅=++.故选A . 考点:考查等差数列的通项公式与求和公式.中等题. 6.C解析:毛胚的体积23654V ππ⋅⋅==,制成品的体积221322434V πππ⋅⋅+⋅⋅==,∴切削掉的体积与毛胚体积之比为134********V V ππ-=-=.故选C . 考点:考查三视图于空间几何体的体积.中等题. 7.C解析:∵正三棱柱的底面边长为2,D 为BC 中点,∴AD ==∵1112,BC CC ==1111111222B DC B C S C C ⋅=⋅⋅==,∴111111133AB C B DC V S AD ⋅⋅===.故选C . 考点:考查空间点,线,面关系和棱锥体积公式.中等题. 8.D解析:第1次循环M=2,S=5,k=1. 第2次循环,M=2,S=7,k=2.第3次循环k=3>2,故输出S=7.故选D . 考点:考查算法的基本知识.简单题. 9.B解析:作图即可.考点:考查二元一次不等式组的应用.中等题. 10.C解析:∵23y x =,∴抛物线C 的焦点的坐标为()3,04F ,所以直线AB 的方程为330an )t (4y x ︒-=,故23),343,y x y x ⎧=-⎪⎨⎪=⎩从而2122161689012x x x x -+=+=⇒, ∴弦长12||=3122x x AB ++=.故选C . 考点:考查抛物线的几何性质,弦长计算以及分析直线和圆锥曲线位置关系的能力.中等题. 11.D 解析:()ln f x kx x =-,1()(0)f x k x x∴'=->.()f x 在区间(1,)+∞上递增,()f x ∴在区间(1,)+∞上恒大于等于0,11()0((1,))x k k x x f x∴'=-≥⇒≥∀∈+∞,1k ∴≥.故选D . 考点:考查导数与函数单调性的关系.中等题. 12.A解析:过点M 作圆O 的切线,切点为N .设θ=∠OMN ,则︒≥45θ,22sin ≥θ,即22≥OM ON ,2120≤+x ,011x -≤≤.故选A . 考点:三角不等式,两点间距离公式.难题. 二、填空题 13.13解析:1.3333P =⋅=考点:考查古典概型的概念.简单题. 14.1解析:因为()f x si s n in cos s n c (o i )s x x x ϕϕϕ==--,所以最大值为1. 考点:考查和差角公式.简单题. 15.3解析:因()f x 是偶函数,所以(1)(1)f f -=.因()f x 图像关于2x =,所以(1)(2)(332)1f f f ⋅-===. 考点:考查偶函数的概念,轴对称的概念.简单题. 16.12解析:∵111n na a +=-,122111111(1)111n n n n n a a a a a +----∴==-=--=--, 822a a ∴==,12111112112a a a a =⇒-==⇒-. 考点:考查递推数列的概念.简单题. 三、解答题17.解析:(Ⅰ)由题设及余弦定理得222cos 1312c s 2o BD C BC CD BC D C C =+⋅=--, ① 2222cos 54cos AD AB BD AB AD A C =⋅=++-. ② 由①,②得1cos 2C =,故60C =︒,BD =(Ⅱ)四边形ABCD 的面积S =11sin sin 22AB DA A BC CD C ⋅+⋅111232)sin 6022(⨯⨯+⨯︒==⨯ 考点:考查余弦定理的应用.中等题.18.解析:(Ⅰ)设BD 与AC 的交点为O ,连结EO .因为四边形ABCD 为矩形,所以O 为BD 的中点. 又E 为PD 的中点,所以EO ∥PB .EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB ∥AEC .(Ⅱ)616PA AB A V AD B ⋅⋅⋅==.由V =,可得32AB =.作AH ⊥PB 交PB 于H . 由题设知BC ⊥平面PAB ,所以BC AH ⊥,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 到面PBC考点:考查空间点线面的位置关系与空间距离.中等题.19.解析:(Ⅰ)由所给茎叶图知,50位市民对甲部门的评分由小到大排序,排在第25,26位的数是75,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计数是75.50位市民对乙部门的评分由小到大排序,排在第25,26位的数是66,68,故样本中位数为6668627+=,所以该市的市民对乙部门评分的中位数的估计数是67. (Ⅱ)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为50.150=,850=0.16,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(Ⅲ)由所给茎叶图知,市民对甲部门的评分的中位数高于对乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异大.(注:考生利用其他统计量进行分析,结论合理的同样给分)考点:考查使用茎叶图及样本的数字特征估计总体的能力.中等题.20.解析:(Ⅰ)根据c =2(,)b M c a,223b ac =.将222b a c =-代入223b ac =,解得12c a =,2c a =-(舍去).故C 的离心率为12.(Ⅱ)由题意,原点O 为12F F 的中点,2MF ∥y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点,故24b a=,即24b a =. ① 由1||5||MN NF =得11||2||DF F N =.设11(,)N x y ,由题意知10y <,则112(),22,c x c y --=⎧⎨-=⎩即113,21.x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得222911c a b+=. ②将①及c =229(4)1144a a a a-+=. 解得7a =,2428b a ==.故7a =,b =考点:考查椭圆的几何性质以及直线与椭圆的位置关系.难题. 21.解析:(Ⅰ)26()3f x x x a =-'+,'(0)f a =. 曲线()y f x =在点(0,2)处的切线方程为2y ax =+. 由题设得22a-=-,∴1a =. (Ⅱ)由(Ⅰ)知,32()32f x x x x =-++. 设32()()(2)3(1)4g x f x kx x x k x =--=-+-+. 由题设知10k ->.当0x ≤时,2()36(1)x g x x k -+-'=0>,()g x 单调递增,(1)10g k -=-<,(0)4g =,所以()g x =0在(,0]-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->.2'()363(2)h x x x x x =-=-,()h x 在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=,所以()g x =0在(0,)+∞没有实根.综上,()0g x =在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点. 考点:考查利用导数综合研究函数性质的能力.难题. 22.解析:(Ⅰ)连结AB ,AC . 由题设知PA PD =,故PAD PDA ∠=∠. 因为PDA DAC DCA ∠=∠+∠,.. .... .. .. PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠,所以DAC BAD ∠=∠,从而BE EC =,因此BE EC =.(Ⅱ)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =.由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.考点:考查与圆有关的角的知识和圆幂定理的应用.中等题.23.解析:(Ⅰ)C 的普通方程为2201)1(1()x y y -+=≤≤. 可得C 的参数方程为,n 1i cos s y x tt =+⎧⎨=⎩(t 为参数,0t π≤≤).(Ⅱ)设D (1cos n ),si t t +.由(Ⅰ)知C 是以(1,0)G 为圆心,1为半径的上半圆. 因为C 在D 处的切线与l 垂直,所以直线GD 与l的斜率相同,tan t =3t π=,故D 的直角坐标为(1cos ,sin )33ππ+,即3(2. 考点:本题考查园的极坐标方程参数方程以及参数方程的简单应用.中等题.24.解析:(Ⅰ)由0a >,有111()|||||()|2f x x x a x x a a a a a =++-≥+--=+≥, ∴()2f x ≥. (Ⅱ)1(3)|3||3|f a a=++-. 当3a >时,1(3)f a a=+,由(3)5f <得523a <<+. 当03a <≤时,(3)61a f a =-+,由(3)5f <3a <≤. 综上,a的取值围是15(22++. 考点:考查带有绝对值的不等式的应用能力,考查函数与不等式的关系.中等题.。

2014年高考广西文科数学试题

2014年高考广西文科数学试题

2006~2014年高考真题之集合2014年高考广西文科数学试题一、选择题:每小题5分,共60分1.设集合M={1,2,4,6,8}, N={1,2,3,5,6,7},则M N中元素的个数为A.2 B.3 C.5 D.7 2013年普通高等学校招生全国统一考试广西卷数学(文科)一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合1{=ðA,}2,则U A=U,2,3,4,}5,集合1{=A.1{,}2B.3{,4,}5C.1{,2,3,4,}5D.∅2012年普通高等学校招生全国统一考试文科数学(必修+选修Ⅱ)(1)已知集合{|C x x==是矩形},{|B x x=是平行四边形},{|A x x是正方形},{|=是菱形},则D x x(A)A B⊆(C)D C⊆(D)⊆(B)C B⊆A D2012年普通高等学校招生全国统一考试文科数一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅2011年普通高等学校招生全国统一考试文科数学(必修+选修II)一、选择题(1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =⋂ð(M N )(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 2010年普通高等学校招生全国统一考试(全国Ⅰ卷)文科数学(必修+选修)(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ðA.{}1,3B. {}1,5C. {}3,5D. {}4,52010年普通高等学校招生全国统一考试(全国Ⅱ卷)文科数学第Ⅰ卷 (选择题(1)设全集{}*U 6x N x =∈<,集合{}{}A 1,3B 3,5==,,则U ()A B =ð( )(A){}1,4 (B){}1,5 (C){}2,4 (D){}2,5 2009年普通高等学校招生全国统一考试文科数学(必修+选修Ⅰ(2)设集合A={4,5,7,9},B={3,4,7,8,9},全集U A B =,则集合()U A B ð中的元素共有(A) 3个 (B ) 4个 (C )5个 (D )6个2009年普通高等学校招生全国统一考试试卷题文科数学一. 选择题(1)已知全集U ={1,2,3,4,5,6,7,8},M ={1,3,5,7},N ={5,6,7},则C u ( M N )=(A) {5,7} (B ) {2,4} (C ){2.4.8} (D ){1,3,5,6,7}2007年普通高等学校招生全国统一考试(全国Ⅰ)一、选择题(1)设{}210S x x =+>,{}350T x x =-<,则ST =( ) A.∅ B.12x x ⎧⎫<-⎨⎬⎩⎭ C.53x x ⎧⎫>⎨⎬⎩⎭ D.1523x x ⎧⎫-<<⎨⎬⎩⎭2007年普通高等学校招生全国统一考试试题卷(全国卷Ⅱ) 文科数学(必修+选修Ⅰ)2.设集合{1234}{12}{24}U A B ===,,,,,,,,则()U AB =ð( ) A .{2} B .{3}C .{124},, D .{14}, 2006年普通高等学校招生全国统一考试(全国卷Ⅰ) 文科数学2.设集合2{|0}M x x x =-<,{|||2}N x x =<,则A.M N =∅B.M N M =C.M N M =D.M N R =。

2014年大纲版高考文科数学试题含答案(Word版)

2014年大纲版高考文科数学试题含答案(Word版)

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( ) A .2 B .3 C .5 D .72.已知角α的终边经过点(4,3)-,则cos α=( )A .45B .35C .35-D .45- 3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( ) A .{|21}x x -<<- B .{|10}x x -<< C .{|01}x x << D .{|1}x x >4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16B .6C .13D .35.函数1)(1)y x =>-的反函数是( )A .3(1)(1)x y e x =->-B .3(1)(1)x y e x =->-C .3(1)()x y e x R =-∈D .3(1)()x y e x R =-∈ 6.已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( )A .31B .32C .63D .649. 已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y +=C .221128x y +=D .221124x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( )A .814π B .16π C .9π D .274π 11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2 B. C .4 D.12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )A .-2B .-1C .0D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 . 三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+.(1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式.18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B. 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B ,求二面角1A AB C --的大小.大纲版数文解析(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)。

2014广西壮族自治区高考试卷含解析(必备资料)

2014广西壮族自治区高考试卷含解析(必备资料)

1、下列各句中,加点的成语使用正确的一项是A.新闻发布会上,他讲话仅用了八分钟,简洁明了,新闻性、针对性强,没有一句穿靴戴帽的空话套话。

B.联合国大会曾经两次召开会议,讨论是否应该废除死刑的问题,但因各方立场南辕北辙,讨论无果而终。

C.本届展销会邀请到了安徽、浙江、上海等地知名企业,湖笔、宜笔、徽墨、宜纸、歙砚等文房四宝济济一堂。

D.写一篇小说并不太难,但要想让自己的作品在擢发难数的小说中引起读者广泛关注,就不那么容易了。

2、阅读下面的作品,完成14—16题。

(8分)镜湖女(南宋)陆游湖中居人事舟楫,家家以舟作生业。

女儿妆面花样红,小伞翻翻乱荷叶。

日暮归来月色新,菱歌缥缈泛烟津。

到家更约西邻女,明日湖桥看赛神。

14、从体裁上看,本作品属于()(1分)A、古体诗B、近体诗C、歌行D、诗余15、对本作品分析不恰当的一项是()(3分)A、“事舟楫”写湖边的人家日常靠船为生。

B、“乱荷叶”写女子摆动的伞把荷叶搅乱。

C、“月色新”写傍晚景色,暗示时间转换。

D、“泛烟津”写若有若无的歌声随波荡漾。

16、结合作品,对作者塑造的“镜湖女”形象加以赏析。

(4分)3、依次填入下面一段文字横线处的语句,前后衔接最为恰当的一组是中国人民抗日战争的胜利,充分证明了中国共产党是救亡图存、实现民族复兴的核心力量。

今天,我们纪念抗日战争胜利70周年,就是要_________,_________,_________,_________,_________。

铭记这段历史,是因为它的惨烈悲壮与不屈抗争应当成为中华民族的集体记忆,更是希望从中汲取沉痛的历史教训,获得开创未来的精神力量。

①永远铭记参加抗日战争的老战士、抗日将领、爱国人士②永远铭记支援和帮助了中国抗战的外国政府和国际友人③永远铭记惨遭日本侵略者杀戮的死难同胞④永远铭记为抗战胜利建立了功勋的海内外中华儿女⑤永远铭记在抗日战争中英勇战斗、为国捐躯的烈士A.⑤③④②① B.①②④⑤③C.③⑤①④② D.④③②①⑤4、下面语段中画线的词语,使用不恰当的一项是石钟山上那些错落有致的奇石以及记载着天下兴衰的石刻令人叹为观止。

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国统一高考数学试卷(文科)(新课标ⅰ)(附参考答案+详细解析Word打印版)

2014年全国普通高等学校招生统一考试数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3) D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0 B.cosα>0 C.sin2α>0 D.cos2α>03.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2 B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1 B.2 C.4 D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5 B.3 C.﹣5或3 D.5或﹣312.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。

2014年广西高考数学试卷(文科)(全国大纲版)(含解析版)

2014年广西高考数学试卷(文科)(全国大纲版)(含解析版)

D.
5.(5 分)函数 y=ln( +1)(x>﹣ 1)的反函数是(

A.y=( 1﹣ ex)3( x>﹣ 1) C.y=( 1﹣ ex)3( x∈ R)
B.y=(ex﹣1)3(x>﹣ 1) D.y=(ex﹣1)3(x∈R)
6.(5 分)已知 , 为单位向量,其夹角为 60°,则( 2 ﹣ )? =( )
A.31
B.32
C.63
D.64
9.(5 分)已知椭圆 C: + =1(a>b>0)的左、右焦点为 F1、F2,离心率
为 ,过 F2 的直线 l 交 C 于 A、 B 两点,若△ AF1B 的周长为 4 ,则 C 的方 程为( )
A. + =1
B. +y2=1
C. + =1
D. + =1
10.(5 分)正四棱锥的顶点都在同一球面上, 若该棱锥的高为 4,底面边长为 2,
为 P,与 C 的交点为 Q,且 | QF| = | PQ| . (Ⅰ)求 C 的方程; (Ⅱ)过 F 的直线 l 与 C 相交于 A、B 两点,若 AB 的垂直平分线 l ′与 C 相交于 M 、
N 两点,且 A、M 、B、N 四点在同一圆上,求 l 的方程.
2014 年广西高考数学试卷(文科) (全国大纲版)
参考答案与试题解析
一、选择题(本大题共 12 小题,每小题 5 分)
1.(5 分)设集合 M={ 1,2,4,6,8} ,N={ 1,2,3,5,6,7} ,则 M ∩N 中元
素的个数为(

A.2
B.3
C.5
D.7
【考点】 1A:集合中元素个数的最值; 1E:交集及其运算. 【专题】 5J:集合. 【分析】 根据 M 与 N,找出两集合的交集,找出交集中的元素即可. 【解答】 解:∵ M={ 1,2,4, 6,8} ,N={ 1, 2, 3, 5, 6,7} , ∴ M∩N={ 1,2,6} ,即 M ∩N 中元素的个数为 3. 故选: B. 【点评】 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

2014全国统一高考数学真题及逐题详细解析(文科)—广西卷

2014全国统一高考数学真题及逐题详细解析(文科)—广西卷

2014年普通高等学校统一考试广西(大纲)文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合{1,2,4,6,8},{1,2,3,5,6,7}M N ==,则M N 中元素的个数为( )A .2B .3C .5D .72.已知角α的终边经过点(4,3)-,则cos α=( ) A .45 B .35 C .35- D .45- 3.不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )A .{|21}x x -<<-B .{|10}x x -<<C .{|01}x x <<D .{|1}x x > 4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )A .16 B C .13 D5.函数1)(1)y x =>-的反函数是( ) A .3(1)(1)x y e x =->- B .3(1)(1)x y e x =->- C .3(1)()x y e x R =-∈ D .3(1)()x y e x R =-∈6.已知a b 、为单位向量,其夹角为060,则(2)a b b -∙=( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列{}n a 的前n 项和为n S ,若243,15,S S ==则6S =( ) A .31 B .32 C .63 D .649. 已知椭圆C :22221x y a b +=(0)a b >>的左、右焦点为1F 、2F,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( )A .22132x y +=B .2213x y += C .221128x y += D .221124x y += 10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A .814πB .16πC .9πD .274π11.双曲线C :22221(0,0)x y a b a b-=>>的离心率为2,则C 的焦距等于( )A .2 B. C .4 D.12.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 6(2)x -的展开式中3x 的系数为 .(用数字作答) 14.函数cos22sin y x x =+的最大值为 .15. 设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .16. 直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为(1,3),则1l 与2l 的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分10分)数列{}n a 满足12212,2,22n n n a a a a a ++===-+. (1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式. 18. (本小题满分12分)ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知13cos 2cos ,tan 3a C c A A ==,求B. 19. (本小题满分12分)如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D 在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 1A AB C --的大小.20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用某种设备相互独立。

2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校招生全国统一考试(全国大纲卷)数学试题(文科)解析版

2014年普通高等学校统一考试(大纲)文科第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1.设集合,则中元素的个数为( )A .2B .3C .5D .72.已知角的终边经过点,则( )A .B .C .D .3.不等式组的解集为( )A .B .C .D .4.已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( ) A .B .C .D .{1,2,4,6,8},{1,2,3,5,6,7}M N ==MN α(4,3)-cos α=453535-45-(2)0||1x x x +>⎧⎨<⎩{|21}x x -<<-{|10}x x -<<{|01}x x <<{|1}x x>1661335.函数的反函数是( )A .B .C .D .6.已知为单位向量,其夹角为,则( ) A .-1 B .0 C .1 D .27. 有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )A .60种B .70种C .75种D .150种8.设等比数列的前n 项和为,若则( ) A .31 B .32 C .63 D .641)(1)y x =>-3(1)(1)x y e x =->-3(1)(1)xy e x =->-3(1)()x y e x R =-∈3(1)()xy e x R =-∈a b 、60(2)a b b -∙={}n a n S 243,15,S S ==6S =9. 已知椭圆C :的左、右焦点为、,离心率为,过的直线交C 于A 、B 两点,若的周长为C 的方程为( )A .B .C .D .10.正四棱锥的顶点都在同一球面上,若该棱锥的高位4,底面边长为2,则该球的表面积为( ) A.B .C .D .11.双曲线C :的离心率为2,则C的焦距等于()A .2B .C .4D .22221x y a b+=(0)a b >>1F 2F 32F l 1AF B ∆22132x y +=2213x y +=221128x y +=221124x y +=814π16π9π274π22221(0,0)x y a b a b-=>>12.奇函数的定义域为R ,若为偶函数,且,则( ) A .-2 B .-1 C .0 D .1第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 的展开式中的系数为 .(用数字作答)14.函数的最大值为 .()f x (2)f x +(1)1f =(8)(9)f f +=6(2)x -3x cos 22sin y x x =+15. 设x 、y 满足约束条件,则的最大值为 .16. 直线和是圆的两条切线,若与的交点为(1,3),则与的夹角的正切值等于 .三、解答题 (本大题共6小题. 解答应写出文字说明、证明过程或演算步骤.)(17)(本小题满分10分)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.解:(1)由a n+2=2a n+1-a n +2得a n+2- a n+1=a n+1-a n +2,即b n+1=b n +2,又b 1=a 2-a 1=1. 所以{b n }是首项为1,公差为2的等差数列;(1) 由(1)得b n =1+2(n-1),即a n+1-a n =2n-1.于是于是a n -a 1=n 2-2n ,即a n =n 2-2n +1+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.(18)(本小题满分10分)02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩4z x y =+1l 2l 222x y +=1l 2l 1l 2l 111()(21)nnk k k k a a k +==-=-∑∑△ABC的内角A,B,C的对边分别是a,b,c,已知3acosC=2ccosA,tanA=,求B.解:由题设和正弦定理得,3sinAcosC=2sinCcosA,所以3tanAcosC=2sinC.因为tanA=,所以cosC=2sinC.tanC=.所以tanB=tan[180-(A+C)]=-tan(a+c)==-1,即B=135.(19)(本小题满分12分)如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.(1)证明:AC1⊥A1B;(2)设直线AA1与平面BCC1B1,求二面角A1-AB-C的大小.解法一:(1)∵A1D⊥平面ABC, A1D平面AA1C1C,故平面AA1C1C⊥平面ABC,又BC⊥AC,所以BC⊥平面AA1C1C,连结A1C,因为侧面AA1C1C是棱形,所以AC1⊥A1C,由三垂线定理的AC1⊥A1B.(2) BC⊥平面AA1C1C,BC平面BCC1B1,故平面AA1C1C⊥平面BCC1B1,作A1E⊥C1C,E为垂足,则A1E⊥平面BCC1B1,又直线A A1∥平面BCC1B1,因而A1E为直线A A1与平面BCC1B1间的距离,A1,因为A1C为∠ACC1的平分线,故A1D=A1131312︒tan tan1tan tanA CA C+--︒︒⊂⊂作DF ⊥AB ,F 为垂足,连结A 1F,由三垂线定理得A 1F ⊥AB ,故∠A 1FD 为二面角A 1-AB-C 的平面角,由,得D 为AC 的中点,DF=,tan ∠A 1FD=,所以二面角A 1-AB-C的大小为解法二:以C为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角坐标系C-x y z ,由题设知A 1D 与z 轴平行,z 轴在平面AA 1C 1C 内. (1)设A 1(a ,0,c ),由题设有a ≤2,A (2,0,0)B (0,1,0),则(-2,1,0),,,由,即,于是①,所以.(2)设平面BCC 1B 1的法向量,则,,即,因,故y=0,且(a-2)x -c z =0,令x =c ,则z =2-a ,,点A到平面BCC 1B 1的距离为,又依题设,点A 到平面BCC 1B 1的距c=.代入①得a=3(舍去)或a=1.于是,设平面ABA 1的法向量,则,即.且-2p +q =0,令p,则q,r=1,,又为1=12AC BC AB ⨯⨯=1A DDF=AF =1(2,0,0),(2,0,)AC AA a c =-=-111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-12AA =2=2240a a c -+=11AC BA ⋅=2240a a c -+=11AC BA ⊥(,,)m x y z =m CB ⊥1,m CB m BB ⊥⊥10,0m CB m BB ⋅=⋅=11(0,1,0),(2,0,)CB BB AA a c ==-(,0,2)m c a =-cos ,CA m CA m CA c mc ⋅⋅<>===1(1AA =-(,,)n p q r =1,n AA n AB ⊥⊥10,0n AA n AB ⋅=⋅=0p -=(3,2n =(0,0,1)p =平面ABC 的法向量,故cos ,所以二面角A 1-AB-C 的大小为arccos20. (本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别是0.6,0.5,0.5,0.4,各人是否使用设备相互独立,(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用,若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i=0,1,2.B 表示事件:甲需使用设备.C 表示事件:丁需使用设备.D 表示事件:同一工作日至少3人需使用设备.E 表示事件:同一工作日4人需使用设备.F 表示事件:同一工作日需使用设备的人数大于k. (1)D=A 1·B ·C+A 2·B+A 2··CP(B)=0.6,P(C)=0.4,P(A i )=.所以P(D)=P(A 1·B ·C+A 2·B+A 2··C )= P(A 1·B ·C)+P(A 2·B)+P(A 2··C ) = P(A 1P)·P(B)·P(C)+P(A 2)·P(B)+P(A 2)·p ()·p (C )=0.31. (2)由(1)知,若k=3,则P(F)==0.31>0.1.又E=B ·C ·A 2,P(E)=P(B ·C ·A 2)= P(B)·P(C)·P(A 2)=0.06; 若k=4,则P(F)=0.06<0.1. 所以k 的最小值为3.21. (本小题满分12分)函数f(x )=a x 3+3x 2+3x (a ≠0).(1)讨论函数f(x )的单调性;(2)若函数f(x )在区间(1,2)是增函数,求a 的取值范围.解:(1),的判别式△=36(1-a ). (i )若a ≥1,则,且当且仅当a=1,x =-1,故此时f (x )在R 上是增函数.1,4n p n p n p⋅<>==14B 220.5,0,1,2i C i ⨯=B B B 2()363f x ax x '=++2()3630f x ax x '=++=()0f x '≥()0f x '=(ii )由于a ≠0,故当a<1时,有两个根:, 若0<a<1,则当x ∈(-,x 2)或x ∈(x 1,+)时,,故f (x )在(-,x 2),(x 1,+)上是增函数;当x ∈(x 2,x 1)时,,故f (x )在(x 2,x 1)上是减函数;(2)当a>0,x >0时, ,所以当a>0时,f (x )在区间(1,2)是增函数. 若a<0时,f (x )在区间(1,2)是增函数当且仅当且,解得. 综上,a 的取值范围是. 22. (本小题满分12分)已知抛物线C:的焦点为F ,直线y=4与y 轴的交点为P ,与C 的交点为Q ,且. (1)求抛物线C 的方程;(2)过F 的直线l 与C 相交于A,B 两点,若AB 的垂直平分线与C 相交于M,N 两点,且A,M,B,N 四点在同一个圆上,求直线l 的方程.解:(1)设Q (x 0,4),代入由中得x 0=, 所以,由题设得,解得p =-2(舍去)或p =2.所以C 的方程为.(2)依题意知直线l 与坐标轴不垂直,故可设直线l 的方程为,(m ≠0)代入中得,()0f x '=12x x ==∞∞()0f x '>∞∞()0f x '<()0f x '>(1)0f '≥(2)0f '≥504a -≤<5[,0)(0,)4-+∞22(0)y px p =>54QF PQ =l '22(0)y px p =>8p088,22p p PQ QF x p p ==+=+85824p p p+=⨯24y x =1x my =+24y x =2440y my --=设A (x 1,y 1),B(x 2,y 2),则y 1+y 2=4m ,y 1y 2=-4, 故AB 的中点为D (2m 2+1,2m ),,有直线的斜率为-m ,所以直线的方程为,将上式代入中,并整理得. 设M(x 3,y 3),N(x 4,y 4),则. 故MN的中点为E(). 由于MN 垂直平分AB ,故A,M,B,N 四点在同一个圆上等价于,从而,即,化简得 m 2-1=0,解得m =1或m =-1,所以所求直线l 的方程为x -y-1=0或x +y-1=02124(1)AB y m =-=+l 'l '2123x y m m=-++24y x =2244(23)0y y m m+-+=234344,4(23)y y y y m m+=-=-+23422223,),m MN y y m m ++-=-=12AE BE MN ==2221144AB DE MN +=222222224224(1)(21)4(1)(2)(2)m m m m m m m+++++++=。

2014高考全国2卷文科数学试题(含解析)

2014高考全国2卷文科数学试题(含解析)

1 / 14绝密★启用前2014年高考全国2卷文科数学试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 评卷人得分一、选择题(题型注释)1.设集合2{2,0,2},{|20}A B x x x =-=--=,则AB =( )A .∅B .{}2C .{0}D .{2}- 2.131ii+=-( ) A .12i + B .12i -+ C .12i - D .12i --3.函数()f x 在0x x =处导数存在,若0:()0p f x =;0:q x x =是()f x 的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件4.设向量b a ,满足10||=+b a ,6||=-b a,则=⋅b a ( )A .1B .2C .3D .55.等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和n S =( ) A .(1)n n + B .(1)n n - C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削的部分的体积与原来毛坯体积的比值为( ) A .2717 B .95 C .2710 D .317.正三棱柱111ABC A B C -的底面边长为23D 为BC 中点,则三棱锥11A B DC -的体积为(A )3 (B )32(C )1 (D 3D 11AB 18.执行右面的程序框图,如果输入的x ,t 均为2,则输出的S =( )(A )4 (B )5 (C )6 (D )79.设x ,y 满足约束条件10,10,330,x y x y x y +-≥⎧⎪--≤⎨⎪-+≥⎩则2z x y =+的最大值为( )(A )8 (B )7 (C )2 (D )110.设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A(B )6 (C )12 (D)11.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞12.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( )(A )[]1,1-- (B )11,22⎡⎤-⎢⎥⎣⎦ (C)⎡⎣ (D)22⎡-⎢⎣⎦3 / 14第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)13.甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为_______.14.函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为________.15.偶函数)(x f y =的图像关于直线2=x 对称,3)3(=f ,则)1(-f =________. 16.数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________.三、解答题(题型注释)17.四边形ABCD 的内角A 与C 互补,2,3,1====DA CD BC AB .(1)求C 和BD ;(2)求四边形ABCD 的面积.18.如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 是PD 的中点.(1)证明:PB //平面AEC ; (2)设1,AP AD ==P ABD -的体积4V =,求A到平面PBC 的距离.19.某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评优.20.设12,F F 分别是椭圆22221(0)x y a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N . (1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且1||5||MNF N =,求,a b .21.已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (1)求a ; (2)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.22.如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于,B C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E .证明:(1)BEEC =;(2)22AD DE PB ⋅=P23.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ,[0,]2πρθθ=∈.(1)求C 得参数方程;(2)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(1)中你得到的参数方程,确定D 的坐标. 24.设函数1()||||(0)f x x x a a a=++-> (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.1 / 14参考答案1.B 【解析】试题分析:由已知得,{}21B =,-,故{}2A B =,选B .考点:集合的运算. 2.B 【解析】试题分析:由已知得,131i i+-(13)(1i)2412(1i)(1i)2i ii ++-+===-+-+,选B . 考点:复数的运算. 3.C 【解析】试题分析:若0x x =是函数()f x 的极值点,则'0()0f x =;若'0()0f x =,则0x x =不一定是极值点,例如3()f x x =,当0x =时,'(0)0f =,但0x =不是极值点,故p 是q 的必要条件,但不是q 的充分条件,选C . 考点:1、函数的极值点;2、充分必要条件.4.A 【解析】试题分析:由已知得,22210a a b b +⋅+=,2226a a b b -⋅+=,两式相减得,44a b ⋅=,故1a b ⋅=.考点:向量的数量积运算. 5.A 【解析】试题分析:由已知得,2428a a a =⋅,又因为{}n a 是公差为2的等差数列,故2222(2)(6)a d a a d +=⋅+,22(4)a +22(12)a a =⋅+,解得24a =,所以2(2)n a a n d=+-2n =,故1()(n 1)2n n n a a S n +==+. 【考点】1、等差数列通项公式;2、等比中项;3、等差数列前n 项和. 6.C 【解析】 试题分析:由三视图还原几何体为一个小圆柱和大圆柱组成的简单组合体.其中小圆柱底面半径为2、高为4,大圆柱底面半径为3、高为2,则其体积和为22243234πππ⨯⨯+⨯⨯=,而圆柱形毛坯体积为23654ππ⨯⨯=,故切削部分体积为20π,从而切削的部分的体积与原来毛坯体积的比值为20105427ππ=. 考点:三视图. 7.C 【解析】试题分析:如下图所示,连接AD ,因为ABC ∆是正三角形,且D 为BC 中点,则AD BC ⊥,又因为1BB ⊥面ABC ,故1BB AD ⊥,且1BB BC B =,所以AD ⊥面11BCC B ,所以AD是三棱锥11A B DC -的高,所以111111133A B DC B DC V S AD -∆=⋅==. 考点:1、直线和平面垂直的判断和性质;2、三棱锥体积.8.D 【解析】试题分析:输入2,2x t ==,在程序执行过程中,,,M S k 的值依次为1,3,1M S k ===;2,5,2M S k ===;2,7,3M S k ===,程序结束,输出7S =.考点:程序框图. 9.B 【解析】试题分析:画出可行域,如图所示,将目标函数2z x y =+变形为122zy x =-+,当z 取到最大值时,直线122z y x =-+的纵截距最大,故只需将直线12y x =-经过可行域,尽可能平移到过A 点时,z 取到最大值.10330x y x y --=⎧⎨-+=⎩,得(3,2)A ,所以max z 3227=+⨯=.考点:线性规划. 10.C【解析】试题分析:由题意,得3(,0)4F.又因为0k tan303==,故直线AB的方程为3y)4=-,与抛物线2=3y x联立,得21616890x x-+=,设1122(x,y),(x,y)A B,由抛物线定义得,12x xAB p=++=168312162+=,选C.考点:1、抛物线的标准方程;2、抛物线的定义.11.D【解析】试题分析:'1()f x kx=-,由已知得'()0f x≥在()1,x∈+∞恒成立,故1kx≥,因为1x>,所以101x<<,故k的取值范围是[)1,+∞.【考点】利用导数判断函数的单调性.12.A【解析】试题分析:依题意,直线MN与圆O有公共点即可,即圆心O到直线MN的距离小于等于1即可,过O作OA⊥MN,垂足为A,在Rt OMA∆中,因为OMA∠045=,故0sin45OA OM==1≤,所以OM≤,解得11x-≤≤.考点:1、解直角三角形;2、直线和圆的位置关系.13.13【解析】试题分析:甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),3/ 14(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为3193P ==. 考点:古典概型的概率计算公式. 14.1 【解析】试题分析:由已知得,()sin cos cos sin 2cos sin f x x x x ϕϕϕ=+-sin cos cos sin x x ϕϕ=-sin()x ϕ=-1≤,故函数x x x f cos sin 2)sin()(ϕϕ-+=的最大值为1.考点:1、两角和与差的正弦公式;2、三角函数的性质. 15.3 【解析】试题分析:因为)(x f y =的图像关于直线2=x 对称,故(3)(1)3f f ==,又因为)(x f y =是偶函数,故(1)(1)3f f -==.考点:1、函数图象的对称性;2、函数的奇偶性. 16.12. 【解析】试题分析:由已知得,111n n a a +=-,82a =,所以781112a a =-=,67111a a =-=-,56112a a =-=, 451112a a =-=,34111a a =-=-,23112a a =-=,121112a a =-=. 考点:数列的递推公式. 17.(1)0C 60=,BD =(2)【解析】试题分析:(1)连接BD .在ABD ∆和CBD ∆中,利用余弦定理列等式2222BD BC CD BC =+-cos CD C ⋅和2222cos BD AB DA AB DA A =+-⋅,且cos cos C A =-,代入数据得1312cos C -=54cosC +,求cos C 的值,进而求C 和BD 的值;(2)由(1)知ABD ∆和CBD ∆的面积可求,故四边形ABCD 等于ABD ∆和CBD ∆的面积.5 / 14(1)由题设及余弦定理得2222cos BD BC CD BC CD C =+-⋅1312cos C =-.①2222cos BD AB DA AB DA A =+-⋅54cosC =+.②由①②得1cosC 2=,故0C 60=,BD = (2)四边形ABCD 的面积11sin sin 22S AB DA A BC CD C =⋅+⋅011(1232)sin 6022S =⨯⨯+⨯⨯=.考点:1、余弦定理;2、诱导公式;3、三角形的面积公式. 18.(1)详见解析;(2)13【解析】 试题分析:(1)证明直线和平面平行往往可以采取两种方法:①利用直线和平面平行的判定定理,即证明直线和平面内的一条直线平行;②利用面面平行的性质定理,即若两个平面平行,则一个平面内的任意一条直线和另外一个平面平行.本题设BD 和AC 交于点O ,连接EO .则//EO PB ,进而证明PB //平面AEC .(2)由三棱锥P ABD -的体积4V =,可求得3=2AB ,易证明面PBC ⊥面PAB ,则在面PAB 内作AH PB ⊥交PB 于H ,由面面垂直的性质定理得AH ⊥平面PBC .在PAB ∆中求AH .(1)设BD 和AC 交于点O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以//EO PB .且EO ⊂平面AEC ,PB ⊄平面AEC ,所以PB //平面AEC .(2)1=6V PA AB AD AB ⋅⋅=.由4V =可得3=2AB .作AH PB ⊥交PB 于H .由题设知BC ⊥平面PAB .所以BC AH ⊥,故AH ⊥平面PBC .又=PA ABAH PB⋅.所以A 到平面PBC考点:1、直线和平面平行的判定;2、点到平面的距离.19.(1)该市的市民对甲、乙两部门评分的中位数的估计值分别为75,67;(2)0.1,0.16;(3)详见解析. 【解析】试题分析:(1)把数从小到大排成一列,正中间如果是一个数,这个数就是中位数 ;正中间如果是两个数,那中位数是这两个数的平均数.本题有50位市民,故市民对甲、乙两部门评分正中间有两个数,求平均数即得中位数的估计值;(2)50位市民对甲、乙两部门的评分高于90的比率分别为58=0.1,=0.165050,以样本的频率值估计总体的概率;(3)样本平均数、众数、中位数、方差都是样本的数字特征,通过对这些样本数字特征的分析可以从各个方面对总体作出评价.(1)由所给茎叶图知,50位市民对这甲部门的评分由小到大排序,排在第25,26位的是75,,75,故样本中位数为75,所以该市的市民对甲部门评分的中位数的估计值是75.50位市民对这乙部门的评分由小到大排序,排在第25,26位的是66,68,故样本中位数为66+68=672,所以该市的市民对乙部门评分的中位数的估计值是67. (2)由所给茎叶图知,50位市民对甲、乙两部门的评分高于90的比率分别为58=0.1,=0.165050,故该市的市民对甲、乙两部门的评分高于90的概率的估计值分别为0.1,0.16.(3)由所给茎叶图知,该市的市民对甲部门评分的中位数高于对乙部门评分的中位数,而且由所给茎叶图可以大致看出对甲部门的评分的标准差要小于对乙部门的评分的标准差,说明该市的市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.(考生利用其它统计量进行分析,结论合理的同样给分) 考点:1、样本的数字特征;2、频率和概率的关系. 20.(1)12;(2)7,a b ==【解析】7 / 14试题分析:(1)由已知得2(c,)b M a ,故直线MN 的斜率为23(c)4b a kc ==--,结合222b a c =-得关于,a c 的方程,解方程得离心率的值;(2)依题意,直线MN 和y 轴的交点是线段1MF 的中点.故24b a=,① 又因为1||5||MN F N =,得112F D F N =,从而得三个点1,,D F N 坐标的关系,将点N 的坐标表示出来代入椭圆方程的,得另一个关于,a b 的方程并联立方程①求,a b 即可.(1)根据c 2(c,)b M a ,22b 3ac =.将222b a c =-代入22b 3ac =,解得12c a =, 2c a =-(舍去).故C 的离心率为12. (2)由题意,原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点(0,2)D 是线段1MF 的中点.故24b a=,即2b 4a =.①由1||5||MN F N =得112F D F N =.设11(x ,y )N ,由题意得,1y 0<,则112(c )c,2y 2,x --=⎧⎨-=⎩即113,21,x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得2229114c a b+=,②将①及c = 229(a 4a)1144a a-+=.解得7a =,2428b a ==,故7,a b == 考点:椭圆的标准方程和简单几何性质;2、中点坐标公式.21.(1)1a =;(2)详见解析.【解析】试题分析:(1)2'(x)3x 6x a f =-+,由导数的几何意义得'(0)k f a ==,故切线方程为y 2ax =+,将点-2,0()代入求a ;(2)曲线()y f x =与直线2y kx =-只有一个交点转化为函数32()()kx 23(1k)4g x f x x x x =-+=-+-+有且只有零点.一般思路往往利用导数求函数的单调区间和极值点,从而判断函数大致图象,再说明与x 轴只有一个交点.本题首先入手点为1k <,当0x ≤时,'()0g x >,且g(1)k 10-=-<,g(0)4=,所以g()0x =在(,0)-∞有唯一实根.只需说明当0x >时无根即可,因为(1k)x 0->,故只需说明32()340h x x x =-+>,进而转化为求函数()h x 的最小值问题处理.(1)2'(x)3x 6x a f =-+,'(0)f a =.曲线()y f x =在点(0,2)处的切线方程为y 2ax =+.由题设得,22a -=-,所以1a =. (2)由(1)得,32()32f x x x x =-++.设32()()kx 23(1k)4g x f x x x x =-+=-+-+.由题设得1k 0->.当0x ≤时,2'()3610g x x x k =-+->,g()x 单调递增,g(1)k 10-=-<,g(0)4=,所以g()0x =在(,0)-∞有唯一实根.当0x >时,令32()34h x x x =-+,则()()(1k)x ()g x h x h x =+->.2'()3x h x =-63(x 2)x x =-,()h x 在(0,2)单调递减;在(2,)+∞单调递增.所以()()(2)0g x h x h >≥=.所以()=0g x 在(0,)+∞没有实根,综上,()=0g x 在R 上有唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点.考点:1、导数的几何意义;2、利用导数判断函数单调性;3、利用导数求函数的最值.22.(1)详见解析;(2)详见解析【解析】试题分析:(1)要证明BE EC =,只需证明弦BE EC ,所对的圆周角相等,连接,AB AC ,故只需证明=DAC BAD ∠∠.由PA PD =得PAD PDA ∠=∠,为了和所求证的角建立联系=PDA DAC DCA ∠∠+∠,=PAD ∠BAD PAD ∠+∠,从而可证明=DAC BAD ∠∠,进而证明BE EC =;(2)由结论很容易想到相交弦定理AD DE BD DC ⋅=⋅,故只需证明22PB BD DC =⋅,由切割线定理得2PA PB PC =⋅,且PA PD DC ==易证.(1)连接,AB AC .由题设知,PA PD =,故PAD PDA ∠=∠.因为=PDA DAC DCA ∠∠+∠,=PAD ∠BAD PAD ∠+∠,=DCA PAB ∠∠,所以=DAC BAD ∠∠,从而BE =EC .因此BE EC =.(2)由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2,DC PB BD PB ==,由相交弦定理得AD DE BD DC ⋅=⋅,所以22AD DE PB ⋅=.9 / 14P考点:1、圆的切割线定理;2、相交弦定理.23.(1)1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t π≤≤);(2)3(2. 【解析】试题分析:(1)由2cos ,[0,]2πρθθ=∈两边平方,且结合222x y ρ+=和cos x ρθ=得半圆C 的直角坐标方程为22(1)1(01)x y y -+=≤≤,进而写出C 的参数方程;(2)利用C的参数方程设(1cost,sint)D +,由圆的切线的性质得//GD l ,故直线GD 与l 的斜率相同,根据斜率列方程得tan 3t t π==,从而点D 的直角坐标可求. (1)C 的普通方程为22(1)1(01)x y y -+=≤≤.可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t π≤≤).(2)设(1cost,sint)D +.由(1)知,C 是以(1,0)G 为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同.tan 3t t π==.故D 的直角坐标为(1cos ,sin )33ππ+,即3(,22. 考点:1、圆的极坐标方程和参数方程;2、两条直线的位置关系.24.(1)详见解析;(2). 【解析】试题分析:(1)由绝对值三角不等式得11()()f x x x a x x a a a =++-≥+--1a a=+,由0a >结合基本不等式得12a a+≥,故()2f x ≥;(2)由(3)5f <,得关于a 的不等式1335a a++-<(0)a >,去绝对号解不等式即可. (1)由0a >,有11()()f x x x a x x a a a =++-≥+--12a a =+≥,所以()2f x ≥.(2)1(3)33f a a =++-.当a 3>时,1(3)f a a=+,由(3)5f <得532a +<<.当03a <≤时,1(3)6f a a =-+,由(3)5f <得132a +<≤.综上,a 的取值范围是52+. 考点:1、绝对值三角不等式;2、基本不等式;3、绝对值不等式解法.。

2014年高考文科数学全国卷2(含详细答案)

2014年高考文科数学全国卷2(含详细答案)

数学试卷 第1页(共30页)数学试卷 第2页(共30页) 数学试卷 第3页(共30页)绝密★启用前2014年普通高等学校招生全国统一考试(全国新课标卷2)文科数学使用地区:海南、宁夏、黑龙江、吉林、新疆、云南、内蒙古、青海、贵州、甘肃、西藏注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合2,{2}0,A -=,2{|20}B x x x =--=,则A B =( )A .∅B .{2}C .{0}D .{2}- 2.13i =1i+-( )A .12i +B .12i -+C .12i -D .12i --3.函数()f x 在0x x =处导数存在.若p :0()0f x '=;q :0x x =是()f x 的极值点,则( ) A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件 4.设向量a ,b 满足|a +b |10=,|a -b |6=,则a b =( )A .1B .2C .3D .55.等差数列{}n a 的公差为2,若2a ,4a ,8a 成等比数列,则{}n a 的前n 项和n S = ( ) A .(1)n n +B .(1)n n -C .(1)2n n + D .(1)2n n - 6.如图,网格纸上正方形小格的边长为1(表示1 cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为 ( )A .1727B .59C .1027D .137.正三棱柱111ABC A B C -的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥11A B DC -的体积为( )A .3B .32C .1D .328.执行如图所示的程序框图,如果输入的x ,t 均为2,则输出的S =( ) A .4 B .5 C .6D .79.设x ,y 满足约束条件10,10,330,x y x y x y +-⎧⎪--⎨⎪-+⎩≥≤≥则2z x y =+的最大值为( ) A .8 B .7 C .2D .110.设F 为抛物线C :23y x =的焦点,过F 且倾斜角为30的直线交于C 于A ,B 两点,则||AB =( )A .303B .6C .12D .7311.若函数()ln f x kx x =-在区间(1,)+∞上单调递增,则k 的取值范围是( )A .(,2]-∞-B .(,1]-∞-C .[2,)+∞D .[1,)+∞12.设点0(,1)M x ,若在圆O :221x y +=上存在点N ,使得45OMN ∠=,则0x 的取值范围是( )A .[1,1]-B .11[,]22-C .[2,2]-D .22[,]22-第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生都必须作答.第22题~第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分.13.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .14.函数()sin()2sin cos f x x x ϕϕ=+-的最大值为 .15.偶函数()y f x =的图象关于直线2x =对称,(3)3f =,则(1)f -= .16.数列{}n a 满足111n n a a +=-,82a =,则1a = .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)四边形ABCD 的内角A 与C 互补,1AB =,3BC =,2CD DA ==. (Ⅰ)求C 和BD ;(Ⅱ)求四边形ABCD 的面积.18.(本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点. (Ⅰ)证明:PB平面AEC ;(Ⅱ)设1AP =,3AD =,三棱锥P ABD -的体积34V =,求A 到平面PBC 的距离.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共30页) 数学试卷 第5页(共30页) 数学试卷 第6页(共30页)19.(本小题满分12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数; (Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(本小题满分12分) 设1F ,2F 分别是椭圆C :22221(0)x y a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N .(Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且1||5||MN F N =,求a ,b .21.(本小题满分12分)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-. (Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.请从下面所给的22、23、24三题中选定一题作答,并用2B 铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.22.(本小题满分10分)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,2PC PA =,D 为PC 的中点,AD 的延长线交O 于点E ,证明:(Ⅰ)BE EC =; (Ⅱ)22AD DE PB =.23.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为2cos ρθ=,π[0,]2θ∈.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线l :2y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24.(本小题满分10分)选修4—5:不等式选讲设函数1()||||(0)f x x x a a a =++->.(Ⅰ)证明:()2f x ≥;(Ⅱ)若(3)5f <,求a 的取值范围.3 / 10{2}A B =,选(1+3i)(1+i)-2+4i ==-1+2ii)(1+i)2【解析】由已知得,22210a a b b ++=,2226a a b b -+=,两式相减得,44a b =,故1a b =。

2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标ⅱ)(含答案及解析)

2014年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i 3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.55.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.79.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.110.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.711.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)=.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.2014年全国统一高考数学试卷(文科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合A={﹣2,0,2},B={x|x2﹣x﹣2=0},则A∩B=()A.∅B.{2}C.{0}D.{﹣2}【考点】1E:交集及其运算.【专题】5J:集合.【分析】先解出集合B,再求两集合的交集即可得出正确选项.【解答】解:∵A={﹣2,0,2},B={x|x2﹣x﹣2=0}={﹣1,2},∴A∩B={2}.故选:B.【点评】本题考查交的运算,理解好交的定义是解答的关键.2.(5分)=()A.1+2i B.﹣1+2i C.1﹣2i D.﹣1﹣2i【考点】A5:复数的运算.【专题】5N:数系的扩充和复数.【分析】分子分母同乘以分母的共轭复数1+i化简即可.【解答】解:化简可得====﹣1+2i故选:B.【点评】本题考查复数代数形式的化简,分子分母同乘以分母的共轭复数是解决问题的关键,属基础题.3.(5分)函数f(x)在x=x0处导数存在,若p:f′(x0)=0:q:x=x0是f(x)的极值点,则()A.p是q的充分必要条件B.p是q的充分条件,但不是q的必要条件C.p是q的必要条件,但不是q的充分条件D.p既不是q的充分条件,也不是q的必要条件【考点】29:充分条件、必要条件、充要条件.【专题】5L:简易逻辑.【分析】根据可导函数的极值和导数之间的关系,利用充分条件和必要条件的定义即可得到结论.【解答】解:函数f(x)=x3的导数为f'(x)=3x2,由f′(x0)=0,得x0=0,但此时函数f(x)单调递增,无极值,充分性不成立.根据极值的定义和性质,若x=x0是f(x)的极值点,则f′(x0)=0成立,即必要性成立,故p是q的必要条件,但不是q的充分条件,故选:C.【点评】本题主要考查充分条件和必要条件的判断,利用函数单调性和极值之间的关系是解决本题的关键,比较基础.4.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5【考点】9O:平面向量数量积的性质及其运算.【专题】5A:平面向量及应用.【分析】将等式进行平方,相加即可得到结论.【解答】解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.【点评】本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.5.(5分)等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n 项和S n=()A.n(n+1)B.n(n﹣1)C.D.【考点】83:等差数列的性质.【专题】54:等差数列与等比数列.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴S n=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.【考点】L!:由三视图求面积、体积.【专题】5F:空间位置关系与距离.【分析】由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.【解答】解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.【点评】本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC中点,则三棱锥A﹣B1DC1的体积为()A.3B.C.1D.【考点】LF:棱柱、棱锥、棱台的体积.【专题】5F:空间位置关系与距离.【分析】由题意求出底面B1DC1的面积,求出A到底面的距离,即可求解三棱锥的体积.【解答】解:∵正三棱柱ABC﹣A1B1C1的底面边长为2,侧棱长为,D为BC 中点,∴底面B1DC1的面积:=,A到底面的距离就是底面正三角形的高:.三棱锥A﹣B1DC1的体积为:=1.故选:C.【点评】本题考查几何体的体积的求法,求解几何体的底面面积与高是解题的关键.8.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】根据条件,依次运行程序,即可得到结论.【解答】解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.【点评】本题主要考查程序框图的识别和判断,比较基础.9.(5分)设x,y满足约束条件,则z=x+2y的最大值为()A.8B.7C.2D.1【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即可求z 的最大值.【解答】解:作出不等式对应的平面区域,由z=x+2y,得y=﹣,平移直线y=﹣,由图象可知当直线y=﹣经过点A时,直线y=﹣的截距最大,此时z最大.由,得,即A(3,2),此时z的最大值为z=3+2×2=7,故选:B.【点评】本题主要考查线性规划的应用,利用数形结合是解决线性规划题目的常用方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交于C 于A,B两点,则|AB|=()A.B.6C.12D.7【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】求出焦点坐标,利用点斜式求出直线的方程,代入抛物线的方程,利用根与系数的关系,由弦长公式求得|AB|.【解答】解:由y2=3x得其焦点F(,0),准线方程为x=﹣.则过抛物线y2=3x的焦点F且倾斜角为30°的直线方程为y=tan30°(x﹣)=(x ﹣).代入抛物线方程,消去y,得16x2﹣168x+9=0.设A(x1,y1),B(x2,y2)则x1+x2=,所以|AB|=x1++x2+=++=12故选:C.【点评】本题考查抛物线的标准方程,以及简单性质的应用,弦长公式的应用,运用弦长公式是解题的难点和关键.11.(5分)若函数f(x)=kx﹣ln x在区间(1,+∞)单调递增,则k的取值范围是()A.(﹣∞,﹣2]B.(﹣∞,﹣1]C.[2,+∞)D.[1,+∞)【考点】6B:利用导数研究函数的单调性.【专题】38:对应思想;4R:转化法;51:函数的性质及应用.【分析】求出导函数f′(x),由于函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,可得f′(x)≥0在区间(1,+∞)上恒成立.解出即可.【解答】解:f′(x)=k﹣,∵函数f(x)=kx﹣lnx在区间(1,+∞)单调递增,∴f′(x)≥0在区间(1,+∞)上恒成立.∴k≥,而y=在区间(1,+∞)上单调递减,∴k≥1.∴k的取值范围是:[1,+∞).故选:D.【点评】本题考查了利用导数研究函数的单调性、恒成立问题的等价转化方法,属于中档题.12.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是()A.[﹣1,1]B.[﹣,]C.[﹣,]D.[﹣,]【考点】JE:直线和圆的方程的应用.【专题】5B:直线与圆.【分析】根据直线和圆的位置关系,利用数形结合即可得到结论.【解答】解:由题意画出图形如图:点M(x0,1),要使圆O:x2+y2=1上存在点N,使得∠OMN=45°,则∠OMN的最大值大于或等于45°时一定存在点N,使得∠OMN=45°,而当MN与圆相切时∠OMN取得最大值,此时MN=1,图中只有M′到M″之间的区域满足MN=1,∴x0的取值范围是[﹣1,1].故选:A.【点评】本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.二、填空题:本大题共4小题,每小题5分.13.(5分)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为.【考点】C8:相互独立事件和相互独立事件的概率乘法公式.【专题】5I:概率与统计.【分析】所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有3×3=9种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为=,故答案为:.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.14.(5分)函数f(x)=sin(x+φ)﹣2sinφcosx的最大值为1.【考点】GP:两角和与差的三角函数;HW:三角函数的最值.【专题】56:三角函数的求值;57:三角函数的图像与性质.【分析】直接利用两角和与差三角函数化简,然后求解函数的最大值.【解答】解:函数f(x)=sin(x+φ)﹣2sinφcosx=sinxcosφ+sinφcosx﹣2sinφcosx=sinxc osφ﹣sinφcosx=sin(x﹣φ)≤1.所以函数的最大值为1.故答案为:1.【点评】本题考查两角和与差的三角函数,三角函数最值的求解,考查计算能力.15.(5分)偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(﹣1)= 3.【考点】3K:函数奇偶性的性质与判断.【专题】51:函数的性质及应用.【分析】根据函数奇偶性和对称性的性质,得到f(x+4)=f(x),即可得到结论.【解答】解:法1:因为偶函数y=f(x)的图象关于直线x=2对称,所以f(2+x)=f(2﹣x)=f(x﹣2),即f(x+4)=f(x),则f(﹣1)=f(﹣1+4)=f(3)=3,法2:因为函数y=f(x)的图象关于直线x=2对称,所以f(1)=f(3)=3,因为f(x)是偶函数,所以f(﹣1)=f(1)=3,故答案为:3.【点评】本题主要考查函数值的计算,利用函数奇偶性和对称性的性质得到周期性f(x+4)=f(x)是解决本题的关键,比较基础.16.(5分)数列{a n}满足a n+1=,a8=2,则a1=.【考点】8H:数列递推式.【专题】11:计算题.【分析】根据a8=2,令n=7代入递推公式a n+1=,求得a7,再依次求出a6,a5的结果,发现规律,求出a1的值.=,a8=2,【解答】解:由题意得,a n+1令n=7代入上式得,a8=,解得a7=;令n=6代入得,a7=,解得a6=﹣1;令n=5代入得,a6=,解得a5=2;…根据以上结果发现,求得结果按2,,﹣1循环,∵8÷3=2…2,故a1=故答案为:.【点评】本题考查了数列递推公式的简单应用,即给n具体的值代入后求数列的项,属于基础题.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)四边形ABCD的内角A与C互补,AB=1,BC=3,CD=DA=2.(1)求C和BD;(2)求四边形ABCD的面积.【考点】HP:正弦定理;HR:余弦定理.【专题】56:三角函数的求值.【分析】(1)在三角形BCD中,利用余弦定理列出关系式,将BC,CD,以及cosC 的值代入表示出BD2,在三角形ABD中,利用余弦定理列出关系式,将AB,DA以及cosA的值代入表示出BD2,两者相等求出cosC的值,确定出C的度数,进而求出BD的长;(2)由C的度数求出A的度数,利用三角形面积公式求出三角形ABD与三角形BCD面积,之和即为四边形ABCD面积.【解答】解:(1)在△BCD中,BC=3,CD=2,由余弦定理得:BD2=BC2+CD2﹣2BC•CDcosC=13﹣12cosC①,在△ABD中,AB=1,DA=2,A+C=π,由余弦定理得:BD2=AB2+AD2﹣2AB•ADcosA=5﹣4cosA=5+4cosC②,由①②得:cosC=,则C=60°,BD=;(2)∵cosC=,cosA=﹣,∴sinC=sinA=,则S=AB•DAsinA+BC•CDsinC=×1×2×+×3×2×=2.【点评】此题考查了余弦定理,同角三角函数间的基本关系,以及三角形面积公式,熟练掌握余弦定理是解本题的关键.18.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P﹣ABD的体积V=,求A到平面PBC的距离.【考点】LF:棱柱、棱锥、棱台的体积;LS:直线与平面平行;MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】(Ⅰ)设BD与AC 的交点为O,连结EO,通过直线与平面平行的判定定理证明PB∥平面AEC;(Ⅱ)通过AP=1,AD=,三棱锥P﹣ABD的体积V=,求出AB,作AH⊥PB 角PB于H,说明AH就是A到平面PBC的距离.通过解三角形求解即可.【解答】解:(Ⅰ)证明:设BD与AC 的交点为O,连结EO,∵ABCD是矩形,∴O为BD的中点∵E为PD的中点,∴EO∥PB.EO⊂平面AEC,PB⊄平面AEC∴PB∥平面AEC;(Ⅱ)∵AP=1,AD=,三棱锥P﹣ABD的体积V=,∴V==,∴AB=,PB==.作AH⊥PB交PB于H,由题意可知BC⊥平面PAB,∴BC⊥AH,故AH⊥平面PBC.又在三角形PAB中,由射影定理可得:A到平面PBC的距离.【点评】本题考查直线与平面垂直,点到平面的距离的求法,考查空间想象能力以及计算能力.19.(12分)某市为了考核甲、乙两部门的工作情况,随机访问了50位市民,根据这50位市民对两部门的评分(评分越高表明市民的评价越高)绘制的茎叶图如图:(Ⅰ)分别估计该市的市民对甲、乙两部门评分的中位数;(Ⅱ)分别估计该市的市民对甲、乙两部门的评分高于90的概率;(Ⅲ)根据茎叶图分析该市的市民对甲、乙两部门的评价.【考点】BA:茎叶图;BB:众数、中位数、平均数;CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)根据茎叶图的知识,中位数是指中间的一个或两个的平均数,首先要排序,然后再找,(Ⅱ)利用样本来估计总体,只要求出样本的概率就可以了.(Ⅲ)根据(Ⅰ)(Ⅱ)的结果和茎叶图,合理的评价,恰当的描述即可.【解答】解:(Ⅰ)由茎叶图知,50位市民对甲部门的评分有小到大顺序,排在排在第25,26位的是75,75,故样本的中位数是75,所以该市的市民对甲部门的评分的中位数的估计值是75.50位市民对乙部门的评分有小到大顺序,排在排在第25,26位的是66,68,故样本的中位数是=67,所以该市的市民对乙部门的评分的中位数的估计值是67.(Ⅱ)由茎叶图知,50位市民对甲、乙部门的评分高于90的比率分别为,故该市的市民对甲、乙两部门的评分高于90的概率得估计值分别为0.1,0.16,(Ⅲ)由茎叶图知,市民对甲部门的评分的中位数高于乙部门的评分的中位数,而且由茎叶图可以大致看出对甲部门的评分标准差要小于乙部门的标准差,说明该市市民对甲部门的评价较高、评价较为一致,对乙部门的评价较低、评价差异较大.【点评】本题主要考查了茎叶图的知识,以及中位数,用样本来估计总体的统计知识,属于基础题.20.(12分)设F1,F2分别是C:+=1(a>b>0)的左,右焦点,M是C 上一点且MF2与x轴垂直,直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率;(2)若直线MN在y轴上的截距为2,且|MN|=5|F1N|,求a,b.【考点】K4:椭圆的性质.【专题】5E:圆锥曲线中的最值与范围问题.【分析】(1)根据条件求出M的坐标,利用直线MN的斜率为,建立关于a,c的方程即可求C的离心率;(2)根据直线MN在y轴上的截距为2,以及|MN|=5|F1N|,建立方程组关系,求出N的坐标,代入椭圆方程即可得到结论.【解答】解:(1)∵M是C上一点且MF2与x轴垂直,∴M的横坐标为c,当x=c时,y=,即M(c,),若直线MN的斜率为,即tan∠MF1F2=,即b2==a2﹣c2,即c2+﹣a2=0,则,即2e2+3e﹣2=0解得e=或e=﹣2(舍去),即e=.(Ⅱ)由题意,原点O是F1F2的中点,则直线MF1与y轴的交点D(0,2)是线段MF1的中点,设M(c,y),(y>0),则,即,解得y=,∵OD是△MF1F2的中位线,∴=4,即b2=4a,由|MN|=5|F1N|,则|MF1|=4|F1N|,解得|DF1|=2|F1N|,即设N(x1,y1),由题意知y1<0,则(﹣c,﹣2)=2(x1+c,y1).即,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.【点评】本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数法是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=x3﹣3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为﹣2.(Ⅰ)求a;(Ⅱ)证明:当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(Ⅰ)求函数的导数,利用导数的几何意义建立方程即可求a;(Ⅱ)构造函数g(x)=f(x)﹣kx+2,利用函数导数和极值之间的关系即可得到结论.【解答】解:(Ⅰ)函数的导数f′(x)=3x2﹣6x+a;f′(0)=a;则y=f(x)在点(0,2)处的切线方程为y=ax+2,∵切线与x轴交点的横坐标为﹣2,∴f(﹣2)=﹣2a+2=0,解得a=1.(Ⅱ)当a=1时,f(x)=x3﹣3x2+x+2,设g(x)=f(x)﹣kx+2=x3﹣3x2+(1﹣k)x+4,由题设知1﹣k>0,当x≤0时,g′(x)=3x2﹣6x+1﹣k>0,g(x)单调递增,g(﹣1)=k﹣1,g(0)=4,当x>0时,令h(x)=x3﹣3x2+4,则g(x)=h(x)+(1﹣k)x>h(x).则h′(x)=3x2﹣6x=3x(x﹣2)在(0,2)上单调递减,在(2,+∞)单调递增,∴在x=2时,h(x)取得极小值h(2)=0,g(﹣1)=k﹣1,g(0)=4,则g(x)=0在(﹣∞,0]有唯一实根.∵g(x)>h(x)≥h(2)=0,∴g(x)=0在(0,+∞)上没有实根.综上当k<1时,曲线y=f(x)与直线y=kx﹣2只有一个交点.【点评】本题主要考查导数的几何意义,以及函数交点个数的判断,利用导数和函数单调性之间的关系是解决本题的关键,考查学生的计算能力.三、选修4-1:几何证明选讲22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.【考点】N4:相似三角形的判定;NC:与圆有关的比例线段.【专题】17:选作题;5Q:立体几何.【分析】(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.【解答】证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.【点评】本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.四、选修4-4,坐标系与参数方程23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为ρ=2cosθ,θ∈[0,](Ⅰ)求C的参数方程;(Ⅱ)设点D在半圆C上,半圆C在D处的切线与直线l:y=x+2垂直,根据(1)中你得到的参数方程,求直线CD的倾斜角及D的坐标.【考点】QH:参数方程化成普通方程.【专题】5S:坐标系和参数方程.【分析】(1)利用即可得出直角坐标方程,利用cos2t+sin2t=1进而得出参数方程.(2)利用半圆C在D处的切线与直线l:y=x+2垂直,则直线CD的斜率与直线l的斜率相等,即可得出直线CD的倾斜角及D的坐标.【解答】解:(1)由半圆C的极坐标方程为ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,可得C的普通方程为(x﹣1)2+y2=1(0≤y≤1).可得C的参数方程为(t为参数,0≤t≤π).(2)设D(1+cos t,sin t),由(1)知C是以C(1,0)为圆心,1为半径的上半圆,∵直线CD的斜率与直线l的斜率相等,∴tant=,t=.故D的直角坐标为,即(,).【点评】本题考查了把极坐标方程化为直角坐标方程、参数方程化为普通方程、直线与圆的位置关系,考查了推理能力与计算能力,属于中档题.五、选修4-5:不等式选讲24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.【考点】R5:绝对值不等式的解法.【专题】59:不等式的解法及应用.【分析】(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.【解答】解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<a≤3.综上可得,a的取值范围(,).【点评】本题主要考查绝对值三角不等式,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。

2014年全国高考数学真题 文科 及答案详解

2014年全国高考数学真题 文科 及答案详解

2014年普通高等学校招生全国统一考试数学(文科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合{}{}12|,31|≤≤-=≤≤-=x x B x x M ,则MB =( )A. )1,2(-B. )1,1(-C. )3,1(D. )3,2(-正确答案:A(2)若0tan >α,则A. 0sin >αB. 0cos >αC. 02sin >αD. 02cos >α 正确答案:A(3)设i iz ++=11,则=||z A. 21 B. 22 C. 23 D. 2正确答案:B(4)已知双曲线)0(13222>=-a y a x 的离心率为2,则=a A. 2 B. 26 C. 25D. 1正确答案:D(5)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数正确答案:A(6)设F E D ,,分别为ABC ∆的三边AB CA BC ,,的中点,则=+ A. B.21 C. 21D. 正确答案:C(7)在函数①|2|cos x y =,②|cos |x y = ,③)62cos(π+=x y ,④)42tan(π-=x y 中,最小正周期为π的所有函数为A.①②③B. ①③④C. ②④D. ①③ 正确答案:C8.如图,网格纸的各小格都是正方形,粗实线画出的事一个几何体的三视图,则这个几何体是( ) A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱正确答案:B9.执行右面的程序框图,若输入的,,a b k 分别为1,2,3,则输出的M =( )A.203B.72C.165D.158正确答案:D10.已知抛物线C :x y =2的焦点为F ,()y x A 0,是C 上一点,zxxk xF A 045=,则=x 0( )A. 1B. 2C. 4D. 8正确答案:C(11)设x ,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-3 正确答案:B(12)已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值 范围是(A )()2,+∞ (B )()1,+∞ (C )(),2-∞- (D )(),1-∞-(B )正确答案:A第II 卷二、填空题:本大题共4小题,每小题5分(13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为________. 正确答案:2/3(14)甲、乙、丙三位同学被问到是否去过A 、B 、zxxk C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为________. 正确答案:A(15)设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.正确答案:((16)如图,为测量山高MN ,选择A 和另一座山的山顶C 为测量观测点.从A 点测得 M 点的仰角60MAN ∠=︒,C 点的仰角45CAB ∠=︒以及75MAC ∠=︒;从C 点测得60MCA ∠=︒.已知山高100BC m =,则山高MN =________m .本文来自正确答案:150三、解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。

2014广西壮族自治区高考数学试卷

2014广西壮族自治区高考数学试卷

1、如果从初三(1)、(2)、(3)班中随机抽取一个班与初三(4)班进行一场拔河比赛,那么恰好抽到初三(1)班的概率是_________ .
2、一个两位小数,若去掉它的小数点,得到的新数比原数多47.52。

这个两位小数是()。

3、按要求在句子中填上合适的词语(每空1分,共7分)
1、这两个人总是一起做坏事,真是呀!(与“动物”有关的成语)
2、是他让我做成了这个艺术品,又是他打碎了这个艺术品,真是,呀。

(写出有关历史人物的成语)
3、虽然路上有许多(),但谁也别想()我们前进的脚步,我们是不会受到一点()就放弃的。

(用“阻”字组成的词语填空,不得重复)
4、()考试不难,()方法和规范很重要,()我们要认真审题,注意分点,让自己和知识变成得分。

(填关联词)
4、某文具店二月份销售各种水笔320支,三月份销售各种水笔的支数比二月份增长了10%,那么该文具店三月份销售各种水笔_________ 支.
5、判断。

1、小数都比整数小。

()
2、把一根长为1米的绳子分成5段,每段长1/5米。

()
3、甲数的1/4等于乙数的1/6,则甲乙两数之比为2:3。

()
4、任何一个质数加上1,必定是合数。

()
5、半径为2厘米的加,圆的周长和面积相等。

()
6、小红把2000元存入银行,存期一年,年利率为2.68%,利息税是5%,那么到期时可得利息()元。

2014年年全国高考文科数学试题(卷)与答案解析

2014年年全国高考文科数学试题(卷)与答案解析

绝密★启封并使用完毕前2015年普通高等学校招生全国统一考试(全国卷1)文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1至3页,第Ⅱ卷4至6页。

注意事项:1. 答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。

3. 考试结束,监考员将试题卷、答题卡一并收回。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)已知集合A={x|x=3n+2,n ∈N},B={6,8,12,14},则集合A ⋂B 中元素的个数为(A )5(B )4(C )3(D )2(2)已知点A (0,1),B (3,2),向量AC u u u r =(-4,-3),则向量BC uuu r=(A )(-7,-4) (B )(7,4) (C )(-1,4) (D )(1,4) (3)已知复数z 满足(z-1)i=i+1,则z=(A )-2-I (B )-2+I (C )2-I (D )2+i(4)如果3个整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则3个数构成一组勾股数的概率为(A )103 (B )15 (C )110 (D )120(5)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y ²=8x 的焦点重合,A ,B 是C 的准线与E 的两个焦点,则|AB|= (A )3 (B )6 (C )9 (D )12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。

2014年高考广西文科数学试题及答案(word解析版)

2014年高考广西文科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(广西卷)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广西,文1,5分】设集合{12468}{123567}M N ==,,,,,,,,,,,则M N 中元素的个数为( )(A )2 (B )3 (C )5 (D )7 【答案】B【解析】{}1,2,6M N =,所以M N 中元素的个数为3,故选B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. (2)【2014年广西,文2,5分】已知角α的终边经过点(43)-,,则cos α=( )(A )45 (B )35 (C )35- (D )45-【答案】D【解析】由三角函数定义知4cos 5==-,故选D .【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.(3)【2014年广西,文3,5分】不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )(A ){|21}x x -<<- (B ){|10}x x -<< (C ){|01}x x << (D ){|1}x x > 【答案】C【解析】由()20x x +>得0x >或2x <-;由1x <得11x -<<,所以不等式组的解集为{}01x x <<,故选C . 【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题. (4)【2014年广西,文4,5分】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )(A )16 (B (C )13(D【答案】B【解析】如图,取AD 的中点F ,连接EF 、CF .因为E 、F 分别是AB 、AD 的中点,所以=1//2EF BD ,故CEF ∠或其补角是异面直线CE 、BD 所成的角.设正四面体ABCD 的棱长为a ,易知CE CF ==,12EF a =.在CEF △中,由余弦定理可得22212cos a CEF ⎫⎫⎛⎫+-⎪⎪ ⎪⎪⎪∠==B . 【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.(5)【2014年广西,文5,5分】函数)()ln11y x =>-的反函数是( )(A )()()311x y e x =->-(B )()()311x y e x =->-(C )()()31x y e x =-∈R (D )()()31x y e x =-∈R【答案】D 【解析】由)ln1y=1e y =,即()3e 1y x =-,又由1x >-可知y ∈R ,所以原函数的反函数为()()3e 1y y y =-∈R ,故选D .【点评】本题考查反函数解析式的求解,属基础题. (6)【2014年广西,文6,5分】已知,a b 为单位向量,其夹角为60,则(2)-⋅=a b b ( )FE DBA【解析】()2222211cos6010-⋅=⋅-=⨯⨯⨯-=a b b a b b ,故选B .【点评】本题主要考查两个向量的数量积的定义,属于基础题. (7)【2014年广西,文7,5分】有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )(A )60种 (B )70种 (C )75种 (D )150种 【答案】C【解析】根据题意,先从6名男医生中选2人,有2615C =种选法,再从5名女医生中选出1人,有155C =种选法,则不同的选法共有15×5=75种,故选C .【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同. (8)【2014年广西,文8,5分】设等比数列{}n a 的前n 项和为n S ,若24315S S ==,,则6S =( )(A )31 (B )32 (C )63 (D )64 【答案】C【解析】由等比数列的性质得()()242264S S S S S -=⋅-,即()2612315S =⨯-,解得663S =,故选C . 【点评】本题考查等比数列的性质,得出2S ,42S S -,64S S -成等比数列是解决问题的关键,属基础题.(9)【2014年广西,文9,5分】已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为C 的方程为( ) (A )22132x y += (B )2213x y += (C )221128x y += (D )221124x y +=【答案】A【解析】∵1AF B ∆的周长为,∴4a =a =,∴1c =,∴b ==∴椭圆C 的方程为22132x y +=,故选A .【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. (10)【2014年广西,文10,5分】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )(A )814π (B )16π (C )9π (D )274π【答案】A【解析】设球的半径为R ,则∵棱锥的高为4,底面边长为2,∴()2224R R =-+,∴94R =,∴球的表面积为2981444ππ⎛⎫⋅= ⎪⎝⎭,故选A .【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.(11)【2014年广西,文11,5分】双曲线C :22221(00)x y a b a b-=>>,的离心率为2,则C 的焦距等于( )(A )2 (B ) (C )4 (D )【答案】C【解析】由已知得2c e a ==,所以12a c =,故b =,从而双曲线的渐进线方程为by x a=±=,=2c =,故24c =,故选C .【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.(12)【2014年广西,文12,5分】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )【解析】由()2f x +是偶函数可得()()22f x f x -+=+,又由()f x 是奇函数得()()22f x f x -+=-,所以()()22f x f x +=-,()()4f x f x +=,故()f x 是以4为周期的周期函数, 所以()()()924111f f f =⨯+==,又()f x 是定义在R 上的奇函数,所以()00f =, 所以()()800f f ==,故()()891f f +=,故选D .【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.第II 卷(共100分)二、填空题:本大题共4小题,每小题5分. (13)【2014年广西,文13,5分】6(2)x -的展开式中3x 的系数为 (用数字作答). 【答案】160【解析】通项()()66166C 22C rrr r r r r T x x --+=⋅⋅-=-⋅,令63r -=,得3r =,所以3x 的系数为()3362C 160-=-.【点评】本题考查二项式定理的应用,关键要得到()62x -的展开式的通项.(14)【2014年广西,文14,5分】函数cos22sin y x x =+的最大值为 .【答案】32【解析】221312sin 2sin 2sin 22y x x x ⎛⎫=-+=--+ ⎪⎝⎭,因为1sin 1x -剟,所以当1sin 2x =时,max 32y =.【点评】本题主要考查二倍角的余弦公式,二次函数的性质应用,正弦函数的值域,属于基础题.(15)【2014年广西,文15,5分】设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5【解析】由约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩作出可行域如图,联立023x y x y -=⎧⎨+=⎩,解得()1,1C .化目标函数4z x y =+为直线方程的斜截式,得144zy x =-+.由图可知,当直线144zy x =-+过C 点时,直线在y 轴上的截距最大,z 最大.此时max 1415z =+⨯=.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. (16)【2014年广西,文16,5分】直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l的夹角的正切值等于____________. 【答案】43【解析】设1l 与2l 的夹角为2θ,由于1l 与2l 的交点()1,3A 在圆的外部,且点A 与圆心O 之间的距离为:OA =r =sin r OA θ==,cos θ=,sin 1tan cos 2θθθ==, 22tan 14tan 211tan 314θθθ===--.【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题:本大题共6题,共75分. (17)【2014年广西,文17,10分】数列{}n a 满足12211222n n n a a a a a ++===-+,,.(1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式.解:(1)由2122n n n a a a ++=-+得,2112n n n n a a a a +++-=-+,即12n n b b +=+.又1211b a a =-=.所以{}n b 是首项为1,公差为2的等差数列.(2)由(1)得()121n b n =+-,即121n n a a n +-=-.于是()()11121nnk k k k a a k +==-=-∑∑,所以211n a a n +-=,211n a n a +=+.又11a =,所以{}n a 的通项公式为2122n a n n +=-+.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.(18)【2014年广西,文18,12分】ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B .解:根据正弦定理,由3cos 2cos 3sin cos 2sin cos a C c A A C C A =⇒=sin sin 323tan 2tan cos cos A CA C A C⇒⨯=⨯⇒=因为1tan 3A =,所以1132tan tan 32C C ⨯=⇒=,所以11tan tan 32tan()1111tan tan 132A C A C A C +++===--⨯ 因为0A C π<+<,所以4A C π+=,由三角形的内角和可得344B πππ=-=.【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.(19)【2014年广西,文19,12分】如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B1A AB C --的大小. 解:解法一: (1)因为1A D ⊥平面ABC ,1A D ⊆平面11AAC C ,故平面11AA C C ⊥平面ABC . 又BC AC ⊥,所以BC ⊥平面11AA C C .连结1A C .因为侧面11AA C C 为菱形,故11AC A C ⊥. 由三垂线定理得11AC A B ⊥.(2)BC ⊥平面11AA C C ,BC ⊆平面11BCC B ,故平面11AA C C ⊥平面11BCC B .作11A E CC ⊥,E 为垂足,则1A E ⊥平面11BCC B .又直线1//A A 平面11BCC B ,因而1A E 为直线1A A与平面11BCC B的距离,1A E =因为1A C 为11A CC ∠的平分线,故11A D A E ==.作DF AB ⊥, F 为垂足,连结1A F .由三垂线定理得1A F AB ⊥,故1A FD ∠为二面角1A AB C --的平面角.由1AD ==得D 为C A中点,1=2AC BC DF AB ⨯⨯=11tan A D A FD DF ∠==. 所以二面角1A AB C --的大小为arc 解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角 坐标系C xyz -,由题设知1A D 与x 轴平行,z 轴在平面11AA C C 内(1)设1(,0,)A a c ,由题设有2,(2,0,0),(0,1,0)a A B ≤,则(2,1,0),(2,0,0)AB AC =-=-,1(2,0,)AA a c =-,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-………………2分由1||2(2AA a =⇒-,即2240a a c -+=①于是221140AC BA a a c ⋅=-+=,所以11AC A B ⊥. ……………………5分 (2)设平面11BCC B 的法向量(,,)m x y z =,则1,m CB m BB ⊥⊥,所以10,0m CB m BB ⋅=⋅=,因11(0,1,0),(2,0,)CB BB AA a c ===-,所以0(2)0y a x cz =⎧⎨-+=⎩,令x c =,则2z a =-,(,0,2)m c a ∴=-, 点A 到平面11BCC B 的距离为2|||cos ,|2||CA m cCA m CA c m c ⋅⋅<>=====,又依题设,A 到平面11BCC B3c =代入①解得3a =(舍去)或1a = ……8分 于是1(AA =-,设平面1ABA 的法向量(,,)n p q r =,则1,n AA n AB ⊥⊥所以10,0n AA n AB ⋅=⋅=,所以0202p r p p q q p⎧⎧-==⎪⎪⇒⎨⎨-+=⎪⎩⎪=⎩,令p =,则1,(3,23,1)q n ===,又(0,0,1)p =为平面ABC 的法向量,故1cos ,4||||(n p n p n p ⋅<>===⋅,所以二面角1A AB C --的大小为1arccos 4. ………………………………………………………12分【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题. (20)【2014年广西,文20,12分】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅,22()0.6,()0.4,()0.5,0,1,2ii P B P C P A C i ====, 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅122()()()()()()()()P A P B P C P A P B P A P B P C =++0.31=.(2)由(1)知,若2k =,则()0.310.1P F =>.又2E B C A =⋅⋅,()()()()()220.06P E P B C A P B P C P A =⋅⋅==.若3k =,则()0.60.1F =<.所以k 的最小值时为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题. (21)【2014年广西,文21,12分】函数32()+33(0)f x ax x x a =+≠.(1)讨论()f x 的单调性; (2)若()f x 在区间(12),是增函数,求a 的取值范围.解:(1)()363f x ax x '=++,()0f x '=的判别式()361a ∆=-.(i )若1a …,则()0f x '…,且当且仅当1a =,1x =-.故此时()f x 在R上是增函数. (ii )由于0a ≠,故当1a <时,()0f x '=有两个根:1x =,2x =.若01a <<,则当()2,x x ∈-∞或()1,x x ∈+∞时,()0f x '>,故()f x 在()2,x -∞,()1,x +∞上是增函数;当()21,x x x ∈时,()0f x '<,故()f x 在()21,x x 上是减函数;若0a <,则当()1,x x ∈-∞或()2,x +∞时,()0f x '<,故()f x 在()1,x -∞,()2,x +∞上是减函数; 当()21,x x x ∈时,()0f x '>,故()f x 在()12,x x 上是增函数.(2)当0a >,0x >时,()23630f x ax x '=++>,故当0a >时,()f x 在区间()1,2上是增函数.当0a <时,()f x 在区间()1,2上是增函数当且仅当()10f '…且()20f '…,解得504a -<….综上,a 的取值范围是()5,00,4⎡⎤-+∞⎢⎥⎣⎦.【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.(22)【2014年广西,文22,12分】已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解:(1)设()0,4Q x ,代入22y px =得08x p =.所以8PQ P=,0822p p QF x p =+=+.由题设得85824p p p +=+,解得2p =-(舍去)或2p =.所以C 的方程为24y x =.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为()10x my m =+≠.代入24y x =得2440y my --=.设()11,A x y ,()22,B x y ,则124y y m +=,124y y =-.故AB 的中点为()221,2D m m +,()21241AB y m -=+.又l '的斜率为m -,所以l '的方程为2123x y m m=-++. 将上式代入24y x =,并整理得()2244230y y m m +-+=.设()33,M x y ,()44,N x y ,则344y y +=-,()234423y y m ⋅=-+.故MN 中点为222223,E m mm ⎛⎫++- ⎪⎝⎭,(234241m MN y m +-=.由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即()()()2222222244121224122m m m m m m m ++⎛⎫⎛⎫+++++=⎪ ⎪⎝⎭⎝⎭. 化简得210m -=,解得1m =或1m =-.所求直线l 的方程为10x y --=或10x y +-=.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了分类讨论的数学思想,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年普通高等学校招生全国统一考试(广西卷)数学(文科)第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2014年广西,文1,5分】设集合{12468}{123567}M N ==,,,,,,,,,,,则M N I 中元素的个数为( )(A )2 (B )3 (C )5 (D )7 【答案】B【解析】{}1,2,6M N =I ,所以M N I 中元素的个数为3,故选B .【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键. (2)【2014年广西,文2,5分】已知角α的终边经过点(43)-,,则cos α=( )(A )45 (B )35 (C )35- (D )45-【答案】D【解析】由三角函数定义知4cos 5==-,故选D .【点评】本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.(3)【2014年广西,文3,5分】不等式组(2)0||1x x x +>⎧⎨<⎩的解集为( )(A ){|21}x x -<<- (B ){|10}x x -<< (C ){|01}x x << (D ){|1}x x > 【答案】C【解析】由()20x x +>得0x >或2x <-;由1x <得11x -<<,所以不等式组的解集为{}01x x <<,故选C . 【点评】本题主要考查一元二次不等式、绝对值不等式的解法,属于基础题. (4)【2014年广西,文4,5分】已知正四面体ABCD 中,E 是AB 的中点,则异面直线CE 与BD 所成角的余弦值为( )(A )16 (B (C )13(D【答案】B【解析】如图,取AD 的中点F ,连接EF 、CF .因为E 、F 分别是AB 、AD 的中点,所以=1//2EF BD ,故CEF ∠或其补角是异面直线CE 、BD 所成的角.设正四面体ABCD 的棱长为a ,易知CE CF =,12EF a =.在CEF △中,由余弦定理可得22212cos a CEF ⎫⎫⎛⎫+-⎪⎪ ⎪⎪⎪∠=B . 【点评】本题考查异面直线及其所成的角,关键是找角,考查了余弦定理的应用,是中档题.(5)【2014年广西,文5,5分】函数)()ln11y x =>-的反函数是( )(A )()()311x y e x =->-(B )()()311x y e x =->-(C )()()31x y e x =-∈R (D )()()31x y e x =-∈R【答案】D 【解析】由)ln1y=1e y =,即()3e 1y x =-,又由1x >-可知y ∈R ,所以原函数的反函数为()()3e 1y y y =-∈R ,故选D .【点评】本题考查反函数解析式的求解,属基础题. (6)【2014年广西,文6,5分】已知,a b 为单位向量,其夹角为60o ,则(2)-⋅=a b b ( )FE DBA【解析】()2222211cos 6010-⋅=⋅-=⨯⨯⨯-=o a b b a b b ,故选B .【点评】本题主要考查两个向量的数量积的定义,属于基础题. (7)【2014年广西,文7,5分】有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( )(A )60种 (B )70种 (C )75种 (D )150种 【答案】C【解析】根据题意,先从6名男医生中选2人,有2615C =种选法,再从5名女医生中选出1人,有155C =种选法,则不同的选法共有15×5=75种,故选C .【点评】本题考查分步计数原理的应用,注意区分排列、组合的不同. (8)【2014年广西,文8,5分】设等比数列{}n a 的前n 项和为n S ,若24315S S ==,,则6S =( )(A )31 (B )32 (C )63 (D )64 【答案】C【解析】由等比数列的性质得()()242264S S S S S -=⋅-,即()2612315S =⨯-,解得663S =,故选C . 【点评】本题考查等比数列的性质,得出2S ,42S S -,64S S -成等比数列是解决问题的关键,属基础题.(9)【2014年广西,文9,5分】已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为3,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( ) (A )22132x y += (B )2213x y += (C )221128x y += (D )221124x y +=【答案】A【解析】∵1AF B ∆的周长为43,∴443a =,∴3a =,∵离心率为3,∴1c =,∴222b a c =-=,∴椭圆C 的方程为22132x y+=,故选A .【点评】本题考查椭圆的定义与方程,考查椭圆的几何性质,考查学生的计算能力,属于基础题. (10)【2014年广西,文10,5分】正四棱锥的顶点都在同一球面上,若该棱锥的高为4,底面边长为2,则该球的表面积为( )(A )814π (B )16π (C )9π (D )274π【答案】A【解析】设球的半径为R ,则∵棱锥的高为4,底面边长为2,∴()()22242R R =-+,∴94R =,∴球的表面积为2981444ππ⎛⎫⋅= ⎪⎝⎭,故选A .【点评】本题考查球的表面积,球的内接几何体问题,考查计算能力,是基础题.(11)【2014年广西,文11,5分】双曲线C :22221(00)x y a b a b-=>>,的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )(A )2 (B )22 (C )4 (D )42 【答案】C【解析】由已知得2c e a ==,所以12a c =,故223b c a c =-=,从而双曲线的渐进线方程为3by x x a=±=±,由焦点到渐进线的距离为3,得33c=,解得2c =,故24c =,故选C .【点评】本题主要考查是双曲线的基本运算,利用双曲线的离心率以及焦点到直线的距离公式,建立方程组是解决本题的关键,比较基础.(12)【2014年广西,文12,5分】奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=( )【解析】由()2f x +是偶函数可得()()22f x f x -+=+,又由()f x 是奇函数得()()22f x f x -+=-,所以()()22f x f x +=-,()()4f x f x +=,故()f x 是以4为周期的周期函数, 所以()()()924111f f f =⨯+==,又()f x 是定义在R 上的奇函数,所以()00f =, 所以()()800f f ==,故()()891f f +=,故选D .【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.第II 卷(共100分)二、填空题:本大题共4小题,每小题5分. (13)【2014年广西,文13,5分】6(2)x -的展开式中3x 的系数为 (用数字作答). 【答案】160【解析】通项()()66166C 22C r r r r rr r T x x --+=⋅⋅-=-⋅,令63r -=,得3r =,所以3x 的系数为()3362C 160-=-. 【点评】本题考查二项式定理的应用,关键要得到()62x -的展开式的通项.(14)【2014年广西,文14,5分】函数cos22sin y x x =+的最大值为 .【答案】32【解析】221312sin 2sin 2sin 22y x x x ⎛⎫=-+=--+ ⎪⎝⎭,因为1sin 1x -剟,所以当1sin 2x =时,max 32y =.【点评】本题主要考查二倍角的余弦公式,二次函数的性质应用,正弦函数的值域,属于基础题.(15)【2014年广西,文15,5分】设x 、y 满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则4z x y =+的最大值为 .【答案】5【解析】由约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩作出可行域如图,联立023x y x y -=⎧⎨+=⎩,解得()1,1C .化目标函数4z x y =+为直线方程的斜截式,得144zy x =-+.由图可知,当直线144zy x =-+过C 点时,直线在y 轴上的截距最大,z 最大.此时max 1415z =+⨯=.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题. (16)【2014年广西,文16,5分】直线1l 和2l 是圆222x y +=的两条切线,若1l 与2l 的交点为()1,3,则1l 与2l的夹角的正切值等于____________. 【答案】43【解析】设1l 与2l 的夹角为2θ,由于1l 与2l 的交点()1,3A 在圆的外部,且点A 与圆心O 之间的距离为:1910OA =+=,圆的半径为2r =,∴2sin 10r OA θ==,22cos 10θ=,sin 1tan cos 2θθθ==, 22tan 14tan 211tan 314θθθ===--. 【点评】本题主要考查直线和圆相切的性质,直角三角形中的变角关系,同角三角函数的基本关系、二倍角的正切公式的应用,属于中档题.三、解答题:本大题共6题,共75分. (17)【2014年广西,文17,10分】数列{}n a 满足12211222n n n a a a a a ++===-+,,.(1)设1n n n b a a +=-,证明{}n b 是等差数列;(2)求{}n a 的通项公式.解:(1)由2122n n n a a a ++=-+得,2112n n n n a a a a +++-=-+,即12n n b b +=+.又1211b a a =-=.所以{}n b 是首项为1,公差为2的等差数列.(2)由(1)得()121n b n =+-,即121n n a a n +-=-.于是()()11121nnk k k k a a k +==-=-∑∑,所以211n a a n +-=,211n a n a +=+.又11a =,所以{}n a 的通项公式为2122n a n n +=-+.【点评】本题考查了等差数列的定义、通项公式、前n 项和公式,及累加法求数列的通项公式和转化思想,属于中档题.(18)【2014年广西,文18,12分】ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3cos 2cos a C c A =,1tan 3A =,求B .解:根据正弦定理,由3cos 2cos 3sin cos 2sin cos a C c A A C C A =⇒=sin sin 323tan 2tan cos cos A CA C A C⇒⨯=⨯⇒=因为1tan 3A =,所以1132tan tan 32C C ⨯=⇒=,所以11tan tan 32tan()1111tan tan 132A C A C A C +++===--⨯ 因为0A C π<+<,所以4A C π+=,由三角形的内角和可得344B πππ=-=.【点评】本题考查了正弦定理、同角的三角函数基本关系式、两角和差的正切公式、诱导公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于中档题.(19)【2014年广西,文19,12分】如图,三棱柱111ABC A B C -中,点1A 在平面ABC 内的射影D在AC 上,090ACB ∠=,11,2BC AC CC ===.(1)证明:11AC A B ⊥;(2)设直线1AA 与平面11BCC B 的距离为3,求二面角1A AB C --的大小. 解:解法一: (1)因为1A D ⊥平面ABC ,1A D ⊆平面11AAC C ,故平面11AA C C ⊥平面ABC . 又BC AC ⊥,所以BC ⊥平面11AA C C .连结1A C .因为侧面11AA C C 为菱形,故11AC A C ⊥. 由三垂线定理得11AC A B ⊥.(2)BC ⊥平面11AA C C ,BC ⊆平面11BCC B ,故平面11AA C C ⊥平面11BCC B .作11A E CC ⊥,E 为垂足,则1A E ⊥平面11BCC B .又直线1//A A 平面11BCC B ,因而1A E 为直线1A A与平面11BCC B 的距离,13A E =.因为1A C 为11A CC ∠的平分线,故113A D A E ==.作DF AB ⊥, F 为垂足,连结1A F .由三垂线定理得1A F AB ⊥,故1A FD ∠为二面角1A AB C --的平面角.由22111AD AA A D =-=得D 为C A 中点,15=25AC BC DF AB ⨯⨯=,11tan 15A D A FD DF ∠==. 所以二面角1A AB C --的大小为arc tan 15. 解法二:以C 为坐标原点,射线CA 为x 轴的正半轴,以CB 的长为单位长,建立如图所示的空间直角 坐标系C xyz -,由题设知1A D 与x 轴平行,z 轴在平面11AA C C 内(1)设1(,0,)A a c ,由题设有2,(2,0,0),(0,1,0)a A B ≤,则(2,1,0),(2,0,0)AB AC =-=-u u u r u u u r , 1(2,0,)AA a c =-u u u r,111(4,0,),(,1,)AC AC AA a c BA a c =+=-=-u u u u r u u u r u u u r u u u r ………………2分由221||2(2)2AA a c =⇒-+=u u u r,即2240a a c -+=①于是221140AC BA a a c ⋅=-+=u u u u r u u u r,所以11AC A B ⊥. ……………………5分(2)设平面11BCC B 的法向量(,,)m x y z =u r,则1,m CB m BB ⊥⊥u r u u u r u r u u u r ,所以10,0m CB m BB ⋅=⋅=u r u u u r u r u u u r , 因11(0,1,0),(2,0,)CB BB AA a c ===-u u u r u u u r u u u r ,所以0(2)0y a x cz =⎧⎨-+=⎩,令x c =,则2z a =-,(,0,2)m c a ∴=-u u u r ,点A 到平面11BCC B的距离为2|||cos ,|2||CA m cCA m CA c m ⋅⋅<>=====u u u r u ru u u r u r u u u r ur , 又依题设,A 到平面11BCC Bc =代入①解得3a =(舍去)或1a = ……8分于是1(AA =-u u u r ,设平面1ABA 的法向量(,,)n p q r =r ,则1,n AA n AB ⊥⊥r u u u r r u u u r 所以10,0n AA n AB ⋅=⋅=r u u u r r u u u r,所以0202p r p p q q p⎧⎧-==⎪⎪⇒⎨⎨-+=⎪⎩⎪=⎩,令p =,则1,q r n ===r ,又(0,0,1)p =u r 为平面ABC的法向量,故1cos ,4||||n p n p n p ⋅<>===⋅r u rr u r r u r , 所以二面角1A AB C --的大小为1arccos 4. ………………………………………………………12分【点评】本题考查二面角的求解,作出并证明二面角的平面角是解决问题的关键,属中档题. (20)【2014年广西,文20,12分】设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅,22()0.6,()0.4,()0.5,0,1,2ii P B P C P A C i ====, 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅122()()()()()()()()P A P B P C P A P B P A P B P C =++0.31=.(2)由(1)知,若2k =,则()0.310.1P F =>.又2E B C A =⋅⋅,()()()()()220.06P E P B C A P B P C P A =⋅⋅==.若3k =,则()0.60.1F =<.所以k 的最小值时为3.【点评】本题主要考查相互独立事件的概率乘法公式,体现了分类讨论的数学思想,属于中档题. (21)【2014年广西,文21,12分】函数32()+33(0)f x ax x x a =+≠.(1)讨论()f x 的单调性; (2)若()f x 在区间(12),是增函数,求a 的取值范围.解:(1)()363f x ax x '=++,()0f x '=的判别式()361a ∆=-.(i )若1a …,则()0f x '…,且当且仅当1a =,1x =-.故此时()f x 在R 上是增函数. (ii )由于0a ≠,故当1a <时,()0f x '=有两个根:1x =2x =.若01a <<,则当()2,x x ∈-∞或()1,x x ∈+∞时,()0f x '>,故()f x 在()2,x -∞,()1,x +∞上是增函数;当()21,x x x ∈时,()0f x '<,故()f x 在()21,x x 上是减函数;若0a <,则当()1,x x ∈-∞或()2,x +∞时,()0f x '<,故()f x 在()1,x -∞,()2,x +∞上是减函数; 当()21,x x x ∈时,()0f x '>,故()f x 在()12,x x 上是增函数.(2)当0a >,0x >时,()23630f x ax x '=++>,故当0a >时,()f x 在区间()1,2上是增函数.当0a <时,()f x 在区间()1,2上是增函数当且仅当()10f '…且()20f '…,解得504a -<….综上,a 的取值范围是()5,00,4⎡⎤-+∞⎢⎥⎣⎦U .【点评】本题考查函数的导数的应用,判断函数的单调性以及已知单调性求解函数中的变量的范围,考查分类讨论思想的应用.(22)【2014年广西,文22,12分】已知抛物线C :22(0)y px p =>的焦点为F ,直线4y =与y 轴的交点为P ,与C 的交点为Q ,且54QF PQ =.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l '与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.解:(1)设()0,4Q x ,代入22y px =得08x p =.所以8PQ P=,0822p p QF x p =+=+.由题设得85824p p p +=+,解得2p =-(舍去)或2p =.所以C 的方程为24y x =.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为()10x my m =+≠.代入24y x =得2440y my --=.设()11,A x y ,()22,B x y ,则124y y m +=,124y y =-.故AB 的中点为()221,2D m m +,()21241AB y m =-=+.又l '的斜率为m -,所以l '的方程为2123x y m m=-++. 将上式代入24y x =,并整理得()2244230y y m m +-+=.设()33,M x y ,()44,N x y ,则344y y +=-,()234423y y m ⋅=-+.故MN 中点为222223,E m mm ⎛⎫++- ⎪⎝⎭,(234241m MN y m +-=. 由于MN 垂直平分AB ,故A ,M ,B ,N 四点在同一圆上等价于12AE BE MN ==,从而2221144AB DE MN +=,即()()()2222222244121224122m m m m m m m ++⎛⎫⎛⎫+++++= ⎪ ⎪⎝⎭⎝⎭. 化简得210m -=,解得1m =或1m =-.所求直线l 的方程为10x y --=或10x y +-=.【点评】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理、弦长公式的应用,体现了分类讨论的数学思想,属于中档题.。

相关文档
最新文档