《勾股定理》同步作业及答案

合集下载

2022-2023学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-1勾股定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.1勾股定理》同步练习题(附答案)一.选择题1.已知直角三角形的两条边长分别是3和4,那么这个三角形的第三条边的长为()A.5B.25C.D.5或2.△ABC中,AB=20,AC=13,高AD=12,则△ABC的面积为()A.66B.126C.54或44D.126或663.如图,Rt△ABC中,∠BAC=90°,分别以边AB,CA,BC向外作正方形,正方形ABIH 的面积为25,正方形BDEC的面积为169,则正方形ACFG的面积是()A.194B.144C.122D.1104.下面图形能够验证勾股定理的有()A.4个B.3个C.2个D.1个5.如图,我国古代的“赵爽弦图”是由四个全等的直角三角形和一个小正方形密铺构成的大正方形,若小正方形的面积为1,大正方形的面积为13,则直角三角形较短的直角边a 与较长的直角边b的比的值是()A.B.C.D.6.如图是一正方体的平面展开图,若AB=6,则该正方体A、B两点间的距离为()A.2B.3C.4D.67.如图,在△ABC中,∠C=90°,分别以A、B为圆心画弧,所画的弧交于两点,再连接该两点所在直线交BC于点D,连接AD.若BD=2,则AD的长为()A.B.C.1D.28.如图,是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=10,BE=24,则EF的长是()A.14B.13C.14D.149.如图,正方形ABCD的面积为15,Rt△BCE的斜边CE的长为8,则BE的长为()A.17B.10C.6D.710.如图,在4×4的正方形网格中,所有线段的端点都在格点处,则这些线段的长度是无理数的有()A.1条B.2条C.3条D.4条二.填空题11.把图1中长和宽分别6和4的两个全等矩形沿对角线分成四个全等的直角三角形,将这四个全等的直角三角形拼成图2的正方形,则图2中小正方形ABCD的面积为.12.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为.13.如图,已知OA=13,点A到射线OM的距离为5,点B是射线OM上的一个动点,当△AOB为等腰三角形时,线段OB的长度为.14.如图,Rt△ABC中,∠ABC=90°,DE是边AB的垂直平分线,D为垂足,DE交AC 于点E,且AC=8,BC=5,则△BEC的周长是.15.如图,△ABC中,∠C=90°,AD平分∠BAC,AB=10,AC=6,则BD的长是.16.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2…,依此法继续作下去,得OP2022=.三.解答题17.如图,在△ABC中,BC=6,AC=8,DE⊥AB,DE=7,△ABE的面积为35.(1)求AB的长;(2)求△ACB的面积.18.已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动且速度为每秒1cm,点Q从点B开始沿B→C→A 方向运动,在BC边上的运动速度是每秒2cm,在AC边上的运动速度是每秒1.5cm,它们同时出发,当其中一个点到达终点时,另一个点也随之停止,设运动时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,t为何值时,△ACQ的面积是△ABC面积的;(3)当点Q在边CA上运动时,t为何值时,PQ将△ABC周长分为23:25两部分.19.如图△ABC中,∠ACB=90°,AC=12,BC=5.(1)求AB的长;(2)若动点P从点C开始以每秒1个单位的速度,按C→A→B的路径运动,设运动的时间为t秒,当t为何值时,△BCP为等腰三角形?20.阅读下面的材料,然后解答问题:我们新定义一种三角形,两边的平方和等于第三边平方的2倍的三角形叫做可爱三角形.(1)根据可爱三角形的定义,等边三角形是可爱三角形吗?请说明理由;(2)若某三角形的三边长分别为2、、3,试判断该三角形是否为可爱三角形,请说明理由.21.如图,∠AOB=90°,点C在OA边上,OA=36cm,OB=12cm,点P从点A出发,沿着AO方向匀速运动,点Q同时从点B出发,以相同的速度沿BC方向匀速运动,P、Q两点恰好在C点相遇,求BC的长度?22.已知:在平面直角坐标系中,两点的横向(或纵向)距离可以用两点横坐标(或纵坐标)的差的绝对值来表示.(1)如图,平面内点A坐标为(2,3),点B坐标为(﹣1,﹣1),则AB两点的横向距离BC=,纵向距离AC=,最后,可得AB=;(2)平面内有点M(1,),点N(m,﹣)(m>0),请参考(1)中方法求线段MN的长.(用含m的式子表示)23.如图,在平面直角坐标系中有△ABC,AB=AC=13,BC=10,点C的坐标为(6,0),求A,B两点的坐标.24.如图,在平面直角坐标系中,点B,C的坐标分别为(﹣a,2a)、(3a,2a),其中a>0,点A为BC的中点,若BC=4,解决下列问题:(1)BC所在直线与x轴的位置关系是;(2)求出a的值,并写出点A,C的坐标;(3)在y轴上是否存在一点P,使得△P AC的面积等于5?若存在,求P的坐标;若不存在,请说明理由.25.如图是由边长为1个单位长度的小正方形组成的网格,△ABC的三个顶点都在格点上.(1)点A的坐标为,点B的坐标为;(2)图中线段BC的长为;(3)△ABC的面积为;(4)点P在y轴上,且△ABP的面积等于△ABC的面积,则点P的坐标为.参考答案一.选择题1.解:当3和4都是直角边时,第三边长为:;当4是斜边长时,第三边长为:.故选:D.2.解:如图1,∵AD⊥BC,∴∠ADB=∠ADC=90°,∵AB=20,AD=12,∴BD===16,又∵AC=13,∴CD===5,∴BC=BD+CD=21,∴△ABC的面积=×21×12=126;如图2,BC=BD﹣CD=11,∴△ABC的面积=×11×12=66;综上所述,△ABC的面积为126或66,故选:D.3.解:在Rt△ABC中,∠BAC=90°,∴AB2+AC2=BC2,∵正方形ABIH的面积为25,正方形BDEC的面积为169,∴AB2=25,BC2=169,∴AC2=BC2﹣AB2=169﹣25=144,∴正方形ACFG的面积=AC2=144,故选:B.4.解:第一个图形:中间小正方形的面积c2=(a+b)2﹣4×ab;化简得c2=a2+b2,可以证明勾股定理.第二个图形:中间小正方形的面积(b﹣a)2=c2﹣4×ab;化简得a2+b2=c2,可以证明勾股定理.第三个图形:梯形的面积=(a+b)(a+b)=2××ab+c2,化简得a2+b2=c2;可以证明勾股定理.第四个图形:由图形可知割补前后的两个小直角三角形全等,则正方形的面积=两个直角三角形的面积的和,即(b﹣)(a+)=ab+c c,化简得a2+b2=c2;可以证明勾股定理,∴能够验证勾股定理的有4个.故选:A.5.解:∵大正方形的面积是13,设边长为c,∴c2=13,∴a2+b2=c2=13,∵直角三角形的面积是=3,又∵直角三角形的面积是ab=3,∴ab=6,∴(a+b)2=a2+b2+2ab=c2+2ab=13+2×6=13+12=25,∴a+b=5.∵小正方形的面积为(b﹣a)2=1,∴b=3,a=2,∴.故选:B.6.解:∵AB=6,∴该正方体的棱长为3=,∴把正方形组合起来之后会发现A、B在同一平面的对角线上,所以该正方体A、B两点间的距离为3,故选:B.7.解:由作图可知,点D在线段AB的垂直平分线上,∴AD=BD=2,故选:D.8.解:∵AE=10,BE=24,即24和10为两条直角边长时,小正方形的边长=24﹣10=14,∴EF==14.故选:D.9.解:∵正方形ABCD的面积为15,∴BC2=15,∠ABC=90°,∴∠EBC=90°,在Rt△BCE中,由勾股定理得:BE===7,故选:D.10.解:由勾股定理得,a=,b=.c=,d=2,∵无理数有,两个,故选:B.二.填空题11.解:6﹣4=2,2×2=4.故图2中小正方形ABCD的面积为4.故答案为:4.12.解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=a2+b2+2ab=25+24=49.故答案为:49.13.解:过A作AN⊥OM于N,则AN=5,∴ON===12,当△AOB为等腰三角形时,分三种情况:①当OA=AB时,如图1所示:∵AN⊥OM,∴ON=BN=12,∴OB=2ON=2×12=24;②OA=OB时,如图2所示:OB=13;③OB=AB时,如图3所示:设OB=AB=x,则BN=ON﹣OB=12﹣x,在Rt△ABN中,由勾股定理得:AN2+BN2=AB2,即52+(12﹣x)2=x2,解得:x=,∴OB=;综上所述,当△AOB为等腰三角形时,线段OB的长度为24或13或,故答案为:24或13或.14.解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故答案是:13.15.解:作DE⊥AB于E,在Rt△ABC中,由勾股定理得,BC=,∵AD平分∠BAC,AC⊥DC,DE⊥AB,∴CD=DE,∴S△ABC=+=,∴6CD+10CD=48,∴CD=3,∴BD=BC﹣CD=8﹣3=5,故答案为:5.16.解:∵OP=1,OP1=,OP2=,OP3=,∴OP2022=.故答案为:.三.解答题17.解:(1)∵△ABE的面积为35,DE=7,∴AB×7=35,解得:AB=10;(2)在△ABC中,AB2=102=100,AC2+BC2=62+82=100,则AB2=AC2+BC2,∴∠C=90°,∴S△ABC=AC•BC=×6×8=24,答:△ACB的面积24.18.解:(1)当t=2s时,点Q在边BC上运动,则AP=2cm,BQ=2t=4(cm),∵AB=8cm,∴BP=AB﹣AP=8﹣2=6(cm),在Rt△BPQ中,由勾股定理可得PQ===2(cm),∴PQ的长为2cm;(2)∵S△ACQ=CQ•AB,S△ABC=BC•AB,点Q在边BC上运动时,△ACQ的面积是△ABC面积的,∴CQ=BC=×6=2(cm),∴BQ=BC﹣CQ=6﹣2=4(cm),∴t==2,∴当点Q在边BC上运动时,t为2时,△ACQ的面积是△ABC面积的;(3)在Rt△ABC中,由勾股定理得:AC===10(cm),当点P达到点B时,t==8,当点Q达到点A时,t=+=,∵当其中一个点到达终点时,另一个点也随之停止,∴0≤t≤8,∵AP=tcm,∴BP=(8﹣t)cm,点Q在CA上运动时,CQ=1.5×(t﹣)=(1.5t﹣4.5)(cm),∴AQ=10﹣(1.5t﹣4.5)=(﹣1.5t+14.5)(cm),∴BP+BC+CQ=8﹣t+6+1.5t﹣4.5=(0.5t+9.5)(cm),AP+AQ=t+(﹣1.5t+14.5)=(﹣0.5t+14.5)(cm),分两种情况:①=,即=,解得:t=4,经检验,t=4是原方程的解,∴t=4;②=,即=,解得:t=6,经检验,t=6是原方程的解,∴t=6;综上所述,当点Q在边CA上运动时,t为4或6时,PQ将△ABC周长分为23:25两部分.19.解:(1)∵∠ACB=90°,∴△ABC是直角三角形,在Rt△ABC中,由勾股定理得:AB===13,∴AB的长为13;(2)当点P在AC上时,CP=CB=5,t=5(s);当点P在AB上时,分三种情况:①当BP=BC=5,如图1所示:则AP=13﹣5=8,t=12+8=20(s);②当CP=CB=5时,过点C作CM⊥AB于M,如图2所示:则BM=PM=BP,∵AC•BC=AB•CM,∴CM===,在Rt△BCM中,由勾股定理得:BM===,∴BP=2BM=,∴AP=13﹣=,∴t=12+=(s);③当PC=PB时,如图3所示:则∠B=∠BCP,∵∠B+∠A=90°,∠BCP+∠ACP=90°,∴∠A=∠ACP,∴AP=PC,∴AP=PB=AB=,∴t=12+=(s);综上所述,当t=5s或20s或s或s时,△BCP为等腰三角形.20.解:(1)等边三角形是可爱三角形,理由:设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形是可爱三角形;(2)该三角形不是可爱三角形,理由:∵22=4,()2=17,32=9,∴22+()2≠2×32,22+32≠2×()2,()2+32≠2×22,∴该三角形不是可爱三角形.21.解:∵点P、Q同时出发,且速度相同,∴BC=CA,设BC=xcm,则CA=xcm,∵OA=36cm∴OC=(36﹣x)cm,∵∠AOB=90°∴OB2+OC2=BC2,∴122+(36﹣x)2=x2,解得:x=20,∴BC=20cm.22.解:(1)BC=2﹣(﹣1)=3,AC=3﹣(﹣1)=4,由勾股定理得,AB=,故答案为:3,4,5;(2)∵MN的横向距离为m﹣1,纵向距离为2,∴MN====|m+3|,∵m>0,∴MN=m+3.23.解:过A作AD⊥BC于D,∵AB=AC,∴DC=BD=BC=5,∵点C的坐标为(6,0),∴OC=6,∴OD=1,OB=4,∴B(﹣4,0),在Rt△ADC中,根据勾股定理得AD=12,∴A(1,12);答:A,B两点的坐标分别是(1,12)、(﹣4,0).24.解:(1)平行,∵B与C的纵坐标相同,∴BC∥x轴,故答案为:平行;(2)∵BC=4,∴3a﹣(﹣a)=4,∴a=1,∴B(﹣1,2),C(3,2),∵A为BC的中点,∴A(1,2);(3)存在,设P(0,m),∵AC=2,∴,∴m=﹣3或7,∴P(0,﹣3)或(0,7).25.解:(1)点A的坐标为(3,4),点B的坐标为(0,2);故答案为:(3,4),(0,2);(2)BC==;故答案为:;(3)S△ABC=4×3﹣×2×3﹣×1×4﹣×1×3=5.5;故答案为:5.5;(4)设P(0,m),∵△ABP的面积等于△ABC的面积,∴|m﹣2|×3=5.5,解得:m=或﹣,∴点P的坐标为(0,)或(0,﹣).故答案为:(0,)或(0,﹣).。

1.3 勾股定理的应用-勾股定理与最短路径问题 同步练习(含答案)

1.3 勾股定理的应用-勾股定理与最短路径问题 同步练习(含答案)

1.3勾股定理的应用-勾股定理与最短路径问题一、选择题1.如图,圆柱的底面周长是24,高是5,一只在A点的蚂蚁沿侧面爬行,想吃到B点的食物,需要爬行的最短路径是( )A.9B.13C.14D.252.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为( )A.12cm B.14cm C.20cm D.24cm3.如图所示的圆柱体中底面圆的半径是4,高为3,若一只小虫从A点出发沿着圆柱体的侧面π爬行到C点,则小虫爬行的最短路程是( )A.5B.5C.73D.44.今年9月22日是第三个中国农民丰收节,小彬用3D打印机制作了一个底面周长为20cm,高为10cm的圆柱粮仓模型,如图BC是底面直径,AB是高.现要在此模型的侧面贴一圈彩色装饰带,使装饰带经过A,C两点(接头不计),则装饰带的长度最短为( )A.20πcm B.40πcm C.102cm D.202cm5.已知长方体的长2cm、宽为1cm、高为4cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是( )A.29cm B.5cm C.37cm D.4.5cm6.某校“光学节”的纪念品是一个底面为等边三角形的三棱镜(如图).在三棱镜的侧面上,从顶点A到顶点A′镶有一圈金属丝,已知此三棱镜的高为9cm,底面边长为4cm,则这圈金属丝的长度至少为( )A.8cm B.10cm C.12cm D.15cm7.小南同学报名参加了南开中学的攀岩选修课,攀岩墙近似一个长方体的两个侧面,如图所示,他根据学过的数学知识准确地判断出:从点A攀爬到点B的最短路径为( )米.A.16B.82C.146D.1788.如图,桌面上的长方体长为8,宽为6,高为4,B为CD的中点.一只蚂蚁从A点出发沿长方体的表面到达B点,则它运动的最短路程为( )A.229B.45C.10D.3149.如图,台阶阶梯每一层高20cm,宽30cm,长50cm,一只蚂蚁从A点爬到B点,最短路程是( )A.1089B.505C.120D.13010.如图,圆柱的高为4cm,底面半径为3πcm,在圆柱下底面的A点处有一只蚂蚁,它想吃到上底面B处的食物,已知四边形ADBC的边AD、BC恰好是上、下底面的直径、问:蚂蚁食到食物爬行的最短距离是( )cm.A.5B.5πC.3+4πD.3+8π二、填空题11.如图,一个长方体盒子的长、宽、高分别为5cm、4cm、3cm,有一只甲虫从顶点A沿盒的表面爬到顶点B处,那么它所爬行的最短路线的长是 cm.12.如图所示,一圆柱高AB为2cm,底面直径BC为4cm,一只蚂蚁从点A出发沿圆柱表面爬行到点C,则蚂蚁爬行的最短路程是 cm(π取3).13.如图所示是一个长方体纸盒,纸盒的长为12cm,宽为9cm,高为5cm,一只蚂蚁想从盒底的点A沿盒的表面爬到盒顶的点G,蚂蚁爬行的最短路程是 cm.14.如图,圆柱形容器高为16cm,底面周长为24cm,在杯内壁离杯底的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯子的上沿蜂蜜相对的点A处,则蚂蚁A处到达B处的最短距离为 .15.如图,长方体盒子的长、宽、高分别是9cm,9cm,24cm,一只蚂蚁想从盒底的A点爬到盒顶的B点,它至少要爬行 cm.16.如图所示,有一个正方体盒子,其棱长为2dm,一只虫子在顶点A处,一只蜘蛛在顶点B 处,蜘蛛沿着盒子表面准备偷袭虫子,那么蜘蛛要想最快地捉住虫子,它所走的最短路程是 dm.(结果保留根号)17.如图,圆柱形容器外壁距离下底面3cm的A处有一只蚂蚁,它想吃到正对面外壁距离上底面3cm的B处的米粒,若圆柱的高为12cm,底面周长为24cm.则蚂蚁爬行的最短距离为 cm.18.如图,现有一长方体的实心木块,有一蚂蚁从A处出发沿长方体表面爬行到C'处,若长方体的长AB=4cm,宽BC=2cm,高BB'=1cm,则蚂蚁爬行的最短路径长是 .三、解答题19.如图,一个圆柱体高20cm,底面半径为5cm,在圆柱体下底面的A点处有一只蜘蛛,它想吃到上底面与A点相对的B点处的一只已被粘住的苍蝇,这只蜘蛛从A点出发,沿着圆柱体的侧面爬到B点,最短路程是多少?(π取3)20.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程是多少?21.如图所示,有一个圆柱,底面圆的直径AB=16,高BC=12cm,在BC的中点P处有一块π蜂蜜,聪明的蚂蚁总能找到距离食物的最短路径,求蚂蚁从A点爬到P点的最短距离.22.如图,长方体的长为20cm,宽为10cm,高为15cm,点B与点C之间的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖.(1)求出点A到点B的距离;(2)求蚂蚁从点A爬到点B的最短路程是多少?23.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上底面距离为4cm 的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为多少?24.如图所示,一个无盖四棱柱容器,其底面是一个边长为3cm的正方形,高为20cm.现有一根彩带,从底面A点开始缠绕四棱柱,刚好缠绕4周到达B点(假设彩带完美贴合四棱柱).(1)请问彩带的长度是多少?(2)如图所示,一只蚂蚁在容器外A点发现容器的内部距离顶部2cm处有一滴蜂蜜,它想以最短的路程到达C处.请问蚂蚁走的最短路程是多少呢?(注:以上两问均要画出平面展开示意图,再解答)答案一、选择题B.D.A.D.B.D.B.C.B.A.二、填空题11.74.12.6.13.285.14.20cm.15.30.16.25.17.65.18.5cm.三、解答题19.如图所示,将圆柱体侧面展开,连接AB,则AB的长即为蜘蛛爬行的最短路程.根据题意得AC=20cm,BC=πR=5π=5×3=15cm,在Rt△ABC中,由勾股定理得AB2=BC2+AC2=152+202=625,所以AB=25cm,即最短路程是25cm.20.如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN=122+162=20(cm);如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN=182+102=2106(cm).如图3中,MN =222+62=2130(cm ),∵20<2106<2130,∴蚂蚁沿长方体表面爬到米粒处的最短距离为20cm .21.将圆柱体的侧面展开,如图所示:AB =12底面周长=12×π×16π=8(cm ),AP =12BC =6(cm ),所以AP =82+62=10(cm ),故蚂蚁从A 点爬到P 点的最短距离为10cm .22.(1)将长方体沿CF 、FG 、GH 剪开,向右翻折,使面FCHG 和面ADCH 在同一个平面内,连接AB ,如图1,由题意可得:BD=BC+CD=5+10=15cm,AD=CH=15cm,在Rt△ABD中,根据勾股定理得:AB=BD2+AD2=152+152=152cm;将长方体沿DE、EF、FC剪开,向上翻折,使面DEFC和面ADCH在同一个平面内,连接AB,如图2,由题意得:BH=BC+CH=5+15=20cm,AH=10cm,在Rt△ABH中,根据勾股定理得:AB=BH2+AH2=202+102=105cm,则需要爬行的最短距离是152cm.连接AB,如图3,由题意可得:BB′=B′E+BE=15+10=25cm,AB′=BC=5cm,在Rt△AB′B中,根据勾股定理得:AB=BB′2+AB′2=252+52=526cm,综上所述,点A到点B的距离为:152cm,105cm,526cm;(2)由(1)知,∵点A到点B的距离为:152cm,105cm,526cm;∴152<105<526,∴则需要爬行的最短距离是152cm.23.如图:将圆柱展开,EG为上底面圆周长的一半,作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm,延长BG,过A'作A'D⊥BG于D,∵AE=A'E=DG=4cm,∴BD=16cm,Rt△A'DB中,由勾股定理得:A'D=202―162=12(cm),则该圆柱底面周长为24cm.24.(1)如图,将长方体的侧面沿AB展开,取A′B′的四等分点C、D、E,取AB的四等分点C′、D′、E′,连接B′E′,D′E,C′D,AC,则AC+C′D+D′E+E′B′=4AC为所求的最短细线长,∵AC2=AA′2+A′C2,AC=122+52=13,∴AC+C′D+D′E+E′B′=4AC=52,答:彩带的长度是52cm;(2)如图,将四棱柱展开,找到C的对称点C′,连接AC′,则AC′即为蚂蚁走的最段路程,在直角△AMC中,AM=6cm,MC′=20+(20﹣18)=22cm,由勾股定理得:AC′2=AM2+MC′2=62+222=520,则AC′=2130cm,答:蚂蚁走的最短路程是2130cm.。

(完整版)勾股定理练习题(含答案)

(完整版)勾股定理练习题(含答案)

勾股定理练习题1. 下列说法正确的是( )A.若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若 a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若 a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若 a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2. 2. Rt △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( )A .c b a =+ B. c b a >+ C. c b a <+ D. 222c b a =+3. 如果Rt △的两直角边长分别为k 2-1,2k (k >1),那么它的斜边长是( )A 、2kB 、k+1C 、k 2-1D 、k 2+1 4. 已知a ,b ,c 为△ABC 三边,且满足(a 2-b 2)(a 2+b 2-c 2)=0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形 5. 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定6. △ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为( )A .42B .32C .42 或 32D .37 或 337.※直角三角形的面积为S ,斜边上的中线长为d ,则这个三角形周长为( )(A2d (Bd (C)2d (D)d +8、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为( )A :3B :4C :5D :79.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为( )A .17 B.3 C.17或3 D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是 .12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13. 一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是 三角形.15. 一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是__.16. 在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边BC为直径作半圆,则这个半圆的面积是 . ACB18.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是 ,另外一边的平方是 .19. 一长方形的一边长为cm 3,面积为212cm ,那么它的一条对角线长是 .20.如图,一个高4m 、宽3m 的大门,需要在对角线的顶点间加固一个木条,求木条的长.21、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?22.一个三角形三条边的长分别为cm 15,cm 20,cm 25,这个三角形最长边上的高是多少?23.如图,要修建一个育苗棚,棚高h=3m ,棚宽a=4m ,棚的长为12m ,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?24.如图,有一只小鸟在一棵高13m 的大树树梢上捉虫子,它的伙伴在离该树12m ,高8m 的一棵小树树梢上发出友好的叫声,它立刻以2m/s 的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?25.“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70km/h.如图,,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方30m 处,过了2s 后,测得小汽车与车速检测仪间距离为50m ,这辆小汽车超速了吗?A 小汽车 小汽车BC AE C D答案: 一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3. 解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5. 解析: 勾股定理得到:22215817=-,另一条直角边是15, 所求直角三角形面积为21158602cm ⨯⨯=.答案: 260cm .6. 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案:222c b a =+,c ,直角,斜,直角.7. 解析:本题由边长之比是6:8:10 可知满足勾股定理,即是直角三角形.答案:直角.8. 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形.答案:︒30、︒60、︒90,3.9. 解析:由勾股定理知道:22222291215=-=-=AC AB BC ,所以以直角边9=BC 为直径的半圆面积为10.125π.答案:10.125π.10. 解析:长方形面积长×宽,即12长×3,长4=,所以一条对角线长为5.答案:cm 5.二、综合发展11. 解析:木条长的平方=门高长的平方+门宽长的平方.答案:5m .12解析:因为222252015=+,所以这三角形是直角三角形,设最长边(斜边)上的高为xcm ,由直角三角形面积关系,可得1115202522x ⨯⨯=⨯⋅,∴12=x .答案:12cm 13.解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:5×20=100(m 2) .14.解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m ,也就是两树树梢之间的距离是13m ,两再利用时间关系式求解.答案:6.5s .15.解析:本题和14题相似,可以求出BC 的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s ,可得速度是20m/s=72km/h >70km/h .答案:这辆小汽车超速了.。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案问题一:已知直角三角形的两条直角边分别为3cm和4cm,求斜边的长度。

解答一:根据勾股定理,斜边的平方等于两条直角边的平方和。

设斜边的长度为c,则有:c^2 = 3^2 + 4^2c^2 = 9 + 16c^2 = 25取平方根得到c = 5cm。

所以,斜边的长度为5cm。

问题二:已知直角三角形的斜边长度为10cm,一条直角边的长度为6cm,求另一条直角边的长度。

解答二:设另一条直角边的长度为a。

根据勾股定理,可得:a^2 + 6^2 = 10^2a^2 + 36 = 100a^2 = 100 - 36a^2 = 64取平方根得到a = 8cm。

所以,另一条直角边的长度为8cm。

问题三:已知直角三角形的一条直角边的长度为5cm,另一条直角边的长度为12cm,求斜边的长度。

解答三:设斜边的长度为c。

根据勾股定理,可得:c^2 = 5^2 + 12^2c^2 = 25 + 144c^2 = 169取平方根得到c = 13cm。

所以,斜边的长度为13cm。

问题四:已知直角三角形的斜边长度为15cm,一条直角边的长度为9cm,求另一条直角边的长度。

解答四:设另一条直角边的长度为a。

根据勾股定理,可得:a^2 + 9^2 = 15^2a^2 + 81 = 225a^2 = 225 - 81a^2 = 144取平方根得到a = 12cm。

所以,另一条直角边的长度为12cm。

问题五:已知直角三角形的一条直角边的长度为7cm,另一条直角边的长度为24cm,求斜边的长度。

解答五:设斜边的长度为c。

根据勾股定理,可得:c^2 = 7^2 + 24^2c^2 = 49 + 576c^2 = 625取平方根得到c = 25cm。

所以,斜边的长度为25cm。

以上是五道勾股定理练习题及答案的解答过程。

通过这些练习题,我们可以加深对勾股定理的理解,熟练掌握如何在已知条件下求解三角形的边长。

勾股定理在几何学和实际应用中都有广泛的应用,是数学中的重要概念之一。

勾股定理 同步练习(含答案)

勾股定理 同步练习(含答案)

7.2勾股定理1、在Rt△ABC中,∠B=90°,BC=15,AC=17,以AB为直径作半圆,则此半圆的面积为__________2、已知直角三角形两边的长为3和4,则此三角形的周长为__________.3、某市在“旧城改造”中计划在市内一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米售价a元,则购买这种草皮至少需要__________元.4、如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m.同时梯子的顶端B下降至B′,那么BB′().A.小于1m B.大于1m C.等于1m D.小于或等于1m5、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm6、如图,某公园内有一棵大树,为测量树高,小明C处用侧角仪测得树顶端A的仰角为30°,已知侧角仪高DC=1.4m,BC=30米,请帮助小明计算出树高AB.(取1.732,结果保留三个有效数字)7. 小明想测量教学楼的高度.他用一根绳子从楼顶垂下,发现绳子垂到地面后还多了2 m,当他把绳子的下端拉开6 m后,发现绳子下端刚好接触地面,则教学楼的高为().A. 8 mB. 10 mC. 12 mD. 14 m8.如果梯子的底端离建筑物9 m,那么15 m长的梯子可以到达建筑物的高度是().A. 10 mB. 11 mC. 12 mD. 13 m9. 直角三角形三边的长分别为3、4、x,则x可能取的值有().A. 1个B. 2 个C. 3个D. 无数多个10、直角三角形中,以直角边为边长的两个正方形的面积为7cm2,8 cm2,则以斜边为边长的正方形的面积为_________ cm2.11、如图,矩形零件上两孔中心A、B的距离是多少(精确到个位)?参考答案1、8π提示:在Rt △ABC 中,AB 2=AC 2-BC 2=172-152=82,∴AB =8.∴S 半圆=12πR 2=12π×(82)2=8π.2、12或7 提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或,所以直角三角形的周长为3+4+5=12或3+4=7.3、150a .4、A 提示:移动前后梯子的长度不变,即Rt △AOB 和Rt △A ′OB ′的斜边相等.由勾股定理,得32+B ′O 2=22+72,B ′O 6<B ′O <7,则O <BB ′<1.5、D 17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm .6、解析:构造直角三角形,利用勾股定理建立方程可求得.过点D 作DE ⊥AB 于点E ,则ED =BC =30米,EB =DC =1.4米.设AE =x 米,在Rt △ADE 中,∠ADE =30°,则AD =2x .由勾股定理得:AE 2+ED 2=AD 2,即x 2+302=(2x )2,解得x =.∴AB =AE +EB ≈17.32+1.4≈18.7(米).答:树高AB 约为18.7米.7.A 解:设教学楼的高为x ,根据题意得:22(2)36x x +=+,解方程得:x =8.8.C 解:设建筑物的高度为x ,根据题意得:222159x -=,解方程得:x =12.9.B 斜边可以为4或x ,故两个答案。

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

【人教版】八年级数学下第十七章《勾股定理》课时作业同步练习(含答案)

微课堂第十七章 勾股定理 17.1 勾股定理 第1课时 勾股定理01 基础题知识点1 勾股定理的证明1.利用图1或图2两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为勾股定理,该定理结论的数学表达式是a 2+b 2=c 2.2.4个全等的直角三角形的直角边分别为a ,b ,斜边为c.现把它们适当拼合,可以得到如图所示的图形,利用这个图形可以验证勾股定理,你能说明其中的道理吗?请试一试.解:图形的总面积可以表示为 c 2+2×12ab =c 2+ab ,也可以表示为a 2+b 2+2×12ab =a 2+b 2+ab ,∴c 2+ab =a 2+b 2+ab. ∴a 2+b 2=c 2.知识点2 利用勾股定理进行计算3.在△ABC 中,∠A ,∠B ,∠C 的对应边分别是a ,b ,c ,若∠B =90°,则下列等式中成立的是(C )A .a 2+b 2=c 2B .b 2+c 2=a 2C .a 2+c 2=b 2D .c 2-a 2=b 24.已知在Rt △ABC 中,∠C =90°,AC =2,BC =3,则AB 的长为(C )A .4B . 5C .13D .55.已知直角三角形中30°角所对的直角的边长是2 3 cm ,则另一条直角边的长是(C )A .4 cmB .4 3 cmC .6 cmD .6 3 cm 6.(2016·阿坝)直角三角形斜边的长是5,一直角边的长是3,则此直角三角形的面积为6. 7.在△ABC 中,∠C =90°,AB =c ,BC =a ,AC =b.(1)a =7,b =24,求c ; (2)a =4,c =7,求b.解:(1)∵∠C =90°,∴△ABC 是直角三角形.∴a 2+b 2=c 2. ∴72+242=c 2.∴c2=49+576=625.∴c=25.(2)∵∠C=90°,∴△ABC是直角三角形.∴a2+b2=c2.∴42+b2=72.∴b2=72-42=49-16=33.∴b=33.8.如图,在△ABC中,AD⊥BC,垂足为点D,∠B=60°,∠C=45°.(1)求∠BAC的度数;(2)若AC=2,求AD的长.解:(1)∠BAC=180°-60°-45°=75°.(2)∵AD⊥BC,∴△ADC是直角三角形.∵∠C=45°,∴∠DAC=45°.∴AD=CD.根据勾股定理,得AD= 2.02中档题9.(2016·荆门)如图,在△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为(C) A.5 B.6 C.8 D.10第9题图第10题图10.如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是(C) A.48 B.60 C.76 D.8011.(2017·陕西)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在边AB上,连接B′C.若∠ACB=∠AC′B′=90°,AC=BC=3,则B′C的长为(A)A.3 3 B.6 C.3 2 D.21第11题图第14题图12.(2016·东营)在△ABC中,AB=10,AC=210,BC边上的高AD=6,则另一边BC等于(C) A.10 B.8C.6或10 D.8或1013.若一直角三角形两边长分别为12和5,则第三边长为13或119.14.如图,在Rt △ABC 中,∠C =90°,AD 平分∠CAB ,AC =6,BC =8,CD =3.15.图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.在Rt △ABC 中,若直角边AC =6,BC =5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是76.16.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =20,BC =15.(1)求AB 的长;(2)求CD 的长.解:(1)∵在Rt △ABC 中,∠ACB =90°,BC =15,AC =20, ∴AB =AC 2+BC 2=202+152=25.(2)∵S △ABC =12AC ·BC =12AB ·CD ,∴AC ·BC =AB ·CD .∴20×15=25CD .∴CD =12.17.(2016·益阳)在△ABC 中,AB =15,BC =14,AC =13,求△ABC 的面积.某学习小组经过合作交流,给出了下面的解题思路,请你按照他们的解题思路完成解答过程. 作AD ⊥BC 于点D , 设BD =x ,用含x的代数式表示CD.→根据勾股定理,利用 AD 作为“桥梁”,建立方程模型求出x.→利用勾股定理求出AD 的长,再计算三角形面积.解:在△ABC 中,AB =15,BC =14,AC =13, 设BD =x ,则CD =14-x.由勾股定理,得AD 2=AB 2-BD 2=152-x 2,AD 2=AC 2-CD 2=132-(14-x)2. ∴152-x 2=132-(14-x)2.解得x =9. ∴AD =12.∴S △ABC =12BC·AD =12×14×12=84.03综合题18.如图,已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,则第2 017个等腰直角三角形的斜边长是(2)2017.习题解析第2课时 勾股定理的应用01 基础题知识点1 勾股定理在平面图形中的应用1.如图,一根垂直于地面的旗杆在离地面5 m 处折断,旗杆顶部落在离旗杆底部12 m 处,旗杆折断之前的高度是(D )A .5 mB .12 mC .13 mD .18 m第1题图 第2题图2.如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行10米.3.八(2)班小明和小亮同学学习了“勾股定理”之后,为了测得如图风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为15米;(注:BD ⊥CE)②根据手中剩余线的长度计算出风筝线BC 的长为25米; ③牵线放风筝的小明身高1.6米. 求风筝的高度CE.解:在Rt △CDB 中,由勾股定理,得CD =CB 2-BD 2=252-152=20(米).∴CE =CD +DE =20+1.6=21.6(米). 答:风筝的高度CE 为21.6米.4.如图,甲船以16海里/时的速度离开码头向东北方向航行,乙船同时由码头向西北方向航行,已知两船离开码头1.5 h 后相距30海里,问乙船每小时航行多少海里?解:设码头所在的位置为C ,1.5 h 后甲船所在位置为A ,乙船所在位置为B ,则 AC 与正北方向的夹角为45°,BC 与正北方向的夹角为45°, ∴∠ACB =90°.在Rt △ABC 中,∵AC =16×32=24(海里),AB =30海里.由勾股定理,得 BC 2=AB 2-AC 2=302-242=324.解得BC =18. ∴18÷32=12(海里/小时).答:乙船每小时航行12海里.知识点2勾股定理与方程的应用5.印度数学家什迦逻(1141~1225年)曾提出过“荷花问题”:“平平湖水清可鉴,面上半尺生红莲;出泥不染亭亭立,忽被强风吹一边;渔人观看忙向前,花离原位二尺远;能算诸君请解题,湖水如何知深浅?”请用学过的数学知识回答这个问题.解:如图,由题意可知AC=0.5,AB=2,OB=OC.设OA=x,则OB=OA+AC=x+0.5.在Rt△OAB中,OA2+AB2=OB2,∴x2+22=(x+0.5)2.解得x=3.75.∴水深3.75尺.6.如图,在一棵树(AD)的10 m高处(B)有两只猴子,其中一只爬下树走向离树20 m(C)的池塘,而另一只则爬到树顶(D)后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?解:B为猴子的初始位置,则AB=10 m,C为池塘,则AC=20 m.设BD=x m,则树高AD=(10+x)m.由题意知BD+CD=AB+AC,∴x+CD=20+10.∴CD=(30-x)m.在Rt△ACD中,∠A=90°,由勾股定理得AC2+AD2=CD2,∴202+(10+x)2=(30-x)2.∴x=5.∴AD=10+5=15(m).故这棵树有15 m高.知识点3两次勾股定理的应用7.(2017·绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(C) A.0.7米B.1.5米C.2.2米D.2.4米第7题图第8题图8.如图,滑竿在机械槽内运动,∠ACB为直角,已知滑竿AB长2.5米,顶点A在AC上滑动,量得滑竿下端B 距C点的距离为1.5米,当端点B向右移动0.5米时,滑竿顶端A下滑0.5米.02中档题9.如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了__________步路(假设2步为1 m),却踩伤了花草(D)A.4 B.6 C.7 D.8第9题图第10题图10.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少为(D) A.4米B.8米C.9米D.7米11.如图,长为8 cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3 cm到点D,则橡皮筋被拉长了2cm.第11题图第12题图习题解析12.将一根24 cm的筷子,置于底面直径为15 cm,高8 cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是7≤h≤16.13.如图是一面长方形彩旗完全展平时的尺寸图(单位:cm).其中长方形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为长方形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆从旗顶到地面的高度为220 cm.在无风的天气里,彩旗自然下垂.求彩旗下垂时最低处离地面的最小高度h.解:彩旗自然下垂的长度就是长方形DCEF的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,得DE=DF2+EF2=1202+902=150.h=220-150=70(cm).∴彩旗下垂时的最低处离地面的最小高度h为70 cm.14.超速行驶是引发交通事故的主要原因.上周末,小鹏等三位同学在滨海大道红树林路段,尝试用自己所学的知识检测车速,观测点设在到公路l的距离为100米的P处.这时,一辆富康轿车由西向东匀速驶来,测得此车从A 处行驶到B处所用的时间为3秒,并测得∠APO=60°,∠BPO=45°,试判断此车是否超过了每小时80千米的限制速度?解:在Rt △APO 中,∠APO =60°,则∠PAO =30°. ∴AP =2OP =200 m ,AO =AP 2-OP 2=2002-1002=1003(m ).在Rt △BOP 中,∠BPO =45°,则BO =OP =100 m .∴AB =AO -BO =1003-100≈73(m ). ∴从A 到B 小车行驶的速度为73÷3≈24.3(m /s )=87.48 km /h >80 km /h . ∴此车超过每小时80千米的限制速度.03 综合题15.如图,在Rt △ABC 中,∠C =90°,AB =5 cm ,AC =3 cm ,动点P 从点B 出发沿射线BC 以1 cm /s 的速度移动,设运动的时间为t s .(1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值.解:(1)在Rt △ABC 中,由勾股定理,得BC 2=AB 2-AC 2=52-32=16. ∴BC =4 cm .(2)由题意,知BP =t cm ,①当∠APB 为直角时,如图1,点P 与点C 重合,BP =BC =4 cm , ∴t =4;②当∠BAP 为直角时,如图2,BP =t cm ,CP =(t -4)cm ,AC =3 cm , 在Rt △ACP 中,AP 2=AC 2+CP 2=32+(t -4)2. 在Rt △BAP 中,AB 2+AP 2=BP 2, 即52+[32+(t -4)2]=t 2. 解得t =254.∴当△ABP 为直角三角形时,t =4或t =254.第3课时 利用勾股定理作图01 基础题知识点1 在数轴上表示无理数1.在数轴上作出表示5的点(保留作图痕迹,不写作法).解:略.知识点2 网格中的无理数2.如图,在边长为1个单位长度的小正方形组成的网格中,点A ,B 都是格点,则线段AB 的长度为(A )A .5B .6C .7D .25知识点3 等腰三角形中的勾股定理3.在△ABC 中,AB =AC =13 cm ,BC =10 cm ,求等腰三角形的边上的高与面积.解:过点A 作AD ⊥BC 于D , ∵AB =AC =13 cm , ∴BD =CD =12BC =12×10=5(cm).∴AD =AB 2-BD 2=132-52=12(cm).∴S △ABC =12BC ·AD =12×10×12=60(cm 2).02 中档题 4.(2017·南充)如图,等边△OAB 的边长为2,则点B 的坐标为(D )A .(1,1,)B .(3,1)C .(3,3)D .(1,3) 5.(2017·成都)如图,数轴上点A 所表示的实数是5-1.第5题图 第6题图6.(2017·乐山)点A ,B ,C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离355.7.如图,△ABC 和△DCE 都是边长为4的等边三角形,点B ,C ,E 在同一条直线上,连接BD ,求BD 的长.解:∵△ABC 和△DCE 都是边长为4的等边三角形, ∴CB =CD ,∠CDE =∠DCE =60°.∴∠BDC =∠DBC =12∠DCE =30°.∴∠BDE =90°.在Rt △BDE 中,DE =4,BE =8,DB =BE 2-DE 2=82-42=4 3.03 综合题8.仔细观察图形,认真分析下列各式,然后解答问题.OA 22=(1)2+1=2,S 1=12; OA 23=(2)2+1=3,S 2=22; OA 24=(3)2+1=4,S 3=32; …求:(1)请用含有n(n 是正整数)的等式表示上述变化规律; (2)推算出OA 10的长;(3)求出S 21+S 22+S 23+…+S 210的值.解:(1)OA 2n =(n -1)2+1=n ,S n=n2(n 为正整数). (2)OA 210=(9)2+1=10,∴OA 10=10. (3)S 21+S 22+S 23+…+S 210=(12)2+(22)2+(32)2+…+(92)2+(102)2 =14+24+34+…+94+104 =1+2+3+…+9+104=1+102×104=554.小专题(二) 巧用勾股定理解决折叠与展开问题类型1 利用勾股定理解决平面图形的折叠问题解决折叠问题关键是抓住对称性.勾股定理的数学表达式是一个含有平方关系的等式,求线段的长时,可由此列出方程,运用方程思想分析问题和解决问题,以简化求解.【例1】 直角三角形纸片的两直角边AC =8,BC =6,现将△ABC 如图折叠,折痕为DE ,使点A 与点B 重合,则BE 的长为254.1.(2017·黔西南)如图,将边长为6 cm 的正方形纸片ABCD 折叠,使点D 落在AB 边中点E 处,点C 落在点Q 处,折痕为FH ,则线段AF 的长是94cm .第1题图 第2题图2.如图,在长方形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB =6.类型2 利用勾股定理解决立体图形的展开问题立体图形中求表面距离最短时,需要将立体图形展开成平面图形,然后将条件集中于一个直角三角形,利用勾股定理求解.【例2】 (教材P39T12变式与应用)如图,有一个圆柱,它的高等于12 cm ,底面半径等于3 cm ,在圆柱的底面A 点有一只蚂蚁,它想吃到上底面上与A 点相对的B 点的食物,需要爬行的最短路程是多少?(π取3)【思路点拨】 要求蚂蚁爬行的最短路径,需将空间图形转化为平面图形(即立体图形的平面展开图),把圆柱沿着过A 点的AA ′剪开,得到如图所示的平面展开图,因为“两点之间,线段最短”,所以蚂蚁应沿着平面展开图中线段AB 这条路线走.【解答】 如图,由题意可得:AA ′=12,A ′B =12×2π×3=9.在Rt △AA ′B 中,根裾勾股定理得:AB 2=A ′A 2+A ′B 2=122+92=225.∴AB =15.∴需要爬行的最短路径是15 cm.3.如图是一个高为10 cm ,底面圆的半径为4 cm 的圆柱体.在AA 1上有一个蜘蛛Q ,QA =3 cm ;在BB 1上有一只苍蝇P ,PB 1=2 cm ,蜘蛛沿圆柱体侧面爬到P 点吃苍蝇,最短的路径是16π2+25cm.(结果用带π和根号的式子表示)第3题图 第4题图4.如图,在一个长为2 m ,宽为1 m 的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD 平行且棱长大于AD ,木块从正面看是边长为0.2 m 的正方形,一只蚂蚁从点A 处到达点C 处需要走的最短路程是2.60m (精确到0.01 m ).5.如图,长方体的高为5 cm ,底面长为4 cm ,宽为1 cm .(1)点A 1到点C 2之间的距离是多少?(2)若一只蚂蚁从点A 2爬到C 1,则爬行的最短路程是多少?解:(1)∵长方体的高为5 cm ,底面长为4 cm ,宽为1 cm , ∴A 2C 2=42+12=17(cm ). ∴A 1C 2=52+(17)2=42(cm ). (2)如图1所示,A 2C 1=52+52=52(cm ). 如图2所示,A 2C 1=92+12=82(cm ). 如图3所示,A 2C 1=62+42=213(cm ).∵52<213<82,∴一只蚂蚁从点A 2爬到C 1,爬行的最短路程是5 2 cm .17.2 勾股定理的逆定理01 基础题知识点1 互逆命题1.下列各命题的逆命题不成立的是(C )A .两直线平行,同旁内角互补B .若两个数的绝对值相等,则这两个数也相等C .对顶角相等D .如果a 2=b 2,那么a =b2.写出下列命题的逆命题,并判断它们是真命题还是假命题.(1)如果两个三角形全等,那么这两个三角形的面积相等;(2)等腰三角形的两个底角相等.解:(1)如果两个三角形的面积相等,那么这两个三角形全等.是假命题. (2)有两个内角相等的三角形是等腰三角形.是真命题.知识点2 勾股定理的逆定理3.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是(B) A.3,4, 5 B .1,2, 3 C .6,7,8 D .2,3,4 4.下列各组数是勾股数的是(A )A .3,4,5B .1.5,2,2.5C .32,42,52D .13,14,155.在△ABC 中,AB =8,AC =15,BC =17,则该三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形6.三角形的边长之比为:①1.5∶2∶2.5;②4∶7.5∶8.5;③1∶3∶2;④3.5∶4.5∶5.5.其中可以构成直角三角形的有(C )A .1个B .2个C .3个D .4个7.如图,分别以三角形三边为直径向外作三个半圆,如果较小的两个半圆面积之和等于较大的半圆面积,那么这个三角形为(B )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形8.已知:在△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c ,三边分别为下列长度,判断该三角形是不是直角三角形,并指出哪一个角是直角.(1)a =3,b =22,c =5; (2)a =5,b =7,c =9; (3)a =2,b =3,c =7; (4)a =5,b =26,c =1.解:(1)是,∠B是直角.(2)不是.(3)是,∠C是直角.(4)是,∠A是直角.9.如图,在△ABC中,AD⊥BC,AD=12,BD=16,CD=5.(1)求△ABC的周长;(2)判断△ABC是不是直角三角形?为什么?解:(1)在Rt△ABD和Rt△ACD中,根据勾股定理,得AB2=AD2+BD2,AC2=AD2+CD2,又∵AD=12,BD=16,CD=5,∴AB=20,AC=13.∴△ABC的周长为AB+AC+BC=AB+AC+BD+DC=20+13+16+5=54.(2)△ABC不是直角三角形.理由:∵AB=20,AC=13,BC=21,AB2+AC2≠BC2,∴△ABC不是直角三角形.02中档题10.如图,AD为△ABC的中线,且AB=13,BC=10,AD=12,则AC等于(D)A.10B.11C.12D.13c-10=0,那么下列说法中不正确的是(C) 11.已知a,b,c是三角形的三边长,如果满足(a-6)2+b-8+||A.这个三角形是直角三角形B.这个三角形的最长边长是10C.这个三角形的面积是48D.这个三角形的最长边上的高是4.812.下列定理中,没有逆定理的是(B)A.等腰三角形的两个底角相等B.对顶角相等C.三边对应相等的两个三角形全等D.直角三角形两个锐角的和等于90°13.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M,N两点相距100海里,则∠NOF 的度数为(C)A.50°B.60°C.70°D.80°14.把一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,则这个三角形是直角三角形.15.如图是一个零件的示意图,测量AB=4 cm,BC=3 cm,CD=12 cm,AD=13 cm,∠ABC=90°,根据这些条件,你能求出∠ACD的度数吗?试说明理由.解:在△ABC中,∵AB=4,BC=3,∠ABC=90°,根据勾股定理,得AC2=AB2+BC2=42+32=52.∴AC=5 cm.∵AC2+CD2=52+122=25+144=169,AD2=132=169,即AC2+CD2=AD2.∴△ACD是直角三角形,且AD为斜边,即∠ACD=90°.16.如图,在四边形ABCD中,AB=BC=1,CD=3,DA=1,且∠B=90°.求:(1)∠BAD的度数;(2)四边形ABCD的面积(结果保留根号).解:(1)连接AC.∵AB=BC=1,∠B=90°,∴∠BAC=∠ACB=45°,AC=AB2+BC2= 2.又∵CD=3,DA=1,∴AC2+DA2=CD2.∴△ADC 为直角三角形,∠DAC =90°. ∴∠BAD =∠BAC +∠DAC =135°. (2)∵S △ABC =12AB·BC =12,S △ADC =12AD·AC =22,∴S 四边形ABCD =S △ABC +S △ADC =1+22.03 综合题17.在一次“探究性学习”课中,老师设计了如下数表:(1)请你分别观察a ,b ,c b ,c ,则a =n 2-1,b =2n ,c =n 2+1;(2)猜想:以a ,b ,c 为边的三角形是否为直角三角形?证明你的结论. 解:以a ,b ,c 为边的三角形是直角三角形.证明:∵a 2+b 2=(n 2-1)2+(2n)2=n 4-2n 2+1+4n 2=(n 2+1)2=c 2, ∴以a ,b ,c 为边的三角形是直角三角形.章末复习(二)勾股定理01基础题知识点1勾股定理1.如图,在△ABC中,∠C=90°,∠A=30°,AB=12,则AC=(C)A. 6 B.6 2C.6 3 D. 12第1题图第2题图2.如图,阴影部分是一个正方形,则此正方形的面积为64.3.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点A为圆心,AC长为半径画弧,交AB于点D,则BD=2.4.如图,在四边形ABCD中,∠B=90°,CD⊥AD,AD2+CD2=2AB2.求证:AB=BC.证明:连接AC.∵在△ABC中,∠B=90°,∴AB2+BC2=AC2.∵CD⊥AD,∴∠ADC=90°.∴AD2+CD2=AC2.∵AD2+CD2=2AB2,∴AB2+BC2=2AB2.∴BC2=AB2.∵AB>0,BC>0,∴AB=BC.知识点2勾股定理的应用5.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8 m处,发现此时绳子末端距离地面2 m,则旗杆的高度为(滑轮上方的部分忽略不计)(D)A.12 m B.13 mC.16 m D.17 m第5题图第6题图6.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B 两地的距离是5km;若A地在C地的正东方向,则B地在C地的正北方向.7.(2016·烟台)如图,O为数轴原点,A,B两点分别对应-3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为7.知识点3逆命题与逆定理8.“同旁内角互补”的逆命题是互补的两个角是同旁内角,它是假命题.知识点4勾股定理的逆定理及其应用9.在△ABC中,AB=6,AC=8,BC=10,则该三角形为(B)A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形02中档题10.如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(D)A.3-1B.3+1C.5-1D.5+1第10题图第11题图11.(2016·漳州)如图,在△ABC中,AB=AC=5,BC=8,D是线段BC上的动点(不含端点B,C).若线段AD 长为正整数,则点D的个数共有(C)A.5个B.4个C.3个D.2个12.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,则∠ABC的度数为(C) A.90°B.60°C.45°D.30°第12题图第13题图13.如图,在单位正方形组成的网格图中标有AB,CD,EF,GH四条线段,其中能构成一个直角三角形三边的线段是(B)A.CD,EF,GH B.AB,EF,GHC.AB,CD,EF D.GH,AB,CD14.若一个三角形的周长为12 3 cm,一边长为3 3 cm,其他两边之差为 3 cm,则这个三角形是直角三角形.15.有一块空白地,如图,∠ADC=90°,CD=6 m,AD=8 m,AB=26 m,BC=24 m.试求这块空白地的面积.解:连接AC .∵∠ADC =90°,∴△ADC 是直角三角形.∴AD 2+CD 2=AC 2,即82+62=AC 2,解得AC =10.又∵AC 2+CB 2=102+242=262=AB 2,∴△ACB 是直角三角形,∠ACB =90°∴S 四边形ABCD =S Rt △ACB -S Rt △ACD=12×10×24-12×6×8 =96(m 2).故这块空白地的面积为96 m 2.16.小明将一副三角板按如图所示摆放在一起,发现只要知道其中一边的长就可以求出其他各边的长,若已知CD =2,求AC 的长.解:∵BD =CD =2,∴BC =22+22=2 2.∴设AB =x ,则AC =2x.∴x 2+(22)2=(2x)2.∴x 2+8=4x 2.∴x 2=83. ∴x =263. ∴AC =2AB =436.03 综合题17.如图,在△ABC 中,∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,CD =PC =2,CD ⊥CP ,求∠BPC 的度数.解:连接BD.∵CD⊥CP,CP=CD=2,∴△CPD为等腰直角三角形.∴∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS).∴DB=P A=3.在Rt△CPD中,DP2=CP2+CD2=22+22=8. 又∵PB=1,DB2=9,∴DB2=DP2+PB2=8+1=9.∴∠DPB=90°.∴∠CPB=∠CPD+∠DPB=45°+90°=135°.。

勾股定理练习题(含答案)

勾股定理练习题(含答案)

勾股定理练习题一、基础达标:1.下列说法正确的是( )A.若a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2;B.若a 、b 、c 是Rt△ABC 的三边,则a 2+b 2=c 2;C.若a 、b 、c 是Rt△ABC 的三边, 90=∠A ,则a 2+b 2=c 2;D.若a 、b 、c 是Rt△ABC 的三边, 90=∠C ,则a 2+b 2=c 2.2.Rt △A 3 )A 4.已知 )A.C.5( A 6.△A .42B 7.(A (C 8:4C :9.若△ABC 中,AB=25cm ,AC=26cm 高AD=24,则BC 的长为()A .17B.3C.17或3D.以上都不对10.已知a 、b 、c 是三角形的三边长,如果满足2(6)100a c --=则三角形的形状是()A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形11.斜边的边长为cm 17,一条直角边长为cm 8的直角三角形的面积是.12.等腰三角形的腰长为13,底边长为10,则顶角的平分线为__.13.一个直角三角形的三边长的平方和为200,则斜边长为14.一个三角形三边之比是6:8:10,则按角分类它是三角形.15.一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.16.在Rt △ABC 中,斜边AB=4,则AB 2+BC 2+AC 2=_____.17.若三角形的三个内角的比是3:2:1,最短边长为cm 1,最长边长为cm 2,则这个三角形三个角度数分别是,另外一边的平方是.18.如图,已知ABC ∆中,︒=∠90C ,15=BA ,12=AC ,以直角边19.12的角平分线3.少?4512m ,高15.过7050m ,这辆小汽车超速了吗?答案:一、基础达标1.解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角.答案:D.2.解析:本题考察三角形的三边关系和勾股定理.答案:B.3.解析:设另一条直角边为x ,则斜边为(x+1)利用勾股定理可得方程,可以求出x .然后再求它的周长.答案:C .4.解析:解决本题关键是要画出图形来,作图时应注意高AD 是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5.解析:勾股定理得到:22215817=-,另一条直角边是15, 所求直角三角形面积为21158602cm ⨯⨯=.答案:260cm .6.解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立.答案7.解析:8910.解析111213.1413m ,152s ,。

勾股定理练习题及答案

勾股定理练习题及答案

勾股定理练习题及答案1. 直角三角形1.1 已知直角三角形的两个直角边分别为3cm和4cm,求斜边的长度。

解答:根据勾股定理,斜边的长度可以通过以下公式计算:c = √(a^2 + b^2)其中,a和b分别为两个直角边的长度。

代入已知值,可以得到:c = √(3^2 + 4^2) = √(9 + 16) = √25 = 5cm所以,斜边的长度为5cm。

1.2 已知直角三角形的斜边长度为10cm,其中一条直角边的长度为6cm,求另一条直角边的长度。

解答:同样根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2将已知值代入,可以得到:10^2 = 6^2 + b^2100 = 36 + b^2b^2 = 100 - 36b^2 = 64b = √64 = 8cm所以,另一条直角边的长度为8cm。

2. 直角三角形的应用2.1 一根长度为12cm的电话线在地面上拉出了一个直角三角形,其中一条直角边长为9cm,求另一条直角边和斜边的长度。

解答:根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2已知直角边的长度为9cm,将已知值代入公式,可以得到:c^2 = 9^2 + b^2c^2 = 81 + b^2又已知三角形的斜边是长为12cm的电话线,所以可以得到另一个公式:c = 12将这两个公式结合,可以得到以下方程:81 + b^2 = 12^281 + b^2 = 144b^2 = 144 - 81b^2 = 63b = √63 ≈ 7.94cm所以,另一条直角边的长度约为7.94cm,斜边的长度为12cm。

2.2 一根高度为10m的电线杆倒在地面上形成了一个直角三角形,其中一条直角边长为8m,求另一条直角边和斜边的长度。

解答:同样根据勾股定理,可以得到以下公式:c^2 = a^2 + b^2已知直角边的长度为8m,将已知值代入公式,可以得到:c^2 = 8^2 + b^2c^2 = 64 + b^2又已知三角形的斜边是高度为10m的电线杆,所以可以得到另一个公式:c = 10将这两个公式结合,可以得到以下方程:64 + b^2 = 10^264 + b^2 = 100b^2 = 100 - 64b^2 = 36b = √36 = 6m所以,另一条直角边的长度为6m,斜边的长度为10m。

勾股定理练习(含答案)

勾股定理练习(含答案)

勾股定理练习一、单选题(共12题;共24分)1.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A和B,然后把中点C向上拉升3cm 至D点,则橡皮筋被拉长了()A. 2cmB. 3cmC. 4cmD. 5cm2.如图,在Rt△ABC中,∠C=90°,如果AB=5,BC=3,那么AC等于()A. B. 3 C. 4 D. 53.在下列的线段中,能组成直角三角形的是( )A. 1,2,3B. 2,3,4C. 3,4,5D. 4,5,64.如果梯子的底端离建筑物5 米,13 米长的梯子可以达到该建筑物的高度是()A. 12 米B. 13 米C. 14 米D. 15 米5.一直角三角形两边分别为3和5,则第三边为()A. 4B.C. 4或D. 26.在△ABC中,∠C=90°,若AC=3,BC=4,则AB=()A. B. 5 C. D. 77.如图,一个梯子AB长2.5 米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.9米,则梯子顶端A下落了()A. 0.9米B. 1.3米C. 1.5米D. 2米8.若直角三角形的三边长分别为2、4、x,则x的可能值有()A. 1个B. 2个C. 3个D. 4个9.如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A. 25海里B. 30海里C. 40海里D. 50海里10.一个圆桶底面直径为24cm,高32cm,则桶内所能容下的最长木棒为()A. 20cmB. 50cmC. 40cmD. 45cm11.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A. 8mB. 10mC. 14mD. 24m12.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B 恰好碰到地面,经测量AB=2米,则树高为()A. 米B. 米C. (米D. 3 米二、填空题(共8题;共8分)13.在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为________cm2.14.若直角三角形两直角边长分别为6和8,则它的斜边长为________.15.直角三角形两直角边长分别为,,则斜边长为________.16.如图,作一个长方形,以数轴的原点为中心,长方形对角线为半径,交数轴于点A,则点A表示的数是________.17.如图,小华将升旗的绳子拉到竖直旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,此时绳子末端距离地面2m,则绳子的总长度为________ m.18.已知一个直角三角形的两条直角边的差为2,两条直角边的平方和为8,则这个直角三角形的面积是________19.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,则Rt△ABC的面积等于________ cm2.20.学校有一块长方形的花圃如右图所示,有少数的同学为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了________步(假设1米=2步),却踩伤了花草,所谓“花草无辜,踩之何忍”!三、作图题(共1题;共5分)21.如图,正方形网格中的每个小正方形的边长都是1,每个小正方形的顶点叫格点,以格点为顶点,①在图1中画出边长分别为:3,2 ,的三角形(不写画法);②在图2中画出边长分别为,4,,4的平行四边形(不写画法).四、计算题(共1题;共5分)22.已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.23.有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多什么米?24.如图,梯形ABCD是由三个直角三角形拼成的,各直角边的长度如图所示。

人教版八年级数学下册17.1勾股定理同步测试(包含答案)

人教版八年级数学下册17.1勾股定理同步测试(包含答案)

绝密★启用前17.1 勾股定理 班级: 姓名:一、单选题1.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长( )A .4B .16C .34D .4或342.在ABC ∆中,A ∠、B Ð、C ∠所对的边分别是a 、b 、c ,若90A C ∠+∠=︒,则下列等式中成立的是( )A .2222a b c +=B .222b c a +=C .222a c b +=D .222c a b -=3.如图所示,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,于点D ,则BD 的长为A .3B .22C .4D .3524.如图,在ABC ∆中,5AB AC ==,6BC =,点P 是BC 边上的动点,过点P 作PD AB ⊥于D ,PE AC ⊥于E ,则PD PE +的长是( )A .4.8B .4.8或3.8C .3.8D .55.如图,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AC=23,BC=6,则CD 为( )A .2B .2C .3D .36.如图,在Rt ABC ∆中,90ACB ∠=︒,9AC =,12BC =,C 点到AB 的距离是( )A .365B .1225C .94D .347.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .808.如图,数轴上的点A 表示的数是-2,点B 表示的数是1,CB AB ⊥于点B ,且2BC =,以点A 为圆心,AC 为半径画弧交数轴于点D ,则点D 表示的数为( )A .13B .132+C .132-D .2二、填空题 9.如图,点E 在正方形ABCD 的边AB 上,若1EB =,2EC =,那么正方形ABCD 的面积为_.10.如图,在Rt △ABC 中,∠B =90°,AB =3,BC =4,将△ABC 折叠,使点B 恰好落在边AC 上,与点B′重合,AE 为折痕,则EB′= _______.11.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为______. 12.《九章算术》勾股卷有一题目:今有垣高一丈.依木于垣,上于垣齐.引木却行四尺,其木至地,问木长几何?意即:一道墙髙一丈,一根木棒靠于墙上,木棒上端与墙头齐平,若木棒下端向后退,则木棒上端会随着往下滑,当木棒下端向后退了四尺时,木棒上端恰好落到地上,则木棒长______尺(1丈=10尺).三、解答题13.如图,在Rt ⊿ABC 中,90ACB ∠=o ,CD AB ⊥于D ,,AC 20BC 15== .⑴.求AB 的长;⑵.求CD 的长.14.八年级二班的小明和小亮同学学习了“勾股定理”之后,为了测得如图所示风筝的高度CE ,他们进行了如下操作:①测得BD 的长度为10米②根据手中剩余线的长度计算出风筝线BC 的长为26米.③牵线放风筝的小明身高1.6米,求风筝的高度CE?一、单选题1.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的表示的数为()A.(2,0)B.(5-1,0)C.(101-,0)D.(5,0)2.若直角三角形的三边长为6,8,m,则m2的值为()A.10 B.100 C.28 D.100或283.如图,分别以直角三角形的三边为边向外作正方形,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的边长为()A.64 B.16 C.8 D.44.《九章算术》中的“折竹抵地”问题上:今有竹高一丈,末折抵地,去本六尺。

八年级数学(下)第十七章《勾股定理》同步练习(含答案)

八年级数学(下)第十七章《勾股定理》同步练习(含答案)

八年级数学(下)第十七章《勾股定理》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.一个直角三角形有两条边长分别为6和8,则它的第三条边长可能是 A .8B .9C .10D .11【答案】C2.Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为 A .8B .4C .6D .无法计算【答案】A【解析】利用勾股定理,由Rt △ABC 中,BC 为斜边,可得AB 2+AC 2=BC 2,代入数据可得 AB 2+AC 2+BC 2=2BC 2=2×22=8.故选A .3.如图,在四边形ABCD 中,∠BAD =90°,∠DBC =90°,AD =4,AB =3,BC =12,则CD 为A .5B .13C .17D .18【答案】B【解析】∵∠BAD =90°,∴△ADB 是直角三角形,∴BD =22AD AB +=2234+=5,∵∠DBC =90°,∴△DBC 是直角三角形,∴CD =22BD BC +=22512+=13,故选B .4.如图的三角形纸片中,AB =8,BC =6,AC =5,沿过点B 的直线折叠这个三角形,使点C 落在AB 边上的点E 处,折痕为BD ,则△AED 的周长是A .7B .8C .11D .14【答案】A5.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为2和10,则b 的面积为A .8B .10+2C .23D .12【答案】D【解析】如图,∵a 、b 、c 都为正方形,∴BC =BF ,∠CBF =90°,AC 2=2,DF 2=10,∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3,在△ABC 和△DFB 中, 13BAC FDBBC BF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DFB ,∴AB =DF ,在△ABC 中,BC 2=AC 2+AB 2=AC 2+DF 2=2+10=12,∴b 的面积为12.故选D .6.如图,一棵大树被大风刮断后,折断处离地面8 m ,树的顶端离树根6 m ,则这棵树在折断之前的高度是A .18 mB .10 mC .14 mD .24 m【答案】A【解析】∵BC =8 m ,AC =6 m ,∠C =90º,∴AB 22228610BC AC +=+= m ,∴树高10+8=18 m . 故选A .7.如图,盒内长、宽、高分别是6 cm、3 cm、2 cm,盒内可放木棒最长的长度是A.6 cm B.7 cm C.8 cm D.9 cm【答案】B8.如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为A.45B.85C.165D.245【答案】C【解析】S△ABC=12×BC×AE=12×BD×AC,∵AE=4,AC=2243=5,BC=4,即12×4×4=12×5×BD,解得BD=165.故选C.二、填空题:请将答案填在题中横线上.9.已知在△ABC中,AB=9,AC=10,BC=17,那么边AB上的高等于__________.【答案】8【解析】如图,作CD⊥AB交AB的延长线于D点,设CD=x,AD=y,在直角△ADC中,AC2=x2+y2,在直角△BDC中,BC2=x2+(y+AB)2,解方程得y=6,x=8,即CD=8,∵CD即AB边上的高,∴AB边上的高等于8.故答案为:8.10.如图,在△ABC中,∠C=90°,AC=6,AB=10,现分别以A、B为圆心,大于12AB长为半径作弧,两弧相交于点M、N,作直线MN,分别交AB、BC于点D、E,则CE的长为__________.【答案】7 411.如图,在△ABC中,∠BAC=120°,AB=AC,点M、N在边BC上,且∠MAN=60°.若BM=2,CN=4,则MN的长为__________.【答案】23【解析】∵∠BAC=120°,AB=AC,∴△ABM绕点A逆时针旋转120°至△APC,如图,连接PN,∴△ABM≌△ACP,∴∠B=∠ACP=30°,PC=BM=2,∠BAM=∠CAP,∴∠NCP=60°,∴∠CPD=30°.∵∠MAN=60°,∴∠BAM+∠NAC=∠NAC+∠CAP=60°=∠MAN,∵AM=AP,AN=AN,∴△MAN≌△PAN,∴MN=PN,过点P作BC的垂线,垂足为D,∴CD=12PC=1,DN=CN-CD=4-1=3,∴PD3∴PN =22PD DN +=22(3)3+=23,∴MN =PN =23.故答案为:23.12.如图,△ABC 中,∠A =90°,AB =3,AC =6,点D 是AC 边的中点,点P 是BC 边上一点,若△BDP 为等腰三角形,则线段BP 的长度等于__________.【答案】32或5在△BDC 中,设BH =x 2222(32)3(35)x x =-,解得:5x =在△BDH 中,229(32)()55DH =-=, 在△PDH 中,设PH =y ,则BP =PD 5y -,由勾股定理得222()(55y y +=,解得:5y = ③当BP 为底时,则BD =PD =32P 点与C 点重合时,PD =3,且点P 是BC 边上一点,不是延上长线上的,所以不存在.故答案为:325 三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知:四边形ABCD 中,BD 、AC 相交于O ,且BD 垂直AC ,求证:2222AB CD AD BC +=+.14.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?【解析】在Rt ABC △中,224AC AB BC =-=米,故可得地毯长度=AC +BC =7米, ∵楼梯宽2米,∴地毯的面积=14平方米, 故这块地毯需花14×30=420元. 答:地毯的长度需要7米,需要花费420元.15.如图,在一棵树(AD )的10 m 高B 处有两只猴子,其中一只爬下树走向离树20m 的池塘C 处,而另一只则爬到树顶D 后直扑池塘,如果两只猴子经过的路程相等,那么这棵树有多高?16.如图,A城气象台测得台风中心在A城正西方向320 km的B处,以每小时40 km的速度向北偏东60°的BF方向移动,距离台风中心200 km的范围内是受台风影响的区域.(1)A城是否受到这次台风的影响?为什么?(2)若A城受到这次台风影响,那么A城遭受这次台风影响有多长时间?【解析】(1)如图,由A点向BF作垂线,垂足为C,在Rt△ABC中,∠ABC=30°,AB=320 km,则AC=160 km,因为160<200,所以A城要受台风影响.。

人教版数学八年级下册-17.1-勾股定理-同步练习

人教版数学八年级下册-17.1-勾股定理-同步练习

人教版数学八年级下册17.1 勾股定理 课堂练一、选择题1.如图,△ABC 中,AD ⊥BC 于D ,AB=5,BD=4,DC=2,则AC 等于(B )A.13B.C.D.52.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( D )A. 60海里B. 45海里3.一直角三角形的三边分别为2、3、x ,那么x 为( C )A. B. C.或 D.无法确定4. 右图是我国古代数学家赵爽在为《周髀算经》作注解时给出的“弦图”,它解决的数学问题是( C )A. 黄金分割B. 垂径定理C. 勾股定理D. 正弦定理5.如图,是台阶的示意图.已知每个台阶的宽度都是20cm ,每个台阶的高度都是10cm ,连接AB ,则AB 等于( B )A.120cmB.130cmC.140cmD.150cm6.如图,每个小正方形的边长为1,A,B,C 是小正方形的顶点,则∠ABC 的度数为( D )A. 90°B. 60°C. 30°D. 45°7.如图所示的图形中,所有四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形边长为7cm ,设正方形A 、B 、C 、D 、E 、F 面积分别为S A 、S B 、S C 、S D 、S E 、S F ,则下列各式正确有( D )个. ① S A +S B +S C +S D =49;② S E +S F =49;③ S A +S B +S F =49;④ S C +S D +S E =49A.1 B .2 C.3 D .48.如图,90ACB ∠=,AC BC =,BE CE ⊥,AD CE ⊥,垂足分别为E ,D ,13AC =,5BE =,则DE =(A ) A.7 B.8 C.9 D.109.图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图②所示的“数学风车”,则这个风车的外围周长是( C )A.51B.49C.76D.无法确定10.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15 m,则目测点到杆顶的距离为(设目高为1 m)( B ).A.20m B.25mC.30m D.35m11.如图,圆柱底面半径为cm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为( C )A.12cmB.cmC.15 cmD.cm12.直角三角形的面积为S,斜边上的中线长为d,则这个三角形周长为( C )A. B. C. D.二、填空题:13.在△ABC中,∠B=90度,BC=6,AC=8,则AB= .【答案】2.14. 我国古代有这样一道数学问题:枯木一根直立地上高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.【答案】2515.如图所示,在数轴上点A所表示的数为a,则a的值为.【答案】﹣1﹣.16.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC 交于点E,若AD=BD,则折痕BE的长为________.【答案】417.如图,小巷左右两侧是竖直的墙.一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7m,顶端距离地面2.4m.若梯子底端位置保持不动,将梯子斜靠在右墙时,顶端距离地面2m,则小巷的宽度为m.【答案】2.218. 已知等腰三角形的一边长为10,面积为30,该三角形的周长为.【答案】10+2或20+2或20+6三、解答题:19.如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.解:过点B作BE⊥AC于E,则.设AE=x,则.∵BD=2CD=2,∴BD=2,CD=1,BC=3.∴.由AB2﹣BD2=AD2=AC2﹣CD2,得.∴,,9x4﹣36x2+36=9x2﹣3x44x4﹣15x2+12=0,∴.又,所以不合题意.故,从而.20.如图,圆柱形玻璃杯的高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到达内壁B处的最短距离为多少?【答案】如图:作A关于EF的对称点A',连接A'B,易知A'B的长为最短距离,由勾股定理得得A'B==20 (cm).21.如图,在△ABC中,AC=BC,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E.(1)求证:CD=BE;(2)已知CD=2,求AC的长;(3)求证:AB=AC+CD.(1)证明:∵在△ABC中,AC=BC,∠C=90°,∴△ABC是等腰直角三角形,∴∠B=45°,∵DE⊥AB,∴△BDE是等腰直角三角形,∴DE=BE.∵AD是△ABC的角平分线,∴CD=D E,∴CD=BE;(2)解:∵由(1)知,△BDE是等腰直角三角形,DE=BE=CD,∴DE=BE=CD=2,∴BD===2,∴AC=BC=CD+BD=2+2;(3)证明:∵AD是△ABC的角平分线,DE⊥AB,∴CD=DE.在Rt△ACD与Rt△AED中,∵,∴Rt△ACD≌Rt△AED,∴AE=AC.∵由(1)知CD=BE,∴AB=AE+BE=AC+CD.22.在△ABC中,∠C=90°,M是BC的中点,MD⊥AB于D,求证:.解:连接AM,根据题意△ACM,△AMD,△BMD为直角三角形,由勾股定理得:①;②;.∵M是BC的中点,∴CM=BM,∴③分别把②,③代入①整理得:,所以.23.如图,一架梯子AB长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了5米,那么梯子的底端在水平方向滑动了多少米?解:(1)根据勾股定理:所以梯子距离地面的高度为:AO===12(米);答:这个梯子的顶端距地面有12米高;(2)梯子下滑了1米即梯子距离地面的高度为OA′=12﹣5=7(米),根据勾股定理:OB′===2(米),∴BB′=OB′﹣OB=(2﹣5)米答:当梯子的顶端下滑1米时,梯子的底端水平后移了(2﹣5)米.。

勾股定理练习题及答案(共6套)

勾股定理练习题及答案(共6套)

勾股定理课时练(1)1. 在直角三角形ABC 中,斜边AB=1,则AB 222AC BC ++的值是( )A.2B.4C.6D.82.如图18-2-4所示,有一个形状为直角梯形的零件ABCD ,AD ∥BC ,斜腰DC 的长为10 cm ,∠D=120°,则该零件另一腰AB 的长是______ cm (结果不取近似值).3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_______.4.一根旗杆于离地面12m 处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16m ,旗杆在断裂之前高多少m ?5.如图,如下图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米.6.,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?7. 如图所示,无盖玻璃容器,高18cm ,底面周长为60cm,在外侧距下底1cm 的点C 处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1cm 的F 处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3cm ,AB=4cm ,BD=12cm 。

求CD 的长.9. 如图,在四边形ABCD 中,∠A=60°,∠B=∠D=90°,BC=2,CD=3,求AB 的长.4km 的A 处牧马,而他正位于北7km 处,他想把他的马牵到小河边去饮 5m,长13m ,宽2m 的楼道上铺地毯,已知地毯平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱?12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源.为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米.早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗? 第一课时答案:1.A ,提示:根据勾股定理得122=+AC BC ,所以AB222AC BC ++=1+1=2;2.4,提示:由勾股定理可得斜边的长为5m ,而3+4-5=2m ,所以他们少走了4步.3.1360,提示:设斜边的高为x ,根据勾股定理求斜边为1316951222==+ ,再利用面积法得,1360,132112521=⨯⨯=⨯⨯x x ;4. 解:依题意,AB=16m,AC=12m ,,由勾股定理,2222201216=+=,m ), 32m 高. 6. ,AC=4000米,∠C=90°,AB=5000米,由勾股定理得BC=30004000500022=-(米),所以飞机飞行的速度为5403600203=(千米/小时)7. 解:将曲线沿AB 展开,如图所示,过点C 作在R 90=,EF=18-1-1=16(cm ), CE=)(3060.21cm =⨯,由勾股定理,得CF=)(3416302222cm EF CE =+=+ABC 中,根据勾股定理,得 在直角三角形CBD 中,根据勾股定理,得CD 2=BC 2+BD 2=25+122=169,所以CD=13. 9. 解:延长BC 、AD 交于点E.(如图所示) ∵∠B=90°,∠A=60°,∴∠E=30°又∵CD=3,∴CE=6,∴BE=8,设AB=x ,则AE=2x ,由勾股定理。

《勾股定理》练习题及答案

《勾股定理》练习题及答案

《勾股定理》练习题及答案测试1勾股定理(一)学习要求掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.课堂学习检测一、填空题21 .如果直角三角形的两直角边长分别为a、b,斜边长为c,那么_________________ = c ;这一定理在我国被称为________ .2.A ABC中,/ C= 90°, a、b c 分别是/ A、/ B/ C 的对边.⑴若a = 5, b= 12,则c = ______ ;(2) 若c = 41, a = 40,贝9 b = ____ ;(3) 若/ A= 30°, a= 1,贝y c = _____ , b= ______ ;⑷若/ A= 45°, a= 1,贝9 b = _______ ,c= _______ .3. 如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A T B— C所走的路程为 ________ .4. _________________________________________ 等腰直角三角形的斜边为10,则腰长为__________________________________________ ,斜边上的高为 _______5. 在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为________选择题6. Rt△ ABC中,斜边BO2,贝V AB+ AC+ BC的值为().(A)8 (B)4 (C)6 (D)无法计算7.如图,△ ABC中, AB=心 10, BD是AC边上的咼线, DG2,J则BD等于().(A)4 (B)6 (C)8 (D) 2.108. 如图,Rt△ ABC中,/ C= 90°,若A养15cm,则正方形ADE(和正方形BCFG勺面积和为().(A)150cm2 (B)200cm2(C)225cm2 (D)无法计算三、解答题9. 在Rt △ ABC 中,/ C= 90。

勾股定理习题(含答案)

勾股定理习题(含答案)

C勾股定理试卷(1)一、选择题(每小题3分,共30分)1. 直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ). (A )30 (B )28 (C )56 (D )不能确定2. 直角三角形的斜边比一直角边长2 cm ,另一直角边长为6 cm ,则它的斜边长(A )4 cm(B )8 cm (C )10 cm(D )12 cm3. 已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) (A )25(B )14(C )7(D )7或254. 等腰三角形的腰长为10,底长为12,则其底边上的高为( ) (A )13 (B )8 (C )25 (D )645. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )715242520715202425157252024257202415(A)(B)(C)(D)6. 将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )(A ) 钝角三角形 (B ) 锐角三角形 (C ) 直角三角形 (D ) 等腰三角形. 7. 如图小方格都是边长为1的正方形,则四边形ABCD 的面积是 ( ) (A ) 25 (B ) 12.5 (C ) 9 (D ) 8.5 8. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( ) (A ) 等边三角形 (B ) 钝角三角形 (C ) 直角三角形 (D ) 锐角三角形.9.△ABC 是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮a 元计算,那么共需要资金( ). (A )50a 元 (B )600a 元 (C )1200a 元 (D )1500a 元 10.如图,A B ⊥CD 于B ,△ABD 和△BCE 都是等腰直角三角形,如果CD=17,BE=5,那么AC 的长为( ).(A )12 (B )7 (C )5 (D )135米3米(第10题) (第11题) (第14题)二、填空题(每小题3分,24分)11. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.12. 在直角三角形ABC 中,斜边AB =2,则222AB AC BC ++=______. 13. 直角三角形的三边长为连续偶数,则其周长为 .14. 如图,在△ABC 中,∠C=90°,BC=3,AC=4.以斜边AB 为直径作半圆,则这个半圆的面积是____________.(第15题) (第16题) (第17题) 15. 如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米. 16. 如图,△ABC 中,∠C =90°,AB 垂直平分线交BC 于D若BC =8,AD =5,则AC 等于______________. 17. 如图,四边形ABCD 是正方形,AE 垂直于BE ,且AE =3,BE =4,阴影部分的面积是______.18. 如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A ,B ,C ,D 的面积之和为___________cm 2.EABCDBDE ABCD第18题图7cm三、解答题(每小题8分,共40分)19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?20. 如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.21. 如图,A 、B 两个小集镇在河流CD 的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A 、B 两镇供水,铺设水管的费用为每千米3万,请你在河流CD 上选择水厂的位置M ,使铺设水管的费用最节省,并求出总费用是多少?22. 如图所示的一块地,∠ADC=90°,AD=12m ,CD=9m ,AB=39m ,BC=36m ,求这块地的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《勾股定理》同步作业及参考答案§18.1 勾股定理(一)1.在Rt △ABC ,∠C=90°:⑴已知a=b=5,求c ; ⑵已知a=1,c=2, 求b ;⑶已知c=17,b=8, 求a ; ⑷已知a :b=1:2,c=5, 求a ; ⑸已知b=15,∠A=30°,求a ,c .2. 已知:如图,等边△ABC 的边长是6cm :⑴求等边△ABC 的高;⑵求S △ABC .3.填空题:⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= ; ⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= ;⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= ; ⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 ; ⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 ; 4.已知:如图,在△ABC 中,∠C=60°,AB=34,AC=4,AD 是BC 边上的高,求BC 的长.5.已知等腰三角形腰长是10,底边长是16,求这个等腰三角形的面积.中考链接1.(2005 扬州)如图,学校有一块长方形花圃,有极少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.2.(2006,娄底)如图,滑杆在机械槽内运动,ACB ∠为直角,已知滑杆AB 长2.5米,顶端A 在AC 上运动,量得滑杆下端B 距C 点的距离为1.5米,当端点B 向右移动0.5米时,求滑杆顶端A 下滑多少米? DBAAEC§18.1 勾股定理(二)1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是米.A2.已知:如图,四边形ABCD中,AD∥BC,AD⊥DC,AB⊥AC,∠B=60°,CD=1cm,求BC的长. ArrayB3.(2009年,北京市)如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、n ,且n为BC边的中点,则A′N= ; 若M、N分别是AD、BC边的上距DC最近的n等分点(2整数),则A′N=(用含有n的式子表示).4.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是多少?5.如图,欲测量松花江的宽度,沿江岸取B、C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为.BC6.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米.Q7.有一个边长为1米的正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米. 8.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是米,水平距离是米.中考链接棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.()A.一定不会B.可能会C.一定会D.以上答案都不对§18.1 勾股定理(三)1. 已知:在Rt △ABC 中,∠ACB=90°,CD ⊥BC 于D ,∠A=60°,CD=3,求线段AB 的长.2. 已知:如图,△ABC 中,AC=4,∠A =45°,∠B =60°,根据题设可知什么?3. 已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD 的面积.4.(2010年,北京市燕山)已知等边△ABC 的边长为a ,则它的面积是( ).A .21a 2 B .23a 2 C .42a 2 D .43a 25.如图,将长方形ABCD 沿直线AE 折叠,点D 落在BC 边上的点D ′.若AB=8,AD=10,求CE 的长.6.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=22, 求(1)AB 的长;(2)S △ABC .C中考链接1.(2006,河北课改)如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从→→所走的路程为m.(结果保留根号)A B C2.(2010年,北京市门头沟区)如图,以等腰三角形AOB的斜边为直角边向外作第2个等腰直角三角形ABA1,再以等腰直角三角形ABA1的斜边为直角边向外作第3个等腰直角三角形A1BB1,……,如此作下去,若OA=OB=1,则第n个等腰直角三角形的面积S n=________(n为正整数).§18.1 勾股定理(四)1. △ABC 中,∠C=90°,AB=4,BC=32,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = .2.已知:如图,△ABC 中,AB=26,BC=25,AC=17,求S △ABC .3.如图所示在平面直角坐标系中,第一象限的角平分线OM 与反比例函数的图象相交于点M ,已知OM①求点M 的坐标;②求此反比例函数的解析式.4.如图,甲、乙两船从港口A 同时出发,甲船以16海里/时速度向南偏东50°航行,乙船向北偏东40°航行,3小时后,甲船到达B 岛,乙船到达C 岛.若C 、B 两岛相距60海里,问乙船的航速是多少?5.如图,A 城气象台测得台风中心在A 城正西方向320km 的B 处,以每小时40km 的速度向北偏东60°的BF 方向移动,距离台风中心200km 的范围内是受台风影响的区域. (1)A 城是否会受到这次台风的影响?为什么?(2)若A 城受到这次台风影响,那么A 城遭受这次台风影响有多长时间?C中考链接(2010年,北京市大兴区)如图,ABC 的三个顶点A 、B 、C 的坐标分别为(33),、(64)46,、(,),则B C 边上的高为 .1.在Rt △ABC 中,若AC BC AB =4,则下列结论中正确的是( ).A .∠C =90°B .∠B =90°C .△ABC 是锐角三角形D .△ABC 是钝角三角形2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ). A. 仍是直角三角形 B. 不可能是直角三角形 C. 是锐角三角形 D. 是钝角三角形3.下列四条线段不能组成直角三角形的是( )A .a=8,b=15,c=17B .a=9,b=12,c=15C .a=5,b=3,c=2D .a :b :c=2:3:44.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴ a=3,b=22,c=5; ⑵ a=5,b=7,c=9; ⑶ a=2,b=3,c=7; ⑷ a=5,b=62,c=1 .5.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.6.如图所示,在△ABD 中,∠A 是直角,AB =3,AD =4,BC =12,DC =13,△DBC 是直角三角形吗?为什么?中考链接(2006,荆门大纲)园丁住宅小区有一块草坪如图所示,已知3AB =米,4BC =米,12CD =米,13DA =米,且AB BC ⊥,求这块草坪的面积.1.在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角; 2.△ABC 中∠A 、∠B 、∠C 的对边分别是a 、b 、c ,下列命题中的假命题是( )A .如果∠C -∠B=∠A ,则△ABC 是直角三角形;B .如果c 2= b 2—a 2,则△ABC 是直角三角形,且∠C=90°; C .如果(c +a )(c -a )=b 2,则△ABC 是直角三角形;D .如果∠A :∠B :∠C=5:2:3,则△ABC 是直角三角形. 3. 根据三角形的三边a ,b ,c 的长,判断三角形是不是直角三角形: (1)a =11,b =60,c =61 (2)a =32,b =1,c =45 4.如图,在操场上竖直立着一根长为2米的测影竿,早晨测得它的影长为4米,中午测得它的影长为1米,则A 、B 、C 三点能否构成直角三角形?为什么?CD5.如图,四边形ABCD 中,AD=4,CD=3,AB=13,BC=12, ∠ADC=90°,求四边形ABCD 的面积.6.在△ABC 中,AB=13,BC=10,BC 边上的中线AD=12,求AC 的长.C中考链接(2005年,呼和浩特课改)如图,在由单位正方形组成的网格图中标有AB CD EF GH ,,,四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD EF GH ,, B.A BE F G H ,, C.AB CD GH ,, D.A BC D E F ,,1.若三角形的三边是 ⑴1、3、2; ⑵51,41,31; ⑶32,42,52 ⑷9,40,41;⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( ).A .2个B .3个 C.4个 D.5个2.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;⑶a=2,b=32,c=4; ⑷a=5k ,b=12k ,c=13k (k >0). 3.已知△ABC 的三边为a 、b 、c ,且a+b=4,ab=1,c=14,试判定△ABC 的形状.4.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积.5.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?N中考链接某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?参考答案及解析§18.1 勾股定理(一)1.(1)25; (2)3; (3)15; (4)5; (5)a=53, c=103.2. (1)33; (2)S △ABC =93.3.⑴17; ⑵7; ⑶a=6,b=8; ⑷6,8,10; ⑸4或34.4.8.5.48.中考链接1. 4.2.由勾股定理求得AC =2米,DC =2米,CE=1.5米,所以滑杆顶端A 下滑的长AE=0.5米.§18.1 勾股定理(二)1.2502米.2. 334.3.2,n (2n ≥,且n 为整数).4.18米.5. 503米.6.20厘米.7.22米.8.23米,6米.中考链接A.§18.1 勾股定理(三)1. 4.2. 根据题设可求得BC=634,AB=63222+.提示:作CD ⊥AB 于D.3. 63.提示:延长AD 、BC 交于点E ,则S 四边形ABCD =S △ABE - S △CDE .4. D .5.3.6.(1)AB=4; (2)S △ABC =2+23.中考链接 1.52 .2. 22-n .§18.1 勾股定理(四)1.AC=2,CD=3,BD=3,AD=1,S △ABC =23.2. S △ABC =204.提示:作BD ⊥AC 于D.设AD=x ,由勾股定理得方程:2222)17(2526x x --=-,解得x =10. 3.①点M 的坐标为(2,2); ②反比例函数的解析式为xy 4=. 4.12海里/时.5.(1)A 城会受到这次台风的影响.作AM ⊥BF 于M ,则AM=160km<200km .(2)以A 为圆心、以200km 为半径画圆,分别交BF 于C 、D 两点,求得MC=MD=120km ,即CD=240 km , A 城遭受这次台风影响的时间为240÷40=6小时.中考链接S △ABC =5,BC=22,则B C 边上的高为225.§18.2 勾股定理的逆定理(一)1.A .2.A.3.D .4.⑴是直角三角形,∠B 是直角; ⑵不是直角三角形;⑶是直角三角形,∠C 是直角; ⑷是直角三角形,∠A 是直角.5.设短边长x 米,则另外两边分别长7+x 、8+x 米,x +7+x +8+x =30,x =5,三边长分别为5、12、13,这个三角形是直角三角形.6.在R t △ABD 中,由勾股定理得BD=5;在△CBD 中,由勾股定理的逆定理得∠CBD=90º,△DBC 是直角三角形吗.中考链接连结AC .在R t △ABC 中,由勾股定理得AC=5;在△ACD 中,由勾股定理的逆定理得∠ACD=90º,则S=6,S△ACD=30, S四边形ABCD=36米2.△ABC§18.2 勾股定理的逆定理(二)1.直角,∠B.2.B.3.(1)是,(2)不是.4.BC=25,AC=5,AB=5,由勾股定理的逆定理得∠ACB=90º,即A、B、C三点能构成直角三角形.5. 连结AC.在R t△ADC中,由勾股定理得AC=5;在△ACB中,由勾股定理的逆定理得∠ACB=90º,则S△ADC=6,S△ACB=30, S四边形ABCD=24米.6. AC=13.中考链接B.§18.2 勾股定理的逆定理(三)1.B.分别是⑴、⑷、⑸.2.⑴是直角三角形,∠B是直角;⑵不是直角三角形;⑶是直角三角形,∠C是直角;⑷是直角三角形,∠C是直角.3.由a+b=4,ab=1,得a2+b2=(a+b)2-2ab=14= c2,所以∠C=90º,即△ABC是直角三角形.4.由a2+b2+c2+50=6a+8b+10c,得(a-3)2+(b-4)2+( c-5)2=0,则a=3,b=4,c=5,由勾股定理的逆定理得∠ACB=90º,则S△ABC=6.5.AC=12, BC=5, AB=13,∠ACB=90º,又∠ABC=50º,则∠CAB=40º,甲巡逻艇的航向为北偏东50°.中考链接“海天”号沿西北(或北偏西45º)方向.。

相关文档
最新文档