北师大版八年级上册数学第一章勾股定理全章知识点及习题(经典)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

c

b

a

D C

A

B

第一章 勾股定理

知识点一:勾股定理定义

画一个直角边为3cm 和4cm 的直角△ABC ,量AB 的长;一个直角边为5和12的直角△ABC ,量AB 的长 发现32

+42

与52

的关系,52

+122

和132

的关系,对于任意的直角三角形也有这个性质吗? 直角三角形两直角边a 、b 的平方和等于斜边c 的平方。(即:a 2

+b 2

=c 2

) 1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)

⑴两锐角之间的关系: ; ⑵若D 为斜边中点,则斜边中线 ;

⑶若∠B=30°,则∠B 的对边和斜边: ;(给出证明) ⑷三边之间的关系: 。 知识点二:验证勾股定理

知识点三:勾股定理证明(等面积法)

例1。已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2

+b 2

=c 2

。 证明:

例2。已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。 求证:a 2

+b 2

=c 2

。 证明:

知识点四:勾股定理简单应用 在Rt △ABC 中,∠C=90°

(1) 已知:a=6, b=8,求c b

b

b

b

c

c

c

c

a

a

a

a

b

b

b b

a a

c

c

a

a

A

C

B

D

A

B

如果三角形的三边长为c b a ,,,满足2

22c b a =+,那么,这个三角形是直角三角形. 利用勾股定理的逆定理判别直角三角形的一般步骤: ①先找出最大边(如c )

②计算2c 与22

a b +,并验证是否相等。 若2c =22

a b +,则△ABC 是直角三角形。

若2

c ≠22

a b +,则△ABC 不是直角三角形。

1.下列各组数中,以a ,b ,c 为边的三角形不是Rt △的是( ) A.a=7,b=24,c=25 B.a=7,b=24,c=24

C.a=6,b=8,c=10

D.a=3,b=4,c=5

2.三角形的三边长为ab c b a 2)(2

2

+=+,则这个三角形是( )

A. 等边三角形

B. 钝角三角形

C. 直角三角形

D. 锐角三角形

3.已知0)10(862=-+-+-z y x ,则由此z y x ,,为三边的三角形是 三角形. 知识点六:勾股数

(1)满足2

2

2

c b a =+的三个正整数,称为勾股数.

(2)勾股数中各数的相同的整数倍,仍是勾股数,如3、4、5是勾股数,6、8、10也是勾股数. (3)常见的勾股数有:①3、4、5②5、12、13;③8、15、17;④7、24、25; ⑤11、60、61;⑥9、40、41.

1.设a 、b 、c 是直角三角形的三边,则a 、b 、c 不可能的是( ).

A.3,5,4

B. 5,12,13

C.2,3,4

D.8,17,15 1. 若线段a ,b ,c 组成Rt △,则它们的比可以是( )

A.2∶3∶4

B.3∶4∶6

C.5∶12∶13

D.4∶6∶7

知识点七:确定最短路线

1.一只长方体木箱如图所示,长、宽、高分别为5cm 、4cm 、3cm, 有一只甲虫从A 出发,沿表面爬到C ',最近距离是多少?

2.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A 爬到点B 处吃食,要爬行的最短路程(π 取3)是 .

知识点八:逆定理判断垂直

1.在△ABC 中,已知AB 2

-BC 2

=CA 2

,则△ABC 的形状是( )

A .锐角三角形;

B .直角三角形;

C .钝角三角形;

D .无法确定. 2.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是( )

A

B

C

D A '

B '

C '

D 'B

C

5米3米

1.在我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?

2.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要________米.

3.一根直立的桅杆原长25m,折断后,桅杆的顶部落在离底部的5m处,则桅杆断后两部分各是多长?

4.某中学八年级学生想知道学校操场上旗杆的高度,他们发现旗杆上的绳子垂到地面还多1米,当他们把绳子的下端拉开5米后,发现下端刚好触地面,你能帮他们把旗杆的高度和绳子的长度计算出来吗?

综合练习一

一、选择题

1、下面几组数:①7,8,9;②12,9,15;③m 2

+ n 2

, m 2

– n 2

, 2mn(m,n 均为正整数,m >n);④2a ,12+a ,22

+a .其中能组成直角三角形的三边长的是( )

A.①②;

B.①③;

C.②③;

D.③④

2已知一个Rt △的两边长分别为3和4,则第三边长的平方是( )

A.25

B.14

C.7

D.7或25

3.三角形的三边长为ab c b a 2)(2

2

+=+,则这个三角形是( )

A. 等边三角形;

B. 钝角三角形;

C. 直角三角形;

D. 锐角三角形. 4.△ABC 的三边为a 、b 、c 且(a+b)(a-b)=c 2

,则( )

A.a 边的对角是直角

B.b 边的对角是直角

C.c 边的对角是直角

D.是斜三角形

5.以下列各组中的三个数为边长的三角形是直角三角形的个数有( )

①6、7、8,②8、15、17,③7、24、25,④12、35、37,⑤9、40、41 A 、1个 B 、2个 C 、3个 D 、4个

6.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形

7.若△ABC 的三边a 、b 、c 满足(a-b)(a 2+b 2-c 2)=0,则△ABC 是 ( ) A.等腰三角形 B.直角三角形

C.等腰直角三角形

D.等腰三角形或直角三角形

8.如图,∠C =∠B =90°,AB =5,BC =8,CD =11,则AD 的长为 ( )

A 、10

B 、11

C 、12

D 、13

9.如图、山坡AB 的高BC =5m ,水平距离AC =12m ,若在山坡上每隔0.65m 栽一棵茶树,则从上到下共 ( )

A 、19棵

B 、20棵

C 、21棵

D 、22棵

10.Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 所对的边分别是a 、b 、c ,若c =2,则2

a +2

b +2

c 的值是 ( )

A 、6

B 、8

C 、10

D 、4 11.下列各组数据中,不能构成直角三角形的一组数是( )

A、9,12,15 B 、

45,1,4

3

C 、0.2,0.3,0.4

D 、40,41,9 12.已知,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )

A.25海里

B.30海里

C.35海里

D.40海里

二、填空题

1.在Rt △ABC 中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则S Rt △ABC =________

2.现有长度分别为2cm 、3cm 、4cm 、5cm 的木棒,从中任取三根,能组成直角三角形,则其周长为 cm .

3.勾股定理的作用是在直角三角形中,已知两边求 ;勾股定理的逆定理的作用是用来证明 .

4.如图中字母所代表的正方形的面积:A = B = . A

81

相关文档
最新文档