2014年宁夏中考数学试题及答案
2014年宁夏中考数学试卷答案与解析
2014年宁夏中考数学试卷参考答案与试题解析一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)2.(3分)(2014•宁夏)已知不等式组,其解集在数轴上表示正确的是()....2=1+﹣,﹣±.4.(3分)(2014•宁夏)实数a,b在数轴上的位置如图所示,以下说法正确的是()5.(3分)(2014•宁夏)已知两点P1(x1,y1)、P2(x2,y2)在函数y=的图象上,当x1,,然后利用求差法比较得,,﹣,(6.(3分)(2014•宁夏)甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x吨/小时,依题意列B由题意得,=7.(3分)(2014•宁夏)如图是一个几何体的三视图,则这个几何体的侧面积是()πcm2Bπcm8.(3分)(2014•宁夏)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能B二、填空题(每小题3分,共24分)9.(3分)(2014•宁夏)分解因式:x2y﹣y=y(x+1)(x﹣1).10.(3分)(2014•宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB=5 cm.AC=4cm BO=11.(3分)(2014•宁夏)下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该=2912.(3分)(2014•宁夏)若2a﹣b=5,a﹣2b=4,则a﹣b的值为3.13.(3分)(2014•宁夏)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.=故答案为:.=14.(3分)(2014•宁夏)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是200元.15.(3分)(2014•宁夏)如图,在四边形ABCD中,AD∥BC,AB=CD=2,BC=5,∠BAD的平分线交BC于点E,且AE∥CD,则四边形ABCD的面积为.×=(××=4.16.(3分)(2014•宁夏)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上,用一个圆面去覆盖△ABC,能够完全覆盖这个三角形的最小圆面的半径是.故答案为:三、解答题(共24分)17.(6分)(2014•宁夏)计算:(﹣)﹣2+﹣2sin45°﹣|1﹣|.+﹣(﹣.18.(6分)(2014•宁夏)化简求值:(﹣)÷,其中a=1﹣,b=1+.••,﹣b=1+.19.(6分)(2014•宁夏)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.20.(6分)(2014•宁夏)在△ABC中,AD是BC边上的高,∠C=45°,sinB=,AD=1.求BC的长.BD=2.BC=BD+DC=,四、解答题(共48分)21.(6分)(2014•宁夏)如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)(2014•宁夏)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.23.(8分)(2014•宁夏)在等边△ABC中,以BC为直径的⊙O与AB交于点D,DE⊥AC,垂足为点E.(1)求证:DE为⊙O的切线;(2)计算.AC AC CE=ACAD=BD=AD=AC AE==324.(8分)(2014•宁夏)在平面直角坐标系中,已知反比例函数y=的图象经过点A(1,).(1)试确定此反比例函数的解析式;(2)点O是坐标原点,将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.OB=1BD=,于是得到坐标为()代入,×,AC=OA=OB=1OD=,点坐标为(x=y=)在反比例函数(25.(10分)(2014•宁夏)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x(0<x≤80)表示下个月内每天售出的只数,y(单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如图所示:(1)求y关于x的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;=7526.(10分)(2014•宁夏)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP既与Rt△ACP全等,也与Rt△BQP全等.BC==,即x=的面积最大,最大值是AC。
2014年中考数学试题(副卷)参考答案及评分标准
2014年初中毕业升学考试数学试题参考答案及评分标准说明:1本参考答案及评分标准仅供教师评卷时参考使用. 2其它正确的证法(解法),可参照本参考答案及评分标准酌情赋分. 一、选择题(每小题3分,共30分)1.A2.C3.B4.B5.D6.D7.C8.A9.C 10.D 二、填空题(每小题3分,共24分)11.x ≥-2且x ≠0 12.0.8 13. (2)(2)x x x +- 14.6060322x x -= 15.(4,1)16.217.50°18.222n -或2224n a或24n -三、解答题(19、20每小题9分,共18分)19.解:2213(2)242x x x x x -÷-+++ =(1)(1)(2)(2)32(2)22x x x x x x x x +--+⎡⎤÷+⎢⎥+++⎣⎦…………………………2分 =2(1)(1)432(2)22x x x x x x x ⎡⎤+--÷+⎢⎥+++⎣⎦…………………………3分 =2(1)(1)432(2)2x x x x x x +--+÷++ ……………………………4分 =(1)(1)22(2)(1)(1)x x x x x x x +-+⋅++- …………………………5分=12x…………………………6分 当x = tan45°+2cos60°=1+1=2 时, …………………………8分 原式=12x =14…………………………10分 20. 解:由树形图可知,所有可能出现的结果共有16个,且每种结果出现的可能性相等,其中两次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分∴P (A )=4116= ………………10分 次得到的数字恰好相同(记为事件A )的结果有4个 ……… 8分 ∴P (A )=41164= ………………………10分 四、解答题(本题14分) 21.解:(1)a=28%,b=200(2)设身体状况 “良好”的学生有x 人, “及格”的学生有y 人.3463%200200x y xy -=⎧⎪⎨+=⎪⎩ ………2分 解得:8046x y =⎧⎨=⎩ ……………4分 ………………………6分(3)……………………9分(4)200÷10%=2000( 人)……………………10分 2000×56200=560(人) ……………………12分 五、解答题(22小题10分,23小题14,共24分)22.解:(1)连结OF∵AC=BC ∠C=∠C CF=CE ,∴△ACF ≌△BCE …………………………3分 (2)证明:∵△ACF ≌△BCE∴∠B=∠A …………………………4分∵∠C=90°∴∠A+∠AFC=90° …………………………5分∵OB=OF∴∠B=∠OFB …………………………6分∴∠OFB+∠AFC=90° …………………………7分 第22题图E∴∠OFA=90° …………………………8分∴ AF ⊥OF ………………………………9分 ∴AF 是⊙O 的切线 ………………………………10分 23. 解:过点B 作BF ⊥CD,垂足为F. ∵ ∠ABC=120°∴ ∠FBC=30° ……………1分 在Rt △BCF 中,设BF=x ,则AD=x∴ CF=BFtan30°x ………3分在Rt △ABE 中,∠AEB=45°,∴AB=AE=8 ( ……4分 ) ∴DF=AB=8 ………5分∴x +8 …………………6分 在Rt △CDE 中,∠CED=60°ED=8-x∵ tan ∠CED =CDED∴CD=ED tan ∠…7分 第23题图 即3x 8-x ) …………………8分 解得x=6-………………9分∴CF=3x =3-=2………………10分 DC=CF+DF=6+≈9.5(米) ………………11分 答:路灯C 到地面的距离约为9.5米 …………………12分六、解答题(本题12分) 24.解:(1)∵10×1=10,10010330-=……………1分 ∴甲走完全程需4小时,∵甲出发3小时后乙开车追赶甲,两人同时到达目的地 ∴乙走完全程需1小时, ∴乙的速度是60601=(千米/时)………………2分 (2)设AB 的解析式为y=kx+b. ∵10×1=10,∴点A 的坐标是(1,10) …………………3分由(1)得点B 的坐标是(4,100) 第24题图 ∴104100k b k b +=⎧⎨+=⎩ …………………4分C解得3020 kb=⎧⎨=-⎩∴AB的解析式为y=30x-20. …………………6分当y=40时,30x-20=40 …………………5分∴X=2 …………………7分∴甲出发2小时后两人第一次相遇…………………8分(3)设OA的解析式为y=kx∵点A的坐标是(1,10)∴k=10,∴OA的解析式为y=10x, …………………9分设DB的解析式为y=mx+n.∵点D的坐标是(3,40),点B的坐标是(4,100)∴3404100m nm n+=⎧⎨+=⎩…………………10分解得60140 mn=⎧⎨=-⎩∴DB的解析式为y=60x-140. …………………11分①40-(30x-20)=12,解得x=1.6; …………………12分②30x-20-40=12,解得x=2.4; …………………13分③30x-20-(60x-140)=12;解得x=3.6 ……………14分∴甲出发1.6小时,2.4小时或3.6小时后两人相距12千米.七、解答题(本题14分)25. (1)如图1①证明:∵△ABC是等边三角形∴AB=AC,∠B=∠CAF=60°又∵AF=BE ……………2分∴△ABE≌△CAF ……………3分∴AE=CF ……………4分②证明:∵△ABE≌△CAF∴∠BAE=∠ACF ………………5分又∵∠BAC=∠FCG=60°即∴∠BAE+∠EAC=∠ACF+∠ACG∴∠EAC=∠ACG ……………6分第25题图1 ∴AE∥CG ……………7分又∵AE=CF=CG∴四边形AECG是平行四边形. ……………8分(2)四边形AECG是平行四边形………… 9分证明:如图2∵△ABC是等边三角形B∴AB=AC ,∠ABC=∠CAB=60°∴∠AEB=∠CAF=120°又∵AF=BE ∴ △ABE ≌△CAF∴AE=CF ,∠BAE=∠ACF ……………11分 又∵∠BAC=∠FCG=60°∴∠BAE+∠BAC=∠ACF+∠即 ∠EAC=∠ACG ……………12分∴AE ∥CG ……………13分 第25题图2 又∵AE=CG∴四边形AECG 是平行四边形. ……………14分八、解答题(本题14分)26. (1)解:∵抛物线的对称轴是2x =∴2122b-=⎛⎫⨯- ⎪⎝⎭∴b=2. …………………2分 (2)解: 延长DC 交x 轴于点H , ∵∠CAB=90°∴∠CAH+∠HAB=90°∵MN ⊥AF ∴∠FAB+∠ABF=90° ∴∠CAH=∠ABF∵∠AFB=∠AHC=90°,AC=AB∴△ACH ≌△ABF ………………4分∴CH=AF=32,AH=BF=-m ∴C (12-m ,32) …………………6分(3)解:如图1,当点D 在点C 上方时∵CD ∥y 轴,∵点D 在抛物线上,横坐标是12-m ,将x=12-m 代入21y =-得 2111()2()3222y m m =--+-+ ……………7分化简得:21331228y m m =--+∴D (12-m ,21331228m m --+)……………8分∴CD=21331228m m --+-32=21319228m m --+…9分∵四边形OEDC 是平行四边形∴OE=CD=3, 第26题图1E∴21319228m m --+=3 ……………9分 解得152m =-,212m =- ……………10分 ∴B(2, 12-)或B(2, 52-) …………………11分当点D 在点C 下方时 ∵C (12-m ,32),D (12-m ,21331228m m --+ 32-(21331228m m --+)=3 …………………12分解得1m =2m =∴B(2,32--)或B(2,32-+)………13分 第26题图2 综上,当四边形OEDC 是平行四边形时,点B 的坐标是(2, 12-),(2, 52-), (2,32--),(2,32-+) …………14分。
宁夏近5年中考数学试题含答案2010-2014年
1宁夏回族自治区2010年初中毕业暨高中阶段招生数学试卷一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是 ( ) A .236a a a ⋅= B .532a a a ÷= C .235a a a += D .235()a a =2.把多项式322x x x -+分解因式结果正确的是 ( ) A .2(2)x x x - B .2(2)x x - C .(1)(1)x x x +- D .2(1)x x -3. 把61万用科学记数法可表示为 ( ) A .4101.6⨯ B .5101.6⨯ C .5100.6⨯ D . 41061⨯4.用一个平面去截一个几何体,不能截得三角形截面的几何体是 ( ) A .圆柱 B .圆锥 C .三棱柱 D .正方形5.为了解居民节约用水的情况,增强居民的节水意识,下表是某个单元的住户当月用水量的调查结果:则关于这12户居民月用水量,下列说法错误..的是 ( ) A .中位数 6方 B .众数6方 C .极差8方 D .平均数5方6.点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( ) A .1个 B .2个 C .3个 D .4个7.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的表达式( ) A .2(1)3y x =--+ B .2(1)3y x =-++ C .2(1)3y x =--- D .2(1)3y x =-+-. 8.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%.若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是 ( ) A .⎩⎨⎧+⨯=-++=+)201(100401(101(100000000y x y x B .⎩⎨⎧⨯=++-=+00000020100)401(101(100y x y x C .⎩⎨⎧+⨯=++-=+201(100)401()101(100000000y x y x D .⎩⎨⎧⨯=-++=+0000020100)401()101(100y x y x 二、填空题(每小题3分,共24分) 9.若分式12-x 与1互为相反数,则x 的值是 . 10.如图,BC ⊥AE ,垂足为C ,过C 作CD ∥AB .若∠ECD =48°则∠B = .11.矩形窗户上的装饰物如图所示,它是由半径均为b 的两个四分之一圆组成,则能射进阳光部分的面积是 .12.商店为了对某种商品促销,将定价为3元的商品,以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折. 如果用27元钱,最多可以购买该商品的件数是 . 13.若关于x 的不等式组⎩⎨⎧>>m x x 2的解集是2>x ,则m 的取值范围是 . 14.将半径为10cm ,弧长为12π的扇形围成圆锥(接缝忽略不计),那么圆锥的母线与圆锥高的夹角的余弦值是 . 15.如图是三根外径均为1米的圆形钢管堆积图和主视图,则其最高点与地面的距离是 米.16.关于对位似图形的表述,下列命题正确的是 .(只填序号)① 相似图形一定是位似图形,位似图形一定是相似图形; ② 位似图形一定有位似中心;③ 如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④ 位似图形上任意两点与位似中心的距离之比等于位似比.三、解答题(共24分) 17.(6分) 计算:011( 3.14)()12π--+---.18.(6分)解不等式组3(2)41213x x x x --≤⎧⎪+⎨>-⎪⎩ .EDC B A219.(6分)先化简,再求代数式的值:222111a a a a a+⎛⎫-÷ ⎪-+-⎝⎭ ,其中1a =. 20.(6分)在一个不透明的盒子里,装有3个写有字母A 、2个写有字母B 和1个写有字母C 的小球, 它们的形状、大小、质地等完全相同,先从盒子里随机取出一个小球,记下字母后放回盒子,摇匀后再随机取出一个小球,记下字母.请你用画树状图或列表的方法,求摸出的两个小球上分别写有字母B 、C 的概率.四、解答题(共48分)21.(6分)某课题组为了解全市九年级学生对数学知识的掌握情况,在一次数学检测中,从全市24000名九年级考生中随机抽取部分学生的数学成绩进行调查,并将调查结果绘制成如下图表:(1)表中a 和b 所表示的数分别为:a = ,b = ; (2)请在图中,补全频数分布直方图;(3)如果把成绩在90分以上(含90分)定为优秀,那么该市24000名九年级考生数学成绩为优秀的学生约有多少名?22.(6分)已知:正方形ABCD 中,E 、F 分别是边CD 、DA 上的点,且CE =DF ,AE 与BF 交于点M .(1)求证:△ABF ≌△DAE ;(2)找出图中与△ABM 相似的所有三角形(不添加任何辅助线).23.(8分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A =30°,过点C 作⊙O 的切线交AB 的延长线于点P .(1) 求证:AC =CP ;(2) 若PC =6,求图中阴影部分的面积(结果精确到0.1). 1.73= 3.14π=)24.(8分)如图,已知:一次函数:4y x =-+的图像与反比例函数:2y x=(0)x >的图像分别交于A 、B 两点,点M 是一次函数图像在第一象限部分上的任意一点,过M 分别向x 轴、y 轴作垂线,垂足分别为M 1、M 2,设矩形MM 1OM 2的面积为S 1;点N 为反比例函数图像上任意一点,过N 分别向x 轴、y 轴作垂线,垂足分别为N 1、N 2,设矩形NN 1ON 2的面积为S 2;(1)若设点M 的坐标为(x ,y ),请写出S 1关于x 的函数表达式,并求x 取何值时,S 1的最大值;(2)观察图形,通过确定x 的取值,试比较S 1、S 2的大小.M FE D CBAAP325.(10分)小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.26. (10分)在△ABC 中,∠BAC =45°,AD ⊥BC 于D ,将△ABD 沿AB 所在的直线折叠,使点D 落在点E 处;将△ACD 沿AC 所在的直线折叠,使点D 落在点F 处,分别延长EB 、FC 使其交于点M . (1)判断四边形AEMF 的形状,并给予证明.(2)若BD =1,CD =2,试求四边形AEMF 的面积.宁夏回族自治区2011年初中毕业暨高中阶段招生考试数 学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 1. 计算223a a +的结果是( )A. 23a B. 24a C. 43a D. 44a 2. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60°,AD =2,则AB 的长是( ) A .2 B .4C. D.3. 等腰梯形的上底是2cm ,腰长是4cm ,一个底角是60︒,则等腰梯形的下底是( ) A .5cm B . 6cm C . 7cm D . 8cm4. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A.B.C. D.5. 将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( ) A . 文 B . 明 C . 城 D . 市6. 已知⊙O 1、⊙O 2的半径分别是1r =3、52=r .若两圆相切,则圆心距O 1O 2的值是( )A .2 或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的同学,他们的身高(单位:cm )如下表所示:设两队队员身高的平均数分别为A x -,B x -,身高的方差分别为A s2,B s 2,则正确的选项是A .A x -=B x -,A s2>B s2B .A x -<B x -,A s 2<B s 2A B C D 18=+y x yx xy =+18 8=+y x y x y x +=++101810 18=+y xyx y x =+)(108=+y x yx y =++18104C .A x ->B x -,A s2>B s2D .A x -=B x -,A s2<B s28. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90°,得到△O B A '',那么点A 、B 的对应点'A 、'B 的坐标是( ).A .'A (-4, 2)、 'B (-1,1) B. 'A (-4,1)、 'B (-1,2) C. 'A (-4,1)、'B (-1,1) D. 'A (-4,2)、'B (-1,2)二、填空题(每小题3分,共24分)9.分解因式:a a -3= .10.数轴上A B 、两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C ,则点C 所对应的实数为 .11. 若线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (3,6),则点B (-5,-2)的对应点D 的坐标是 .12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车费300元,每个学生活动期间需经费15元,则参加这次活动的学生人数最多为 . 13. 某商场在促销活动中,原价36元的商品,连续两次降价%m 后售价为25元.根据题意可列方程为 . 14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D = 35°,则∠OAB 的度数是 .15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为 .16. 如图是一个几何体的三视图,这个几何体的全面积为 .(π取3.14)三、解答题(共24分)17.(6分) 计算:02011-3o30tan +2)31(--|23|-- 18.(6分)解方程:2311+=--x x x19.(6分)解不等式组20.(6分)有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片,将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y ;然后计算出S =x +y 的值.(1)用树状图或列表法表示出S 的所有可能情况; (2)求出当S <2时的概率.四、解答题(共48分)21.(6分)我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.x x --37≤1 228+-x >35PNM CBA22.(6分)已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF , BE = DF , BE ∥DF . 求证:四边形ABCD 是平行四边形23.(8分)在ABC △中,AB AC =,以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D . (1)求证:PD 是⊙O 的切线;(2)若∠CAB =120°,AB =2,求BC 的值.24.(8分)在Rt △AB C 中,∠C =90°, ∠A =30°, BC =2.若将此直角三角形的一条直角边BC 或AC 与x 轴重合,使点A 或点B 恰好在反比例函数xy 6=(0)x >的图象上时,设ABC △在第一象限部分的面积分别记作1s 、2s (如图1、图2所示),D 是斜边与y 轴的交点,通过计算比较1s 、2s 的大小.25.(10分)甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1211千米/分钟,甲到达B 地立即返回.乙所乘冲锋舟在在静水中的速度为127千米/分钟.已知A 、B 两地的距离为20千米,水流速度为121千米/分钟,甲、乙乘冲锋舟行驶的距离y (千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式;(2)甲、乙两人同时出发后,经过多少分钟相遇?26.(10分) 在等腰△ABC 中,,AB =AC=5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N 不与A 、C 重合),且M N ∥BC . 将△A MN 沿MN 所在的直线折叠,使点A 的对应点为P . (1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等边△ABC 重叠部分的面积为y .试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?F E D C BA6第6题宁夏回族自治区2012年初中毕业暨高中阶段招生考试 数学 试 题一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分)1.下列运算正确的是( )A .32a -2a =3B .32)(a =5aC .⋅3a 6a =9aD .22)2(a =24a 2.根据人民网-宁夏频道2012年1月18日报道,2011年宁夏地区生产总值为2060亿元,比上年增长12%,增速高于全国平均水平.2060亿元保留两个有效数字用科学记数法表示为( )A .2.0×109元 B . 2.1×103元 C .2.1×1010元 D .2.1×1011元 3.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或224、小颖家离学校1200米,其中有一段为上坡路,另一段为下坡路.她去学校共用了16分钟.假设小颖上坡路的平均速度是3千米/时,下坡路的平均速度是5千米/时.若设小颖上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .⎩⎨⎧=+=+16120053y x y xB .⎩⎨⎧=+=+162.1605603y x y xC .⎩⎨⎧=+=+162.153y x y x D .⎩⎨⎧=+=+161200605603y x y x5.如图,一根5m 长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A (羊只能在草地上活动),那么小羊A 在草地上的最大活动区域面积是( ) A.1217πm 2 B.617πm 2C.425πm 2D.1277πm 26.如图,AB为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于D ,且CO =CD ,则∠ACP =( ) A .30 B .45 C .60 D .67.57.一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近这个几何体的侧面积的是( )A .24.0B .62.8C .74.2D .113.08.运动会上,初二 (3)班啦啦队,买了两种价格的雪糕,其中甲种雪糕共花费40元,乙种雪糕共花费30元,甲种雪糕比乙种雪糕多20根.乙种雪糕价格是甲种雪糕价格的1.5倍,若设甲种雪糕的价格为x 元,根据题意可列方程为( ). A .20305.140=-x x B.205.13040=-x x C .205.14030=-x x D.20405.130=-xx 二、填空题(每小题3分,共24分) 9.当a 时,分式21+a 有意义. 10.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是 .11.已知a 、b 为两个连续的整数,且b a <<11,则a b += . 12. 点B (-3,4)关于y 轴的对称点为A ,则点A 的坐标是 . 13.在△ABC 中∠C =90°,AB =5,BC =4,则tan A =_________.14. 如图,C 岛在A 岛的北偏东45°方向,在B 岛的北偏西25°方向,则从C 岛看A 、B 两岛的视角∠ACB =__________度. 15.如图,在矩形ABCD 中,对角线AC 、BD 相较于O ,DE ⊥AC 于E ,∠EDC ∶∠EDA =1∶2,且AC =10,则DE 的长度是 .16.如图,将等边△ABC 沿B C 方向平移得到△A 1B 1C 1.若BC =3,31=∆C PB S ,则BB 1= .三、解答题(共24分) 17.(6分)计算: 18.(6分)化简,求值: 11222+-+--x xx x x x ,其中x=219.(6分)解不等式组 ⎪⎩⎪⎨⎧≤--+-+131211312x x x x )(>20)21(21)2012(45sin 22--+----︒∙第5题第15题第16题 A A 1 11 第7题720.(6分)某商场为了吸引顾客,设计了一种促销活动,在一个不透明的箱子里放有4个相同的小球,在球上分别标有“0元”、“10元”、“20元”、“30元”的字样,规定:顾客在本商场同一天内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两小球所标金额的和,返还相应价格的购物券,可以重新在本商场消费.某顾客刚好消费200元.(1)该顾客至少可得到 元购物券,至多可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.四、解答题(共48分)21.(6分)商场对每个营业员在当月某种商品销售件数统计如下: 解答下列问题 (1)设营业员的月销售件数为x(单位:件),商场规定:当x <15时为不称职;当15≤x <20时为基本称职;当20≤x <25为称职;当x ≥25时为优秀.试求出优秀营业员人数所占百分比; (2)根据(1)中规定,计算所有优秀和称职的营业员中月销售件数的中位数和众数; (3)为了调动营业员的工作积极性,商场决定制定月销售件数奖励标准,凡达到或超过这个标准的营业员将受到奖励。
2014中考数学答案
2014年初中毕业生毕业升学考试数学试卷参考答案及评分标准说明:1.此答案仅供参考,阅卷之前请做答案。
2.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则。
3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤。
4.解答右端所注分数,表示考生正确做到这一步应得的累加分数。
一、选择题(每小题3分,共24分)1. D2. B3. C4. C5. D6. B7. B8. A 二、填空题(每小题3分,共24分)9. 141077.5⨯ 10.1x ≥且2≠x 11.2221s s < 12. 36 13.25 14. 120 15.-31614n -⎝⎭或 三、解答题(17小题8分,18小题8分,共16分)17.方法一:解:原式()()⎪⎪⎭⎫⎝⎛-----÷+-+-=b a b ab ba ab a b a b a b a a b 222……………………………(2分) ()ba b ab a b a a b -+-÷--=2222()()22b a ba b a a b --⋅--= …………………………………(4分)a b -=2. …………………………………(5分)这里145tan ==a ,323260sin 2=⨯==b , ………………………(7分) 当3,1==b a 时,原式()213132=-=-=. ………………………………(8分)方法二:解:原式()()()⎪⎭⎫⎝⎛---÷+-+--=b a b a b a b a b a b a a b 2…………………………………(2分)())(2b a b a a b -÷--= ………………………………………(4分)a b -=2. ……………………………………………………………(5分)当45tan =a ,60sin 2=b 时 , 原式()()2131345tan 60sin 222=-=-=-=………………………………(8分)18.(1)画出△111C B A …………(2分)1C (3,2) ……………(3分)(2)画出△222C B A …………(5分)2C (-6,4) ……………(6分)(3)2D (a 2,b 2) ……………(8分)四、解答题(19小题10分,20小题10分,共20分)19.(1)32 72 ………………………………(2分) (2)()人50052500=÷ 答:一共调查了500人. …… (4分)(3)()21010325000000=+⨯(人) …………………(5分) 6010407030210=---- (人) ………………(6分) 补全条形统计图如图 ………………………………(7分) ()()00004140000321058800⨯+=()人答:估计市民中会有58800人给出建议. ………………(10分) 20.(1)P (按照爸爸的规则小明能看比赛)=31………………………………………(3分)分)由表可知所有可能结果共有9种,且每种结果发生的可能性相同,其中抽取的两数之积是有理数的结果有5种,分别是9、2、4、4、8,所以小明看比赛的概率为95………(10分)第18题图调查中给出建议....的人数条形统计图 第19题图解法二:根据题意画树状图如下:由树状图可知所有可能结果共有9种,且每种结果发生的可能性相同,其中抽取的两数之积是有理数的结果有5种,分别是9、2、4、4、8,所以小明看比赛的概率为95. ……(10分) 五、解答题(21小题8分,22小题10分,共18分) 21.解:由题意可知,AE ∥BC ,∠ADB =∠EAD =53°,∠C=∠EAC =11° ………………………………………(2分)∵在Rt △ABC 中,AB =15,∠C =11°, ∴95.7819.01511tan ≈≈=AB BC ………(4分) ∵在Rt △ABD 中,∠ADB =53° ∴28.1133.11553tan ≈≈=AB BD ………………………………………………………(6分)∴8.6767.6728.1195.78≈=-≈-=BD BC CD (米) …………………………………………(7分) 答:C 、D 两点之间距离约为67.8米. ………………………………………………………(8分)22.(1)证明:方法一:如图,连接OC , ……………………………………………………… (1分)OB OC =,∴∠B =∠1. 又∵∠B =∠2,∴∠1=∠2. ………………………………(2分)AB 是⊙O 的直径,∴190ACB OCA ∠=∠+∠=, ………………(3分) ∴OCA ∠+290∠=, ∴∠OCF =90°,∴OC ⊥FC , ……………………………………(4分) ∴CF 为⊙O 的切线. ……………………(5分)第一次抽卡片第二次抽卡片 32 223 2 22 3 2 22开始所有可能结果 (3,3)(3,2)(3,22)(2,3)(2,2)(2,22)(22,3)(22,2)(22,22) (9)(32)(62)(32)(2) (4) (62) (4) (8)……(7分) 25题图第22题图 第22题第21题图方法二:如图,连接OC , …………………………………………………………… (1分)AB 是⊙O 的直径,∴∠ACB =90°. …………………………………………………………………………(2分)OB OC =,∴∠B =∠1.在△AFC 和△CFB 中,∠F +∠2+∠F AC =180°,∠F +∠B +∠FCB =180°, 又∵∠2=∠B ,∴∠F AC =∠FCB . ………………………………………………………………………(3分) ∵∠F AC=∠B +∠ACB =∠1+∠ACB ∠FCB =∠1+∠OCF , ∴∠OCF =∠ACB =90°,∴OC ⊥FC , ……………………………………………………………………………(4分)∴CF 为⊙O 的切线. …………………………………………………………………(5分)(2)解法一:如图, ∵直径AB 平分弦CD ,∴AB ⊥CD , …………………………………………………………………………(6分)∴∠AEC =∠OEC =90°. ∵在Rt △ACE 中,tan ∠AC D=12,AC =4 , ∴12AE EC =,即2CE AE =. ……………………………………………………………………(7分) ∴由勾股定理得,()22224AE AE +=,∴AE EC ==……………………………………………………………………(8分)在Rt △OCE 中,由勾股定理得,222OE CE OC +=,设OC =r ,则222r r ⎛+= ⎝⎭⎝⎭,……………………………………………………(9分)解得r =∴⊙O 的半径为…………………………………………………………………(10分) 解法二:∵直径AB 平分弦CD , ∴弧AC =弧AD ,∴∠ACD =∠B . …………………………………………………………………………(7分)又∵tan ∠AC D=12, ∴tan ∠B =12. …………………………………………………………………………(8分) 在Rt △ACB 中,tan ∠B =12AC BC =,又∵AC =4,∴BC =8. ……………………………………………………………………………………(9分) 根据勾股定理,得2222248AB AC BC =+=+,∴AB =∴OB =∴⊙O 的半径为 ………………………………………………………………………(10分)六、解答题(23小题10分,24小题10分,共20分)23.(1)方法一:设签字笔的单价为x 元,笔记本的单价为y 元,根据题意得⎩⎨⎧=+=+5.13325.82y x y x ………………………………………………………(2分) 解得⎩⎨⎧==5.35.1y x ………………………………………………………(4分)答:签字笔的单价为1.5元,笔记本的单价为3.5元. …………………………(5分) 方法二:设签字笔单价为x 元,则笔记本单价为25.8x-元,根据题意得 8.52313.52xx -+⋅=, ……………………………………………………(2分)解得x =1.5 ,5.325.15.8=-(元). …………………………………………(4分) 答:签字笔的单价为1.5元,笔记本的单价为3.5元. …………………………(5分)(2)方法一:设学校获奖的同学有a 人,根据题意得127207208.0+=⨯a a , …………………………………………………………(7分) 解得a =48, ……………………………………………………………………(8分) 经检验,a =48是原方程的根. …………………………………………………(9分) 答:学校获奖的同学有48人. …………………………………………………(10分) 方法二:设每本图书原价m 元,根据题意得m m 8.072012720=+, …………………………………………………………………(7分) 解得m =15, ……………………………………………………………(8分) 经检验,m =15是原方程的根. ………………………………………………(9分)所以每本图书原价为15元.4815720=(人) 答:学校获奖的同学有48人. ………………………………………………(10分)24.(1)如图,①当0≤x ≤90时,设b kx y +=,把(30,1500)和(60,2100)分别代入,得⎩⎨⎧+=+=bk bk 602100301500, ………………………(1分) 解得⎩⎨⎧==90020b k . …………………………(2分)所以当0≤x ≤90时,y 与x 之间的函数表达式为90020+=x y . ……………(3分)第24题图②将x =90代入90020+=x y 得,y =20×90+900=2700, . …………………(4分) 当x >90时,根据题意得30(90)270030y x x =-+=,所以,当x >90时,y 与x 之间的函数表达式为x y 30= . ………………(5分)(2) 方法一:将x =0代入y =20x +900,得y =900, 90045()20=天,答:厂家去年生产了45天. ……………………………………………(7分)方法二:将45900200-=+==x x y y ,得代入. 答:厂家去年生产了45天. ………………… ……………………………(7分)(3) 方法一:设改进技术后,还要n 天完成生产计划 ,根据题意得()3090n +≥6000,解得n ≥110, ……………………………………………………(9分) 答:至少还要110天,厂家才能完成生产计划. ……………………………(10分)方法二:设今年生产x 天完成生产计划,则306000x ≥,解得200x ≥, ………………………………………………(9分) 20090110-=(天).答:至少还要110天,厂家才能完成生产计划. ……………………………(10分)七、解答题(本题满分14分)25.(1)①证明:∵四边形ABCD 是正方形,∴AD =CD , ∠ADG =∠CDG . 又∵GD =GD ,∴△ADG ≌△CDG (SAS ) . ……………………………………………………………(1分) ∴∠DAG =∠DCG . ……………………………………………………………(2分) ②AG ⊥BE . …………………………………………………………………(3分)证明:∵四边形ABCD 是正方形, ∴AB =CD , ∠BAD =∠ADC =90°. 又∵AE =DF ,∴△ABE ≌△CDF (SAS ) .∴∠ABE =∠DCF . ………………………………(4分) 又∵∠DAG =∠DCG ,∴∠GAD =∠ABE . …………………………………………………………………(5分) 又∵∠BAH +∠DAG =90°, ∴∠BAH +∠ABE =90°,∴∠AHB =90°,∴AG ⊥BE . ……………………………………………………………(6分)第25题①图(2)证明:过点O 作OM ⊥AG 于点M ,ON ⊥BE 于点N , ∴∠ONH =∠OMH =90°,…………………………(7分) 又∵∠MHN =90°, ∴四边形OMHN 是矩形,∴∠MON =90°. ………………………………(8分) ∵四边形ABCD 是正方形, ∴OA =OB ,∠AOB =90°,∴∠BON+∠AON=∠AON+∠AOM ,∴∠BON =∠AOM , …………………………(9∴△AMO ≌△BNO (AAS ) ,∴OM =ON . …………………………(10又∵OM ⊥AG ,ON ⊥BE ,∴HO 平分∠BHG . …………………………(11(3)补充作图如图③所示, ………………(13∠BHO =45°. …………………………(14分)八、解答题(本题满分14分)26. 解:(1) 将点A ()0,1、)03(,B 、(0)C ,-3代入c bxax y ++=2中, 得⎪⎩⎪⎨⎧-==++=++30390c c b a c b a 解得143a b c =-⎧⎪=⎨⎪=-⎩.∴抛物线的表达式为342-+-=x x y ,…………………(3∵1)2(3422+--=-+-=x x x y ,∴顶点D 的坐标为)1,2(. ………………………………………………(5分) (2) 设直线BC 的表达式为b kx y +=,∴⎩⎨⎧-==+303b b k , 解得3,1-==b k .∴直线BC 的表达式为:3-=x y . …………………………………………………(6分) PE ∥y 轴,∴点E 、点P 的横坐标相同.设 ),(),,(E P y m E y m P .第25题③图第25题②图∴()22239433324P E PE y y m m m m m m ⎛⎫=-=-+---=-+=--+ ⎪⎝⎭.∴存在点P ,使线段PE 的长最大,最大值为49. …………………………………(8分) (3) 由题意易得,△ADB 、△ABF 是等腰直角三角形,AD ∥BC. ∴123ADB ABF ADBF S S S ∆∆=+=+=四边形.当0t ≤OAFC 移动到如图②的位置, 重叠部分图形为平行四边形FA F A '',2AF =,t F F =',F '到AF 距离为t 22, ∴t t S FA F A 2222=⨯=''平行四边形 …………………………………………(10分)t <≤AFCO 运动到如图③所示位置,重叠部分图形为五边形ND C F M '',FC t '=BF t '=.F MF C ND ADB AFC N MF B S S S S ''''=--五边形四边形平行四边形等腰直角三角形()2322t t =⨯-212t =-++ . …………………………………………………………………(12分)当t ≤时,四边形AFCO 运动到如图④所示位置,重叠部分图形为等腰直角三角形C BN ',BC t '=.2211)922BNC S t t '==-+三角形.………(14第26题②图。
2014年宁夏回族自治区中考数学试卷-答案
宁夏回族自治区2014年初中毕业暨高中阶段招生考试数学答案解析第Ⅰ卷(选择题)一、选择题 1.【答案】D【解析】2356a a a a =≠g ,故选项A 错误;6243a a a a ÷=≠,故选项B 错误;2a 与3a 不是同类项,不能合并,故选项C 错误;32326()a a a ⨯==,D 正确,故选D. 【考点】幂的运算,合并同类项. 2.【答案】B【解析】先求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即3010x x -⎧⎨+⎩>①,≥②,解不等式①的3x >,解不等式②得1x -≥,∴不等式组的解集为3x >,在数轴上表示不等式组的解集应选B.【考点】在数轴上解一元一次不等式(组),在数轴上表示不等式组的解集. 3.【答案】C【解析】方程2210x x --=,配方得2(1)2x -=,解得11x =+21x = C. 【考点】解一元二次方程. 4.【答案】D【解析】根据图形可知,a 是一个负数,且12a <<,b 是一个正数,且01b <<,即可得出b a <,故选D.【考点】实数,数轴. 5.【答案】A【解析】因为反比例函数ky x=,当0k >时,图象位于第一、三象限,且在每一个象限,函数值y 随x 的增大而减小,由条件可知点1P ,2P 都在第一象限内,故它们的纵坐标0y >,因为12x x >,所以12y y <,故120y y <<,故选A.【考点】反比例函数图象的性质.【解析】设甲种污水处理器的污水处理效率为x 吨/小时,则乙种污水处理器的污水处理效率为(20)x +吨/小时,根据甲种污水处理器25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,列出方程253520x x =+,故选B. 【考点】实际问题抽象出分式方程. 7.【答案】A【解析】根据三视图可知此几何体为圆锥,底面半径1cm r =,高3cm h =,∴圆锥母线长cm l ,2=cm S rl π∴=侧,故选A.【考点】三视图,圆锥的计算. 8.【答案】C【解析】A 选项,函数y ax =中,0a >,2y ax =中,0a >,但当1x =时,两函数图象有交点(1,)a ,A 错误;B 选项,函数y ax =中,0a <,2y ax =中,0a >,B 错误;C 选项,函数y ax =中,0a <,2y ax =中,0a <,当1x =时,两函数图象有交点(1,)a ,C 正确;D 选项,函数y ax =中,0a >,2y ax =中,0a <,D 错误,故选C.【考点】二次函数的图象,正比例函数的图象.【提示】本题除了判别a 的符号外,还应注意两个函数的交点个数及坐标,故易错.第Ⅱ卷(非选择题)二、填空题9.【答案】(1)(1)y x x +-.【解析】一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.故原式2(1)(1)(1)y x y x x =-=+-. 【考点】用提公因式法和公式法进行因式分解.【提示】本题易忽视用平方差公式进一步分解而得答案2(1)y x -. 10.【答案】5.【解析】根据菱形的对角线互相垂直且平分求出对角线一半的长度分别是4 cm 和3 cm ,然后利用勾股定理,5cm AB =.【考点】菱形的性质.【解析】将一组数据按照从小到大(或从大到小)的顺序排列,最中间的一个数或中间两个数据的平均数就是这组数据的中位数.将这组数据按照从小到大的顺序排列为24,28,28,28,30,32,32,32,则中位数为2830292+=.【考点】中位数. 12.【答案】3.【解析】本题利用了消元的思想,将两个方程的左右两边分别相加得339a b -=,故3a b -=. 【考点】解二元一次方程组.13.【答案】316.【解析】随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种可能的结果数,即(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),其中两次摸出的小球标号的和等于6的有3种,(2,4),(3,3),(4,2),故两次摸出的小球标号的和等于6的概率是316. 【考点】列表法或树状图法求概率. 14.【答案】200.【解析】设这款服装每件的进价为x 元,根据-=售价进价利润可得方程3000.820%x x ⨯-=,解得200x =.即这款服装每件的进价是200元.【考点】列一元一次方程解实际问题的运用(销售问题).15.【答案】【解析】过点A 作AF BC ⊥于点F ,AD BC ∥Q ,DAE AEB ∴∠=∠,又BAE DAE ∠=∠Q ,BAE AEB ∴∠=∠,AE CD ∥Q ,AEB C ∴∠=∠,AD BC ∥Q ,2AB CD ==,∴四边形ABCD 是等腰梯形,B C ∴∠=∠,ABE ∴△是等边三角形,2AB AE BE ∴===,60B ∠=︒,sin 602AF AB ∴=︒==g AD BC ∥Q ,AE CD ∥,∴四边形AECD 是平行四边形,523AD EC BC BE ∴==-=-=,∴梯形的面积11()(35)22AD BC AF =+⨯=⨯+【考点】等边三角形的判定和性质,平行四边形的判定和性质,等腰梯形的性质.16.【解析】如图所示,点O 为ABC △外接圆圆心,则AO 为外接圆半径,利用勾股定理得出能够完全覆盖这个三角形的最小圆面的半径为OA =【考点】三角形的外接圆与圆心. 三、解答题 17.【答案】259.【解析】解:23()2sin 4514--︒-161)9=+ (4分) 259=.(6分)【考点】实数的综合运算.18.【答案】12.【解析】解:22()a b a b a b a b a b +-÷-+- 22()()()()a a b b a b a b a b a b a b +--+=÷-+- 2222()()a b a ba b a b a b +-=⨯-++ 1a b=+.(5分)当1a =1b =+12=.(6分)【考点】分式的化简求值. 19.【答案】(1)画图正确. (2)画图正确. 【解析】(1)画图正确. (3分) (2)画图正确.(6分)【考点】利用旋转变换、轴对称变换作图.20.【答案】1.【解析】解:在Rt ABD △中,1sin 3AD B AB ==Q ,又1AD =, 3AB ∴=.(2分)222BD AB AD =-Q ,BD ∴==(4分)在Rt ADC △中,45C ∠=︒Q ,1CD AD ∴==.1BC BD DC ∴=+=. (6分)【考点】三角形的高的定义,勾股定理,解直角三角形.21.【答案】(1)第1天、第2天、第3天、第7天、第12天,共5天.(2)27.(3)从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.【解析】解:(1)此人到达当天空气质量优良的有:第1天、第2天、第3天、第7天、第12天,共5天.(2分)(2)此人在银川停留2天的空气质量指数是(86,25),(25,57),(57,143),(143,220),(220,158),(158,40),(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175),共14个停留时间段,期间只有一个空气质量重度污染的有:第4天到、第5天到、第7天到及第8天到.因此42147P ==(在银川停留期间只有一天空气质量重度污染).(4分) (3)从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大.(6分)【考点】折线统计图,概率,方差. 22.【答案】见解析.【解析】证法一:AB C '△Q 是由ABC △沿AC 对折得到的图形,BAC B AC '∴∠=∠. (2分)在平行四边形ABCD 中,AB CD ∥Q ,BAC DCA ∴∠=∠, (4分) DCA B AC '∴∠=∠.OA OC ∴=.(6分)证法二:Q 四边形ABCD 是平行四边形,AD BC ∴=,D B ∠=∠.又AB C '△是由ABC △沿AC 对折得到的图形,BC B C '∴=,B B '∠=∠. (2分)AD B C '∴=,D B '∠=∠.又AOD COB '∠=∠,AOD COB '∴≅△△.OA OC ∴=. (6分)【考点】平行四边形的性质,等腰三角形的判定与性质,折叠的性质. 23.【答案】(1)见解析. (2)3.【解析】(1)证明:连接OD ,ABC △Q 为等边三角形,60ABC ∴∠=︒.又OD OB =Q ,OBD ∴△为等边三角形.60BOD ACB ∴∠=︒=∠,OD AC ∴∥.(2分)又DE AC ⊥Q ,90ODE AED ∴∠=∠=︒,DE ∴为O e 的切线. (4分)(2)连接CD ,BC Q 为O e 的直径,90BDC ∠=︒.又ABC △Q 为等边三角形,12AD BD AB ∴==. (6分)在Rt AED △中,60A ∠=︒,30ADE ∴∠=︒,111244AE AD AB AC ∴===.1344EC AC AC AC ∴=-=. 3CEAE∴=.(8分)【考点】切线的判定的应用,等边三角形的性质和判定,平行线的判定.24.【答案】(1)y =(2)点B 在反比例函数y =.【解析】(11k=,即k =.∴反比例函数的解析式为y =. (3分)(2)过点A 作x 轴的垂线交x 轴于点C .在Rt AOC △中,1OC =,AC =由勾股定理,得2OA =,60AOC ∠=︒. 过点B 作x 轴的垂线交x 轴于点D . 由题意,30AOB ∠=︒,2OB OA ==,30BOD ∴∠=︒.在Rt BOD △中,1BD =,OD =∴B 点坐标为.(6分)将x y =1y =,∴点B 在反比例函数y =的图象上. (8分)【考点】反比例函数图象上的点的坐标特征,待定系数法求反比例函数解析式,勾股定理,坐标与图形变化.25.【答案】(1)5(80)38240y x x x =--⨯=-(080x <≤). (2)75.【解析】(1)5(80)38240y x x x =--⨯=-(080x <≤). (2)根据题意,得8240320x -<,解得70x <. 表明玫瑰花的售出量小于70只时的利润少于320元,(5分)则5060x ≤<的天数为0.1303⨯=(天),6070x ≤<的天数为0.2306⨯=(天). ∴利润少于320元的天数为369+=(天).(7分)(3)该组内平均每天销售玫瑰花:51(3)2(1)3042342757515-⨯+-⨯+-⨯+⨯+⨯+⨯+=(只)(10分)【考点】读频数分布直方图,利用统计图获取信息. 26.【答案】(1)见解析.(2)当258x =时,APQ △的面积最大,最大值是7532.(3)存在,λ=【解析】(1)证明:不论点P 在BC 边上何处时,都有90PQB C ∠=∠=︒,B B ∠=∠, PBQ ABC ∴△△:.(2分)(2)设BP x =(04x <<), 由勾股定理得5AB =.PBQ ABC △△Q :.PQ QB PBAC BC AB∴==, 即345PQ QB x ==,35PQ x ∴=,45QB x =, (4分) 21632252APQ S PQ AQ x x =⨯=-+△(6分)262575()25832x =--+. ∴当258x =时,APQ △的面积最大,最大值是7532. (8分)(3)存在.Rt Rt AQP ACP ≅△△Q ,AQ AC ∴=.又Rt Rt AQP BQP ≅△△,AQ QB ∴=.AQ QB AC ∴==.在Rt ABC △中,由勾股定理得222BC AB AC =-,BC ∴=.λ∴=Rt AQP △既与Rt ACP △全等,也与Rt BQP △全等.(10分)【考点】相似三角形的判定与性质,全等三角形的性质,三角形的面积公式,二次函数的最值的求法.。
宁夏银川中考数学试卷及答案
宁夏银川中考数学试卷及答案一、选择题1. 计算a 2+3a 2的结果是( )A .3a 2B .4a 2C .3a 4D .4a 42. 如图,矩形ABCD 的两条对角线相交于点O ,∠AOD =60,AD =2,则AB 的长是( )A .2B .4C .2 3D .4 33. 等腰梯形的上底是2cm,腰长是4cm,一个底角是60,则等腰梯形的下底是( )A .5cmB .6cmC .7cmD .8cm4. 一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,所列方程组正确的是( )A .⎩⎨⎧=+=+yx xy y x 188B .⎩⎨⎧+=++=+yx y x y x 1018108C .⎩⎨⎧=++=+yxy x y x 18108D .⎩⎨⎧=+=+yxy x y x )(1085. 将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的 平面展开图如图所示,那么在这个正方体中,和“创”相对的字是( )A .文B .明C .城D .市6. 已知⊙O 1、⊙O 2的半径分别是r 1=3、r 2=5.若两圆相切,则圆心距O 1O 2的值是( )A .2或4B .6或8C .2或8D .4或67. 某校A 、B 两队10名参加篮球比赛的队员的身高(单位:cm)如下表所示:设两队队员身高的平均数分别为A x ,B x ,身高的方差分别为2A S ,2B S ,则正确的选项是( )A .A x =B x ,2A S >2B S B .A x <B x ,2A S <2B SC .A x >B x ,2A S >2B SD .A x =B x ,2A S <2B S8. 如图,△ABO 的顶点坐标分别为A (1,4)、B (2,1)、O (0,0),如果将△ABO 绕点O 按逆时针方向旋转90,得到△A BO ,176 175 174 171 174 170 173 171 174 182B 队 A 队 1号 2号 3号 4号 5号 O 第2题图ABCD 第5题图创 建 文 明 城市第8题图O ABxy那么点A 、B 的对应点的坐标是( ) A .A (-4,2)、B (-1,1)B .A (-4,1)、B (-1,2) C .A (-4,1)、B (-1,1)D .A (-4,2)、B (-1,2)二、填空题9. 分解因式:a 3-a =__________.10. 数轴上A 、B 两点对应的实数分别是2和2,若点A 关于点B 的对称点为点C .则点C 所对应的实数为__________.11. 若线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (3,6),则点B (-5,-2)的对应点D 的坐标是__________.12. 在一次社会实践活动中,某班可筹集到的活动经费最多900元.此次活动租车需300元,每个学生活动期间所需经费15元,则参加这次活动的学生人数最多为__________. 13. 某商场在促销活动中,将原价36元的商品,连续两次降价m %后售价为25元.根据题意可列方程为__________.14. 如图,点A 、D 在⊙O 上,BC 是⊙O 的直径,若∠D =35,则∠OAB 的度数是__________.15. 如图,在△ABC 中,DE ∥AB ,CD ︰DA =2︰3,DE =4,则AB 的长为__________. 16. 如图是一个几何体的三视图,这个几何体的全面积为__________.(取3.14) 三、解答题17. 计算:23)31(30tan 320112---+︒--18. 解方程:2311+=--x x x19. 解不等式组⎩⎨⎧7-x3-x ≤1,8-x +22>3.第16题图2 2 22222左视图 俯视图主视图第15题图AE BCD第14题图O ABD20. 有一个均匀的正六面体,六个面上分别标有数字1,2,3,4,5,6,随机地抛掷一次,把朝上一面的数字记为x ;另有三张背面完全相同,正面上分别写有数字-2,-1,1的卡片.将其混合后,正面朝下放置在桌面上.从中随机地抽取一张,把卡片正面上的数字记为y ;然后计算出S =x +y 的值.(1)用树状图或列表法表示出S 的所有可能情况;(2)求出当S <2时的概率.21. 我市某中学九年级学生对市民“创建精神文明城市”知晓率采取随机抽样的方法进行问卷调查,问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不太了解”、“从未听说”五个等级,统计后的数据整理如下表:等级 非常了解 比较了解 基本了解 不太了解 从未听说 频数 40 6048 36 16 频率0.2m0.240.180.08(1)本次问卷调查抽取的样本容量为__________,表中m 的值为__________;(2)根据表中的数据计算等级为“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数;(3)根据上述统计结果,请你对政府相关部门提出一句话建议.22. 已知,E 、F 是四边形ABCD 的对角线AC 上的两点,AE =CF ,BE =DF ,BE ∥DF .求证:四边形ABCD 是平行四边形.23. 在△ABC 中,AB =AC .以AB 为直径的⊙O 交BC 于点P ,PD ⊥AC 于点D .(1)求证:PD 是⊙O 的切线;(2)若∠CAB =120,AB =2,求BC 的值.第22题图BCDAE F第21题图 非常了解 从未听说 不太了解 基本了解比较了解24. 在Rt △ABC 中,∠C =90,∠A =30,BC =2.若将此直角三角形的一条直角边BC 或AC与x 轴重合,使点A 或点B 刚好在反比例函数xy 6(x >0)的图象上时,设△ABC 在第一象限部分的面积分别记做S 1、S 2(如图1,图2所示),D 是斜边与y 轴的交点,通过计算比较S 1、S 2的大小.25. 甲、乙两人分别乘不同的冲锋舟同时从A 地逆流而上前往B 地.甲所乘冲锋舟在静水中的速度为1112千米/分钟,甲到达B 地立即返回,乙所乘冲锋舟在静水中的速度为712千米/分钟.已知A 、B 两地的距离为20千米,水流速度为112千米/分钟,甲、乙乘冲锋舟行驶的距离y (千米)与所用时间x (分钟)之间的函数图象如图所示.(1)求甲所乘冲锋舟在行驶的整个过程中,y 与x 之间的函数关系式; (2)甲、乙两人同时出发后,经过多少分钟相遇?26. 在等腰△ABC 中,AB =AC =5,BC =6.动点M 、N 分别在两腰AB 、AC 上(M 不与A 、B 重合,N不与A 、C 重合),且MN ∥BC .将△AMN 沿MN 所在的直线折叠,使点A 的对应点为P .O20y (千米) OCD AB xyS 1OAD BC xyS 2第23题图DA BC PO(1)当MN 为何值时,点P 恰好落在BC 上?(2)设MN =x ,△MNP 与等腰△ABC 重叠部分的面积为y ,试写出y 与x 的函数关系式.当x 为何值时,y 的值最大,最大值是多少?参照答案一、选择题(3分×8=24分)二、填空题(3分×8=24分)9. )1)(1(+-a a a ; 10. 4-2; 11. (0,1); 12. 40; 13. 36(1-2%)m =25; 14.35°; 15. 10; 16. 9.42. 三.解答题(共24分) 17.解: 原式=1-3×33+9-(2-3) ---------------------------4分 =1-3+9-2+3=8 ------------------------------------------ 6分18. 解:两边同乘)2)(1(+-x x ,得 )1(3)2)(1()2(-=+--+x x x x x ---2分 整理得:52=xABCMNP第26题图解得,25=x -----------------------------------------5分 经检验25=x 是原方程的根 -----------------------------------------6分19. 解:解①得 x ≥1 --------------------------------------2分 解②得 x <8 ---------------------------------------4分 ∴不等式组的解集为 1≤x <8 --------------------------------6分20.(1) 用列表法:x s y123456-2 -1 0 1 2 3 4 -1 0 1 2 3 4 5 1 234567或画树状图:--------------4分(2)由列表或画树状图知s 的所有可能情况有18种,其中S <2的有5种 ∴P(S <2)=185--------------------------------6分 四、解答题(共48分)21. 解:(1)抽取的样本容量为200,表中m 的值为0.3. ------ 2分(2)“非常了解”的频数在扇形统计图中所对应扇形的圆心角的度数为3600.272⨯= --------------------------4分(3)结合表中统计的数据,利用统计的语言叙述合理 ---------6分 22. (方法一)∵DF ∥BE ∴∠DFA =∠BEC∴∠DFC =∠BEA ……………………………………………………… 2分 在△ABE 和△CDF 中∵DF =BE ∠DFC =∠BEA AE=CF△ABE ≌△CDF (SAS ) ………………………………………………3分F ED CBA∴∠EAB =∠FCD; AB=CD ∴AB ∥CD∴四边形ABCD 是平行四边形 …………………………………………6分 (方法二)∵DF ∥BE∴∠DFA =∠BEC ……………………………………………………2分 ∵AE=CF∴AE+EF=CF+EF 即AF=CE 在△AFD 和△CEB 中∵DF =BE ∠DFA =∠BEC AF =CE∴△AFD ≌△CEB (SAS ) …………………………………………3分 ∴AD =CB ∠DAF =∠BCE∴AD ∥CB ∴四边形ABCD 是平行四边形………………………… 6分 23. (1)证明:连结OP ,则OP =OB . ∴∠OBP =∠OPB AB AC =,∴∠OBP =∠C .∴∠OPB =∠C∴OP ∥AC ……………………………… 3分∵PD ⊥AC , ∴∠DP ⊥OP . ∴PD 是⊙O 的切线. ……………………………… 5分 (2)连接AP ,则AP ⊥BC在Rt △APB 中 ∠ABP =30°∴BP =AB ×COS30°=3 ………………………………7分 ∴BC =2BP =23 …………………………………………8分24. 解:在Rt △ABC 中, ∵∠C=90°, ∠A =30°,BC =2 ∴AC=oBC30tan =23…1分 在图1中, ∵点A 在反比例函数xy 6= (0)x >的图象上 ∴A 点的横坐标326=x =3∴OC=3, BO =2-3 ………………………………2分在Rt △BOD 中,∠DBO =60° DO=BO ×tan60°=332-…………………3分1s =21)(21=⋅+OC AC OD [32)332(+-]×3=3236- ………4分在图2中, ∵点B 在反比例函数xy 6= (0)x >的图象上 ∴B 点的横坐标26=x =3 ∴OC=3, AO =23-3 ……………………… 5分 在Rt △AOD 中 ∠DAO =30° DO =AO×tan30°=(23-3)×33=2-3 ……………6分 2s =OC BC OD ⋅+)(21=21[2)32(+-]×33236-= ………………7分∴ 21s s = ………………………………………………………………8分 的另法:在图1中,过A 作AE ⊥y 轴于点E ,则矩形AEOC 面积为6∵点A 在反比例函数xy 6= (0)x >的图象上 ∴A 点的横坐标326=x =3∴AE = OC =3在图2中,过B 作BE ⊥y 轴于点E ,则矩形BEOC 的面积为6∵点B 在反比例函数xy 6= (0)x >的图象上 ∴B 点的横坐标26=x =3 ∴OC =3, AO =23-3 在Rt △AOD 中 ∠DAO =30° DO =AO ×tan30°=(23-3)×33=2-3 ∴DE =OE -OD =3 ∴△AED ≌△BED ∴S AED ∆= S BED ∆ ∵S 1=6- S AED ∆ 2S =6- S BED ∆ ∴S 1=2S 25. 解:(1)甲从A 地到B 地:x y =1211211-O DA BC MNP D O FEABCM N P即x y 65=……………………………… 2分 甲从A 地到达B 地所用时间: 20÷65=24(分钟)∴0≤x <24时,x y 65= …………………3分甲从B 地回到A 地所用时间:20÷(1211211+)=20(分钟)设甲从B 地回到A 地的函数关系式为k b kx y (+=≠0),将(24,20)、 (44,0)中的坐标分别代入k b kx y (+=≠0)得 k =-1,b =44∴24≤x ≤44时,44+-=x y …………… 6分(2)解法一:设甲、乙两人出发x 分钟后相遇,根据题意,得(x )121127-+()1211211+×(x -24)=20……………………………8分 解得 388=x ∴甲、乙两人出发388分钟后相遇 ……………10分解法二:乙从A 地到B 的的函数关系式为 x y 21=解方程组…………………………………………8分解得388=x ∴甲、乙两人出发388分钟后相遇 ……………10分26. 解:(1)点P 恰好在BC 上时,由对称性知MN 是△ABC 的中位线 ∴ 当MN =21BC =3时, 点P 在BC 上 …………………………………2分 (2)由已知得△ABC 底边上的高h=2235-=4①当0<x ≤3时,如图,连接AP 并延长交BC 于点D ,AD 与MN 交于点O 由△AMN ∽△ABC ,得 AO =x 32 y = S PMN ∆= S AMN ∆=2313221x x x =⋅⋅ 即231x y =当x =3时,y 的值最大,最大值是3 ……………… 5分②当3<x <6时,设△PMN 与BC 相交于交于点E 、F ,AP 与BC 相交于D由①中知,AO =x 32 ∴AP =x 34 x y 21= 44+-=x yPD =AP -AD =434-x ∵△PEF ∽△ABC∴22)4434()(-==∆∆x AD PD S S ABCPEF 即9)3(2-=∆∆x S S ABC PEF ∵S ABC ∆=12 ∴S PEF ∆=2)3(34-x y = S PMN ∆- S PEF ∆=22)3(3431--x x =1282-+-x x ……………… 8分当4=x 时,y 的值最大,最大值是4……………………………………10分。
2014年宁夏中考数学试题
关于召开2015年银川市英语学科
“一师一优课、一课一名师”观摩研讨培训会议的通知
各直属学校、民办学校:
为了及时交流经验,更好地推进“一师一优课,一课一名师”活动进程,决定2015年4月2日下午2:30在北塔中学举行银川市小学、初中、高中英语“晒课”、“推优”课堂观摩研讨培训会。
培训主题是:源于需要,凝聚共识,促进教学。
现将有关事项通知如下:
一、会议内容
1.听一节观摩课。
2.“信息技术与英语学科融合”的说课展示。
二、参会人员
银川市各直属中小学校、民办学校教研组长;学校推选参加首批“一师一优课、一课一名师”晒课的英语教师。
三、会议时间、地点、乘车路线和注意事项。
1.时间:2015年4月2日下午2:30。
2.地点:银川北塔中学(天平街100号,回民二小对面),录播教室。
3.北塔中学附近的公交车:20路、317路、45路、4路、12路、27路、301路、30路、44路、53路、501路、19路、25路等。
4.请提前10分钟到会签到。
5.请各校教研组长将此通知打印后送到教务处,尽快协调安排学校工作,按时参会。
6.请与会人员在附近自行停车,学校无停车位。
银川市教育科学研究所
2015-4-1。
2014 2014年中招考试数学试卷及答案
2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。
设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。
八年级数学试卷答案2014.6.25
银川市2013—2014学年度第二学期期末检测八年级数学试题 答案一、选择题(每小题3分,共24分)三、解答题(17、18每题5分, 19、20每题6分,21、22每题7分,共36分) 17.解:去分母,得:222x x ⨯=+,(2分)移项,得:32x =. 化系数为1得:23x =.(3分) 检验:把23x =代入2(2)0x x +≠,(4分) 23x ∴=是原分式方程的解.(5分) 18.解:由不等式210,x +>得12x >-. (2分)由不等式25,x x >-得5x <.(4分)则不等式组的解集为152x -<<. (5分) 19.解:原式=333)3)(3(31+=-+⨯-x x x x (3分) 将1-=x 代入原式=33+x (4分) 得原式=32.(5分)20.解:因为DE 是线段AB 的垂直平分线,所以DA=DB(线段垂直平分线上的点到线段两端的距离相等)(2分) 又因为BD =AC=5,DC =2 所以AD=BD =AC=5 (4分) 所以△ADC 的周长=5+5+2=12 (6分) 21.证明:(1) 在□ABCD 中, CD AB //, ∴.2FEC ∠=∠………2分由折叠,得.1FEC ∠=∠ …………………………4分 ∴.21∠=∠ ……………………………………6分 ∴GE=GF ………………………………………7分 (用其它方法证明的也按相应得分点给分)22.解:由不等式得312>+x . 得 1>x (1分) 由不等式x x ≥--221,得5-≤x .(3分) 则不等式组的解集为空集. (5分) 画图(略) (7分)四、解答题(23、24小题各8分,共16分)23.解:2+()224x x x +=-.(2分) 22224x x x ++=-.3x =-.(4分) 经检验,3x =-是原分式方程的根.(5分)24. 解应用题(分别有A 、B 、C 三类题目,只任选一类解答,多解的题目不记分). (A 类6分)解:设现在平均每天植树x 棵,则原计划平均每天植树)5(-x 棵.依题意得:54560-=x x .(2分) 解这个方程,得20=x .(4分)经检验,20=x 是方程的解,且符合题意.(5分) 答:现在平均每天植树20棵.(6分)(B 类7分)解:设原计划每天种树x 棵,(1分)则()100010005125%x x-=+.(3分) 解得40x =.(5分)经检验,40x =是原方程的解,且符合题意.(6分) 答:原计划每天种40棵树.(7分)(C 类8分)解:设小李进了xkg 硒沙瓜,(2分)根据题意得:900%203000)500(500%403000=⨯⨯--⨯⨯xx x (4分) 解得:600=x (5分) 经检验:600=x 是方程的解. (6分) 答:小李所进硒沙瓜的数量是600kg . (8分)五、解答题(25、26小题各10分,共20分)25.证明:∵AC ⊥BC ,BD ⊥AD ∴ ∠D =∠C =90︒ (2分)在Rt △ACB 和 Rt △BDA 中,AB = BA ,AC =BD ,∴ △ACB ≌ △BDA (HL ) (5分) ∴BC =AD (6分)(2)由△ACB ≌ △BDA 得 ∠C AB =∠D BA (8分) ∴△OAB 是等腰三角形.(10分)26.证明:(1)∵AB=CD ,BE=DF ,AE ⊥BD ,CF ⊥BD , 所以∠AEB=∠CDF=90 (3分) 在Rt △ABE 和 Rt △CDF 中,AB=CD ,BE=DF ,∴ △ABE △C DF (HL ) (5分) (2)∵△ABE △C DF (已证)∴AE =CF (全等三角形的对应边相等) (6分)又∵AE ⊥BD ,CF ⊥BD ,∴AE//CF (7分)∴四边形AECF 是平行四边形(有一组对边平行且相等的四边形是平行四边形)(8分) ∵AC 与BD 交于点O ,∴AO=CO (平行四边形的对角线互相平分)(10分)。
宁夏银川中考数学试卷及答案
宁夏银川中考数学试卷及答案一、选择题(下列每小题所给的四个答案中只有一个是正确的)(每小题3分,共24分) 1. 下列运算不正确的是( )A. 338)2(x x -=- B. 532x x x =⋅ C. 632)(x x = D. 6332x x x =+ 2. 若每人每天浪费水0.32L ,那么100万人每天浪费的水,用科学记数法表示为( ) A. L 7102.3⨯B. L 6102.3⨯C. L 5102.3⨯D. L 4102.3⨯3. 体育课上,八年级(1)班两个组各10人参加立定跳远,要判断哪一组成绩比较整齐,通常需要知道这两个组立定跳远成绩的( )A. 频率分布B. 平均数C. 方差D. 众数4. 把不等式组⎩⎨⎧<-≤-4201x x 的解集表示在数轴上,正确的是( )5. 如图,将正方形图案绕中心O 旋转180°后,得到的图案是( )6. 如果圆锥的母线长为6cm ,底面圆半径为3cm ,则这个圆锥的侧面积为( ) A. 236cm π B. 227cm π C. 218cm π D. 29cm π7. 买甲、乙两种纯净水共用250元,其中甲种水每桶8元,乙种水每桶6元,乙种水的桶数是甲种水的桶数的75%,设买甲种水x 桶,乙种水y 桶,则所列方程组中正确的是( )A. ⎩⎨⎧==+y x y x %7525086B. ⎩⎨⎧==+x y y x %7525068C. ⎩⎨⎧==+y x y x %7525068D. ⎩⎨⎧==+x y y x %75250868. 由相同小正方体搭成的几何体如图,下列视图中不是这个几何体主视图(正视图)或俯视图或左视图的是( )二、填空题(每小题3分,共24分) 9. 分解因式:=-23xy x _________。
10. 反比例函数xy 1-=的图像在_________象限。
11. “◆”代表甲种植物,“★”代表乙种植物,为美化环境,采用如图所示方案种植。
2014年中考数学压轴题精编--新疆、宁夏、山西、青海篇(试题及答案)
2014年中考数学压轴题精编—新疆、宁夏、山西、青海篇91.(新疆维吾尔自治区、新疆生产建设兵团)如图是一个量角器和一个含30°角的直角三角板放置在一起的示意图,其中点B 在半圆O 的直径DE 的延长线上,AB 切半圆O 于点F ,且BC =OE 。
(1)求证:DB ∥CF ;(2)当OE =2时,若以O ,B ,F 为顶点的三角形与△ABC 相似,求OB 的长;(3)若OE =2,移动三角板ABC 且使AB 边始终与半圆O 相切,直角顶点B 在直径DE 的延长线上移动,求出点B 移动的最大距离。
91.解:(1)证明:如图1,连接OF∵AB 切半圆O 于点F ,∴OF ⊥AB ·········· 1分 又∵BC ⊥AB ,∴BC ∥OF ∵BC =OE ,OE =OF ,∴BC =OF∴四边形OBCF 是平行四边形 ···················· 3分 ∴DB ∥CF ····················································· 4分(2)解:∵以O ,B ,F 为顶点的三角形与△ABC 相似,∠OFB =∠ABC =90°∴∠OBF =∠A 或∠BOF =∠A∵∠OBF =∠BFC ,∠BFC >∠A ,∴∠OBF >∠A∴∠OBF 与∠A 不可能是对应角 ···································································· 6分 ∴∠BOF 与∠A 是对应角,∴∠BOF =30° ∴OB =30cos OF=334 ································ 8分 (3)解:点B 移动的距离即线段BE 的长,当点A 与点F 重合时,点B 移动的距离最大,如图2∵在Rt △ABC 中,BC =OE =2,∠A =30° ∴AC =2BC =4∵四边形OBCF 是平行四边形,∴OB =AC =4 ∴BE =OB -OE =4-2=2即点B 移动的最大距离为2 ······························· 10分92.(新疆维吾尔自治区、新疆生产建设兵团)张师傅在铺地板时发现,用8块大小一样的长方形瓷砖恰好可以拼成一个大的长方形,如图(1)。
宁夏回族自治区2014年初中毕业暨高中阶段招生考试
宁夏回族自治区2014年初中毕业暨高中阶段招生考试化学试题参考答案及评分标准说明:1.考生用其它方法作出正确答案的同样得分。
2.化学方程式中化学式(或元素符号)有错误不得分;未配平或未写反应条件扣1分;“↑”或“↓”漏标两个以上扣1分。
二、填空(共13分) 14.(4分)(1)黄瓜(1分);钙(Ca )(1分)。
(2)汽油(或洗涤剂)(1分);油渍溶解于汽油(或乳化作用)(1分)。
15.(4分)(1)乙、甲、丙(1分)。
(2)升高(1分)。
(3)5(1分);16.7%(1分)。
16.(5分)(1)达到它的着火点(1分);氧气耗尽(或缺少氧气)(1分)。
(2)水进入集气瓶中约1/5 (1分);氧气约占空气总体积的1/5 (1分)。
(3)生成二氧化碳气体,集气瓶内的气体没有减少(1分)(其他合理的答案也得分)。
三、应用(共14分) 17.(7分)(1)置换(1分);0(1分);-1(1分)。
(2)Zn 、Cu 、Ag (1分);活动性较强的金属把活动性较弱的金属从它们的盐溶液中置换出来(或Zn 能置换出Cu ,Cu 能置换出Ag )(1分);Cl 2、Br 2、I 2(1分)。
(3)Cl 2 + 2NaI = 2NaCl + I 2(1分)。
18.(7分)(1)解:设碳酸钠的质量为xNa 2CO 3 + 2HCl = 2NaCl + H 2O + CO 2↑ (1分) 106 44x 2.2g (1分)gx2.244106= (1分)g x 3.5= (1分) (2)样品中氢氧化钠的质量为:10 g -5.3g =4.7g (1分)样品中氢氧化钠的质量分数为:%47%100107.4=⨯gg(1分)答:(略)(3)与空气中的二氧化碳反应而变质(写化学方程式也正确)(1分) 四、实验探究(共20分) 19.(9分)(1)氢气(或H 2)(1分);集气瓶口向下放置,说明气体的密度比空气小(1分);氧气(或O 2)或二氧化碳(或CO 2)(1分)。
2014年宁夏中考数学试题及参考答案(word解析版)
2014年宁夏回族自治区中考数学试题及参考答案一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是( )A .a 2•a 3=a 6B .a 8÷a 4=a 2C .a 3+a 3=2a 6D .(a 3)2=a 62.已知不等式组3010x x -⎧⎨+≥⎩>,其解集在数轴上表示正确的是( ) A . B .C .D .3.一元二次方程x 2﹣2x ﹣1=0的解是( )A .x 1=x 2=1B .x 1=1x 2=1-C .x 1=1x 2=1D .x 1=1-,x 2=1-4.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|5.已知两点P 1(x 1,y 1)、P 2(x 2,y 2)在函数5y x=的图象上,当x 1>x 2>0时,下列结论正确的是( )A .0<y 1<y 2B .0<y 2<y 1C .y 1<y 2<0D .y 2<y 1<06.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是( )A .253520x x =-B .253520x x =+C .253520x x =-D .253520x x=+ 7.如图是一个几何体的三视图,则这个几何体的侧面积是( )A πcm 2B .2C .6πcm 2D .3πcm 28.已知a≠0,在同一直角坐标系中,函数y=ax 与y=ax 2的图象有可能是( )A .B .C .D .二、填空题(本大题共8小题,每小题3分,共24分)9.分解因式:x 2y ﹣y= .10.菱形ABCD 中,若对角线长AC=8cm ,BD=6cm ,则边长AB= cm .11.下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数是 ℃.12.若2a ﹣b=5,a ﹣2b=4,则a ﹣b 的值为 .13.一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是 .14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如图,在四边形ABCD 中,AD ∥BC ,AB=CD=2,BC=5,∠BAD 的平分线交BC 于点E ,且AE ∥CD ,则四边形ABCD 的面积为 .16.如图,将△ABC 放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖△ABC ,能够完全覆盖这个三角形的最小圆面的半径是 .三、解答题(本大题共4小题,每小题6分,共24分)17.(6分)计算:232sin 45|14-⎛⎫-+︒- ⎪⎝⎭.18.(6分)化简求值:22a b a b a b a b a b+⎛⎫-÷ ⎪-+-⎝⎭,其中1a =1b =.19.(6分)在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.20.(6分)在△ABC中,AD是BC边上的高,∠C=45°,sinB=13,AD=1.求BC的长.四、解答题(本大题共6小题,共48分)21.(6分)如图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=OC.23.(8分)在等边△ABC 中,以BC 为直径的⊙O 与AB 交于点D ,DE ⊥AC ,垂足为点E .(1)求证:DE 为⊙O 的切线;(2)计算CE AE.24.(8分)在平面直角坐标系中,已知反比例函数k y x的图象经过点A (1. (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是否在此反比例函数的图象上,并说明理由.25.(10分)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x (0<x≤80)表示下个月内每天售出的只数,y (单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如图所示:(1)求y 关于x 的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;(3)根据历史资料,在70≤x <80这个组内的销售情况如下表:计算该组内平均每天销售玫瑰花的只数.26.(10分)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.(1)试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似;(2)若AC=3,BC=4,当BP为何值时,△AQP面积最大,并求出最大值;(3)在Rt△ABC中,两条直角边BC、AC满足关系式BC=λAC,是否存在一个λ的值,使Rt△AQP 既与Rt△ACP全等,也与Rt△BQP全等.参考答案与解析一、选择题(本大题共8小题,每小题3分,共24分)1.下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.a3+a3=2a6D.(a3)2=a6【知识考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方【思路分析】分别根据合并同类项、同底数幂的乘法和除法、幂的乘方法则进行计算即可.【解答过程】解:A、a2•a3=a5≠a6,故本选项错误;B、a8÷a4=a4≠a2,故本选项错误;C、a3+a3=2a3≠2a6,故本选项错误;D、(a3)2=a3×2=a6,正确.故选D.【总结归纳】本题考查了合并同类项,同底数幂的乘法,同底数幂的除法,幂的乘方,熟练掌握运算法则是解题的关键,合并同类项时,只把系数相加减,字母与字母的次数不变.2.已知不等式组3010xx-⎧⎨+≥⎩>,其解集在数轴上表示正确的是()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】求出每个不等式的解集,找出不等式组的解集,再在数轴上把不等式组的解集表示出来,即可得出选项.【解答过程】解:3010xx-⎧⎨+≥⎩>①②,。
历年宁夏中考数学试卷(含答案)
1 2017年宁夏中考数学试卷一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列各式计算正确的是()A .4a ﹣a=3 B .a 6÷a 2=a 3C .(﹣a 3)2=a 6D .a 3•a 2=a 62.(3分)在平面直角坐标系中,点(3,﹣2)关于原点对称的点是()A .(﹣3,2)B .(﹣3,﹣2)C .(3,﹣2)D .(3,2)3.(3分)学校国旗护卫队成员的身高分布如下表:身高/cm 159160161162人数71099则学校国旗护卫队成员的身高的众数和中位数分别是()A .160和160 B .160和160.5 C .160和161 D .161和1614.(3分)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是()A .第一天B .第二天C .第三天D .第四天5.(3分)关于x 的一元二次方程(a ﹣1)x 2+3x ﹣2=0有实数根,则a 的取值范围是()A .B .C .且a ≠1 D .且a ≠16.(3分)已知点A (﹣1,1),B (1,1),C (2,4)在同一个函数图象上,这个函数图象可能是()A .B .C .D .7.(3分)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是(式是( )A .(a ﹣b )2=a 2﹣2ab +b2 B .a (a ﹣b )=a 2﹣abC .(a ﹣b )2=a 2﹣b 2 D .a 2﹣b 2=(a +b )(a ﹣b )8.(3分)圆锥的底面半径r=3,高h=4,则圆锥的侧面积是(,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.(3分)分解因式:2a 2﹣8= . 10.(3分)实数a 在数轴上的位置如图,则在数轴上的位置如图,则||a ﹣|= .11.(3分)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是,则飞镖落在阴影区域的概率是 .12.(3分)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为 元.将此商品打七折销售,则该商品每件销售利润为13.(3分)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为.14.(3分)在△ABC中,AB=6,点D是AB的中点,过点D作DE∥BC,交AC的长为 .于点E,点M在DE上,且ME=DM.当AM⊥BM时,则BC的长为15.(3分)如图,点分)如图,点 A,B,C均在6×6的正方形网格格点上,过A,B,C三三点外还能经过的格点数为 .点的外接圆除经过A,B,C三点外还能经过的格点数为16.(3分)如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 .图,则这个几何体的表面积是三、解答题(本大题共6小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)解不等式组:.18.(6分)解方程:﹣=1.19.(6分)校园广播主持人培训班开展比赛活动,分为分)校园广播主持人培训班开展比赛活动,分为 A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?20.(6分)在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B (1,1),C(5,1).(1)把△ABC平移后,其中点其中点 A移到点A1(4,5),画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按逆时针方向旋转90°,画出旋转后的△A2 B2C2.21.(6分)在△ABC中,M是AC边上的一点,连接BM.将△ABC沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.22.(6分)某商店分两次购进分)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.四、解答题(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)23.(8分)将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt△ACB斜边恰交于点 E,分别连接EB,EC.好重合.以AB为直径的圆经过点C,且与AD交于点(1)求证:EC平分∠AEB;(2)求的值.24.(8分)直线y=kx+b 与反比例函数y=(x>0)的图象分别交于点的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P 的坐标.25.(10分)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量(m 3)32及其以下3334353637383940414243及其以上户数(户)20016018222421191017121110(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?26.(10分)在边长为2的等边三角形ABC中,P是BC边上任意一点,过点边上任意一点,过点 P 分别作分别作 PM⊥A B,PN⊥AC,M、N分别为垂足.(1)求证:不论点P在BC边的何处时都有PM+PN的长恰好等于三角形ABC一边上的高;(2)当BP的长为何值时,四边形AMPN的面积最大,并求出最大值.2017年宁夏中考数学试卷参考答案与试题解析一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(3分)(2017•宁夏)下列各式计算正确的是(宁夏)下列各式计算正确的是( )A .4a ﹣a=3 B .a 6÷a 2=a 3C .(﹣a 3)2=a 6D .a 3•a 2=a 6【分析】根据合并同类项,根据合并同类项,同底数幂的除法底数不变指数相减,同底数幂的除法底数不变指数相减,同底数幂的除法底数不变指数相减,积的乘方等于乘积的乘方等于乘方的积,同底数幂的乘法底数不变指数相加,可得答案. 【解答】解:A 、系数相加字母及指数不变,故A 不符合题意; B 、同底数幂的除法底数不变指数相减,故B 不符合题意; C 、积的乘方等于乘方的积,故C 符合题意;D 、同底数幂的乘法底数不变指数相加,故D 不符合题意;故选:C .【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.2.(3分)(2017•宁夏)在平面直角坐标系中,点(3,﹣2)关于原点对称的点是(是( )A .(﹣3,2)B .(﹣3,﹣2)C .(3,﹣2)D .(3,2)【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答. 【解答】解:点(3,﹣2)关于原点对称的点的坐标是(﹣3,2), 故选:A .【点评】本题考查了关于原点对称的点的坐标,熟记关于原点对称的点的横坐标与纵坐标都互为相反数是解题的关键.3.(3分)(2017•宁夏)学校国旗护卫队成员的身高分布如下表:身高/cm 159 160 161 162 人数71099则学校国旗护卫队成员的身高的众数和中位数分别是(则学校国旗护卫队成员的身高的众数和中位数分别是( ) A .160和160 B .160和160.5 C .160和161 D .161和161【分析】众数是一组数据中出现次数最多的数据;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数. 【解答】解:数据160出现了10次,次数最多,众数是:160cm ; 排序后位于中间位置的是161cm ,中位数是:161cm . 故选C .【点评】本题为统计题,考查众数与中位数的意义.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.数据的中位数.如果中位数的概念掌握得不好,如果中位数的概念掌握得不好,如果中位数的概念掌握得不好,不把数据按要求重新排列,不把数据按要求重新排列,不把数据按要求重新排列,就会就会出错.4.(3分)(2017•宁夏)某商品四天内每天每斤的进价与售价信息如图所示,则售出这种商品每斤利润最大的是(售出这种商品每斤利润最大的是( )A .第一天.第一天B .第二天.第二天C .第三天.第三天D .第四天 【分析】根据图象中的信息即可得到结论. 【解答】解:由图象中的信息可知,利润=售价﹣进价,利润最大的天数是第二天,故选B . 【点评】本题考查了折线统计图,有理数大小的比较,正确的把握图象中的信息,理解利润=售价﹣进价是解题的关键.5.(3分)(2017•宁夏)关于x 的一元二次方程(a ﹣1)x 2+3x ﹣2=0有实数根,则a 的取值范围是(的取值范围是( ) A .B .C .且a ≠1 D .且a ≠1【分析】根据一元二次方程的定义和判别式的意义得到a ≠1且△=32﹣4(a ﹣1)•(﹣2)≥0,然后求出两个不等式解集的公共部分即可. 【解答】解:根据题意得a ≠1且△=32﹣4(a ﹣1)•(﹣2)≥0, 解得a ≥﹣且a ≠1. 故选D .【点评】本题考查了根的判别式:本题考查了根的判别式:一元二次方程一元二次方程ax 2+bx +c=0(a ≠0)的根与△=b2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.6.(3分)(2017•宁夏)已知点宁夏)已知点 A (﹣1,1),B (1,1),C (2,4)在同一个函数图象上,这个函数图象可能是(数图象上,这个函数图象可能是( )A .B .C .D .【分析】由点由点 A (﹣1,1),B (1,1),C (2,4)在同一个函数图象上,可得A 与B 关于y 轴对称,当x >0时,y 随x 的增大而增大,继而求得答案. 【解答】解:∵A (﹣1,1),B (1,1), ∴A 与B 关于y 轴对称,故C ,D 错误;∵B (1,1),C (2,4),当x >0时,y 随x 的增大而增大,而B (1,1)在直线y=x 上,C (2,4)不在直线y=x 上,所以图象不会是直线,故A 错误;故B 正确. 故选B .【点评】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.7.(3分)(2017•宁夏)如图,从边长为a 的大正方形中剪掉一个边长为b 的小正方形,正方形,将阴影部分沿虚线剪开,将阴影部分沿虚线剪开,将阴影部分沿虚线剪开,拼成右边的矩形.拼成右边的矩形.拼成右边的矩形.根据图形的变化过程写出的根据图形的变化过程写出的一个正确的等式是(一个正确的等式是( )A .(a ﹣b )2=a 2﹣2ab +b 2B .a (a ﹣b )=a 2﹣abC .(a ﹣b )2=a 2﹣b 2 D .a 2﹣b 2=(a +b )(a ﹣b )【分析】利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解答】解:第一个图形阴影部分的面积是a 2﹣b 2, 第二个图形的面积是(a +b )(a ﹣b ). 则a 2﹣b 2=(a +b )(a ﹣b ). 故选D .【点评】本题考查了平方差公式的几何背景,正确用两种方法表示阴影部分的面积是关键.8.(3分)(2017•宁夏)圆锥的底面半径r=3,高h=4,则圆锥的侧面积是( )A .12πB .15πC .24πD .30π【分析】先求圆锥的母线,再根据公式求侧面积. 【解答】解:由勾股定理得:母线l===5,∴S 侧=•2πr•l=πrl=π×3×5=15π. 故选B .【点评】本题考查了圆锥的计算,熟练掌握圆锥的母线和侧面积公式是关键.二、填空题(每题3分,满分24分,将答案填在答题纸上) 9.(3分)(2017•宁夏)分解因式:2a 2﹣8= 2(a +2)(a ﹣2) . 【分析】先提取公因式2,再对余下的多项式利用平方差公式继续分解. 【解答】解:2a 2﹣8 =2(a 2﹣4), =2(a +2)(a ﹣2).故答案为:2(a +2)(a ﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,首先提取公因式,然后再用其他方法进行因式分解,然后再用其他方法进行因式分解,然后再用其他方法进行因式分解,同时因式分解要彻底,同时因式分解要彻底,同时因式分解要彻底,直到直到不能分解为止.10.(3分)(2017•宁夏)实数a 在数轴上的位置如图,则在数轴上的位置如图,则||a ﹣|= ﹣a .【分析】根据数轴上点的位置判断出a ﹣的正负,利用绝对值的代数意义化简即可得到结果. 【解答】解:∵a <0, ∴a ﹣<0, 则原式=﹣a ,故答案为:﹣a【点评】此题考查了实数与数轴,弄清绝对值里边式子的正负是解本题的关键.11.(3分)(2017•宁夏)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是,则飞镖落在阴影区域的概率是.【分析】直接利用阴影部分÷总面积=飞镖落在阴影区域的概率,即可得出答案.【解答】解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,故飞镖落在阴影区域的概率是:=.故答案为:.【点评】此题主要考查了几何概率,正确利用概率公式分析是解题关键.12.(3分)(2017•宁夏)某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为 4元.于该商品积压,将此商品打七折销售,则该商品每件销售利润为元,根据进价++利润=售价列出方程,求解即【分析】设该商品每件销售利润为x元,根据进价可.【解答】解:设该商品每件销售利润为x元,根据题意,得80+x=120×0.7,解得x=4.答:该商品每件销售利润为4元.故答案为4.【点评】本题考查一元一次方程的应用,正确理解题意找到等量关系是解题的关键.13.(3分)(2017•宁夏)如图,将平行四边形ABCD沿对角线BD折叠,使点A 落在点A'处.若∠1=∠2=50°,则∠A'为105°.【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果.【解答】解:∵AD∥BC,∴∠ADB=∠DBG ,由折叠可得∠ADB=∠BDG , ∴∠DBG=∠BDG ,又∵∠1=∠BDG +∠DBG=50°, ∴∠ADB=∠BDG=25°, 又∵∠2=50°,∴△ABD 中,∠A=105°, ∴∠A'=∠A=105°, 故答案为:105°.【点评】本题主要考查了平行四边形的性质、本题主要考查了平行四边形的性质、折叠的性质、折叠的性质、折叠的性质、三角形的外角性质以三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB 的度数是解决问题的关键.14.(3分)(2017•宁夏)在△ABC 中,AB=6,点D 是AB 的中点,过点D 作DE ∥BC ,交AC 于点E ,点M 在DE 上,且ME=DM .当AM ⊥BM 时,则BC 的长为 8 .【分析】根据直角三角形的性质求出DM ,根据题意求出DE ,根据三角形中位线定理计算即可.【解答】解:∵AM ⊥BM ,点D 是AB 的中点, ∴DM=AB=3, ∵ME=DM , ∴ME=1,∴DE=DM +ME=4,∵D 是AB 的中点,DE ∥BC ,∴BC=2DE=8,故答案为:8.【点评】本题考查的是三角形的中位线定理的应用,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.15.(3分)(2017•宁夏)如图,点宁夏)如图,点 A,B,C均在6×6的正方形网格格点上,三点外还能经过的格点数为 5.过A,B,C三点的外接圆除经过A,B,C三点外还能经过的格点数为【分析】根据圆的确定先做出过A,B,C三点的外接圆,从而得出答案.【解答】解:如图,分别作AB、BC的中垂线,两直线的交点为O,以O为圆心、OA为半径作圆,则⊙O即为过A,B,C三点的外接圆,由图可知,⊙O还经过点D、E、F、G、H这5个格点,故答案为:5.【点评】本题主要考查圆的确定,熟练掌握圆上各点到圆心的距离相等得出其外接圆是解题的关键.16.(3分)(2017•宁夏)如图是由若干个棱长为1的小正方体组合而成的一个几何体的三视图,则这个几何体的表面积是 22.几何体的三视图,则这个几何体的表面积是【分析】利用主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,进而判断图形形状,即可得出小正方体的个数.【解答】解:综合三视图,我们可以得出,这个几何模型的底层有3+1=4个小正方体,第二层有1个小正方体,因此搭成这个几何体模型所用的小正方体的个数是4+1=5个.∴这个几何体的表面积是5×6﹣8=22,故答案为22.【点评】本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”是解题的关键.三、解答题(本大题共6小题,共36分.解答应写出文字说明、证明过程或演算步骤.)17.(6分)(2017•宁夏)解不等式组:.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≤8,由②得:x>﹣3,则不等式组的解集为﹣3<x≤8.【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.18.(6分)(2017•宁夏)解方程:﹣=1.【分析】根据分式方程的解法即可求出答案.【解答】解:(x+3)2﹣4(x﹣3)=(x﹣3)(x+3)x2+6x+9﹣4x+12=x2﹣9,x=﹣15,令x=﹣15代入(x﹣3)(x+3)≠0,∴原分式方程的解为:x=﹣15,【点评】本题考查分式的方程的解法,解题的关键是熟练运用分式方程的解法,本题属于基础题型.19.(6分)(2017•宁夏)校园广播主持人培训班开展比赛活动,分为宁夏)校园广播主持人培训班开展比赛活动,分为 A、B、C、D四个等级,对应的成绩分别是9分、8分、7分、6分,根据如图不完整的统计图解答下列问题:(1)补全下面两个统计图(不写过程);(2)求该班学生比赛的平均成绩;(3)现准备从等级A的4人(两男两女)中随机抽取两名主持人,请利用列表或画树状图的方法,求恰好抽到一男一女学生的概率?【分析】(1)首先用A等级的学生人数除以A等级的人数所占的百分比,求出总人数;然后用总人数减去A、B、D三个等级的人数,求出C等级的人数,补补全等级的人数所占的百分比,补全全条形图;用C等级的人数除以总人数,等级的人数除以总人数,得出得出C等级的人数所占的百分比,扇形图;(2)用加权平均数的计算公式求解即可;(3)若A等级的4名学生中有2名男生2名女生,现从中任意选取2名参加学校培训班,应用列表法的方法,求出恰好选到1名男生和1名女生的概率是多少即可.【解答】解:(1)4÷10%=40(人),C等级的人数40﹣4﹣16﹣8=12(人),C等级的人数所占的百分比12÷40=30%.两个统计图补充如下:(2)9×10%+8×40%+7×30%+6×20%=7.4(分);(3)列表为:男1 男2 女1 女2男1 ﹣﹣男2男1 女1男1 女2男1 男2 男1男2﹣﹣女1男2 女2男2 女1 男1女1 男2女1﹣﹣女2女1 女2 男1女2 男2女2 女1女2﹣﹣由上表可知,从4名学生中任意选取2名学生共有12种等可能结果,其中恰好选到1名男生和1名女生的结果有8种,所以恰好选到1名男生和1名女生的概率P==.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;成的事件;解题时要注意此题是放回实验还是不放回实验.解题时要注意此题是放回实验还是不放回实验.解题时要注意此题是放回实验还是不放回实验.用到的知识点为:用到的知识点为:用到的知识点为:概概率=所求情况数与总情况数之比.也考查了扇形统计图、条形统计图的应用以及加权平均数.20.(6分)(2017•宁夏)在平面直角坐标系中,△ABC 三个顶点的坐标分别为A (2,3),B (1,1),C (5,1).(1)把△ABC 平移后,其中点其中点 A 移到点A 1(4,5),画出平移后得到的△A 1B 1C 1; (2)把△A 1B 1C 1绕点A 1按逆时针方向旋转90°,画出旋转后的△A 2 B2C 2.【分析】(1)根据图形平移的性质画出平移后的△A1B1C1即可;(2)根据图形旋转的性质画出旋转后的△A2 B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2 B2C2即为所求.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.21.(6分)(2017•宁夏)在△ABC中,M是AC边上的一点,连接BM.将△ABC 沿AC翻折,使点B落在点D处,当DM∥AB时,求证:四边形ABMD是菱形.【分析】只要证明AB=BM=MD=DA,即可解决问题.【解答】证明:∵AB∥DM,∴∠BAM=∠AMD,∵△ADC是由△ABC翻折得到,∴∠CAB=∠CAD,AB=AD,BM=DM,∴∠DAM=∠AMD,∴DA=DM=AB=BM,∴四边形ABMD是菱形.【点评】本题考查翻折变换、等腰三角形的判定和性质.平行线的性质等知识,解题的关键是证明△ADM是等腰三角形.22.(6分)(2017•宁夏)某商店分两次购进宁夏)某商店分两次购进 A、B两种商品进行销售,两次购进同一种商品的进价相同,具体情况如下表所示:购进数量(件)购进所需费用(元)A B第一次30403800第二次40303200(1)求A、B两种商品每件的进价分别是多少元?(2)商场决定A种商品以每件30元出售,B种商品以每件100元出售.为满足市场需求,需购进A、B两种商品共1000件,且A种商品的数量不少于B种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.【分析】(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据两次进货情况表,可得出关于x、y的二元一次方程组,解之即可得出结论;(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)即可得出w与m之间的函数关系式,由之间的函数关系式,由单件利润×购进数量,即可得出件,根据总利润=单件利润×购进数量,A种商品的数量不少于B种商品数量的4倍,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,再根据一次函数的性质即可解决最值问题.【解答】解:(1)设A种商品每件的进价为x元,B种商品每件的进价为y元,根据题意得:,解得:.答:A种商品每件的进价为20元,B种商品每件的进价为80元.(2)设购进B种商品m件,获得的利润为w元,则购进A种商品(1000﹣m)件,根据题意得:w=(30﹣20)(1000﹣m)+(100﹣80)m=10m+10000.∵A种商品的数量不少于B种商品数量的4倍,∴1000﹣m≥4m,解得:m≤200.∵在w=10m+10000中,k=10>0,∴w的值随m的增大而增大,∴当m=200时,w取最大值,最大值为10×200+10000=12000,∴当购进A种商品800件、B种商品200件时,销售利润最大,最大利润为12000元.【点评】本题考查了一次函数的应用、二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)找准等量关系,列出二元一次方程组;(2)根据数量关系,找出w与m之间的函数关系式.四、解答题(本大题共4小题,共36分.解答应写出文字说明、证明过程或演算步骤.)23.(8分)(2017•宁夏)将一副三角板Rt△ABD与Rt△ACB(其中∠ABD=90°,∠D=60°,∠ACB=90°,∠ABC=45°)如图摆放,Rt△ABD中∠D所对直角边与Rt交于点 E,分别连接△ACB斜边恰好重合.以AB为直径的圆经过点C,且与AD交于点EB,EC.(1)求证:EC平分∠AEB;(2)求的值.【分析】(1)由Rt△ACB中∠ABC=45°,得出∠BAC=∠ABC=45°,根据圆周角定理得出∠AEC=∠ABC,∠BEC=∠BAC,等量代换得出∠AEC=∠BEC,即EC平分∠AEB;(2)方法1、设AB与CE交于点M.根据角平分线的性质得出=.易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE=BE,那么==.作AF⊥CE于F,BG⊥CE于G.证明△AFM∽△BGM,根据相似三角形对应边成比例得出==,进而求出===.方法2、易求∠BAD=30°,由直径所对的圆周角是直角得出∠AEB=90°,解直角△ABE得到AE=BE,那么==,再用角平分线定理判断出CP=CQ,即可得出结论.【解答】(1)证明:∵Rt△ACB中,∠ACB=90°,∠ABC=45°,∴∠BAC=∠ABC=45°,∵∠AEC=∠ABC,∠BEC=∠BAC,∴∠AEC=∠BEC,即EC平分∠AEB;(2)解:如图,设AB与CE交于点M.∵EC平分∠AEB,∴=.在Rt△ABD中,∠ABD=90°,∠D=60°,∴∠BAD=30°,∵以AB为直径的圆经过点E,∴∠AEB=90°,∴tan∠BAE==,∴AE=BE,∴==.作AF⊥CE于F,BG⊥CE于G.在△AFM与△BGM中,∵∠AFM=∠BGM=90°,∠AMF=∠BMG,∴△AFM∽△BGM,∴==,∴===.方法2、如图1,在Rt△ABD中,∠ABD=90°,∠D=60°,∴∠BAD=30°,∵以AB为直径的圆经过点E,∴∠AEB=90°,∴tan∠BAE==,∴AE=BE,过点C作CP⊥AE于P,过点C作CQ⊥EB交延长线于Q,由(1)知,EC是∠AEB的角平分线,∴CP=CQ,∴===.【点评】本题考查了相似三角形的判定与性质,圆周角定理,锐角三角函数定义,通过作辅助线得出==是解题的关键.24.(8分)(2017•宁夏)直线y=kx+b与反比例函数y=(x>0)的图象分别交于点 A(m,3)和点B(6,n),与坐标轴分别交于点C和点D.于点(1)求直线AB的解析式;(2)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.【分析】(1)首先确定A、B两点坐标,再利用待定系数法即可解决问题;(2)分两种情形讨论求解即可.的图象分别交于点 A(m,【解答】解:(1)∵y=kx+b与反比例函数y=(x>0)的图象分别交于点3)和点B (6,n ), ∴m=2,n=1,∴A (2,3),B (6,1),则有,解得,∴直线AB 的解析式为y=﹣x +4(2)如图①当P A ⊥OD 时,∵P A ∥OC , ∴△ADP ∽△CDO ,此时p (2,0).②当APʹ⊥CD 时,易知△PʹDA ∽△CDO , ∵直线AB 的解析式为y=﹣x +4, ∴直线PʹA 的解析式为y=2x ﹣1, 令y=0,解得x=, ∴Pʹ(,0),综上所述,满足条件的点P 坐标为(2,0)或(,0).【点评】本题考查反比例函数综合题、本题考查反比例函数综合题、一次函数的性质、一次函数的性质、一次函数的性质、相似三角形的判定和性相似三角形的判定和性质等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会用分类讨论的思想思考问题,属于中考常考题型.25.(10分)(2017•宁夏)为确保广大居民家庭基本用水需求的同时鼓励家庭节约用水,对居民家庭每户每月用水量采用分档递增收费的方式,每户每月用水量不超过基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为对基本用水量进行决策,随机抽查2000户居民家庭每户每月用水量的数据,整理绘制出下面的统计表:用户每月用水量(m 3)32及其以下3334353637383940414243及其以上户数(户)20016018222421191017121110(1)为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为多少立方米?(2)若将(1)中确定的基本用水量及其以内的部分按每立方米1.8元交费,超过基本用水量的部分按每立方米2.5元交费.设x表示每户每月用水量(单位:m3),y表示每户每月应交水费(单位:元),求y与x的函数关系式;(3)某户家庭每月交水费是80.9元,请按以上收费方式计算该家庭当月用水量是多少立方米?【分析】(1)根据统计表可得出月均用水量不超过38立方米的居民户数占2000户的70%,由此即可得出结论;(2)分0≤x≤38及x>38两种情况,找出y与x的函数关系式;(3)求出当x=38时的y值,与80.9比较后可得出该家庭当月用水量超出38立方米,令y=2.5x﹣26.6=80.9求出x值即可.【解答】解:(1)200+160+180+220+240+210+190=1400(户),2000×70%=1400(户),∴基本用水量最低应确定为多38m 3.答:为确保70%的居民家庭每户每月的基本用水量需求,那么每户每月的基本用水量最低应确定为38立方米.(2)设x表示每户每月用水量(单位:m 3),y表示每户每月应交水费(单位:元),当0≤x≤38时,y=1.8x;。
宁夏中考数学试题及答案4.doc
2014年宁夏中考数学试题及答案第4页-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)第二节:说明文专题课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
宁夏2014中考数学真题试题(答案)
俯视图左视图主视图宁夏2014中考数学真题试题1.下列运算正确的是 ( )A .236a a a ⋅= B.326a a a =÷ C.235a a a += D.623)(a a =2.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是 ( )3.一元二次方程2210x x --=的解是 ( )A .121==x x B.211+=x ,212--=xC.211+=x ,212-=x D.211+-=x ,212--=x4.实数a b ,在数轴上的位置如图所示,以下说法正确的是 ( ) A . 0a b += B.b a < C.0ab > D. b a <5.已知两点111()P x y ,、222()Px y ,在函数xy 5=的图象上,当120x x >> 时,下列结论正确的是 ( )A .120y y << B. 210y y << C.120y y << D.210y y <<6.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是A .203525-=x x B. 203525+=x x C.x x 352025=- D. xx 352025=+ 7.如图是一个几何体的三视图,则这个几何体的侧面积是 ( )A .π102cm B.2π102cm C.π62cmD.π32cm一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) ( )二、填空题(每小题3分,共24分)AB CDE 第15题图8.已知a ≠0,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( )9.分解因式:y y x -2= .10.菱形ABCD 中,若对角线长AC =8cm, BD =6cm, 则边长AB = cm .11.下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数12.若52=-b a ,42=-b a , 则b a -的值为 .13.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸出小球的标号和等于6的概率是 .14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如下图,在四边形ABCD 中,AD BC ∥,AB =CD=2,BC =5,BAD ∠的平分线交BC 于点E ,且A E C D ∥,则四边形ABCD 的面积为 .16.如下图,将ABC △放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖ABC △,能够完全覆盖这个三角形的最小圆面的半径是 .17.(6分)得分 评卷人三、解答题(共24分)计算:|21|45sin 28)43(2---+--o18.(6分)化简求值:ba b a b a b b a a -+÷+--22)(,其中31-=a ,31+=b19.(6分)在平面直角坐标系中,ABC △的三个顶点坐标分别为A (-2,1),B (-4,5), C (-5,2). (1)画出△ABC 关于y 轴对称的△A 1B 1C 1; (2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2.20.(6分)在△ABC 中,AD 是BC 边上的高,∠C =45°,1sin 3B ,AD =1.求BC 的长.四、解答题(共48分)21.(6分)下图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气B 'O D CB A 质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数 ;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)在平行四边形ABCD 中,将△ABC 沿AC 对折,使点B 落在'B 处,A 'B ‘和CD 相交于点O . 求证:OA =OC .23.(8分)在等边△ABC 中,以BC 为直径的⊙O 与AB 交于点D ,DE ⊥AC ,垂足为点E . (1)求证:DE 为⊙O 的切线; (2)计算AECE.24.(8分)在平面直角坐标系中,已知反比例函数ky x的图象经过点A (1,3). (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是 否在此反比例函数的图象上,并说明理由.25.(10分)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x (0<x ≤80)表示下个月内每天售出的只数,y (单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如下图:PQBCA(1)求y 关于x 的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;计算该组内平均每天销售玫瑰花的只数. 26.(10分)在Rt ABC △中,∠C =90°,P 是BC 边上不同于B、C 的一动点,过P 作PQ ⊥AB ,垂足为Q ,连接AP . (1)试说明不论点P 在BC 边上何处时,都有△PBQ 与△ABC 相似; (2)若AC =3,BC =4,当BP 为何值时,△AQP 面积最大,并求出最大值;(3)在Rt ABC △中,两条直角边BC 、AC 满足关系式BC =λAC ,是否存在一个λ的值,使Rt △AQP 既与Rt △ACP 全等,也与Rt △BQP 全等.宁夏族回族自治区2014年初中毕业暨高中阶段招生考试数学试题参考答案及评分标准说明:1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2cm3cm 3cm宁夏回族自治区2014年初中毕业暨高中阶段招生考试 数 学 试 题1.下列运算正确的是 ( )A .236a a a ⋅= B.326a a a =÷ C.235a a a += D.623)(a a =2.已知不等式组⎩⎨⎧≥+>-0103x x ,其解集在数轴上表示正确的是 ( )3.一元二次方程2210x x --=的解是 ( )A .121==x x B.211+=x ,212--=xC.211+=x ,212-=x D.211+-=x ,212--=x4.实数a b ,在数轴上的位置如图所示,以下说法正确的是 ( ) A . 0a b += B.b a < C.0ab > D. b a <5.已知两点111()P x y ,、222()P x y ,在函数xy 5=的图象上,当120x x >> 时,下列结论正确的是 ( )A .120y y << B. 210y y << C.120y y << D.210y y <<6.甲种污水处理器处理25吨的污水与乙种污水处理器处理35吨的污水所用时间相同,已知乙种污水处理器每小时比甲种污水处理器多处理20吨的污水,求两种污水处理器的污水处理效率.设甲种污水处理器的污水处理效率为x 吨/小时,依题意列方程正确的是A .203525-=x x B. 203525+=x x C.xx 352025=- D. x x 352025=+ 7.如图是一个几何体的三视图,则这个几何体的侧面积是 ( )得分 评卷人一、选择题(下列每小题所给的四个答案中只有一个是正确的,每小题3分,共24分) 总分 一 二 三 四 复核人( )二、填空题(每小题3分,共24分) ABCDEA .π102cm B.2π102cm C.π62cm D.π32cm8.已知a ≠0,在同一直角坐标系中,函数ax y =与2ax y =的图象有可能是( )9.分解因式:y y x -2= .10.菱形ABCD 中,若对角线长AC =8cm, BD =6cm, 则边长AB = cm .11.下表是我区八个旅游景点6月份某日最高气温(℃)的统计结果.该日这八个旅游景点最高气温的中位数是 °C . 景点名称 影视城苏峪口沙湖沙坡头水洞沟须弥山六盘山 西夏王陵温度(°C )3230283228282432 12.若52=-b a ,42=-b a , 则b a -的值为 .13.在一个口袋中有4个完全相同的小球,把它们分别标号为1、2、3、4,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸出小球的标号和等于6的概率是 .14.服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利20%,则这款服装每件的进价是 元.15.如下图,在四边形ABCD 中,AD BC ∥,AB =CD =2,BC =5,BAD ∠的平分线交BC 于点E ,且AE CD ∥,则四边形ABCD 的面积为 .16.如下图,将ABC △放在每个小正方形的边长为1的网格中,点A 、B 、C 均落在格点上,用一个圆面去覆盖ABC △,能够完全覆盖这个三角形的最小圆面的半径是 .得分 评卷人得分评卷人17.(6分)计算:|21|45sin 28)43(2---+--o18.(6分)化简求值:ba b a b a b b a a -+÷+--22)(,其中31-=a ,31+=b三、解答题(共24分)19.(6分)在平面直角坐标系中,ABC△的三个顶点坐标分别为A(-2,1),B(-4,5), C(-5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.20.(6分)在△ABC中,AD是BC边上的高,∠C=45°,1sin3B ,AD=1.求BC的长.得分得分得分评卷人B 'ODCBA四、解答题(共48分)21.(6分)下图是银川市6月1日至15日的空气质量指数趋势折线统计图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染.某人随机选择6月1日至6月14日中的某一天到达银川,共停留2天.(1)求此人到达当天空气质量优良的天数 ;(2)求此人在银川停留2天期间只有一天空气质量是重度污染的概率;(3)由折线统计图判断从哪天开始连续三天的空气质量指数方差最大(只写结论).22.(6分)在平行四边形ABCD 中,将△ABC 沿AC 对折,使点B 落在'B 处,A 'B ‘和CD 相交于点O . 求证:OA =OC .得分23.(8分)在等边△ABC 中,以BC 为直径的⊙O 与AB 交于点D ,DE ⊥AC ,垂足为点E . (1)求证:DE 为⊙O 的切线; (2)计算AECE.24.(8分)在平面直角坐标系中,已知反比例函数ky x的图象经过点A (1,3). (1)试确定此反比例函数的解析式;(2)点O 是坐标原点,将线段OA 绕O 点顺时针旋转30°得到线段OB ,判断点B 是 否在此反比例函数的图象上,并说明理由.得分25.(10分)某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x(0<x≤80)表示下个月内每天售出的只数,y(单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如下图:(1)求y关于x的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;销售量/只707274757779天数123432计算该组内平均每天销售玫瑰花的只数.PQBCA26.(10分)在Rt ABC △中,∠C =90°,P 是BC 边上不同于B 、C 的一动点,过P 作PQ ⊥AB ,垂足为Q ,连接AP . (1)试说明不论点P 在BC 边上何处时,都有△PBQ 与△ABC 相似; (2)若AC =3,BC =4,当BP 为何值时,△AQP 面积最大,并求出最大值;(3)在Rt ABC △中,两条直角边BC 、AC 满足关系式BC =λAC ,是否存在一个λ的值,使Rt △AQP 既与Rt △ACP 全等,也与Rt △BQP 全等.宁夏族回族自治区2014年初中毕业暨高中阶段招生考试数学试题参考答案及评分标准说明:1. 除本参考答案外,其它正确解法可根据评分标准相应给分。
2. 涉及计算的题,允许合理省略非关键步骤。
3. 以下解答中右端所注的分数,表示考生正确做到这步应得的累计分。
一、选择题(3分×8=24分)二、填空题(3分×8=24分)9. )1)(1(-+x x y ; 10. 5; 11. 29; 12. 3; 13.163; 14. 200; 15. 34; 16. 5 . 三.解答题(共24分) 17.解:|21|45sin 28)43(2---+--o=916+22-2-(2-1)-------------------------------------------------------------------------4分 =925------------------------------------------------------------------------------------------------------6分18.(6分)解:b a b a b a b b a a -+÷+--22)( =b a b a b a b a b a b b a a -+÷+---+22))(()()(=))((22b a b a b a +-+22b a ba +-⨯=ba +1-----------------------------------------------------------------------------------------------5分当31-=a ,31+=b 时,原式=21-----------------------------------------------------6分题号 1 2 3 4 5 6 7 8 答案DBCDABAC19.如下图,(1)画图正确----------------------------------------------------------------------3分(2)画图正确----------------------------------------------------------------------6分-6-5-4-3-2-1C 2B 2A 26-6xy7654321-5-4-3-2-154321OABCA 1C 1B 120.解:在Rt△ABD 中 ∵ 1sin 3AD B AB ==, 又AD=1 ∴AB =3------------------------------------------------------------------------------------------------- -2分∵ 222AD AB BD -= ∴ 223122BD =-=.-------------------------------------4分在Rt△ADC 中 ∵∠C =45°, ∴ CD =AD =1.∴ BC =DC BD +=22+1---------------------------------------------------------------------------6分四、解答题(共48分)21.解:(1)此人到达当天空气质量优良的有:第1天、第2天、第3天、第7天、第12天,共5天---------------------------------------------------------------------------------------------------2分(2).此人在银川停留两天的空气质量指数是:(86,25),(25,57), (57,143),(143,220),(220,158),(158,40),(40,217),(217,160),(160,128),(128,167),(167,75),(75,106),(106,180),(180,175)共14个停留时间段,期间只有一天空气质量重度污染的有:第4天到、第5天到、第7天到及第8天到. 因此,P (在银川停留期间只有一天空气质量重度污染)=72144=-----------------------------4分 (3)从第5天开始的第5天、第6天、第7天连续三天的空气质量指数方差最大-----6分 22.证法一:∵ △A 'B C 是由△ABC 沿AC 对折得到的图形∴∠BAC =∠'B AC--------------------------------------------------------------------------------------2分在平行四边形ABCD 中 ∵ AB ∥CD ∴ ∠BAC =∠DCA--------------------------------4分∴ ∠DCA =∠'B AC ∴ OA =OC--------------------------------------------------------------------6分 证法二:∵ 四边形ABCD 是平行四边形 ∴ AD =BC ,∠D =∠B又△A 'B C 是由△ABC 沿AC 对折得到的图形∴ BC = B ’C ,∠B =∠B’ ---------------------------------------------------------------------------2分∴ AD = B ’C , ∠D =∠B’ 又 ∠AOD =∠COB ’ ∴ △AOD ≌△COB ’∴OA =OC -------------------------------------------------------------------------------------------------6分23.证明:(1) 连接OD ,∵ △ABC 为等边三角形 ∴ ∠ABC =60°又∵ OD =OB ∴ △OBD 为等边三角形∴ ∠BOD = 60°=∠ACB∴ OD ∥AC---------------------------------------------------------------2分又∵ DE ⊥AC ∴ ∠ODE =∠AED =90°∴ DE 为⊙O 的切线----------------------------------------------------4分(2)连接CD ,∵ BC 为⊙O 的直径 ∴ ∠BDC =90°又∵ △ABC 为等边三角形 ∴ AD =BD =AB 21---------6分 在Rt △AED 中, ∠A =60° ∴ ∠ADE =30°∴ AE =AC AB AD 414121==, 4341=-=AC AC EC ∴ 3=AECE ---------------------------------------------------------------8分 24.解:(1) 由题意得 13k =. 即3=k . ∴ 反比例函数的解析式为x y 3=.-------------------------------------------------------3分 (2)过点A 作x 轴的垂线交x 轴于点C .在Rt △AOC 中,OC =1,AC =3.由勾股定理,得 222OA OC AC =+=, ∠AOC =60°过点B 作x 轴的垂线交x 轴于点D .由题意,30AOB ∠=︒,2OB OA == ∴ ∠BOD =30°在Rt △BOD 中,可得 BD =1, OD =3.∴ B 点坐标为(3,1) ---------------------------------------------------------------------------6分将3=x 代入xy 3=中,y =1 ∴点B (3,1)在反比例函数x y 3=的图象上--------------------------------------------------8分 25.解:(1)⨯--=)80(5x x y 3=2408-x (0<x ≤80)----------------------------2分(2)根据题意,得 2408-x <320解得,x <70------------------------------------------------------------4分表明玫瑰花的售出量小于70只时的利润小于320元,则50≤x <60的天数为:0.1×30=3(天)60≤x <70的天数为:0.2×30=6(天)∴利润少于320元的天数为 3+6=9(天)-------------------------------------------------------7分(3)该组内平均每天销售玫瑰:75+152432403)1(2)3(15⨯+⨯+⨯+⨯-+⨯-+⨯- =75(只)--------------------------------------------------------------------------------------------10分26.解:(1)不论点P 在BC 边上何处时,都有∠PQB =∠C =90° ∠B =∠B∴ △PBQ ∽△ABC-------------------------------------------------------------------------------------2分(2) 设BP =x (0<x <4),由勾股定理,得 AB =5∵ △PBQ ∽△ABC ∴ AB PB BC QB AC PQ ==,即 543x QB PQ ==∴ x PQ 53= x QB 54=-------------------------------------------------4分 S △APQ =AQ PQ ⨯21 =x x 232562+----------------------------------------------------------6分 =3275)825(2562+--x ∴当425=x 时,△APQ 的面积最大,最大值是3275-------------------------------------------8分 (3)存在.∵ Rt △AQP ≌ Rt △ACP ∴ AQ = AC又Rt △AQP ≌Rt △BQP ∴ AQ =Q B∴ AQ =Q B =AC在Rt ABC △中,由勾股定理,得 222AC AB BC -=∴ BC =3AC∴ λ=3时,Rt △AQP 既与Rt △ACP 全等,也与Rt △BQP 全等-----------------------10分。