国家公务员考试:拉灯问题升级版之三集合容斥原理型.doc
2019国家公务员考试行测数量关系中的三者容斥
2019国家公务员考试行测数量关系中的三者容斥容斥问题是行测数量关系题型中的高频考点,在考试中经常出现。
对于三者容斥问题,看似简单,同学们在做题时却经常犯错误,究其原因,是对于三者容斥类题型的解题方法没有深入理解,只是一味的记公式,导致遇到一些变形题时容易解错。
下面专家就考试中经常出现的三者容斥问题进行详细的讲解。
三者容斥问题的常用公式A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C解决三者容斥问题,需要把握住此核心公式,但是,只是一味的记住核心公式是不够的,要应对一些变形题目,还需从解题原则入手,才能灵活掌握三者容斥问题的解题方法。
重复区域变一层容斥是一种计数问题,计数时要做到不重不漏,需要将图形中的重复区域变为一层。
【例1.】实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、球)的与否。
结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的33人,三种球都喜欢的有12人。
篮球和排球都喜欢的多少人?【答案】22人【中公解析】根据前面所述公式:58+68+62-45-33-篮球和排球都喜欢+12=100人,故喜欢篮球和排球的人有22人。
【例2】某公司组织运动会,据统计,参加百米跑项目的有86人,参加跳高项目的有65人,参加拔河项目的有104人。
其中,至少参加两种项目的人数有73人,三项都参加的有32人。
则该公司参赛的运动员有( )人。
A.89B.121C.150D.185【答案】C【中公解析】设参加百米跑、跳高、拔河项目的运动员分别构成集合A、B、C,根据三集合容斥问题公式A∪B∪C=A+B+C-A∩B-B∩C-A∩C+A∩B∩C,A∩B+B∩C+A∩C=73+2×32=137,A∩B∩C=32,则A∪B∪C=86+65+104-137+32=150(人)。
考公务员的容斥问题
容斥原理基本解题思路:1.容斥原理公式法,适用于“条件与问题”都可直接代入公式的题目。
两个集合:|A∪B|=|A|+|B|-|A∩B|三个集合:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|B∩C|-|C∩A|+|A∩B∩C|2.文氏图示意法,条件或者所求不完全能用上述两个公式表示时,利用文氏图来解决。
一、两集合标准型两集合标准型核心公式满足条件I的个数+满足条件Ⅱ的个数-两者都满足的个数=总个数-两者都不满足的个数【例1】(国家2006一类-42)现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人?()A. 27B. 25C. 19D. 10[答案]B[解析]根据公式“物理实验做正确人数+化学实验做正确人数-两种实验都做正确人数=总人数-两种实验都做错人数”可得:40+31-x=50-4,解得x=25。
【例2】(广东2006上-11)一个俱乐部,会下象棋的有69人,会下围棋的有58人,两种棋都不会下的有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?()A. 109人B. 115人C. 127人D. 139人[答案]A[解析]根据公式“会下象棋人数+会下围棋人数-两种都会下人数=总人数-两种都不会下人数”可得:69+58-30=x-12,解得x=109。
【例3】(北京社招2007-18)电视台向100人调查昨天收看电视情况,有62人看过2频道,34人看过8频道,11人两个频道都看过。
问两个频道都没有看过的有多少人?()A. 4B. 15C. 17D. 28[答案]B[解析]根据公式“看过2频道人数+看过8频道人数-两个频道都看过人数=总人数-两个频道都没有看过人数”可得:62+34-11=100-x,解得x=15。
【例4】(广东2008-13)60个人上身着白上衣或黑上衣,下身着蓝裤子或黑裤子。
三集合容斥原理问题
行测数学运算技巧:三集合容斥原理问题的解决方法容斥原理类型是目前国家、各地区公务员考试数学运算的“常客”题型,对于大部分应试者来说,还是比较头痛的一种类型。
这里我们介绍一下三集合容斥原理问题的解决方法。
1、三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C2、三个集合的容斥关系(三元)例题:假设有100人参加了三个兴趣小组。
其中参加数学兴趣小组的有55人,参加语文兴趣小组的有65人,参加英语兴趣小组的有70人,同时参加语文和数学兴趣小组的人数是31人,同时参加数学和英语兴趣小组的人数是40人,同时参加语文和英语兴趣小组的有25人,则三个兴趣小组都参加的人数是多少人?(1) A+B+T=至少参与一项的总人数(无重叠)(2) A+2B+3T=至少参与一项的总人数(含重叠部分)(3) B+3T=至少参与两项的总人数(含重叠)(4) T三项都参与的人数。
这里介绍一下A、B、T分别是什么A=x+y+z;表示只参加一个兴趣小组的人数,在图中反应的区域就是每个圆圈互不重叠的部分。
B=a+b+c;表示仅参加了两个兴趣兴趣小组的人数,是图中两两相交的部分总和(不含中间的T区域)T=全部都参加的人数。
也就是图形当中最中间的部分T。
例题通过公式有如下解法:(1) A+B+T=100;(2) A+2B+3T=55+65+70=190(3) B+3T=31+40+25=96实际上我们要求的是T, (1)+(3)-(2)=T。
即得到答案T=100+96-190=63、三元容斥公式应用实例三元容斥涉及的对象比较多。
我们通常建议考生根据不同提问情况区别对待。
本小节先对一般情况的题目做一些分析。
例:如图所示,X、Y、Z分别是面积为64、180、160的三个不同形状的纸片,覆盖住桌面的总面积是290,其中X与Y、Y与Z、Z与X重叠部分的面积依次是24、70、36,那么阴影部分的面积是:【09国考】A.15B.16C.14D.18【解析】参考答案为B。
公务员考试数量关系之三集合容斥问题
公务员考试数量关系之三集合容斥问题在最近几年的公务员考试中,考察了相关的三集合容斥问题,对于这样的一个问题,华图教研中心提醒你,在复习三集合容斥问题时一定不能停留在表面,一定要从实质上理解它,因为现在在考察容斥问题时,考的比较细致。
但是题目难度并不是很大,只要能够掌握它的实质,熟练运用我们的解题方法,那么这种问题肯定能够轻松应对。
一浅识三集合容斥问题对于三集合容斥问题,一定要弄清楚它题目的关键词语及问法。
A+B+C-AB-AC-BC-ABC=总数-三个条件都不满足的情形A+B+C-满足两个条件-2满足三个条件=总数-三个条件都不满足的情形二真题回放1.某公司招聘员工,按规定每人至多可投考两个职位,结果共42人报名,甲、乙、丙三个职位报名人数分别是22人、16人、25人,其中同时报甲、乙职位的人数为8人,同时报甲、丙职位的人数为6人,那么同时报乙、丙职位的人数为:A. 7人B. 8人C. 5人D. 6人【华图解析】根据题意,“按规定每人至多可投考两个职位”则表明这次招聘中不存在有人报考三个职位的情形,共有42人报名,也表明不存在一个人是三个职位都不报考的情形。
故可以直接代入三集合的标准形公式即可。
22+16+25-8-6-x=42 x=7,故选择A选项。
2.某通讯公司对3542个上网客户的上网方式进行调查,其中1258个客户使用手机上网,1852个客户使用有线网络上网,932个客户使用无线网络上网。
如果使用不只一种上网方式的有352个客户,那么三种上网方式都使用的客户有多少个?()A. 148B. 248C. 350D. 500【华图解析】设三种上网方式都使用的客户有x个,则使用两种上网方式的就有352-x,根据三集合容斥问题的公式,可以得到 1258+1852+932-(352-x)—2x=3542 解得x=148 故答案选择A3. 某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。
国考:公式法解容斥问题(三集合标准型)
国考:公式法解容斥问题(三集合标准型)河北公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。
河北华图教育精心整理了河北公务员行测真题及其他公务员笔试资料供考生备考学习。
在行测考试当中,有一类问题叫做容斥问题。
什么题目我们归结为容斥问题呢?一般情况下,有符合A,有符合B,有符合AB,有AB都不符合等这一类题干,我们就把他归结为容斥问题。
容斥问题可以分为二集合容斥和三集合容斥。
解题思路有画图法和公式法。
一般情况下,只要我们能牢牢地背会相关公式,考试的时候就能很快的做出答案,节省考试时间。
今天我们一起来看一下三集合容斥标准型公式。
三集合容斥标准型公式:A+B+C-AB-BC-AC+ABC=总数-都不符合。
下面我们一起来看寄到容斥问题的例题:【例】(2009-国家-81)如图所示,X、Y、Z 分别是面积为64、180、160 的三张不同形状的纸片。
它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。
且X 与Y、Y 与Z、Z 与X 重叠部分面积分别为24、70、36。
问阴影部分的面积是多少?()A.15B.16C.14D.18【解析】此题为容斥原理问题,根据三集合容斥标准型公式:A+B+C-AB-BC-AC+ABC=总数-都不符合。
根据题意,设阴影部分为x,列方程有:290=64+180+160-24-70-36+x,解得x=16。
选择B。
由此可见,如果能够熟练地记住公式,其实这类问题我们完全可以在1分钟以内做出来的。
我们再来看一道例题:【例】对39 种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有17 种,含乙的有18 种,含丙的有15 种,含甲、乙的有7 种,含甲、丙的有6种,含乙、丙的有9 种,三种维生素都不含的有7 种,则三种维生素都含的有多少种?()A.4B.6C.7D.9【解析】根据题意列方程:17+18+15-7-6-9+7=39-x,解出x=4。
国考:公式法解容斥问题(三集合非标准型)
国考:公式法解容斥问题(三集合非标准型)河北公务员考试的《行测职业能力测验》包括五大部分内容:言语理解与表达、数量关系、判断推理、常识判断和资料分析,主要考察考生是否具有从事公务员职业必须具备的基本素质和潜在能力。
河北华图教育精心整理了河北公务员行测真题及其他公务员笔试资料供考生备考学习。
在行测考试当中,有一类问题叫做容斥问题。
什么题目我们归结为容斥问题呢?一般情况下,有符合A,有符合B,有符合AB,有AB都不符合等这一类题干,我们就把他归结为容斥问题。
容斥问题可以分为二集合容斥和三集合容斥。
解题思路有画图法和公式法。
一般情况下,只要我们能牢牢地背会相关公式,考试的时候就能很快的做出答案,节省考试时间。
今天我们一起来看一下三集合容斥非标准型公式。
三集合容斥非标准型公式:A+B+C-只满足两个条件-只满足三个条件=总数-都不符合。
下面我们一起来看寄到容斥问题的例题:【例】(2012-河北-43)某乡镇对集贸市场36 种食品进行检查,发现超过保质期的7种,防腐添加剂不合格的9种,产品外包装标识不规范的6种。
其中,两项同时不合格的5种,三项同时不合格的2种。
问三项全部合格的食品有多少种?()A.14B.21C.23D.32【解析】此题为容斥原理问题,根据三集合容斥标准型公式:A+B+C-只满足两个条件-只满足三个条件=总数-都不符合。
根据容斥原理,不合格的产品共有7+9+6-5-2×2=13(种),合格产品有36-13=23(种),选择C。
由此可见,如果能够熟练地记住公式,其实这类问题我们完全可以在1分钟以内做出来的。
我们再来看一道例题:【例】(2011-国家-74)某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。
则三项全部合格的建筑防水卷材产品有多少种?()A.37B.36C.35D.34【解析】套用三集合容斥非标准型公式:不合格产品=8+10+9-7-2×1=18,即不合格的产品共18 种,则合格产品的数量=52-18=34。
2016年公务员考试行测数量关系拉灯问题
2016年公务员考试行测数量关系拉灯问题在公务员行测考试中,拉灯问题是困惑很多考生的难题,特别是当灯的总数量比较大的时候,如何来确定最终亮着的或灭掉的灯的数量是此类问题的关键。
1、初等拉灯问题——倍数、约数例1:走廊里有10盏电灯,从1到10编号,开始时电灯全部关闭。
有10个学生依次通过走廊,第1个学生把所有的灯绳都拉了一下,第2个学生把2的倍数号的灯绳都拉了一下,第3个学生把3的倍数号的灯绳都拉了一下……第10个学生把第10号灯的灯绳拉了一下。
假定每拉动一次灯绳,该灯的亮与不亮就改变一次。
试判定:当这10个学生通过走廊后,走廊里有多少盏灯是亮的?A.2B.3C.4D.5【解析】(1)原来电灯全部关闭,拉一下,亮着;拉两下,灭了;拉三下,亮着。
因此,灯绳被拉动奇数次的灯亮着。
(2)可从最简单的情况考虑,把拉过某号的学生号码写出来寻找规律,如1号是第1个学生拉过,4是1,2,4号拉过,6是1,2,3,4号学生拉过,10是1,2,5,10号学生拉过,也就是第i号灯的灯绳被拉的次数就是i的所有约数的个数。
由自然数因数分解的性质知,只有当i是平方数时,i的约数的个数才是奇数,所以只有1,4,9号灯亮着。
本题答案:1,4,9号灯亮着,共有3盏灯。
选B。
总结:此类拉灯问题比较简单,假如把数字扩大看起来会很麻烦,但思路还是相同的,在做题是要擅长归纳总结,提炼出基本模型。
2、拉登难题——三集合容斥原理型例2:有1000盏亮着的灯,各有一个拉线开关控制着。
现按其顺序编号为1、2、3、4、5······1000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的电灯有多少盏?A.468B.499C.501D.532【解析】(1) 原来电灯亮着,拉一下,灭了;拉两下,亮着;拉三下,灭了。
因此,灯绳被拉动奇数次的灯灭了。
国考行测容斥原理解题技巧
二、 三集合类型
国考行测容斥原理解题技巧
在行测考试中,容斥原理题令很多考生头疼不已,因为容斥原理题看起来复杂多变,让考生 一时找不着头绪。 但该题型还是有着非常明显的内在规律, 只要考生能够掌握该题型的内在 规律,看似复杂的问题就能迎刃而解,下面就该题型分两种情况进行剖析,相信能够给考生 带来一定的帮助。
一、 两集合类型
1、 解题技巧 题目中所涉及的事物属于两集合时, 容斥原理适用于条件与问题都可以直接代入公式的题目, 公式如下: A B A B A B . 快速解题技巧:总数=两集合数之和+两集合之外数-两集合公共数 2、 真题示例 【例1】 现有 50 名学生都做物理、化学实验,如果做物理实验正确的有 40 人,化学实 验做正确的有 31 人,两种实验都做错的有 4 人,则两种实验都做对的有( ) 人 A、27 人 B、25 人 C、19 人 D、10 人 【答案】B 【解析】直接代入公式为:50=40+31+4-A ∩B 解得 A B 25 ,所以答案为 B 。 【注】这里应设 A =物理实验做正确的人数,B =化学实验做正确的人数,U=做物理、化学实 验的人数,则 A=40,B=31,U=50, A B 4 ,
U=A+B+A B-A BAU NhomakorabeaB
【例2】
某服装厂生产出来的一批衬衫大号和小号各占一半,其中 25%是白色的,75%是 蓝色的。如果这批衬衫共有 100 件,其中大号白色衬衫有 10 件,小号蓝色衬衫 有多少件?( ) A、15 B 、25 C 、35 D、40 【答案】C 【解析】这是一种新题型,该种题型直接从求解出发,本题设小号和蓝色分别为 A、B,小 号占 50%,蓝色占 75%,直接代入公式为: 100=50+75+10-A B , 解得, A B=35 。
国考行测三集合容斥原理
国考行测三集合容斥原理
集合容斥原理是组合数学中的一种常用原理,常用于解决集合问题。
在国家公务员考试中,行测部分经常涉及与集合相关的题目,而集合容斥原理则是解决这类问题的一种有效方法。
集合容斥原理描述了多个集合之间的差集和交集的关系。
具体来说,对于给定的n个集合A1、A2、...、An,集合容斥原理
可以帮助我们计算出这些集合的并集的元素个数。
集合容斥原理的公式为:
|A1 ∪ A2 ∪ ... ∪ An| = |A1| + |A2| + ... + |An| - |A1 ∩ A2| - |A1
∩ A3| - ... + (-1)^n-1 |A1 ∩ A2 ∩ ... ∩ An|
其中,|A|表示集合A的元素个数。
在国考行测中,集合容斥原理常常可以用于解决关于人员分组、选修课程、考试通过等问题。
通过运用集合容斥原理,我们可以得到相应的计算式,从而求得准确的答案。
需要注意的是,在实际运用中,对于给定的具体问题,我们需要根据情况决定要包含哪些集合以及如何计算交集和差集。
并且,根据具体情况,可能需要结合其他的解题方法进行综合运用。
总的来说,集合容斥原理在国考行测中是一种非常有用的解题方法,能够帮助我们清晰地分析问题,准确地求解答案。
因此,对集合容斥原理的理解和掌握对于国考行测的备考非常重要。
行测备考三集合容斥非标准公式原理
行测备考三集合容斥非标准公式原理容斥原理一直都是各省行测考试的重点,尤其是三集合容斥原理,屡出不穷。
这次,小编带领大家一起来好好的看看目前的有关三集合容斥原理的题型概况和通用思路。
三集合容斥原理按题型可以分为两种题型,一种为标准型公式,另一种为变异型公式,接下来,我们就着重看看三集合容斥原理的解题方法1.解题步骤涉及三个事件的集合,解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表的含义,填充各部分的数字;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。
2.解题技巧三集合类型题的解题技巧主要包括一个计算公式和文氏图。
公式:总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数【例1】(陕西2015)针对100名旅游爱好者进行调查发现,28人喜欢泰山,30人喜欢华山,42人喜欢黄山,8人既喜欢黄山又喜欢华山,10人既喜欢泰山又喜欢黄山,5人既喜欢华山又喜欢黄山,3人喜欢这三个景点,则不喜欢这三个景点中任何一个的有()人。
A.20B.18C.17D.15【解析】可以用上述公式,我们将数据逐个代入可得:28+30+42-8-10-5+3=100-x,其中x为我们要求的量,求得x=20,答案选择A。
【例2】(国家2015)某企业调查用户从网络获取信息的习惯,问卷回收率为90%。
调查对象中有179人使用搜索引擎获取信息,146人从官方网站获取信息,246人从社交网络获取信息,同时使用这三种方式的有115人,使用其中两种的有24人,另有52人这三种方式都不使用,问这次调查共发出了多少份问卷?()A.310B.360C.390D.410【解析】由于题目中出现了“使用其中两种的有24人”,故我们要使用的就是三集合的变异型公式,如下列式:179+146+246-1×24-2×115=x-52,此时,我们分析一下可以看出,我们所求的x为收回的问卷数量,而题目所求为发出的问卷,明显所求非所问,但是题目中有个条件为“问卷回收率为90%”,故我们将所求的x÷90%即所求的答案,通过列式可得x=369,故发出的问卷为369÷90%=410,故选D。
国家公务员行测集合问题
国家公务员行测集合问题集合问题也称容斥原理,是出题频率最高的题型之一。
本类试题基本解题思路如下:1.利用集合原理公式法:适用于条件与问题都可直接代入公式的题目。
(1)两个集合:︱A∪B︱=︱A︱+︱B︱-︱A∩B︱(2)三个集合:︱A∪B∪C︱=︱A︱+︱B︱+︱C︱-︱A∩B︱-︱B∩C︱-︱C∩A︱+︱A∩B∩C︱2.文氏图示意法:用图形来表示集合关系,变抽象文字为形象图示。
真题一:某服装厂生产出来的一批衬衫中大号和小号各占一半。
其中25%是白色,75%是蓝色的。
如果这批衬衫总共有100件,其中大号白色衬衫有10件,问小号蓝色衬衫有多少件?()A.15B.25C.35D.40【解析】C。
由题中可知大号衬衫、小号衬衫各50件,白色衬衫共25件,蓝色衬衫共75件。
题中已告诉大号白色衬衫有10件,可知大号蓝色衬衫有50-10=40件,则剩余的蓝色衬衫全是小号的,共75-40=35(件)。
真题二:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是()。
A.22B.18C.28D.26【解析】A。
本题采用图示法更为简单。
如图:故两次都及格的人数为32-4-4-2=22人。
真题三:某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都及格的有22人,那么两次考试都没有及格的人数是()。
A.10B.4C.6D.8【解析】B。
两次考试都没有及格的人数=学生总数-两次都及格的人数-第一次未及格的人数-第二次未及格的人数=32-22-[32-22-(32-26)]-[32-22-(32-24)]=32-22-6=4。
真题四:对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有()。
国考笔试资料数量关系之容斥问题
行测高频考点技巧荟萃第6期:数量关系之容斥问题在公务员、政法干警、选调生等行测考试中会经常考察到容斥问题,所以考生一定要给予重视。
通常情况下容斥问题的解题思路都是比较清晰且简单的,只要经过一段时间的复习,解容斥问题的正确率一定会有所提高哦数量关系容斥问题知识点储备一、考情分析容斥问题在最近几年的国家公务员考试中出现的频率逐渐增大,尤其是最近两年国家公务员中都有出现。
难度也逐渐增大,不再拘泥于最常规的两个集合和三个集合的考查方式。
在各省市的公务员考试中,容斥问题仍然出现活跃。
因此,这一题型还是需要重点关注。
二、基本概念涉及多个相互关联的集合,要求根据集合间的相互关系计算集合中元素个数的问题称为“容斥原理”问题。
三、技巧方法(一)公式法解两个集合容斥问题两个集合的容斥问题公式:A∪B=A+B-A∩B三个集合的容斥问题公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C一、考情分析容斥问题在最近几年的国家公务员考试中出现的频率逐渐增大,尤其是最近两年都有出现。
难度也逐渐增大,不再拘泥于最常规的两个集合和三个集合的考查方式。
在各省市的公务员考试中,容斥问题仍然出现活跃。
因此,这一题型还是需要重点关注。
二、基本概念涉及多个相互关联的集合,要求根据集合间的相互关系计算集合中元素个数的问题称为“容斥原理”问题。
三、技巧方法(一)公式法解两个集合容斥问题两个集合的容斥问题公式:A∪B=A+B-A∩B三个集合的容斥问题公式:A∪B∪C=A+B+C-A∩B-B∩C-C∩A+A∩B∩C(二)文氏图法解两个集合容斥问题四、例题精讲例题1:某班有56人,每人至少参加一个兴趣小组,参加生物组的有46人,参加科技组的有28人,两组都参加的有多少人?A.10B.18C.24D.30解析:集合A={参加生物组的人}、集合B={参加科技组的人},由A∪B=A+B-A∩B知两组都参加的有A∩B=46+28-56=18人。
巧用公式秒解容斥原理题型-2023国家公务员考试行测解题技巧
巧用公式秒解容斥原理题型-2023国家公务员考试行测解题技巧在行测考试中,数量关系科目有许多的解题技巧、方法和公式。
尤其是利用公式法解题,只需大家把握公式,考试时直接套用公式,就可以快速精确地解题。
比如数量关系中常考的一种题型容斥原理,就可以用公式法解题。
今日我们就一起来学习一下用公式法解决三集合容斥原理的题目。
三集合容斥原理分成标准型和非标准型两种:1、三集合标准型容斥原理公式为:满意条件1的个数+满意条件2的个数+满意条件3的个数-满意条件1和2的个数-满意条件1和3的个数-满意条件2和3的个数+三者都满意的个数=总个数-三者都不满意的个数;2、三集合非标准型容斥原理公式为:满意条件1的个数+满意条件2的个数+满意条件3的个数-“只”满意两个条件的个数-2×三者都满意的个数=总个数-三者都不满意的个数。
那么下面我们一起看几个例题,应用一下公式法去求解三集合容斥原理。
【例1】某机关开展红色教育月活动,三个时间段分别支配了三场讲座。
该机关共有139人,有42人报名参与第一场讲座,51人报名参与其次场讲座,88人报名参与第三场讲座,三场讲座都报名的有12人,只报名参与两场讲座的有30人。
问没有报名参与其中任何一场讲座的有多少人?A.12B.14C.24D.28答案:A【解析】第一步,本题考查容斥原理,用公式法解题。
其次步,设没有报名参与其中任何一场讲座的有x人。
依据三集合非标准型容斥原理公式,可列方程42+51+88-30-2×12=139-x,解得x=12。
(或者使用尾数法解题)因此,选择A选项。
【例2】某班参与学科竞赛人数40人,其中参与数学竞赛的有22人,参与物理竞赛的有27人,参与化学竞赛的有25人,只参与两科竞赛的有24人,参与三科竞赛的有多少人?A.2B.3C.5D.7答案:C【解析】第一步,本题考查容斥问题,属于三集合容斥类,用公式法解题。
其次步,设参与三科竞赛的有x人,依据三集合非标准型容斥原理公式可列方程:40-0=22+27+25-24-2x,解得x=5。
国考行测数学运算中的集合容斥问题
国考行测数学运算中的集合容斥问题三集合容斥问题主要有以下三种题型:1、三集合标准型核心公式2、三集合图示标数型(文氏图或者叫做韦恩图法)a.特别注意“满足某条件”和“只满足某条件”的区别;b.特别注意有没有“三个条件都不满足的情形”;3、三集合整体重复型核心公式三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。
特别当题目中说明分别满足一种、两种、三种条件的个数时,使用整体重复型公式。
并且,三集合整体重复型公式是现在国家公务员考试考查三集合容斥问题的重点。
另外,可利用尾数法进行快速求解。
原理:在三集合题型中,假设满足三个条件的元素数量分别时A、B和C,而至少满足三个条件之一的元素的总量为W。
其中,满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,根据右图可以得到下满两个等式:W=x+y+zA+B+C=x×1+y×2+z×3通过几个例题阐述三集合容斥的相关内容:由题意我们有 27=8+3+6+2+2+1+X, 解得X=5。
【例3】某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。
问接受调查的学生共有多少人?( ) A.120 B.144 C.177 D.192 【解析】根据题意,分别已知两种条件、三种条件都满足的个数,设所有准备参加考试的学生人数为W,只准备参加一门考试的学生人数为X。
使用三集合整体重复型公式:W=X+46+24 63+89+47=X+2×46+3×24根据尾数法,解得x尾数是5,W尾数是5。
因此,学生总数=W+15,尾数为0,选A。
【例4】某市对52种建筑防水卷材产品进行质量抽检,其中有8种产品的低温柔度不合格,10种产品的可溶物含量不达标,9种产品的接缝剪切性能不合格,同时两项不合格的有7种,有1种产品这三项都不合格。
公务员考试三集合整体重复型公式巧解容斥原理问题
三集合整体重复型公式巧解容斥原理问题2011-03-21对于容斥原理类的题目,近年来在公务员行政职业能力测验中考的不少。
纵观历年真题,我们可以发现:2006年国家公务员考试考了一道三集合图示标数型;2007年国家公务员考试考了两道两集合型题目;2009年国家公务员考试考了一道三集合的题目,可以直接套用三集合标准型核心公式;2010年和2011年国家公务员考试连续两年考了三集合整体重复型。
因此,熟练掌握三集合整体重复型公式成为了做题关键。
一、介绍三集合整体重复型核心公式在三集合题型中,假设满足三个条件的元素数量分别是A、B和C,而至少满足三个条件之一的元素的总量为W。
其中,满足一个条件的元素数量为x,满足两个条件的元素数量为y,满足三个条件的元素数量为z,根据下图可以得到以下两个等式:W=x+y+zA+B+C=x×1+y×2+z×3二、典型的三集合整体重复型的题目讲解例1、某班有35个学生,每个学生至少参加英语小组、语文小组、数学小组中的一个课外活动。
现已知参加英语小组的有17人,参加语文小组的有30人,参加数学小组的有13人。
如果有5个学生三个小组全参加了,问有多少个学生只参加了一个小组?(2004年浙江公务员考试行测第20题)A. 15人B.16人C.17人D.18人【答案】A解析:此题有两种解法可以解出:解一:如图,分别设只参加英语和语文、英语和数学、语文和数学小组的人为x、y、z,则只参加英语小组的人为17-5-x-y,只参加语文小组的人有30-5-x-z,只参加数学小组的人有13-5-y-z,则只参加三个小组中的一个小组的人和只参加其中两个小组的人和三个小组都参加的人的总和为总人数,即17-5-x-y+30-5-x-z+13-5-y-z+x+y+z+5=35。
则求x+y+z=15,所以只参加一个小组的人数的和为15。
解二:套用三集合整体重复型公式:W=x+y+zA+B+C=x×1+y×2+z×335=x+y+517+30+13=x×1+y×2+5×3解得:x= 15,y=15例2、某调查公司就甲、乙、丙三部电影的收看情况向125人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,其中有24人三部电影全看过,20人一部也没有看过,则只看过其中两部电影的人数是( )(2009年江苏公务员考试行测A类试卷第19题)A. 69B.65C.57D.46【答案】D解析:本题也是一道典型的三集合整体重复型题目,直接套用三集合整体重复型公式:W=x+y+zA+B+C=x×1+y×2+z×3这里需要注意的是W=105,而非125,105=x+y+2489+47+63=x×1+y×2+24×3两个方程,两个未知数,解出y=46,这里y表示只看过两部电影的人数,即所求。
备考 数量关系之三集合容斥问题解题技巧:公式法
2012年备考数量关系之三集合容斥问题解题技巧:公式法在国家公务员行测考试中,数量关系模块中的容斥问题必不可少,也是学员觉得最难突破的一大问题。
究其原因,一则是容斥问题很复杂,特别是三集合容斥问题涉及的已知量特别多,读完题容易被绕进去;二则是没有好的方法切入,做出来非常消耗时间。
其实,掌握好公式法对于解决三集合容斥问题很有帮助。
本篇就对三集合容斥问题的解题技巧之公式法进行阐释。
一、三集合标准型公式集合A、B、C,满足标准型公式:==总数-三者都不满足的个数三集合标准型公式适用于题目中各类条件都明确给出的情况。
另外,可使用尾数法,判断个位数的相加减快速确定正确答案。
【例题1】(浙江-行测-2009-55)某专业有学生50人,现开设有甲、乙、丙三门选修课。
有40人选修甲课程,36人选修乙课程,30人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?()A.1人B.2人C.3人D.4人【答案】B。
各类条件明确给出,直接使用公式法。
三者都不满足的个数=总数-=50-(40+36+30-28-26-24+20),可使用尾数法,尾数为2,选B。
【例题2】(国家-行测-2009-116)如图所示,X、Y、Z分别是面积为64、180、160的三张不同形状的纸片。
它们部分重叠放在一起盖在桌面上,总共盖住的面积为290。
且X与Y、Y与Z、Z与X重叠部分面积分别为24、70、36。
问图中阴影部分的面积为多少()?A.14B.15C.16D.17【答案】C。
直接使用三集合标准型公式,=-()=290-(64+180+160-24-70-36),根据尾数法得,尾数为6,选C。
二、三集合整体重复型公式三集合容斥问题中,有些条件未知时,就不能直接使用标准型公式,而是运用整体重复型公式同样可以解答。
特别当题目中说明分别满足一种、两种、三种条件的个数时,使用整体重复型公式。
公务员行测考试容斥问题速解宝典题集
公务员行测考试容斥问题速解宝典题集IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】公务员行测考试容斥问题速解宝典题集一、两集合类型1.解题技巧题目中所涉及事物属于两集合时,容斥原理适用于条件与问题都可以直接带入公式题目,如下:A∪B=A+B-A∩B快速解题:总数=两集合之和+两集合之外数-两集合公共数。
2.真题示例【例1】现有50名学生都做物理,化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对有:A27人B25人C19人D10人【解析】B。
50=31+40+4-A∩B,得A∩B=25。
二、三集合类型1.解题步骤解题步骤分三步:①画文氏图;②弄清图形中每一部分所代表含义;③代入公式(A∪B∪C=A+B+C-A∩B-A∩C-B∩C+A∩B∩C)进行求解。
2.解题技巧解题技巧主要包括一个计算公式和文氏图。
总数=各集合数之和-两集合数之和+三集合公共数+三集合之外数3.真题示例【例2】某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加任何一种考试的有15人。
问接受调查问卷的学生共有多少人?【解析】A。
填充三个集合公共部分数字24;根据每个区域含义应用公式:总数=各集合之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+y+z)+24+24+24}+24+15。
x+y+z只属于两集合数之和,该题所讲只选择两种考试参加人数,所以x+y+z值为46人;得本题答案为120。
【例3】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人?人人人人【解析】A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017国家公务员考试:拉灯问题升级版之三
集合容斥原理型
2017国家公务员考试:拉灯问题升级版之三集合容斥原理型
拉灯问题升级版三集合容斥原理型
例:有1000盏亮着的灯,各有一个拉线开关控制着。
现按其顺序编号为1、2、3、4、5 1000,然后将编号为2的倍数的灯线拉一下,再将编号为3的倍数的灯线拉一下,最后将编号为5的倍数的灯线拉一下,三次拉完后,亮着的电灯有多少盏?
A.468
B.499
C.501
D.532
【解析】
(1) 原来电灯亮着,拉一下,灭了;拉两下,亮着;拉三下,灭了。
因此,灯绳被拉动奇数次的灯灭了。
此题先求灭着的灯的数量,再求亮着的灯。
(2) 注意:此题目拉灯的方法不同前三个例题。
编号为2的倍数,3的倍数,5的倍数的灯依次拉。
可以据此,看做是三集合问题。
(3) 数据计算:能被2整除的有1000/2=500个,能被3整除的有1000/3=333个,能被5整除的有1000/5=200个;既能被2又能被3整除的有1000/6=166个;同理,能被2,5整除的有100个,能被3,5整除的有66个,能同时被2、3、5整除的有33个。
拉奇数次500+333+200-2(166+100+66)+4*33=501个,最开始为亮,奇数次为灭,则亮灯=1000-501=499个,选择B。
拉灯问题,题目本身看起来操作繁琐,但是其中蕴含的数学道理不难,熟练掌握此类型题目的解决思路,熟能生巧。