谈高中物理常用的解题思维方法

合集下载

高中物理解题常用的思维方法

高中物理解题常用的思维方法

高中物理解题常用的思维方法实验法:实验法是利用相关的仪器仪表和设计的装置通过对现象的观测,数据的采集、处理、分析后得出正确结论的一种方法。

它是研究、探讨、验证物理规律的根本方法,也是科学家研究物理的主要途径。

正因如此,物理学是一门实验科学,也是区别于其它学科的特点所在。

假设法:假设法是解决物理问题的一种重要方法。

用假设法解题,一般是依题意从某一假设入手,然后运用物理规律得出结果,再进行适当讨论,从而找出正确答案。

这种解题科学严谨、合乎逻辑,而且可拓宽思路。

在判断一些似是而非的物理现象,一般常用假设法。

科学家在研究物理问题时也常采用假设法。

我们同学在解题时往往不敢大胆假设,不懂的怎样去创设物理图景和物理量,也就觉的无从下手了。

极限法:极限法是利用物理的某些临界条件来处理物理问题的一种方法,也叫临界(或边界)条件法。

在一些物理的运动状态变化过程中,往往达到某个特定的状态(临界状态)时,有关的物理量将要发生突变,此状态叫临界状态,这时却有临界值。

如果题目中出现如“最大、最小、至少、恰好、满足什么条件”等一类词语时,一般都有临界状态,可以利用临界条件值作为解题思路的起点,设法求出临界值,再作分析讨论得出结果。

综合法(也叫程序法):综合法就是通过题设条件,按顺序对已知条件的物理各过程和各因素联系起来进行综合分析推出未知的思维方法。

即从已知到未知的思维方法,是从整体到局部的一种思维过程。

此法要求从读题开始,注意题中能划分多少个不同的过程或不同状态,然后对各个过程、状态的已知量进行分析,追踪寻求与未知量的关系,从而求得未知量。

分析法:分析法是综合法的逆过程,它是从求未知到已知的推理思维方法。

是从局部到整体的一种思维过程。

其优点在于把复杂的物理过程分解为简单的要素分别进行分析,便于从中找出最主要的、最本质的、起决定性的物理要素和规律。

具体是从待求量的分析入手,从相关的物理概念或公式中去追求到已知量的一种方法。

要求这个量,必须知道那些量,逐步寻求直至全部找出相联系的物理过程和已知的关系,而后再从已知量写到未知量。

解高中物理题的两种常用的思维方法

解高中物理题的两种常用的思维方法

解高中物理题的两种常用的思维方法安徽省青阳中学 张邦华关键词:思维方法 顺推法 倒推法许多高中学生在学习物理时,常有一种感觉就是物理课听能听得懂,但做题目时经常不知从何处下手。

出现这种情况的根本原因就是在学习过程中没有形成科学的解题思路。

所谓思路,就是人们对某一问题的思维方式及以此为基础产生的解决问题的具体方案。

而人们在面对问题时,即使是同一问题,由于思路不同,其解决方法必然存在着差异。

就思路而言解高中物理题有两种常用的思维方法,即顺推法和倒推法。

下面分别作一简单举例。

一、顺推法顺推法即是从已知条件出发,逐步推算出要解决的问题的思维方法。

这种方法是常用的方法,适合稍微简单的问题。

例1、如下图所示,真空中有一对平行金属板,两板间的距离为d ,由于接上电池组而带电,两板间的电势差为0U ,若一个质量为m 带正电荷q 的粒子,在静电力的作用下由静止开始从正极板向负极板运动,求它到达负极板时的速度大小(粒子重力不计)。

思维过程:平行金属板带电→两板间存在电场(匀强电场),电场强度dU E 0=→带电粒子受到电场力qE →粒子不计重力,=合F qE →根据牛顿第二定律求出加速度m F a 合=→运用匀速直线运动的推导公式ad v 202=-求出粒子到达负极板的速度。

解: 带电粒子沿与电场线平行的方向进入匀强电场,受到电场力与运动方向在同一条直线上,做匀加速直线运动。

粒子受到的合力dU q qE F 0==合, 加速度m F a 合=,根据匀速直线运动的规律有:ad v 202=-,+ _由以上三式可求得m20qU v =。

例2、如图所示,长为L 的细绳竖直悬挂着一质量为m 2的小球A ,恰好紧挨着放置在水平面上质量为m 的物体B 。

现保持细绳绷直,把小球向左上方拉至细绳与竖直方向成︒60角的位置,然后释放小球。

小球到达最低点时恰好和物块发生碰撞,而后小球向右摆动的最大高度为8L ,物块则向右滑行了L 的距离而静止。

高中物理解题技巧5篇

高中物理解题技巧5篇

高中物理解题技巧5篇高中物理解题技巧11、简洁文字说明与方程式相结合2、尽量用常规方法,使用通用符号3、分步列式,不要用综合或连等式4、对复杂的数值计算题,最后结果要先解出符号表达,再代入数值进行计算。

还要提醒考生的是,由于网上阅卷需要进行扫描,要求考生字迹大小适中清晰。

合理安排好答题的版面,不要因超出方框而不能得分。

切记:所有物理量要用题目中给的。

没有的要设出,并详细说明。

切记:物理要写原始公式,而不是导出公式;既然是计算题就不要期待一步成功。

分布写,慢慢写,别着急带数据;要建立模型,高中物理计算无非就是:运动学、牛顿定律、能量守恒、机械能守恒、动能定理、带电粒子在复合场中的运动、法拉第电磁感应定律而已;将几个过程拆分。

各个击破;实在不会做,那么将题中可能用到得公式都写出来吧,不会倒扣分的;注意单位换算,都是国际单位吧。

不过,用字母表示的答案千万不要写单位;要特别留意题中()的文字。

高中物理解题技巧2(一)三个基本。

基本概念要清楚,基本规律要熟悉,基本方法要熟练。

关于基本概念,举一个例子。

比如说速率。

它有两个意思:一是表示速度的大小;二是表示路程与时间的比值(如在匀速圆周运动中),而速度是位移与时间的比值(指在匀速直线运动中)。

关于基本规律,比如说平均速度的计算公式有两个经常用到V=s/t、V=(vo+vt)/2。

前者是定义式,适用于任何情况,后者是导出式,只适用于做匀变速直线运动的情况。

再说一下基本方法,比如说研究中学问题是常采用的整体法和隔离法,就是一个典型的相辅形成的方法。

最后再谈一个问题,属于三个基本之外的问题。

就是我们在学习物理的过程中,总结出一些简练易记实用的推论或论断,对帮助解题和学好物理是非常有用的。

如,沿着电场线的方向电势降低;同一根绳上张力相等;加速度为零时速度;洛仑兹力不做功等等。

(二)独立做题。

要独立地(指不依赖他人),保质保量地做一些题。

题目要有一定的数量,不能太少,更要有一定的质量,就是说要有一定的难度。

【高中物理】常用的物理思维法

【高中物理】常用的物理思维法

【高中物理】常用的物理思维法1、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果。

2、对称法对称性就是事物在变化时存在的某种不变性。

自然界和自然科学中,普遍存在着优美和谐的对称现象。

利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤。

从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力。

用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径。

3、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点。

运用物理图象处理物理问题是识图能力和作图能力的综合体现。

它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效。

4、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立。

求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径。

在分析弹力或摩擦力的有无及方向时,常利用该法。

5、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件。

这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法。

6、图解法图解法是依据题意作出图形来确定正确答案的方法。

它既简单明了、又形象直观,用于定性分析某些物理问题时,可得到事半功倍的效果。

高中物理中常用的一些科学的思维方法

高中物理中常用的一些科学的思维方法

高中物理中常用的一些科学的思维方法一、观察法观察法是物理实验中最基本的科学思维方法之一。

通过仔细观察物体或现象,收集相关信息,揭示事物的规律性。

例如,在学习光的折射现象时,我们可以通过观察折射光线的方向变化来推断光在不同介质中传播的规律。

二、实验法实验法是物理研究中常用的科学思维方法之一。

通过设计和进行实验,收集数据并进行分析,验证或推翻假设,得出科学结论。

例如,在学习牛顿第二定律时,我们可以设计实验,测量不同质量物体的加速度,验证F=ma的关系。

三、假设法假设法是物理研究中常用的科学思维方法之一。

根据已有的知识和观察结果,提出一个合理的假设,然后通过实验证实或推翻这个假设。

例如,在学习电阻的研究时,我们可以假设电阻与导线的材料、长度和截面积有关系,然后通过实验来验证这个假设。

四、归纳法归纳法是物理研究中常用的科学思维方法之一。

通过观察和实验,总结出一般规律或者推理出普遍性的结论。

例如,在学习万有引力定律时,我们可以通过观察多个物体间的引力作用,归纳出引力与物体质量和距离的关系。

五、演绎法演绎法是物理研究中常用的科学思维方法之一。

根据已有的理论知识和规律,通过逻辑推理,推导出具体的结论。

例如,在学习光的干涉现象时,我们可以通过波动理论和光的干涉条件,演绎出干涉条纹的形成原理。

六、数学方法数学方法是物理研究中不可或缺的科学思维方法之一。

通过运用数学工具,进行定量分析和计算,解决物理问题。

例如,在学习力学中的运动学问题时,我们可以通过运用速度、加速度、位移等数学概念和公式,解决运动物体的相关问题。

七、模型建立模型建立是物理研究中常用的科学思维方法之一。

通过建立适当的物理模型,简化复杂的现象,便于理解和分析。

例如,在学习电路中的电阻、电容和电感的组合时,我们可以通过建立等效电路模型,简化电路分析的复杂性。

八、对比分析对比分析是物理研究中常用的科学思维方法之一。

通过对不同现象或不同理论的比较和分析,找出相同点和差异,深入理解物理问题的本质。

高中物理的几种解题思维

高中物理的几种解题思维

) J K、 P Q所受的安培力 的一 系列相互关
联 的变 化。 按上述 物理过程用数学方法 求出金属杆 J K的最 后速 度 V’ 十分繁琐 。 但是 , 若 能透过 电磁 现象 抓住 问题 实 质就会发现 ,金属杆 J K、 P Q所 组成的系统在水平轨道上运 动 的过程 中, 所受 的外力 的矢 量和时时刻刻 为零 , 因此 系统 的动量 守恒 , 而且 二者 最后 具有相同的速度 V。 这 就是对具
技 能 的发 展 呢 ?
3 . 处理好 自主学 习与合作 学习的关 系。 小学生 已有的感
( 作者单位 : 江苏张家港市实验小学)
基于儿童 的美术教学实践
袁海燕
进入“ 分蛋糕 ” 的世界 , 感受“ 分蛋糕” 的快乐。 其次 , 我与学生们 同“ 情” , 就是 指我们教师要蹲下身来 , 循 着学生感知 的 道欣赏着形式多样的蛋糕, 如, 圆形、 心形 、 三角形、 菱形、 宝塔 视角 , 设 身处地地从学生 的立场考虑 问题 , 从学生的视角感 形。 当学生被这众多的蛋糕所“ 迷惑” 后, 我再将蛋糕配以多样的 知 问题 , 从学生 的心理揣摩 问题 , 从而产生一种与学生一样 色彩 , 让学生大饱眼福 , 建立“ 蛋糕” 的形态美。 再次, 我与学生一
a b 、 a " o ・ 段形成一翘起 斜面 , b c 、 b ’ c ’ 段形成 一水平面 。在 b c 、 b C的水平部分导轨之间穿过磁感强度为 B、方 向垂 直向上 的匀强磁场 。在导 轨水 平部分放有质量为 m 的金属杆 P Q, 让质量为 M 的金属杆 J K由距水平 面高为 h处无初速下滑 。 如果 J K始终 不与 P Q接触 ,导轨 的水平部分 足够 长并 始终 在磁场 区域 中, 那么J K的最后速度是多大? 分析求解 : 金 属杆 J K滑 到轨 道水平部分时 的速度 不难 由机 械 能守 恒定 律 求得 V=V' — 2 g h, — 当金属杆 J K继续滑 动 , 将 引起 闭合 回 路面积 、 磁通量 、 感生 电流 以及金 属杆 多, 发散得越广 , 产生对问题的求解方法就越多 , 从而可做到一 题多解 , 并从多种解法中选择出一种简单明快的方法; 收敛思维

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法

高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。

高中生必须掌握的9大物理解题思维方法

高中生必须掌握的9大物理解题思维方法

高中生必须掌握的9大物理解题思维方法包括:
1.转化和归结思维:把问题化繁为简、化难为易,把具体情况转化为典型情境,将未
知问题归结为已知问题。

2.隔离思维:将物理问题中的几个物体或一个物体的几个部分隔离开来,分别研究,
分析求解。

3.整体思维:把几个物体或事物的各个部分、各个方面、各种因素联系起来加以研
究,从而在整体上认识事物、解决问题。

4.假设思维:根据已知的科学事实和科学原理,对未知的自然现象及其规律提出猜想
与假设,是科学研究中的一种重要方法。

5.类比思维:把形式、性质、特征类似的问题放在一起研究,有助于揭示问题的本质
特征和规律。

6.极限思维:把某个物理量推向极端,从而得出有关结论的方法。

7.逆向思维:从结论或现象开始,反向分析问题的原因或条件,从而找到解决问题的
方法。

8.等效思维:在保证效果相同的前提下,将复杂的物理现象、物理过程转化为简单的
物理现象、物理过程来研究和处理的方法。

9.对称思维:利用对称法分析解决物理问题,可以避免复杂的数学演算和推导,直接
抓住问题的实质,出奇制胜,快速简便地求解问题。

这些思维方法可以帮助高中生更好地理解和掌握物理知识,提高解题效率和准确性。

高中物理学习中的逻辑思维与问题解决方法

高中物理学习中的逻辑思维与问题解决方法

高中物理学习中的逻辑思维与问题解决方法物理学是一门关于自然界中物体运动、能量转化和相互作用的科学。

在高中物理学习中,培养学生的逻辑思维和问题解决方法是至关重要的。

逻辑思维可以帮助学生理清物理概念之间的联系,而问题解决方法则可以帮助学生应对各种复杂的物理问题。

本文将介绍在高中物理学习中如何培养逻辑思维,并提供一些解决物理问题的方法。

一、培养逻辑思维1. 基础理论的学习高中物理学习的第一步是掌握基础理论知识。

理论知识是物理学习的基石,学生应该通过阅读教科书、参加课堂讨论等方式来学习和理解物理概念。

在学习的过程中,学生需要学会辨析事物之间的因果关系,从而培养逻辑思维。

2. 实验和观察实验和观察是培养逻辑思维的重要手段。

在物理学习中,学生应该积极参与实验和观察,通过亲身经验来观察和分析事物之间的关系。

通过实验,学生可以锻炼自己的观察力和分析能力,从而加深对物理现象的认识。

3. 做题和讨论在学习物理的过程中,做题和讨论是培养逻辑思维的有效手段。

学生应该多做习题,通过解决问题来提高自己的思维能力。

同时,在讨论中,学生可以与同学们交流思路,分享解题方法,相互启发和促进。

二、问题解决方法1. 理清问题在解决物理问题之前,首先要理清问题的要求和限制条件。

学生应该仔细阅读问题,理解问题背景和问题的要求,明确所需求的未知量,并分析给出的已知条件。

通过理清问题,可以更好地制定解题策略和思路。

2. 寻找适当的理论在物理问题中,适当的理论是解决问题的关键。

学生应该根据已知条件和所需求的未知量,选择适当的物理理论和公式。

通过将问题与相关的物理理论对应起来,能够更快地找到解决问题的方法。

3. 应用计算方法在解决物理问题时,计算方法是不可或缺的。

学生应该熟练掌握基本的计算方法,如代入公式计算、单位换算等。

在计算过程中,学生需要注意数据的精度和合理性,避免粗心导致计算错误。

4. 检查答案解决物理问题后,学生应该对答案进行检查。

检查答案的目的是验证解答的正确性,并找出可能存在的错误。

高中物理万字方法

高中物理万字方法

高中物理万字方法
高中物理的学习需要掌握很多知识点和理论,选择适合自己的学习方法可以更好地掌握这门学科。

以下是几种万字方法,供参考:
1. 笔记法:在上课或自习时,可以将老师的讲解和自己的思考记录在笔记中。

可以采用不同颜色的笔来标记重点、公式、定理等,这样能够让笔记更加亮眼且易于记忆。

同时,读完一次后,可以再回顾一遍笔记加深对知识点的理解。

2. 思维导图法:用思维导图来整理和概括知识点,将知识点之间的联系和依赖关系可视化。

通过思维导图,可以更好地理解和记忆知识点,同时也可以更加方便地复习和回顾。

3. 解题法:物理学科需要解题才能更好的理解和掌握,对于一些难题,可以将解题过程和思考过程逐步记录下来。

记录的过程中要注意要写清楚题目和答案,逐步说明每个步骤的理由,以及所使用的公式和定理。

这样做可以帮助你在复习时更容易理清思路。

4. 实验法:在学习物理时,实验是非常重要的环节。

通过做实验,可以更加直观地感受物理现象,并加深对知识点的理解。

同时,还可以通过做实验来锻炼自己的观察力和分析能力,帮助自己更好地掌握物理知识。

以上是几种针对高中物理学习的万字方法,选择一种适合自己的方法来学习和记忆知识点可以让你更加轻松地掌握这门学科。

高中物理常用的解题思维方法

高中物理常用的解题思维方法
用物理知识解决实际问题时灵活多变; (2)是教材 的编写 比较原则,缺少形 象化 的说 明;(3)是缺 少训练学生思路 的典型范例 ;(4)是学生还没有把握住 学 习物理 的科学方法,不善于从多方面去理解物 理概念 ,不善于作 比较分类 工作 ,没有掌握解决实际 问题的科学思维方法,不能从分析题 中抽象 出物理 模 型—确定遵循 的规律一找 出已知和未知的联系一 建立方程一探讨答案 的物 理过程 。一部分学生在学 了物理之后,观察物理现象还仅仅停 留在 日常生活 经验 的水平上 ,心理层次来得到发展,错误未得到纠正,新观念未 曾建立 。
高 中物理 常用 的解题 思维 方法
李 炳 龙 河 北 省 磁 县 第 一 中 学
解物理 习题是学好物理的重要环 节,它在建立和发展学生的物理认 知结构,形成和提高学生的物理 思维能力等方面有着 不可替代 的作用 。用 物理 思维方法指 导解题有助于学生创新意识的培养和创造性思维的发展。教师提 问意识 ,对提 问进行精心准备 有些教师的提问很随意, 目的性 不强。还有 问题 的质量不高等 问题 ,这 都与课前的准备不充分有着直接的关 系。 首先,教师要避免课堂上的随意提 问,所有 的问题 都应该是 备课时精心 设计和准备好的,每一个问题都要有明确的 目的,即提 问的原 因,期待的效 果等 。比如 ,是复习知识点,还是要激发学生的兴趣还是开拓 学生的思路, 或是把学生 的思维引 向更高的层次。除了准备提 问的问题,还 要对提 问对象 有个粗略的设计 。教师对学生的认知等方面是比较了解的,什 么样 的问题该 问什么样 的学生 ,什么样的学生会让 问题的作用得到充分发挥,这都是教师 应该事先做到心中有数 。 第二 ,教师要对学生可能作 出的回答有思想准备,即要对学生可能给出 的答案做预测 ,尤其是那些参考性的 问题 ,学生会给出各种各样的 问题,如 果不对可行 的所有答案做 出预测 ,课上可能会出现对学生的正确答案给予否 定的情况 。不要 出现教师拼命地把学生 的答案往 自己预想的答案当中带的情 况,没有认 识到学生 的有些答案也是可 以接受的或可行的。 第三 ,不恰 当的提 问则会挫伤学生学 习的积极性 ,使学生对英语失去信 心。产生厌 学心理 。在 中学英语课堂提 问的使用 中,教师要全面考虑会影响 课堂提问效率的各种 因素,高效地使用课堂提 问,警惕不恰当地使用提 问, 保证提问成为提高教 学效率的有效手段之一 。

高中物理答题技巧方法

高中物理答题技巧方法

高中物理答题技巧方法高中物理是一门涵盖面很广的科学学科,涉及到的知识点非常多且难度逐渐增大。

因此,学习和掌握高中物理的答题技巧方法尤为重要。

掌握科学有效的高中物理答题技巧方法,不仅能够提高物理成绩,还能够为日后的科研和工程实践奠定基础。

本文将介绍几种有效的高中物理答题技巧方法,帮助大家提高解题的水平。

1. 全面理解题目要求在考试环节中,第一步就是全面理解题目要求。

当我们拿到一道物理题目时,首先需要认真阅读题目,不要漏看任何一个关键字。

题目中的关键字通常包括:物理量名称、数值大小、单位、物理现象及过程、已知条件和解题的目的等。

只有通过全面理解和分析题目,我们才能找到解题的关键和步骤。

2. 掌握计算方法和公式高中物理中计算答题占据了大部分的分数。

因此,掌握基本的计算方法和公式是必要的。

在学习和复习的过程中,这些公式和计算方法应该是理解和掌握的事项之一。

通过解决大量的练习题,我们可以提高自己的计算能力。

在考试中,我们还可以简化一些计算步骤,以节省时间。

例如:将指数化简到最简形式,忽略一些小块等等。

3. 建立思维框架高中物理考试长期以来以选择题和解答题为主,而考试题目的类型也相对单一。

因此,建立思维框架是很有必要的,能够帮助我们更加容易解决类似的题目。

我们可以依据知识点分别建立思维框架,以便更加系统和有条理的解题。

例如:力学中,可将物理问题分为质点力学、刚体力学、流体力学。

这样有助于我们分清问题类型并建立针对性的解题方法。

4. 良好的解题过程在考试中,良好的解题过程也是非常重要的。

首先要环环相扣,逻辑性强,注重语言表述。

其次要遵循“先易后难”,“先后统一”等解题法则,提高解题效率。

在解决超长和复杂的问题时,我们可以采用图解法,通过画图或示意图来清晰表达出问题和解题的过程。

5. 精益求精在复习和练习中,我们要不断探索和思考,深入理解物理知识。

可以参考并了解学术和科学的发展,深入了解物理知识的实际应用和理论。

高中物理中常用的一些科学的思维方法

高中物理中常用的一些科学的思维方法

高中物理中常用的一些科学的思维方法高中物理是一门注重培养科学思维的学科,它以观察、实验和推理为基础,通过运用一系列科学的思维方法来解决问题。

下面将介绍一些在高中物理中常用的科学思维方法。

第一,观察法。

观察是物理实验的起点,通过仔细观察物体的现象、性质和变化,提炼出规律和特点,从而深入理解物理的本质。

观察法要求学生具备细致入微的观察力,能够观察到物体的各种细节和变化,通过观察得出科学的结论。

第二,实验法。

实验是物理学的重要手段,通过设计和实施实验来验证假设、探究规律。

在高中物理中,学生需要通过实验来观察、测量和记录数据,然后进行数据分析和归纳,从而得出科学结论。

实验法要求学生具备良好的实验设计能力和实验操作技能,能够合理安排实验步骤,准确测量数据,排除干扰因素,确保实验结果的可靠性。

第三,模型法。

物理学家常常通过建立物理模型来描述和解释物理现象。

模型是对现实世界的简化和抽象,通过构建模型可以更好地理解和预测物理现象。

在高中物理中,学生需要通过建立适当的模型来解决问题,例如通过建立弹簧振子模型来研究振动规律,通过建立电路模型来分析电路特性等。

模型法要求学生具备抽象思维和逻辑推理能力,能够将现实问题转化为数学或图形模型,从而进行定量分析和预测。

第四,推理法。

推理是物理学中常用的思维方法,通过逻辑推理来得出结论。

在物理学中,学生需要运用推理法来分析和解决各种问题,例如通过推理得出物体做匀速直线运动的条件,通过推理得出光的折射规律等。

推理法要求学生具备逻辑思维和分析问题的能力,能够从已知条件出发,进行推理和演绎,得出科学结论。

第五,数学法。

数学是物理学的重要工具,通过数学方法可以描述和解决物理现象。

在高中物理中,学生需要运用数学法来分析和计算各种物理量,例如通过应用牛顿定律来解决力学问题,通过应用电路方程来解决电路问题等。

数学法要求学生具备数学思维和计算能力,能够将物理问题转化为数学问题,通过数学计算得出科学结论。

高中物理常用的思想方法

高中物理常用的思想方法

高中物理常用的思想方法一、逆向思维法逆向思维是解答物理问题的一种科学思维方法,对于某些问题,运用常规的思维方法会十分繁琐甚至解答不出,而采用逆向思维,即把运动过程的“末态”当成“初态”,反向研究问题,可使物理情景更简单,物理公式也得以简化,从而使问题易于解决,能收到事半功倍的效果.二、对称法对称性就是事物在变化时存在的某种不变性.自然界和自然科学中,普遍存在着优美和谐的对称现象.利用对称性解题时有时可能一眼就看出答案,大大简化解题步骤.从科学思维方法的角度来讲,对称性最突出的功能是启迪和培养学生的直觉思维能力.用对称法解题的关键是敏锐地看出并抓住事物在某一方面的对称性,这些对称性往往就是通往答案的捷径.三、图象法图象能直观地描述物理过程,能形象地表达物理规律,能鲜明地表示物理量之间的关系,一直是物理学中常用的工具,图象问题也是每年高考必考的一个知识点.运用物理图象处理物理问题是识图能力和作图能力的综合体现.它通常以定性作图为基础(有时也需要定量作出图线),当某些物理问题分析难度太大时,用图象法处理常有化繁为简、化难为易的功效.四、假设法假设法是先假定某些条件,再进行推理,若结果与题设现象一致,则假设成立,反之,则假设不成立.求解物理试题常用的假设有假设物理情景,假设物理过程,假设物理量等,利用假设法处理某些物理问题,往往能突破思维障碍,找出新的解题途径.在分析弹力或摩擦力的有无及方向时,常利用该法.五、整体、隔离法物理习题中,所涉及的往往不只是一个单独的物体、一个孤立的过程或一个单一的题给条件.这时,可以把所涉及到的多个物体、多个过程、多个未知量作为一个整体来考虑,这种以整体为研究对象的解题方法称为整体法;而把整体的某一部分(如其中的一个物体或者是一个过程)单独从整体中抽取出来进行分析研究的方法,则称为隔离法.六、图解法图解法是依据题意作出图形来确定正确答案的方法.它既简单明了、又形象直观,用于定性分析某些物理问题时,可得到事半功倍的效果.特别是在解决物体受三个力(其中一个力大小、方向不变,另一个力方向不变)的平衡问题时,常应用此法.七、转换法有些物理问题,由于运动过程复杂或难以进行受力分析,造成解答困难.此种情况应根据运动的相对性或牛顿第三定律转换参考系或研究对象,即所谓的转换法.应用此法,可使问题化难为易、化繁为简,使解答过程一目了然.八、程序法所谓程序法,是按时间的先后顺序对题目给出的物理过程进行分析,正确划分出不同的过程,对每一过程,具体分析出其速度、位移、时间的关系,然后利用各过程的具体特点列方程解题.利用程序法解题,关键是正确选择研究对象和物理过程,还要注意两点:一是注意速度关系,即第1个过程的末速度是第二个过程的初速度;二是位移关系,即各段位移之和等于总位移.九、极端法有些物理问题,由于物理现象涉及的因素较多,过程变化复杂,同学们往往难以洞察其变化规律并做出迅速判断.但如果把问题推到极端状态下或特殊状态下进行分析,问题会立刻变得明朗直观,这种解题方法我们称之为极限思维法,也称为极端法.运用极限思维思想解决物理问题,关键是考虑将问题推向什么极端,即应选择好变量,所选择的变量要在变化过程中存在极值或临界值,然后从极端状态出发分析问题的变化规律,从而解决问题.有些问题直接计算时可能非常繁琐,若取一个符合物理规律的特殊值代入,会快速准确而灵活地做出判断,这种方法尤其适用于选择题.如果选择题各选项具有可参考性或相互排斥性,运用极端法更容易选出正确答案,这更加突出了极端法的优势.加强这方面的训练,有利于同学们发散性思维和创造性思维的培养.十、极值法常见的极值问题有两类:一类是直接指明某物理量有极值而要求其极值;另一类则是通过求出某物理量的极值,进而以此作为依据解出与之相关的问题.物理极值问题的两种典型解法.(1) 解法一是根据问题所给的物理现象涉及的物理概念和规律进行分析,明确题中的物理量是在什么条件下取极值,或在出现极值时有何物理特征,然后根据这些条件或特征去寻找极值,这种方法更为突出了问题的物理本质,这种解法称之为解极值问题的物理方法.(2)解法二是由物理问题所遵循的物理规律建立方程,然后根据这些方程进行数学推演,在推演中利用数学中已有的有关极值求法的结论而得到所求的极值,这种方法较侧重于数学的推演,这种方法称之为解极值问题的物理—数学方法.此类极值问题可用多种方法求解:①算术—几何平均数法,即a.如果两变数之和为一定值,则当这两个数相等时,它们的乘积取极大值.b.如果两变数的积为一定值,则当这两个数相等时,它们的和取极小值.②利用二次函数判别式求极值一元二次方程ax2+bx+c=0(a≠0)的根的判别式,具有以下性质:Δ=b2- 4ac>0——方程有两实数解;Δ=b2-4ac=0——方程有一实数解;Δ=b2-4ac<0——方程无实数解.利用上述性质,就可以求出能化为ax2+bx+c=0形式的函数的极值.十一、估算法物理估算,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对物理量的数量级或物理量的取值范围,进行大致的推算.物理估算是一种重要的方法.有的物理问题,在符合精确度的前提下可以用近似的方法简捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确的计算.在这些情况下,估算就成为一种科学而又有实用价值的特殊方法.十二、守恒思想能量守恒、机械能守恒、质量守恒、电荷守恒等守恒定律都集中地反映了自然界所存在的一种本质性的规律——“恒”.学习物理知识是为了探索自然界的物理规律,那么什么是自然界的物理规律?在千变万化的物理现象中,那个保持不变的“东西”才是决定事物变化发展的本质因素.从另一个角度看,正是由于物质世界存在着大量的守恒现象和守恒规律,才为我们处理物理问题提供了守恒的思想和方法.能量守恒、机械能守恒等守恒定律就是我们处理高中物理问题的主要工具,分析物理现象中能量、机械能的转移和转换是解决物理问题的主要思路.在变化复杂的物理过程中,把握住不变的因素,才是解决问题的关键所在.当然,我罗列的也许不是很全面,但是这些思想方法的确是我们解决物理问题非常重要,希望同学们能够结合具体题目来分析理解,这对自己整个高中的物理学习甚至是数学、化学等学科的学习也有很大的推动作用!。

高中物理学习中的思维导应用技巧

高中物理学习中的思维导应用技巧

高中物理学习中的思维导应用技巧高中物理学习中的思维导引应用技巧在高中物理学习中,学生们经常面临着诸多挑战,如理论复杂、公式繁多、题目难度大等。

为了提高学习效果,我们可以运用思维导引来辅助学习。

本文将介绍一些在高中物理学习中的思维导引应用技巧,帮助学生们更好地理解和掌握物理知识。

一、建立联系思维导引在学习物理过程中,常常需要理解物理现象与现实生活之间的联系。

这就需要学生们发现物理内容与日常生活的关联点,将抽象的物理理论与具体的例子联系起来。

例如,学习力学时,可以通过观察诸如摆钟、滑板等日常物体的运动,来理解牛顿第二定律和动能守恒等原理。

通过建立联系的思维导引,不仅可以增加学习的趣味性,还能更加深入地理解物理概念。

二、运用模型思维导引物理学习中,许多物理现象难以直观理解,需要通过数学模型进行分析。

这就需要学生们掌握抽象思维和运用模型的能力。

在学习电磁学时,可以通过构建电场线和磁力线的模型,来帮助理解电磁现象。

在学习光学时,可以利用光线追迹的方法,加深对光的传播规律的理解。

通过模型思维导引,可以将抽象的物理现象转化为具体的图像,有助于学生们更加深入地理解和记忆物理知识。

三、解决问题思维导引物理学习中,解题是一个重要的环节。

合理的解题思路和方法可以提高解题的效率和准确性。

为了有效解决物理问题,学生们可以运用思维导引中的如下技巧:1. 仔细分析问题:在解题之前,学生们应该仔细阅读题目,确定问题的要求和给定条件,理清问题的思路。

2. 运用物理定律和公式:在解题过程中,学生们需要根据所学的物理定律和公式选择合适的知识点,将问题转化为可解的形式。

3. 运用数学方法:物理学习中经常需要运用数学方法进行计算,学生们需要熟练掌握相关数学知识和技巧,如代数运算、几何分析等,以便解决物理问题。

4. 反复检查答案:解题完成后,学生们应该反复检查计算过程和答案,确保解题的准确性。

通过解决问题的思维导引,学生们可以培养良好的解题思维和方法,提高解题的能力。

高中物理学习的方法

高中物理学习的方法

高中物理学习的方法一、虚设法很多物理题目是把生活中的情景与物理知识相结合来出题,我们解题时根据“先特殊,再发散”的原则,先虚设一个物理情景,就能比较容易地得出答案。

例如:某人在匀速向东行驶的船上跳远。

他是向东跳得远些还是向西?(不计空气阻力)解题时可以虚设此人在地上跳远。

船在匀速行驶,地球也在匀速运动,所以我们可以把地球看作是一艘匀速行驶的船。

在地上跳远各个方向都一样,所以在匀速行驶的船上跳远,向东和向西跳得是一样远。

二、发散思维法从某条物理规律出发,找出多种规律的表述。

这是掌握技能技巧的重要方法。

例如从欧姆定律以及串并联电路的特点出发,推出如下结论:串联电路的总电阻大于任何一个分电阻,并联电路的总电阻小于任何一个分电阻;串联电路中,阻值大的电阻通过的电流小,阻值小的电阻通过的电流大。

三、对称方法对称也是一种重要的思维方法。

对具体的物理问题而言,运用对称的方法往往可以化繁为简。

比如,竖直上抛运动和自由落体运动具有“时间反演操作”规律不变性。

时间反演就是让时间流向倒转,如同将物体的运动用录像机录下后倒过来放映,则竖直上抛就会变成自由落体。

还有,静电场和引力场的合场也可当作等效引力场处理,这对于我们处理问题可带来很大的方便。

有关学好高一物理的五大方法的推荐一、观察的几种方法1、顺序观察法:按一定的顺序进行观察。

2、特征观察法:根据现象的特征进行观察。

3、对比观察法:对前后几次实验现象或实验数据的观察进行比较。

4、全面观察法:对现象进行全面的观察,了解观察对象的全貌。

二、过程的分析方法1、化解过程层次:一般说来,复杂的物理过程都是由若干个简单的“子过程”构成的。

因此,分析物理过程的最基本方法,就是把复杂的问题层次化,把它化解为多个相互关联的“子过程”来研究。

2、探明中间状态:有时阶段的划分并非易事,还必需探明决定物理现象从量变到质变的中间状态(或过程)正确分析物理过程的关键环节。

3、理顺制约关系:有些综合题所述物理现象的发生、发展和变化过程,是诸多因素互相依存,互相制约的“综合效应”。

高二物理学习方法如何解答物理计算题

高二物理学习方法如何解答物理计算题

高二物理学习方法如何解答物理计算题物理学习对于高中生来说是一项具有挑战性的任务,其中物理计算题更是让学生望而却步的一道难题。

然而,通过正确的学习方法和实践,我们可以克服这一困难,提高物理计算题的解答能力。

本文将就高二物理学习方法如何解答物理计算题进行探讨。

一、全面掌握物理基础知识在解答物理计算题之前,我们必须对物理基础知识进行全面掌握。

这包括掌握物理公式、物理定律以及相关概念。

我们需要了解各种物理量的定义和单位,并且能够理解它们之间的相互关系。

二、理解物理计算题的要求在开始解答物理计算题之前,我们必须准确理解题目的要求。

仔细阅读题目,提取关键信息,确定所给条件以及需要求解的物理量。

确保理解题目的意思,将问题具象化,形象地描绘问题的场景,有助于我们更好地理解问题的本质。

三、分析问题,归纳解题思路在解答物理计算题时,我们需要对问题进行分析,找出其中的规律和关联。

根据所学的物理定律和公式,将问题进行分解,找到合适的解题思路。

我们可以根据问题的特点选择不同的数学方法,比如代数运算、几何分析或者向量法等。

通过归纳分析解题思路,可以更清晰地了解问题的结构,有助于我们的计算和求解过程。

四、合理使用物理公式和计算方法在解答物理计算题时,我们需要灵活运用所学的物理公式和计算方法。

根据问题的要求,选择合适的公式,并进行适当的变换和推导。

当遇到复杂的计算题时,我们可以分步进行计算,将问题简化,并逐步逼近最终的解答。

在进行计算过程中,要注意计算的准确性和精度,避免因计算错误导致答案的偏差。

五、注重实践,多做物理计算题物理学习是一门实践性很强的学科,解答物理计算题需要大量的实践和练习。

在课堂上,我们可以积极参与物理实验,通过实验数据进行分析和计算。

此外,我们还可以通过做大量的物理计算题来提高解题能力。

通过不断地练习,我们可以熟悉各类题型,掌握常见的求解方法,并提高解题的速度和准确性。

六、借助辅助工具和资源在解答物理计算题时,我们可以借助一些辅助工具和资源来提高解题的效率。

高中物理常见题目解题方法思维

高中物理常见题目解题方法思维

高中物理常见题型的解题方法和思维模板题型1:直线运动问题题型概述:直线运动问题是高考的热点,可以单独考查,也可以与其他知识综合考查。

单独考查若出现在选择题中,则重在考查基本概念,且常与图像结合;在计算题中常出现在第一个小题,难度为中等,常见形式为单体多过程问题和追及相遇问题.思维模板:解图像类问题关键在于将图像与物理过程对应起来,通过图像的坐标轴、关键点、斜率、面积等信息,对运动过程进行分析,从而解决问题;对单体多过程问题和追及相遇问题应按顺序逐步分析,再根据前后过程之间、两个物体之间的联系列出相应的方程,从而分析求解,前后过程的联系主要是速度关系,两个物体间的联系主要是位移关系。

题型2:物体的动态平衡问题题型概述:物体的动态平衡问题是指物体始终处于平衡状态,但受力不断发生变化的问题。

物体的动态平衡问题一般是三个力作用下的平衡问题,但有时也可将分析三力平衡的方法推广到四个力作用下的动态平衡问题。

思维模板:常用的思维方法有两种.(1)解析法:解决此类问题可以根据平衡条件列出方程,由所列方程分析受力变化;(2)图解法:根据平衡条件画出力的合成或分解图,根据图像分析力的变化。

题型3:运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。

一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解.思维模板:主要有两种情况。

(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等.(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。

题型4:抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上.思维模板:主要有两种情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谈高中物理常用的解题思维方法物理习题蕴含着概念、公式、规律间关系的多样性,决定了它可以变换不同的方法求解和习题题目的无限化.当前,很多教师和学生为了提高成绩,沉缅于茫茫题海之中,花费了不少精力,却收不到满意的效果.面对众多的物理习题,应当对学生加强思维方法的训练,提高学生的解题能力,才能收到事半功倍的效果.下面谈谈中学物理常用的思维方法和解题之间的联系.一、正向思维和逆向思维所谓正向思维就是“循规蹈矩”,从问题的始态到终态,顺着物理过程的发展去思考问题.而逆向思维则是反其常规,是将问题倒过来思考的思维方法.有很多物理习题,利用正向思维方法解决比较困难或解决起来十分繁琐,而利用逆向思维却能收到很好的效果.例1物体以速度v0被竖直上抛,不计空气阻力,在到达最高点前0.5s内通过的位移为多大?(g=10m/s2)分析求解本题用正向思维不好求解,但利用逆向思维可很快求出答案.若将物体从被上抛至到达最高点这一过程逆向看,将是一个自由落体运动,而此题所求的“到达最高点前0.5s内的位移”,正是自由落体前0.5s内的位移.则s=(1/2)gt2=(1/2)×10×(0.5)2=1.25(m).二、形象思维和抽象思维形象思维是指从具体的、较真实的、易理解的角度思考问题,而抽象思维则与之相反,是指人脑把各种对象或现象间共同的、本质的属性提取出来,并同非本质属性分离出来的过程.在物理解题时,抽象思维是学生把实际问题转化为典型物理问题的重要思维形式.如果把具体的物理问题化形象为抽象,找出事物的本质属性,则可简化解题过程. 例2如图1所示,abc和a'b'c'为平行放置的光滑金属导轨,ab、a'b'段形成一翘起斜面,bc、b'c'段形成一水平面.在bc、b'c'的水平部分导轨之间穿过磁感强度为B、方向垂直向上的匀强磁场.在导轨水平部分放有质量为m的金属杆PQ,让质量为M的金属杆JK由距水平面高为h处无初速下滑.如果JK始终不与PQ接触,导轨的水平部分足够长并始终在磁场区域中,那么JK的最后速度是多大?图1分析求解金属杆JK滑到轨道水平部分时的速度不难由机械能守恒定律求得为v=,当金属杆JK继续滑动将引起闭合回路面积、磁通量、感生电流以及金属杆JK、PQ所受的安培力的一系列相互关联的变化.按上述物理过程用数学方法求出金属杆JK的最后速度v'十分繁琐.但是,若能透过电磁现象抓住问题实质就会发现,金属杆JK、PQ所组成的系统在水平轨道上运动的过程中,所受的外力的矢量和时时刻刻为零,因此系统的动量守恒,而且二者最后具有相同的速度v.这就是对具体问题进行了抽象思维,提取出了问题的本质和规律.因此,由动量守恒定律,得Mv=(M+m)v',v'=[M/(M+m)]v=[M/(M+m)].可见,把具体的物理问题进行抽象思维,抓住事物的本质,能使运算变得简捷明快,而转化的关键是进行模型抽象的物理思维.三、隔离思维与整体思维隔离思维是解题中的一种普遍有效的思维方法,使用它不仅能求出与部分有关的物理量,而且可以求出与整体有关的物理量;而整体思维方法即本着整体观念对系统进行整体上的分析.处理好隔离思维与整体思维的关系,可以找出解题的简捷方法.例3如图2所示的容器中,容器A与容器B相连并通过阀门S隔开,其中容器A内充满6atm的气体,容积为6L,容器B内充满同样的气体,容积为4L,压强为8atm.求阀门S开通后气体的压强(设温度不变).图2分析求解由于pB>pA阀门S开通后有一部分气体将从容器B进入容器A,由于玻意耳定律只适用于质量一定、温度不变的气体,而A、B两容器中气体的质量均有变化,故对容器A、对容器B都不能直接应用玻意耳定律求解.若将容器A、容器B两部分气体看作一个整体,整体气体质量、温度均不变.则对整体由玻意耳定律,有pAVA+pAVB=p(VA+VB),解得p=(pAVA+pAVB)/(VA+VB)=6.8atm.例4如图3(a)所示,底座A上装有一根直立长杆,共总质量为M,杆上套有一质量为m的圆环B,它与杆间有摩擦.当圆环以初速度v0沿杆向上运动时,圆环的加速度大小为a,底座A不动,求底座在圆环上升和下落过程中,水平面对底座的支持力分别是多大?图3分析因圆环上升和下降过程中底座不动,且上升和下落过程中圆环对底座的作用不同,所以在计算此题时,不能将圆环和底座视为整体,应用隔离法.略解圆环上升时,对其作受力分析,如图3(b)所示.对圆环:f+mg=ma,①对底座:f'+N1-Mg=0,②f=f'.③联立①、②、③式,可求得水平面对底座的支持力为N1=Mg-m(a-g).圆环下落时,对圆环和底座两个物体进行受力分析,如图3(c)所示.对底座:Mg+f'-N2=0,对圆环:mg-f=ma',f=f',联立以上三式,求得圆环下落时水平面对底座的支持力为N2=Mg+m(g-a').四、发散思维和收敛思维所谓发散思维就是多角度、全方位的思考问题.而收敛思维是将大量的、甚至零乱的事实集中于一点的思维方式. 发散思维必须对某问题的共性有全面的掌握,联系得越多,发散得越广,产生对问题的求解方法就越多,从而可做到一题多解,并从多种解法中选择出一种简单明快的方法;收敛思维须对问题的个性有明确的认识,分辨得越清,收敛得越准,这种思维方式可做到多题一解.例5某一物体被竖直上抛,空气阻力不计.当它经过抛出点上方0.4m处时,速度为3m/s.当它经过抛出点下方0.4m处时,速度应为多少?(g=10m/s2)分析求解此题可从多个方面入手求解.解法一设到达抛出点上方0.4m处时还能上升高度为h,则h=v02/2g=32/(2×10)=0.45(m).物体从最高点自由下落高度为H=(0.45+0.4+0.4)m时的速度为vt=2gH=2×10×1.25=5(m/s).解法二设位移为h1=0.4m时速度为v1,位移为h2=-0.4m时速度为v2,则v12=v02-2gh1,v22=v02-2gh2,即32=v02-2×10×0.4,v22=v02-2×10×(-0.4),解得v2=5m/s.解法三根据竖直上抛物体的上抛速度与回落速度等值反向的特点可知:物体回落到抛出点上方0.4m时,速度为3m/s,方向竖直向下.以此点为起点,物体做竖直下抛运动,从此点开始到原抛出点下方0.4m处的位移为h=(0.4+0.4)m,那么,所求速度为这段时间的末速度,即vt==5m/s,再看如下两题:例6质量为m的子弹以水平速度v0射入放于光滑水平桌面上的质量为m的木块中未射出,若要求子弹99%的动能转化为内能,应满足什么条件?例7如图4所示,金属杆A从h高处沿光滑的弧形平行导轨下滑,进入光滑导轨水平部分后,有竖直向上的匀强磁场B,水平导轨上原来静止放置着另一个金属棒C.设A、C两棒不会相撞,水平导轨足够长,若使A棒有90%的机械能转化为电能,应满足什么条件?图4上面两题中的前者属于力学中完全非弹性碰撞之类,后者属于电磁感应之类.我们仔细分析不难发现,两者均可以收敛于“完全非弹性碰撞”,即通过动量守恒定律和能量守恒定律求解(解略).五、等效思维等效思维是指以效果相同出发,对所研究的对象提出一些方案或设想进行研究的一种方法.等效条件、等效变换、等效假设等均属此列.这种方法具有启迪思维、扩大视野、触类旁通的作用.如力学中的合力是分力的等效代替,运动学中的合运动是分运动的等效代替,以及电路的等效,质量的等效等等.例8如图5所示,真空中一带电粒子,质量为m、带电量为q,以初速度v0从A点竖直向上射入水平向左的匀强电场中,此带电粒子在电场中运动到B点时,速度大小为2v0,方向水平向左,求该电场的场强和A、B间的电势差?分析带电粒了受力如图6所示,经分析带电粒子做类斜抛运动(斜抛运动已超纲),学生很难解答,如果能把这个复杂的运动等效成竖直向上的匀减速运动和水平向左的匀加速运动,学生便容易解答.图5图6略解带电粒子A到B点时速度水平向左.粒子在竖直方向上做匀减速运动,速度从v0减为零,在相同的时间内,粒子在水平方向做初速为零的匀加速运动,速度从零增为2v0,可得水平加速度a=2g.(1)Eq/m=2g,E=2mg/q.(2)Uq=(1/2)m(2v0)2=2mv02,U=2mv02/q.六、图象思维所谓图象思维是指利用图象的物理意义来分析问题的思维方法.如运动学中的追及问题、振动和波的问题、热学中气体状态连续变化的问题,均可利用图象进作分析,既直观又方便.例9如图7所示,粗细均匀、两端封闭的U形玻璃管中A、B两部分气体被水银柱分开.若A、B气体开始温度相同,最后升高相同的温度时,水银柱将向哪个方向运动?图7图8分析由题意可知,初始状态,B中气体压强高于A中气体压强,当升高相同的温度时,A、B气体的三个参量都发生变化,因此我们可假设A、B气体体积不变,把它们的“等容”变化情况反映到p-T图象中,比较ΔpA和ΔpB的大小.在p-T图象中设A的“等容”线与T轴的夹角为α;B的“等容”线与T轴夹角为β.如图8,显然tgβ>tgα,而ΔpA=ΔTtgα,ΔpB=ΔTtgβ,则ΔpA<ΔpB,故水银柱向A运动.七、临界思维临界思维是指利用物体处于临界状态时的条件来解决物理问题的一种思维方式.例10如图9(a)所示,斜面倾角θ=60°,物体的质量为m,若整个装置以加速度a=g向右做匀加速直线运动时,则细绳对物体的拉力是多大?分析求解此题若不加分析,按常规方法用牛顿第二定律求解,将必会出错.正确方法是用临界思维方法求解.设物体将离而未离斜面时的临界加速度为a.(此时N=0)图9由图9(b)列牛顿第二定律方程为:Tcosθ=ma0,①Tsinθ=mg.②由①/②得 a0=gctgθ=(/3)g.因为a=g>a0,所以物体已飞离斜面.如图9(c),设物体的连线与竖直方向的夹角为β,则Tsinβ=ma,③Tcosβ=mg.④由③/④得 tgβ=a/g=1,β=45°,故T=mg/cos45°=mg.另外,在物理解题中,用到的思维方法还有极限思维、类比思维、假设思维等,在此不再一一阐述.总之,学生的思维能力决定着解题能力.因此在平时的教学过程中,教师应有意点拨和训练学生的思维,使其在掌握基础知识的基础上,学会灵活思考问题的思维方式.这样,既提高了学生的思维能力和解题能力,又可使学生对物理学的兴趣更加浓厚,形成学习的良性循环.。

相关文档
最新文档