SAE J2711-2002
SAE_J1100-2002_汽车尺寸标准(中文版)
1、 范围—美国汽车工程师协会(SAE)操作规程建议定义了一套关于车辆尺寸参数的测量和标准步 骤。尺寸参数最初用来测量在设计环境下设计车辆(例如,CAD)。在本标准中所有的尺寸参数都 可用这种方法测量的。
除此之外,一些尺寸参数可在实际车辆中使用。如果考虑物理特性,在数值上会有一些不同。 但是,要注意衡量标准不要与设计目的弄混。
SAE J1100 修订标准 2002 年 7 月
于定位 H 点装置非常重要(在 CAD 中或实车中)。
3.7.1 加速踏板踵点(AHP)——当 H 点装置的鞋固定装置按照适当方法放置时,其踵点与地板表面
(考虑地毯压塌量)的交点(当鞋底保持放在自由状态的加速踏板上)
3.7.2 BOF——鞋底表面一点。其侧向位置位于鞋底中心线处,与踵点相距 200mm,见图 3.
2. 参考文献 2.1 适用书刊——以下书刊为本标准一部分指定范围的延伸说明。除非另有说明,否则 SAE 最新版刊 行即将实施这些标准。 2.1.1 SAE 书刊——
SAE J182-机动车辆基准点 SAE J287-驾驶员人工操纵 SAE J826-用于定义和测量车辆座椅位置的装置 SAE J941-机动车辆驾驶员视角范围 SAE J1052-启动车辆驾驶员和乘客的头部位置 SAE J1516-参考点工具的布置 SAE J1517-驾驶员选择座椅位置 2.1.2 国际标准化组织(ISO)刊物——许可由美国国家标准学会(ANSI),纽约市 25
ISO 3832——乘用车——长途客车——测量基准 2.2 相关刊物——以下内容只提供目标信息,并不是本标准规定的一部份。 2.2.1 国际标准化组织(ISO)刊物——许可由美国国家标准学会(ANSI),纽约市 25
ISO 1176 道路车辆:词汇及代码 ISO3833 道路车辆:分类及定义 ISO4133 道路车辆:乘用车尺寸代码 3.定义 3.1 机动车辆 3.1.1 乘用车——机动车辆载重最多 10 人,包含摩托车和拖车。车辆的种类包括轿车、货车、运动型 多用途车(SUV)和多用途乘用车(MPV)。 3.1.2 轻型货车——设计用于运输最大允许总质量不超过 4536 千克(10000 磅)的货物的全开式或封 闭式车辆。 3.1.3 重型货车——最初设计用于运输最大允许总质量超过 4356 千克(10000 磅)的货物的车辆。 3.1.4 其余车辆分类——见表 1 和 2.其分类根据 5 个尺寸而定,在其他 SAE 标准中也适用(SAE J287, SAE J1516,SAE J1517,SAE J941,等。)
SAE J标准目录中文
代号 180-2002 182-1997 183-2002 184-1998 185-2003 187 188-2003 189-1998 190-1998 191-2003 192-2003 193-1996 195-1988 198-2003 200-2001 201-1997 207-1985
名
称
机械制动灯开关
合成树脂塑料密封胶—不干型
前照灯开关
废气排放测量用仪器和测量技术
商用车制动器额定功率要求
点火开关
视野术语
柴油机燃油喷嘴总成—8,9,10 和 11 型
乘用车和轻型载货车稳态方向控制试验规程
车轮/轮辋—载货车—性能要求和试验规程
摩托车后视镜
车辆识别号码体系
乘用车识别号码体系
悬架弹簧额定承载能力
技术委员会指南
汽车和非道路车辆气制动储气罐性能要求和识别要求
天然泡沫橡胶
海绵橡胶和多孔橡胶制品
汽车用乳胶浸渍制品和涂料
冷却系统软管
冷却软管(政府用于替代 MS52130 部分而对 SAE J20 进
行的增补)
钢丝缠绕支撑冷却软管的正常使用(SAE J20 的增补件)
燃油和机油软管
液压式铲车举升能力
雪地车定义和术警报灯
通用工业机械人员防护
公路上使用的工业设备灯光和标志
A 类车辆风窗玻璃阴影区域
汽车鼓式制动器液力分泵
摩托车操纵件和显示器
摩托车制动系统试验代码
摩托车和动力驱动自行车行车制动系统性能要求
电动风窗玻璃刮水器开关
冷拔机械弹簧钢丝和弹簧
座椅安全带织带磨损性能要求
安全标志
纤维板褶皱弯曲试验
淬硬和回火螺纹紧固件的脱碳
美国SAE电动汽车及混合动力电动汽车标准-已发布和制定中的标准
表1美国已公布的电动汽车及混合动力电动汽车SAE标准标准代号标准名称(英文)标准名称(中文)Vehicle Systems整车系统SAE J551/5-1997Performance Levels and Methods of Measurement of Magnetic and ElectricField Strength from Electric Vehicles,Broadband,9kHz To30MHz电动汽车电磁强度(带宽9kHz~30MHz)的特点和测量方法SAE J1634Electric Vehicle Energy Consumption and Range Test电动汽车能量消耗和续驶里程试验方法SAE J1666Electric Vehicle Acceleration,Gradeability and Deceleration TestProcedure电动汽车加速、爬坡能力和减速试验方法SAE J1711Recommended Practice for Measuring the Exhaust Emissions and Fuel economyof Hybrid-Electric Vehicles混合动力电动汽车燃料经济性和排放污染物检测推荐规程SAE J1715Hybrid Electric Vehicle(HEV)and Electric Vehicle(EV)Terminology混合动力电动汽车和电动汽车术语SAE J2344Guidelines for Electric Vehicle Safety电动汽车安全导则SAE J2464Electric and Hybrid Electric Vehicle Rechargeable Energy Storage System(RESS)Safety and Abuse Testing电动和混合动力电动汽车充电储能安全和滥用试验SAE J2711Recommended Practice for Measuring Fuel Economy and Emissions ofHybrid-Electric and Conventional Heavy Duty Vehicles重型混合动力电动汽车、传统汽车能量消耗及排气污染物试验方法推荐规程SAE J2758Determination of the Maximum Available Power from a Rechargeable EnergyStorage System on a Hybrid Electric Vehicle混合动力汽车的充电储能系统最大功率的测定方法Batteries电池SAE J1766Recommended Practice for Electric and Hybrid Electric Vehicle BatterySystems Crash Integrity Testing电动和混合动力电动汽车蓄电池碰撞完整性试验推荐规程SAE J1797Recommended Practice for Packaging of Electric Vehicle Battery Modules电动汽车蓄电池组组装的推荐规程SAE J1798Recommended Practice for Performance Rating of Electric Vehicle BatteryModules电动汽车蓄电池组性能评价推荐规程SAE J2288Life Cycle Testing of Electric Vehicle Battery Modules电动汽车蓄电池组循环寿命试验SAE J2289Electric-Drive Battery Pack System:Functional Guidelines电驱动蓄电池系统功能要求SAE J2380Vibration Testing of Electric Vehicle Batteries电动汽车蓄电池的振动试验Interface接口SAE J1772SAE Electric Vehicle Conductive Charge Coupler电动汽车和插入式混合动力汽车传导充电连接器SAE J1773SAE Electric Vehicle Inductively-Coupled Charging电动车辆感应充电连接器SAE J1850Class B Data Communications Network Interface B类数据通信网络接口SAE J2293.2Energy Transfer System for EV Part2:Communications Requirements andNetwork Architecture电动车辆能量转换系统第2部分:通讯信号和功能要求Infrastructure基础设施SAE J2293.1Energy Transfer System for EV Part1:Functional Requirements and SystemArchitecture电动车辆能量转换系统第1部分:功能安全和系统构造SAE J2841Utility Factor Definitions for Plug-In Hybrid Electric Vehicles Using2001U.S.DOT National Household Travel Survey Data基于2001年美国运输部全国旅游家庭统计数据的混合动力汽车实用因子的定义表2美国计划制定的电动汽车及混合动力电动汽车SAE标准标准代号标准名称(英文)标准名称(中文)Vehicle Systems整车系统SAE J2889Measurement of Minimum Sound Levels of Passenger Vehicles乘用车最低声级的测量SAE J2894Part1Power Quality Requirements for Plug-In Vehicle Chargers-Requirements插入式混合动力车充电器的功率质量要求要求SAE J2894Part2Power Quality Requirements for Plug-In Vehicle Chargers-Test Methods 插入式混合动力车充电器的功率质量要求测试方法SAE J2907Power Rating Method for Automotive Electric Propulsion Motor and PowerElectronics Sub-System车辆电驱动电机和电子功率器件的功率评定方法SAE J2908Power Rating Method for Hybrid-Electric and Battery Electric VehiclePropulsion混合动力和纯电动车辆驱动功率评定方法Interface接口SAE J2836Part1Use Cases for Communications between Plug-In Vehicles and the Utility Grid Plug-in车辆与公用电网间的通讯用例SAE J2836Part2Use Cases for Communications between Plug-In Vehicles and the SupplyEquipment(EVSE)Plug-in车辆与供电设备(EVSE)间的通讯用例SAE J2836part3Use Cases for Communications between Plug-In Vehicles and the Utility gridfor Reverse FlowPlug-in车辆与公用电网间逆功率流的通讯用例SAE J2847Part1Communications between Plug-In Vehicles and the Utility Grid Plug-in车辆与公用电网间的通讯SAE J2847Part2Communication between Plug-in Vehicles and the Supply Equipment(EVSE)Plug-in车辆与供电设备(EVSE)间的通讯Communication between Plug-in Vehicles and the Utility Grid for ReversePower Flow Plug-in车辆与公用电网间逆功率流的通讯SAE J2847Part3。
SAE J2412测试标准
SAE J2412测试标准SAE J2412标准介绍1. 范围1.1 SAE J2412标准规定了应用可控辐照度氙弧灯装置对各种类型的汽车内饰件进行加速暴露的试验方法。
1.2 是建立在SAE J1885试验参数的性能标准。
1.3 本标准不包括试验的持续时间,样品的制备,及性能的评价步骤,这些指标在不同的汽车制造厂商的材料说明中有所涉及。
1.4 合格的实验设备是通过SAE J1885认可的设备及计划来做SAE J2412试验的设备之间的材料试验比较来确定的。
要有一份明确的试验协议。
试验双方必须通过做材料试验来比较新的试验设备与先前认可的设备。
利害关系的一方要详细地规定试验协议的内容及所试验的材料。
在本试验方法出版公布时,委员会要以SAE J2413为编号,题目为“验证新的试验设备的草案”。
1.5 任何对本标准中试验方法的偏离,如过滤器的连接,必须获得试验双方同意2.参考2.1规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款,SAE的最新版本适用于本标准。
2.1.1 SAE 标准源自于SAE ,400 Commonwealth Drive, Warrendale, PA 15096-0001SAE J1767 确定汽车内饰件材料色牢度的色差测量方法SAE J1885 应用可控辐照度水冷式氙弧灯装置对汽车内饰材料进行加速暴露的试验方法2.1.2 ASTM 标准源自于ASTM,100 Barr Harbor Drive, West Conshohocken,PA 19428-2959 ASTM D859 水中二氧化硅的测试方法ASTM D 4517使用无火焰原子吸收光谱法测定高纯度水中低浓度二氧化硅总量的试验方法ASTM G 113 有关非金属材料自然及人工气候老化试验的专门术语ASTM G 130 使用光谱辐射计校准窄带和宽带紫外辐射计的标准试验方法ASTM G 147 自然与人工气候老化试验用非金属材料的状态调节和处置标准操作规程ASTM G 151 在采用实验室光源的加速试验设备中对非金属材料进行暴露的标准操作规程ASTM G 155 对非金属材料进行暴露的氙弧灯装置标准操作规程2.1.3 相关的标准American Association of Textile Chemists and Colorists (AATCC)美国纺织化学师与印染师协会P.O. Box 12215,Research Triangle Park, Norht Carolina 27709AATCC 评价程序1AATCC L-2蓝色羊毛耐光标准织物AATCC L-4蓝色羊毛耐光标准织物3.定义3.1黑板温度计一种温度测量装置,涂有黑色涂层的传感器,在褪色/老化试验中,可以吸收大部分的辐射能量。
(完整版)新能源汽车标准体系汇总表
ISO/TR11955:2008混合动力电动道 路车辆——电荷 平衡检测方法指 南
ISO/TR11954:2008燃料电池道路车 辆 最高速度检 测方法
ISO 13984:1999液态氢——地面车 辆加氢口
29
ISO 6469-2:2009电动道路车辆 安 全性规范 第2部 分:功能安全方式 和故障防护
IEC 61851-2-1:2001电动车辆传导充电 系统 第2-1部分: 电动车辆与交流/直流电源的连接要 求
IEC60349-2:2010电力牵引.铁路 与道路车辆用旋 转电机.第2部 分:电子变流器 供电的交流电动 机
37
IEC 69786:1984电动道路车辆用 控制器
IEC 60254-2:2008牵引用铅酸蓄电 池.第2部分:电 池的尺寸、接线 柱及电池的两极 标记
序 号
标准 组织
电动汽车基础标 准
混合动力汽车
燃料电池汽车
燃气汽车
蓄电池
基础设施
其它
1
中国 新能 源汽 车标 准
GB/T4094.2-2005电动汽车操纵件、 指示器及信号装 置的标志
GB/T
19750-2005混合动力电动汽 车定型试验规程
GB/T
24548-2009燃料电池电动汽 车术语
GB/T18437.1-2009燃气汽车改装技术 要求 第1部分: 压 缩天然气汽车
GB/T 20735-2006汽车用压缩天然 气减压调节器
8
GB/T 18388-2005电动汽车 定型试 验规程
QC/T 837-2010混合动力电动汽 车类型
GB/T 25986-2010汽车用液化天然气 加注装置
美国SAE电动车标准
SAE 電動車標準現況
類別 標準編號
J1772 (改版中) J1773 充電器及 其連接器 J2894-1 (工作展開中) J2894-2 (工作展開中) 馬達及 驅動器 J2907 (工作展開中) J2889 (工作展開中) 噪音 J2889-1 (工作展開中) 動力系統 總成 J2908 (工作展開中)
內容概述
說明道路/非道路(On-/Off-Road Land-Based)車輛可應用之B等級數據通 訊網路介面要求 說明北美電動車(EV)及使用於由公共電網系統至電動車(EV)(G2V)傳輸電 能之可攜式電動車充電設備(EVSE)要求
J2293-2
說明北美電動車(EV)及使用於電動車至公共電網系統(V2G)傳輸電能之可 攜式電動車充電設備(EVSE)要求
內容概述பைடு நூலகம்
規定電池動力電動車一致性測試程序,提供能源消耗及行駛 距離之標準測試法
J1711
複合電動車(HEV)底盤動力計測試程序,此程序提供複合電動車量測計算 氣體排放及燃油效率說明
整車性能 J2711 (改版中)
提供一準確、一致及可再現性之程序,來用於重型複合電動車(HEV)及傳 統車輛以動力計模擬量測排放及燃油效率為目的
J2289 J2380 電池
J2464
J2929
定義可再充電鋰單電池最小單位可接受之安全規範
J2936 (工作展開中) J2946 (工作展開中)
說明所有次組件、零組件、次系統所有層級及系統層級結構內容物描述、 安置及耐久要求標籤等任何電氣儲存裝置之標籤指引 說明對車輛使用者對於結合描述車輛(複合及純電動)電池組性能細節的建 議實施方法
內容概述
定義之共通性電動車/插電式混合動力車(EV/PHEV)及充電電源車之傳導充 電方法 說明北美電動車(EV)感應式充電連接器最低介面相容性要求 電動車充電電壓及電流品質指引及標準
SAE J2261-2002
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions.TO PLACE A DOCUMENT ORDER; +1 724-776-4970 FAX: +1 724-776-0790SAE WEB ADDRESS Copyright 2002 Society of Automotive Engineers, Inc.2.2.2FMVSS P UBLICATIO N—Available from the Superintendent of Documents, U.S. Government Printing Office,Washington, DC 20402.Federal Motor Vehicle Safety Standard 49CFR 571.1082.2.3O THER P UBLICATIONSFederal Highway Administration 49CFR Part 393 Subpart BTruck Trailer Manufacturers Association RP-9The Maintenance Council RP-7023.Definitions3.1Effective Projected Luminous Lens Area—That area of the light emitting surface projected on a plane atright angles to the axis of a lamp, excluding reflex reflectors (but including congruent reflexes), which is not obstructed by opaque objects such as mounting screws, mounting rings, bezels, or trim, or similar ornamental feature areas. Areas of optical or other configurations, for example, molded-optical rings or markings, shall be considered part of the total effective projected luminous lens area. The axis of the lamp corresponds to the H-V axis used for photometric requirements.3.2Stop Lamp—A lamp giving a steady light to the rear of a vehicle to indicate the intention of the operator of thevehicle to stop or diminish speed by application of the service brakes.3.3Turn Signal Lamp—The signaling element of a turn signal system which indicates intent to change vehicledirection by giving a flashing light on the side toward which the turn or lane change will be made. See SAE J590 for flash rate and percent on time.4.Lighting Identification Code4.1Turn signal lamps for use on vehicles 2032 mm or more in overall width may be identified by the code:a.“I6” for a rear-mounted turn signal lamp and for a front-turn signal lamp mounted 100 mm or more fromthe headlamp.b.“I7” for a front-mounted turn signal lamp mounted less than 100 mm from the headlamp, in accordancewith SAE J759.4.2Stop lamps for use on vehicles 2032 mm or more in overall width may be identified by the code “S2” inaccordance with SAE J759.5.Tests5.1SAE J2139 is a part of this document. The following tests are applicable with modification as indicated.5.1.1V IBRATIO N5.1.2M OISTURE5.1.3D UST5.1.4C ORRO SION5.1.5P HOTO METRY5.1.5.1Photometric measurements shall be made with the light source of the device at least 3 m from thephotometer.5.1.5.2The H-V axis of the device shall be taken to be parallel to the longitudinal axis of the vehicle when thedevice is mounted in its design position.5.1.5.3Photometric measurement shall be made with the light source steady burning. Photometricmeasurements of multiple lamp arrangements may be made by either of the following methods.5.1.5.3.1All lamps of a multiple lamp arrangement shall be photometered together provided that a line from thelight source of each lamp to the center of the photometer sensing device does not make an angle ofmore than 0.6 degrees with the photometer H-V axis. When lamps are photometered together, the H-Vaxis shall intersect the midpoint between the light sources of the lamps on the extremities of a multiplelamp arrangement.5.1.5.3.2Each lamp of a multiple lamp arrangement shall be photometered separately. The photometric value forthe entire multiple lamp arrangement at any test point shall be determined by adding the photometricoutputs from each individual lamp at the corresponding test point.5.1.6W ARPA GE T EST O N D EVICES W ITH P LASTIC C O MPONENTS5.2Color—SAE J578 is a part of this document.5.3Plastic Materials—SAE J576 is a part of this document.6.Requirements6.1Performance Requirements—The device when tested in accordance with the test procedures of thisdocument shall meet the requirements of SAE J2139 or as indicated.6.1.1V IBRATIO N6.1.2M OISTURE6.1.3D UST6.1.4C ORRO SION6.1.5P HOTO METRY—The lamp shall be designed to conform to the zone total photometric requirements of Table 1and its footnotes. The summation of the luminous intensity measurements at the test points in a zone shall be at least the value shown.6.1.5.1Any multiple lamp arrangement may be used to meet the photometric requirements of a stop or turn signallamp. If multiple lamp arrangements are used and the distance between adjacent light sources does not exceed 560 mm for two-lamp arrangements and does not exceed 410 mm for multiple lamp arrangements, then the combination of the lamps may be used to meet the photometric requirements of Table 1 (see5.1.5.3.2). If the distance between adjacent light sources exceeds the above dimensions, each lamp shallcomply with the photometric requirements of Table 1.6.1.5.2When a tail lamp, or clearance lamp is combined with the stop or turn signal lamp, or a parking lamp iscombined with a turn signal lamp, the lamp's intensity shall be not less than three times the luminous intensity of the tail lamp, clearance lamp, or a parking lamp at any test point, except that at H-V, H-5L, H-5R, and 5U-V the stop or turn signal lamp's intensity shall be not less than five times the luminous intensity of the tail lamp, clearance lamp, or parking lamp.When a tail lamp or a clearance lamp is combined with a stop or turn signal lamp and the maximum intensity of the tail lamp or clearance lamp is located below the horizontal and is within an area generated by a 1.0 degree radius around the test point, the ratio for the test point may be computed using the lowest value of the tail lamp or clearance lamp luminous intensity within the generated area.6.1.5.3Rear signals from a forward mounted double-faced turn signal lamp need only meet the performancerequirements contained in Table 1 from directly to the rear to the left for a left-hand lamp, and from directly to the rear to the right for a right-hand lamp. The intent is to permit the manufacturer to provide glare protection for the driver.6.1.5.4When a front-turn signal lamp is mounted less than 100 mm from the low beam headlamp as measuredfrom the closest lighted edge of the low beam headlamp (or any additional lamp used to supplement or used in lieu of the low beam, such as a daytime running lamp, auxiliary low beam or fog lamp) to the optical center of the turn signal lamp, the turn signal lamps luminous intensity shall not be less than 2.5 times the values specified in Table 1 for a front-turn signal lamp.6.1.5.5When a front-turn signal lamp is mounted less than 100 mm from a daytime running lamp, as measuredfrom the closest lighted edge of the daytime running lamp to the optical center of the turn signal lamp, the daytime running lamp shall not have more than 2600 candela throughout the pattern and the turn signal lamps luminous intensity shall not be less than 2.5 times the values specified in Table 1 for a front-turn signal lamp.6.1.5.6Paragraph 6.1.5.5 does not apply if the daytime running lamp adjacent to the turn signal lamp isdeactivated when that turn signal lamp is activated.6.1.6W ARPA GE6.2Color—The color of the light from the front-turn signal lamp shall be yellow and the color from the rear-turnsignal lamp may be red or yellow as specified in SAE J578. The color of the light from the stop lamp shall be red as specified in SAE J578.6.3Plastic Materials—The plastic materials used in the optical parts shall meet the requirements of SAE J576. 6.4Design Requirements6.4.1If a stop lamp or a turn signal lamp is combined with a tail lamp or a clearance lamp (or a parking lamp iscombined with a turn signal lamp), and a replaceable multiple light source is used, the light source retention system shall be designed with an indexing means so that the light source is properly indexed. Removable light source retention systems shall have an indexing feature so that they cannot be reinserted into the lamp housing in a random position, unless the lamp will perform its intended function with random light source orientation.6.4.2The effective projected luminous lighted area of a lamp shall be at least 75 cm2.6.5Installation Requirements—The stop or turn signal lamp shall meet the following requirements as installedon the vehicle.6.5.1The stop or turn signal lamps, facing rearward for the rear lamp and the turn signal lamp facing forward forthe front lamp, shall be rigidly mounted on the permanent structure of the vehicle, at the same height, and spaced as far apart laterally as practicable, so that the signal will be clearly visible.6.5.2Each stop lamp and front and rear-turn signal lamp shall be designed to comply with all photometricrequirements of Table 1 with all vehicular obstructions considered.6.5.3Each front- and rear-turn signal lamp shall be designed to comply with one of the following visibilityrequirements.6.5.3.1The lamp must provide a minimum of 13 cm2 of unobstructed projected area when the light emittingsurface of the lens, excluding reflex reflector area, is projected parallel to a horizontal plane in any direction from 45 degrees outboard to 20 degrees inboard of the vehicle longitudinal axis, and parallel to a longitudinal, vertical plane in any direction from 15 degrees above to 15 degrees below (see 6.5.5) the horizontal (see Figure 1):FIGURE 1—LEFT SIDE SHOWN RIGHT SIDE SYMMETRICAL6.5.3.2The lamp must provide a luminous intensity not less than 0.3 candela throughout the photometric patterndefined by the corner points specified as follows and as shown in Figure 2:a.Driver side front lamp and passenger side rear lamp: 15U-80L, 15U-45R, 15D-80L, 15D-45R .b.Passenger side front lamp and drivers side rear lamp: 15U-45L, 15U-80R, 15D-45L, 15D-80R .FIGURE 2—LEFT SIDE SHOWN RIGHT SIDE SYMMETRICAL6.5.4Each stop lamp shall be designed to comply with one of the following visibility requirements.6.5.4.1The lamp must provide a minimum of 13 cm2 of unobstructed projected area when the light emittingsurface area of the lens, excluding reflex reflector area, is projected parallel to a horizontal plane in any direction from 45 degrees outboard to 45 degrees inboard of the vehicle longitudinal axis, and parallel to a longitudinal, vertical plane in any direction from 15 degrees above to 15 degrees below (see 6.5.5) the horizontal (see Figure 3):FIGURE 3—LEFT SIDE SHOWN RIGHT SIDE SYMMETRICAL6.5.4.2The lamp must provide a luminous intensity not less than 0.3 candela throughout the photometric patterndefined by the corner points 15U, −45L, 15U-45R, 15D-45L, 15D-45R. See Figure 4.FIGURE 4—LEFT SIDE SHOWN RIGHT SIDE SYMMETRICAL6.5.5The downward angle (see 6.5.3.1, 6.5.3.2, 6.5.4.1, and 6.5.4.2) may be reduced to 5 degrees if the lowerlighted edge of the lamp is less than 750 mm above the ground.6.5.6Where more than one stop lamp or front- or rear-turn signal lamp or optical area is lighted on each side of thevehicle, only one such area need comply.6.5.7T URN S IGNAL P ILO T I NDICATOR6.5.7.1If one right and one left turn signal lamp are not readily visible to the driver, there shall be an illuminatedindicator provided to give a clear and unmistakable indication that the turn signal system is activated. The illuminated indicator shall consist of one or more lights flashing at the same frequency as the turn signal lamps.6.5.7.2If the illuminated indicator is located inside the vehicle, it shall emit a green colored light and have aminimum functional lighted area of 18 mm2.6.5.7.3If the illuminated indicators are located outside of the vehicle, they shall emit a yellow colored light andhave a minimum functional lighted area of 60 mm2.6.5.7.4The minimum required illuminated lighted area of the indicators shall be visible according to theprocedures described in SAE J1050.The steering wheel shall be turned to a straight-ahead driving position and in the design location for an adjustable wheel or column.7.Guidelines7.1Installation Guidelines—The following guidelines apply to stop and turn signal lamps as used on the vehicleand shall not be considered part of the requirements.7.1.1Performance of lamps may deteriorate significantly as a result of dirt, grime, snow, and ice accumulation onthe optical surfaces. Installation of the device on the vehicle should be considered to minimize the effects of these factors.7.1.2Where it is expected that the device must perform in extremely severe environments, or where it is expectedto be totally immersed in water, the user should specify devices specifically designed for such use.7.1.3The luminous intensity of the light source will vary with applied voltage. The electrical wiring in the vehicleshould be designed to supply adequate voltage to the lamp.7.1.4When designing the wiring circuit for the stop lamps the extra load that anti-lock braking systems (ABS)contribute must be considered and wiring should be sized accordingly so that adequate power is provided for the lamps to function as well as the braking system.8.Notes8.1Marginal Indicia—The change bar (l) located in the left margin is for the convenience of the user in locatingareas where technical revisions have been made to the previous issue of the report. An (R) symbol to the left of the document title indicates a complete revision of the report.PREPARED BY THE SAE HEAVY-DUTY LIGHTING STANDARDS COMMITTEERationale—The changes are as follows:NHTSA adopted SAE J1395 APR1985 Turn Signal Lamps for Use on Motor Vehicles 2032 mm or More in Overall Width and SAE J1398 MAY1985 Stop Lamps for Use on Motor Vehicles 2032 mm or More in Overall Width, in FMVSS-108 on May 15, 1990. SAE J1395 APR1985 and SAE J1398 MAY1985 did not include the expanded photometric pattern later versions of those standards contained (1991).When the SAE Heavy Duty Lighting Committee wrote SAE J2261 in 1996 to combine SAE J1395 and SAE J1398 into one document, they decided to include the wider photometric pattern that included Zones I and VII.The SAE Heavy Duty Lighting Committee decided to modify Table 1 to remove zones I and VII and the associated test points to bring this document into agreement with the Federal Motor Vehicle Safety standards (49 CFR Part 571.108).This change should not affect the sfaety benefit of the lamps since the visibility requirements have not been changed.The changes are as follows:(1) Revised Table 1 to remove Zone I and associated test points 20U-45L; 20U-20L; 10D-45L; and10D-20L.(2) Revised Table 1 to remove Zone VII and associated test points 20U-45R; 20U-20R; 10D-45R; and10D-20R.(3) Removed footnote #6 that read “Photometric requirements beyond 20 degrees inboard do not applyto turn signal lamps. Adjust zone totals accordingly.” There are no photometric test points beyond20 degrees with the removal of Zones I and VII.(4) Renumbered Note 7 to Note 6.NOTE: With these changes to SAE J2261 the photometric requirements will now be identical with the “1 lighted Section” requirements of:(1) SAE J588 MAR2000 Rear Turn Signals—Red and Yellow in Table 1A(2) SAE J588 MAR2000 Front Turn Signals—Yellow in Table 1B(3) SAE J586 MAR2000 Stop Lamps in Table 1Relationship of SAE Standard to ISO Standard—Not applicable.Application—This SAE Standard provides test procedures, requirements, and guidelines for stop lamps and turn signal lamps intended for use on vehicles 2032 mm or more in overall width. Stop lamps and front-and rear-turn signal lamps conforming to the requirements of this document may be used on vehicles less than 2032 mm in overall width.Reference SectionSAE J387—Terminology—Motor Vehicle LightingSAEJ567—Lamp Bulb Retention System for Requirements and Gages Used in Retention System DesignSAEJ576—Plastic Material for Use in Optical Parts Such as Lenses and Reflectors of Motor Vehicle Lighting DevicesSAE J578—Color SpecificationSAE J586—Stop Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall WidthSAE J588—Turn Signal Lamps for Use on Motor Vehicles Less Than 2032 mm in Overall WidthSAE J590—Turn Signal FlashersSAE J759—Lighting Identification CodeSAE J1050—Describing and Measuring the Drivers Field of ViewSAE J1889—LED Lighting DevicesSAEJ2139—Tests for Lighting Devices, Reflective Devices and Components Used on Vehicles 2032 mm or More in Overall WidthSAE Technical Paper 830566—”Motor Vehicle Conspicuity,” R.L. Henderson, K. Ziedman, W.J. Burger, and K.E. Cavey, National Highway Traffic Safety AdministrationFederal Motor Vehicle Safety Standard 49CFR 571.108Federal Highway Administration 49CFR Part 393 Subpart BTruck Trailer Manufacturers Association RP-9The Maintenance Council RP-702Developed by the SAE Heavy-Duty Lighting Standards Committee。
汽车排放性能四驱转鼓系统
汽车排放、性能四驱转鼓系统货物需求一览表及技术规格编制:___________________审核:__________________批准:__________________重庆力帆乘用车有限公司2011年7月20日1 设备名称及数量:汽车排放、性能四驱转鼓系统试验台一套。
2 概述2.1★主要用途2.1.1 该设备用于最大总质量不超过3.5吨的M1、M2、N1类车辆(由标准GB/T15089-2001规定,下同)的欧III、欧Ⅳ、欧Ⅴ及更高排放法规工况法排放和燃油经济性试验过程中模拟车辆行驶道路阻力。
2.1.2 该设备用于整备质量不超过5吨的车辆的环境模拟及性能试验。
2.1.3该设备可用于3.5-5.4吨中型汽车的排放和燃油消耗试验。
2.1.4 该设备用于汽车的动力性和经济性测试以及其他的性能开发试验。
2.2 ★可以满足前驱、后驱、四驱三种车辆的试验要求。
2.3 ★设备能够完全满足规格书条款5规定的工作条件。
2.4 ★投标人在投标文件中应对本招标文件的要求逐条进行详细回应,如仅在投标文件中对所有要求注明满足/符合而无相应的说明,则作为废标。
2.5 投标人投标总价应为交钥匙工程价格,在合同执行过程中,如果发现有漏项,需要增加供货范围的内容,由此产生的一切费用应当由投标人承担。
3 招标范围4 ★适用标准设备必须能够满足下列整车性能试验及相关标准的要求。
中国汽车排放第三阶段、第四阶段标准的要求,GB18352.3-2005欧洲汽车排放第三、四、五阶段标准的要求,70/220/EEC(98/69/EC)、EC 715/2007美国汽车低排放、超低排放标准以及SAE J2711的要求日本汽车排放标准JC085 ★工作条件这套设备将被安装在环境模拟仓内。
5.1 工作环境温度: -40℃~70℃。
5.2 工作环境湿度: 5% ~ 95% RH。
5.3 设备控制系统环境温度:5~45℃。
5.4 可使用的电源:三相,AC380∨(+15%,-10%),50Hz±2%单相,AC220∨(+15%,-10%),50Hz±2%5.5 可使用的压缩空气: 600kPa~ 1000kPa 。
SAE J1100 JUL2002机动车辆尺寸
SAE J1100 JUL2002——机动车辆尺寸1.范围——此SAE工业标准为汽车尺寸定义了一系列测量方法和标准程序。
这些尺寸主要为了评估在设计环境中(例:CAD)车辆的设计目的。
所有标准中的尺寸可以以此测量。
除此之外,一些尺寸可以从实际车辆中获得。
如果尺寸在物理属性状态下测得,值的一些偏差是可以预见的。
所以要仔细区分设计目的尺寸和物理状态下所得的尺寸。
除非另有说明,所有的尺寸测量都是垂直于三维参考系统(见SAE J182),除了地面相关尺寸是垂直于地面。
所有的尺寸都是在汽车空载状态下测得,除非另有说明。
所有的尺寸从基本车辆上测得,不包括正常生产选择(RPO)或附件,除非另有说明。
尽管许多术语和尺寸使用了人体身上的部位名称,但它们不能被解释成显示占用者的设备、性能或舒适度的衡量方法。
2.参考2.1应用出版物——以下出版物在这里的某种程度上形成了此规格的一部分。
除非另有说明,SAE出版物的最新版本将被应用。
2.1.1 SAE出版物——Available from SAE,400 Commonwealth Drive,Warrendale,PA,15096-0001。
SAE J182——机动车辆标准号SAE J287——驾驶员手部控制区域SAE J826——定义和测量汽车座椅的使用设备SAE J941——机动车辆驾驶员眼睛范围SAE J1052——机动车辆驾驶员和乘客头部位置SAE J1516——设备工具参考点SAE J1517——选择驾驶员座椅位置2.1.2 ISO 出版物——Available ANSI ,NY 10036-8002.ISO 3832——乘用车——测量参考体积的方法。
2.2 相关出版物——以下提供的出版物仅作信息目的,并不是此规格的要求部分。
2.2.1 ISO出版物——Available from ANSI,25 West 43rd Street,New York,NY 10036-8002。
推荐性国家标准《中重型商用车辆燃料消耗量测量方法》
会议达成的主要共识包括:倾向于以GTR的WTVC工况为基础,根据调查表反映出的里程分布进行适度调整,使其与我国道路运输条件和车辆的技术特点相适应;继续完善燃料消耗量模拟程序,解决其中的遗留问题,使模拟试验结果与实际试验结果具有更强的可比性;在转鼓试验方面,重点研究转鼓试验对各类车辆的适应性。为进行后续的验证对比试验,需要工作组各成员单位分别提供若干(3-5个)典型车型进行转鼓试验及模拟对比。
最后,工作组明确了各企业下一步的工作任务,在模拟计算程序中,完善原有换挡策略;要求工作组成员和相关企业提供拟验证结果和模拟验证的基本数据,并对"里程分配加权系数表"提出书面意见。
2010年1月7-8日,中重型商用车燃料消耗量试验方法标准工作组第五次会议在福建厦门召开,来自国内主要中重型商用车生产企业、研发机构及发动机企业的代表共20余人出席会议。中汽中心技术人员分别介绍了燃料消耗量模拟计算程序的开发及验证情况以及标准草案的编写工作。与会代表对模拟程序和标准进行了讨论并提出了修改意见,包括调整原半挂牵引车、载货汽车及客车的风阻系数;完善转鼓试验规程等。最后,会议要求相关企业提供相应的模拟数据,并要求标准起草组尽快完成标准草案及模拟程序的修改工作。
1)对中重型商用车辆的保有结构进行深入研究和分析,按照用途和使用条件将中重型商用车辆分为不同的种类;2)根据不同的车辆种类,确定能够代表其用途和实际使用条件的典型行驶工况,然后制定相应的试验方法;3)按统一的试验方法,对各类主要中重型商用车的技术水平和燃料消耗量状况进行统计分析;4)在深入细致的统计分析基础上,以我国中重型商用车辆的实际形态为基础,按照国家节能降耗的目标,确定各类重型商用车的燃料消耗量限值。
SAE_J标准目录中文
SAE 目录代号名称1. SAE TSB002-1992 SAE 技术报告的准备2. SAETSB003-1999 SAE 使用公制(Metric)单位的规则3. SAE TSB004-1998 技术委员会指南4. SAE J 10-2000 汽车和非道路车辆气制动储气罐性能要求和识别要求5. SAE J 17-2003 天然泡沫橡胶6. SAE J 18-2002 海绵橡胶和多孔橡胶制品7. SAE J19-1997 汽车用乳胶浸渍制品和涂料8. SAE J 20-2003 冷却系统软管9. SAE J20-1-2002 冷却软管(政府用于替代MS52130 部分而对SAE J20 进行的增补)10. SAE J 20-2-2001 钢丝缠绕支撑冷却软管的正常使用(SAE J20 的增补件)11. SAE J 30-1998 燃油和机油软管12. SAE J 31-1986 液压式铲车举升能力13. SAE J33-2000 雪地车定义和术语—总则14. SAE J 34-2001 机动游艇外部噪声测量规程15. SAE J 38-1991 装载机举升臂支撑装置16. SAE J 43-1988 工业轮式装载机和铲车轴载荷17. SAE J 44-2003 雪地车行车制动系统性能要求18. SAE J 45-2003 雪地车制动系统试验规程19. SAE J 46-1993 车轮打滑制动控制系统道路试验规程20. SAE J 47-1998 摩托车潜在最大噪声声级21. SAE J 48-1993 液面指示器指南22. SAE J49-1980 液压铲车技术参数的定义23. SAE J 51-1998 汽车空调软管24. SAE J56-1999 道路车辆—带调节器的交流发电机—试验方法和一般要求25. SAE J57-2000 公路载货车轮胎噪声声级26. SAE J 58-1998 带凸缘的12 角头螺钉27. SAE J 64-1995 雪地车识别代号28. SAE J 67-1998 铲斗,抓斗和挖斗额定容量29. SAE J 68-1991 雪地车开关装置和部件试验30. SAE J 75-1999 机动车制动液容器兼容性31. SAE J 78-1998 钢制自攻螺钉32. SAE J 79 制动盘和制动鼓热电偶安装33. SAE J 80-1997 汽车用橡胶垫34. SAE J 81-1997 滚丝螺钉35. SAE J 82-1998 机制螺钉机械和质量要求36. SAE J 88-1995 非道路工作机械外部噪声测量37. SAE J89-1995 雪地车坐椅动态缓冲性能标准38. SAE J 90-1995 汽车非金属垫圈材料标准分类体系39. SAE J 92-1995 雪地车节气门控制系统40. SAE J 95-1986 工业设备前照灯 1 代号名称41. SAE J 96-1986 工业设备闪光警报灯42. SAE J 98-1998 通用工业机械人员防护43. SAE J 99-2003 公路上使用的工业设备灯光和标志44. SAE J 100-1999 A 类车辆风窗玻璃阴影区域45. SAE J 101-1989 汽车鼓式制动器液力分泵46. SAE J 107-1996 摩托车操纵件和显示器47. SAE J 108-2000 摩托车制动系统试验代码48. SAE J 109-2000 摩托车和动力驱动自行车行车制动系统性能要求49. SAE J 112a 电动风窗玻璃刮水器开关50. SAE J 113 冷拔机械弹簧钢丝和弹簧51. SAE J 114-1994 座椅安全带织带磨损性能要求52. SAE J 115-2003 安全标志53. SAE J 119-1987 纤维板褶皱弯曲试验54. SAE J 121M-1997 淬硬和回火螺纹紧固件的脱碳55. SAE J 121-1997 淬硬和回火螺纹紧固件的脱碳56. SAE J 122-1998 螺母表面的不连续性57. SAE J 123-1994 用于疲劳载荷的螺栓,螺钉和双头螺栓的表面不连续性58. SAE J 125-1988 铸铁温升性能59. SAE J 126-1986 冷、热轧钢板和钢带的选择和说明60. SAE J 128-1994 乘用车和轻型载货车乘员约束系统评价61. SAE J 129-1981 发动机和传动系识别号码62. SAE J 131-2003 摩托车转向信号灯63. SAE J 133-2003 商用挂车和半挂车牵引销性能64. SAE J 134-1993 乘用车和轻型载货车与挂车组成的列车制动系统道路试验代码65. SAE J 135-1993 乘用车与挂车组成的列车行车制动系统性能要求66. SAE J 138 试验人体动力学研究摄影分析指南67. SAE J 139-1999 点火系统术语68. SAE J 140-1995 座椅安全带硬件试验规程69. SAE J 141-1995 座椅安全带硬件性能要求70. SAE J 153-1987 操作人员预防措施71.SAE J 156-2000 保险丝72. SAE J 159-2002 额定容量系统73. SAE J 160-2001 摩擦材料在暴露在温度升高的环境中时尺寸的稳定性74. SAE J 163-2001 低压电线和电缆终端接头及铰接夹75. SAE J 164-1997 散热器盖和加水口颈76. SAE J 167-2002农用拖拉机顶部防护—试验规程和性能要求77. SAE J 169-1985 非道路车辆操作人员空间内空调系统的设计指南78. SAE J 174-1998 英制钢螺纹紧固件力矩-应力试验规程79. SAE J 174M-1998 公制钢螺纹紧固件力矩-应力试验规程80. SAE J 175-2003 道路车辆车轮冲击试验规程81. SAE J 176-1994 非道路自驱动工作机械快速加油设备82. SAE J 179-2001 载货车盘式车轮和可拆卸轮辋—表识 2 代号名称83. SAE J 180-2002 建筑和工业机械充电系统84. SAE J 182-1997 机动车辆基准标志和三维参考系85. SAE J 183-2002 发动机油性能和发动机维修分类(除节能方面外)86. SAE J 184-1998 噪声数据获得系统的检定87. SAE J 185-2003 非道路机械的接近系统88. SAE J 187 载货车识别号码89. SAE J 188-2003 高体积膨胀型动力转向压力软管90. SAE J 189-1998 低压动力转向回油软管91. SAE J 190-1998 钢丝编织动力转向压力软管92. SAE J 191-2003 低体积膨胀型动力转向压力软管93. SAE J 192-2003 雪地车外部噪声等级94. SAE J 193-1996 球节及球座总成试验规程95. SAE J 195-1988机动车辆自动车速控制器96. SAE J 198-2003 载货车、大客车及多用途车风窗玻璃刮水系统97. SAE J 200-2001 橡胶材料分类体系98. SAE J 201-1997 乘用车和轻型载货车在用制动器性能试验规程99. SAE J 207-1985 汽车金属装饰件和结构件的镀铬和镍100.101. SAE J 211-1-2003 冲击试验用仪器—第 1 部分—电子仪器102. SAE J 211-2-2001 冲击试验用仪器—第2 部分—摄影仪器103. SAE J 212-1998 乘用车制动系统测功机试验规程104. SAE J 213-1997 摩托车分类105.106. SAE J216-1999 乘用车玻璃—电路107. SAE J 217-1994 不锈钢17-7PH 弹簧钢丝和弹簧108. SAE J 218-1981 乘用车识别术语109. SAE J 220-1998 起重机起重臂限位装置110. SAE J 222-2000 驻车灯(前位置灯)111. SAE J 224-1980 碰撞变形分类112. SAE J 225-2003 商用车制动系统扭矩平衡试验代码113. SAE J 226-1995 发动机预热器114. SAE J 228-1995 空气流量参考标准115. SAE J 229-1993 乘用车行车制动器结构总成试验规程116. SAE J 230-1994 不锈钢,SAE 30302,弹簧钢丝和弹簧117. SAE J 232-1994 工业旋转割草机118. SAE J 234 电动风窗玻璃清洗器开关119. SAE J 235 电动鼓风机电机开关120. SAE J 238-1998 螺母和锥形弹簧垫圈总成121. SAE J 240-2002 汽车蓄电池寿命试验122. SAE J 243 汽车密封胶,粘结剂和缓冲胶剂的试验方法123. SAE J 244-1992 柴油机进气或排气流量测量124. SAE J 246-2000 球面和凸缘管接头125. SAE J 247-1987 测量车内噪声脉冲的仪器3 代号名称126. SAE J 249-1988 机械制动灯开关127. SAE J 250 合成树脂塑料密封胶—不干型128. SAE J 253-1989 前照灯开关129. SAE J 254-1993 废气排放测量用仪器和测量技术130. SAE J 257-1997 商用车制动器额定功率要求131. SAE J 259 点火开关132. SAE J 264-1998 视野术语133. SAE J 265-2002 柴油机燃油喷嘴总成—8,9,10 和11 型134. SAE J 266-1996 乘用车和轻型载货车稳态方向控制试验规程135. SAE J267-1999 车轮/轮辋—载货车—性能要求和试验规程136. SAE J 268-1989 摩托车后视镜137. SAE J 272-1981 车辆识别号码体系138. SAE J 273-1981 乘用车识别号码体系139. SAE J 274-1989 悬架弹簧额定承载能力140. SAE J 276-2002 铰接式装载机和拖拉机转向锁141. SAE J 277-1995 雪地车电气系统设计电压的维持142. SAE J278-1995 雪地车制动灯143. SAE J 279-1995 雪地车尾灯(后位置灯)144. SAE J 280-1984 雪地车前照灯145. SAE J 283-1999 带三点式挂接装置的农用拖拉机液压举升能力试验规程146. SAE J 284-2002 农用、建筑和工业装备安全警报信号147. SAE J 285-1999 汽油分配泵喷嘴148. SAE J 286-1996 SAE 第2 号离合器摩擦试验机械指南149. SAE J 287-1988 驾驶员手控制区域150. SAE J 288-2002 雪地车燃油箱151. SAE J 291-1980 制动液温度的确定152. SAE J 292-1995 雪地车及车灯、反射装置和相关装备153. SAE J 293-1995 车辆坡道驻车性能要求154. SAE J 294-1993 GVWR 大于4 500 公斤(10 000 lb)车辆的行车制动器总成试验规程155. SAE J 297-2002 工业装备操作人员控制件156. SAE J 299-1993 制动距离试验规程157. SAE J 300-1999 发动机机油黏度分级158. SAE J 301-1999 新的或已修订技术报告的有效日期159. SAE J 304-1999 发动机机油试验160. SAE J 306-1998 汽车齿轮润滑剂黏度分级161. SAE J 308-1996 轴和手动变速器润滑剂162. SAE J 310-2000 汽车润滑脂163. SAE J 311-2000 乘用车自动变速器液164. SAE J 312-2001 车用汽油165. SAE J 313-1998 柴油166. SAE J 314-2002 毛毡—羊毛和部分羊毛167. SAE J 315-1985 纤维板试验规程4 代号名称168. SAE J 318-2003 汽车气制动管接头169. SAE J 321-1999 推土机牵引机械操作人员防护轮罩170. SAE J 322-1996 非金属装饰材料—确定抗硫化氢腐蚀性的试验方法171. SAE J 323-1998 确定柔性塑料材料冷裂性的试验方法172. SAE J 326-1986 液压反铲挖掘机术语173. SAE J328-1994 乘用车及轻型载货车车轮性能要求和试验规程174. SAE J 331-2000 摩托车噪声声级175. SAE J 332-2002 测量乘用车和轻型载货车轮胎一致性的试验机械176. SAE J 335-1995 多位小型发动机排气系统点火抑制177. SAE J 336-2001 载货车驾驶室内部噪声声级178. SAE J 339-1994 座椅安全带织带磨损试验规程179. SAE J 342-1991 大型发动机火花防止器试验规程180. SAE J 343-2001 SAE 100R 系列液压软管和软管总成试验和试验规程181. SAE J 345a 干或湿路面乘用车轮胎最大和抱死时车轮制动力182. SAE J 347-2002 7 型(9.5 mm)柴油机燃油喷嘴总成183. SAE J 348-1990 车轮三角垫木184. SAE J 349-1991 黑色金属杆,棒,管和丝的表面缺陷检查185. SAE J 350-1991 中型发动机火花防止器试验规程186. SAE J 356-1999 可以抑制焊瘤的弯曲,双层扩口和卷边正火低碳钢187. SAE J 357-1999 发动机油的物理和化学特性188. SAE J 358-1991 非破坏性试验189. SAE J 359-1991 红外线试验190. SAE J 360-2001 载货车和大客车坡道驻车性能试验规程191. SAE J 361-1996汽车内饰件和外饰件视觉评价规程192. SAE J 363-1994 滤清器座的安装193. SAE J 365-1994 装饰材料抗擦伤性试验方法194. SAE J 366-2001 重型载货车和大客车外部噪声声级195.196. SAE J 369-2003 车辆内部聚合物材料燃烧特性—试验方法197. SAE J 370-1998 建筑和工业机械用螺栓和内六角螺钉尺寸198. SAE J 371-1993 非道路自驱动工作机械的放油、注油和油位螺塞199. SAE J 373-1993 单片和双片弹簧加载式离合器壳内尺寸200. SAE J 374-2002 车顶抗压试验规程201. SAE J 375-1994 负荷半径式悬臂角指示系统202. SAE J 376-1985 起重机举升负载指示装置203. SAE J 377-2001 车辆通行声音信号装置204. SAE J 378-1988 船用发动机布线205. SAE J 379-1996 制动衬片高氏硬度206. SAE J 380-2002 摩擦材料比重207. SAE J381-2000 载货车,大客车和多用途车风窗玻璃除雾系统试验规程和性能要求208. SAE J 383-1995 机动车辆座椅安全带固定点设计建议209. SAE J 384-1994 机动车辆座椅安全带固定点试验规程5 代号名称210. SAE J 385-1995 机动车辆座椅安全带固定点性能要求211. SAE J 386-1997 非道路工作机械操作人员约束系统212. SAE J 387-1995 机动车辆灯光术语213. SAE J 390-1999 双向尺寸214. SAE J391-1981 颗粒物尺寸定义215.216. SAE J 393-2001 商用车辆车轮,轮毂,轮辋术语217. SAE J 397-1995 防护结构试验室评价—偏转极限值218. SAE J 398-1995 乘用车,多用途车和轻型载货车燃油箱加注口条件219. SAE J 399-1985 阳极化处理的铝制汽车部件220. SAE J 400-2002 表面覆层的耐剥落试验221. SAE J 401-2000 钢的选择和使用222. SAE J 402-1997 锻制钢和轧制钢的SAE 编号系统223. SAE J403-2001 SAE 碳素钢的化学成分224. SAE J 404-2000 SAE 合金钢的化学成分225. SAE J 405-1998 SAE 锻制不锈钢的化学成分226. SAE J 406-1998 钢的可淬性确定方法227. SAE J 409-1995 产品分析—热处理或铸钢化学成分分析的容许变差228. SAE J 411-1997 碳素钢和合金钢229. SAE J 412-1995 钢的热处理和一般特性230. SAE J 413-2002 热处理可锻钢的机械性能231. SAE J 415-1995 热处理术语定义232. SAE J 417-1983 硬度试验和硬度值换算233. SAE J 419-1983 脱碳的测量方法234. SAE J 420-1991 磁粉检查235. SAE J 422-1983 用显微镜确定钢所含物质的方法236. SAE J 423-1998 硬化层深度测量方法237. SAE J 425-1991 用涡电流法进行电磁试验238. SAE J 426-1991 液体渗透剂试验方法239. SAE J 427-1991 渗透辐射检查240. SAE J 428-1991 超声波检查241. SAE J 429-1999 外螺纹紧固件机械性能和材料要求242. SAE J 430-1998 非螺纹紧固件碳素钢实心铆钉机械性能和材料要求243. SAE J 431-2000 汽车灰铸铁件244. SAE J 434-1986 汽车可锻(球墨)铸铁件245. SAE J 435-2002 汽车铸钢件246. SAE J 437a 工具和模具钢的选用和热处理247. SAE J438b 工具和模具钢248. SAE J 439a 硬质合金刀具249. SAE J 441-1993 切割钢丝喷丸250. SAE J 442-2001 喷丸处理用试验带,支架和钢带251. SAE J 443-2003 使用标准喷丸试验带的规程252. SAE J 444-1993 喷丸处理和喷砂清洗用铸丸和铸粒的规格 6 代号名称253. SAE J 445-1996 金属喷丸和喷粒的机械性能试验254. SAE J 447-1995 机动车辆车身及底盘部件的防腐255. SAE J 448a 表面质地256. SAE J449a 表面质地的控制257. SAE J 450-2002 屈服强度和屈服点术语的使用258. SAE J 451-1989 铝合金—基本原理259. SAE J 452-2003 SAE 铸铝合金的一般信息—化学组成,机械和物理性能260. SAE J 454-1991 锻制铝合金的一半数据261. SAE J 457-1991 SAE 锻制铝合金的化学组成,机械性能限值和尺寸公差262. SAE J459-1991 轴承和轴瓦合金263. SAE J 460-1991 轴承和轴瓦合金—SAE 轴承和轴瓦的化学组成264. SAE J 461-2002 锻铜和铸铜合金265. SAE J 462-1981 锻铜合金266. SAE J 463-2002 锻铜和铜合金267. SAE J 464-1989 镁合金268. SAE J 465-1989 铸镁合金269. SAE J 466-1989 锻镁合金270. SAE J 467b 特殊用途合金(超级合金)271. SAE J 468-1988 锌合金锭和压铸件锌合金的成分272. SAE J 469-1989 锌模铸合金273. SAE J 470c 锻镍和与镍有关的合金274. SAE J 471d 粉末冶金黑色金属部件275. SAE J 473a 焊锡276. SAE J 474-1985 电镀及抛光277. SAE J 476a 干密封式管螺纹278. SAE J 482-1998 高六角头螺母279. SAE J 483-1998 槽顶(暗,盖帽式)螺母280. SAE J 485-1998 安装开口销用螺栓和螺钉杆上的孔及螺母的槽281. SAE J 490-1996 球节282. SAE J 491-1987 转向球头销和球座总成283. SAE J 492 铆钉和铆接284. SAE J 493 杆端销和U 形夹285. SAE J 494 带槽销286. SAE J 495 圆柱销(实心)287. SAE J 496 弹性圆柱销288. SAE J 497 非淬火接地柱销289. SAE J 499a 装配用零件软拉孔直齿内花键290. SAE J 501 轴端291. SAE J 502 半圆键292. SAE J 503 半圆键槽和键沟2.。
电动汽车行业标准清单
查阅 车用电线束接插器(第5部分 用于单线和多线接插器圆柱式接插件尺寸和特殊要求) 汽车零部件的储存和保管 道路车辆 传导和耦合的电气骚扰 汽车现现场总线协议 额定电压450 750V及以下橡皮绝缘电缆 第一部分:一般要求 阻燃和耐火电线电缆通则 查阅 查阅 查阅 查阅 查阅
文件名称 电动汽车用锂离子蓄电池 电动汽车动力蓄电池系统通用要求 混合动力汽车排放和能量消耗试验方法 推荐规程 电动汽车术语 推荐规程 电动和混合动力电动车辆蓄电池碰撞完整性试验推荐规程 推荐规程 SAE电动车辆传导充电连接器 推荐规程 SAE电动车辆感应充电连接器 推荐规程 电动车辆蓄电池组组装的推荐规程 推荐规程 电动车辆蓄电池组性能评价的推荐规程 推荐规程 电动车辆蓄电池组循环寿命试验 推荐规程 电驱动蓄电池包系统功能要求 标准 电动汽车能量转换系统 第1部分:功能安全和系统构造 标准 电动汽车能量转换系统 第2部分:通讯信号和功能要求 标准 电动车辆安全导则 信息报告 电动车辆蓄电池的振动试验 推荐规程 电动车辆蓄电池滥用试验 推荐规程 大型混合动力汽车和传统汽车能耗及排气污染物试验方法推荐规程 推荐规程 家用混合动力汽车插件程序设备利用系数定义测量数据 混合动力汽车充电最大可用功率的测定 Cycles — Electrically
查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅
电动汽车安全要求 第2部分:功能安全和故障防mmendations on the Transport of Dangerous Goods Manual of Tests and Criteria 查阅 汽车用螺纹紧固件拧紧扭矩规范 电动汽车术语 外壳防护等级(IP代码) 安全色 安全标志及其使用导则 电动汽车传导充电用插头、插座、车辆耦合器和车辆插孔通用要求 电动汽车用电机及其控制器 第1部分:技术条件 电动汽车用电机及其控制器 第2部分:试验方法 电动汽车 定型试验规程 电动汽车 动力性能 试验方法 电动汽车 能量消耗率和续驶里程 试验方法 电动车辆的电磁场辐射强度的限值和测量方法 电动车辆传导充电系统 一般要求 电动车辆传导充电系统电动车 辆与交流直流电源的连接要求 电动车辆传导充电系统 电动车辆交流直流充电机(站). 汽车电器设备基本技术条件 专用汽车定型试验规程 车用电线束接插器(第1部分 定义,试验方法和一般性能要求) 车用电线束接插器(第3部分 单线片式接插件的尺寸和特殊要求) 车用电线束接插器(第4部分 单线片式接插件的尺寸和特殊要求) 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅 查阅
SAE China J2901-2013 车用尿素溶液技术规范
SAE-China J2901-2013
车用尿素溶液技术规范
The requirement and test method of urea solution for motor vehicle
2013-03-18发布
中国汽车工程学会 发布
2013-03-18实施
SAE-China J2901-2013
附录A (规范性附录)
取样
A.1 范围
本附录规定了车用尿素溶液的取样方法。
A.2 方法概要
用适合的取样瓶进行取样,避免细菌和藻类的生长污染样品。在取样过程中要避免以下可能的污染 物:样品瓶生产过程的残留物、样品瓶中的沉积物、空气中的尘土或环境中的其他物质、清洗样品瓶的 溶剂等。
A.3 仪器和设备
A.3.1 样品瓶
目次
前 言 ............................................................................. II 1. 范围 .............................................................................. 1 2. 规范性引用文件 .................................................................... 1 3. 术语和定义 ........................................................................ 1 4. 技术要求和试验方法 ................................................................ 2 5. 检验规则 .......................................................................... 2 6. 标志、包装、运输和储存 ............................................................ 3 附 录 A (规范性附录) 取样 ......................................................... 4 附 录 B (规范性附录) 总氮法检测车用尿素溶液中的尿素含量 ........................... 6 附 录 C (规范性附录) 车用尿素溶液中碱度的测定 ..................................... 9 附 录 D (规范性附录) 车用尿素溶液中缩二脲的测定 .................................. 12 附 录 E (规范性附录) 醛类含量的测定 .............................................. 15 附 录 F (规范性附录) 重量法测定车用尿素溶液中不溶物 .............................. 18 附 录 G (规范性附录) 车用尿素溶液中磷酸盐含量的测定 .............................. 21 附 录 H (规范性附录) 电感耦合等离子体发射光谱法测量车用尿素溶液中金属元素含量 .... 25 附 录 I (规范性附录) 傅里叶红外光谱仪检测车用尿素溶液的一致性 ..................... 30 附 录 J (规范性附录) 储存和运输 .................................................. 32
SAE_J1100-2002_汽车尺寸标准【中文版】 SAE法规
汽车车身推荐标准1、范围—美国汽车工程师协会(SAE)操作规程建议定义了一套关于车辆尺寸参数的测量和标准步骤。
尺寸参数最初用来测量在设计环境下设计车辆(例如,CAD)。
在本标准中所有的尺寸参数都可用这种方法测量的。
除此之外,一些尺寸参数可在实际车辆中使用。
如果考虑物理特性,在数值上会有一些不同。
但是,要注意衡量标准不要与设计目的弄混。
除非特别说明,除了只适用于地面有关的尺寸,所有的尺寸在与三维参考系中都可以正常测量(见SAEJ182),。
所有的尺寸都是在整备质量下测量的,除非另有说明。
所有尺寸测量于基本型车辆,不包括正规生产选择方案(RPO)或者配件,指定尺寸例外。
即使有许多术语和尺寸用人体部位来命名,它们的各种布置、性能和舒适度与之无关。
2. 参考文献2.1 适用书刊——以下书刊为本标准一部分指定范围的延伸说明。
除非另有说明,否则SAE最新版刊行即将实施这些标准。
2.1.1 SAE书刊——SAE J182-机动车辆基准点SAE J287-驾驶员人工操纵SAE J826-用于定义和测量车辆座椅位置的装置SAE J941-机动车辆驾驶员视角范围SAE J1052-启动车辆驾驶员和乘客的头部位置SAE J1516-参考点工具的布置SAE J1517-驾驶员选择座椅位置2.1.2 国际标准化组织(ISO)刊物——许可由美国国家标准学会(ANSI),纽约市25ISO 3832——乘用车——长途客车——测量基准2.2 相关刊物——以下内容只提供目标信息,并不是本标准规定的一部份。
2.2.1国际标准化组织(ISO)刊物——许可由美国国家标准学会(ANSI),纽约市25ISO 1176 道路车辆:词汇及代码ISO3833道路车辆:分类及定义ISO4133道路车辆:乘用车尺寸代码3.定义3.1 机动车辆3.1.1 乘用车——机动车辆载重最多10人,包含摩托车和拖车。
车辆的种类包括轿车、货车、运动型多用途车(SUV)和多用途乘用车(MPV)。
重型混合动力电动汽车分类与能耗测试技术
Internal Combustion Engine &Parts0引言随着汽车行业的飞速发展,混合动力电动汽车逐渐进入了人们的视野,大量混合动力汽车进入市场。
混合动力电动汽车兼具纯电动车和传统燃油汽车的优点,节能并且续航能力强。
重型混合动力电动汽车则是混合动力电动汽车的一种,目前城市里的很多公交车都是重型混合动力电动汽车。
而汽车测试技术也是保障汽车稳定运行,安全运行的依靠。
本文将介绍不同的混合动力电动汽车类型并结合国内外测试技术以及GB/T 19754近期的变化分析现阶段的汽车测试技术,以及提出测试技术新的思考。
1混合动力电动汽车分类目前国内混合动力电动汽车的分类大体上依据工信部2010年发布的汽车行业标准QC/T 837-2010来进行分类[1]。
该标准分类的角度是从动力系统机构、混合度、以及外接充电能力进行分类。
相关的论文有很多,在此只进行一些简单的讨论:从动力系统机构上混合动力汽车分为三类,分别为串联式(SHEV )、并联式(PHEV )以及混联式(SPHEV ),其中串联式是燃油发动机用于发电,由电动机驱动;并联式更接近于传统汽车,发动机可以直接通过机械传动系统驱动汽车,也可以由电动机驱动汽车。
而混联式则是并联式结合了串联式,比并联式多了一个发电机。
发动机的一部分功率传递给了驱动轮,另一部分传递给发电机用于发电。
而依据混合度进行分类在行业标准中分为微混、轻混、重混(强混)。
而在车辆行业的论文以及文章中也有将混合度分为四类的,微混也常常被称为弱混。
这些分类方式的依据是电机峰值功率和总功率的比值。
行业标准指出:当电机峰值功率大于百分之30,且能够独立驱动汽车时,可以称为重度混合。
利用外接充电能力进行分类则是将混合动力汽车简单的分为外接充电型和非外接充电型。
值得一提的是,插电式混合动力系统的电机功率较高,比纯电动汽车略小,按照标准应该将其归于重度混合,而实际上往往分开讨论插电式混合动力汽车与普通混合动力汽车,所以重度混合动力汽车在一些文章里均代表了重度混合的普通混合动力汽车,并未包含插电式混合动力汽车。
重型CNG混合动力城市客车能耗试验分析
重型CNG混合动力城市客车能耗试验分析曹冬冬;王学平;刘桂彬;王长园;周荣【摘要】对我国现行的重型车能耗限值和能耗试验方法相关标准进行介绍,对传统CNG客车和CNG混合动力客车按照GB/T 19754-2015规定的方法进行测试,试验数据对比分析表明,CNG混合动力客车在能耗方面优于传统CNG客车,其节能效果主要体现在怠速、起动以及减速阶段.【期刊名称】《客车技术与研究》【年(卷),期】2016(038)005【总页数】4页(P59-62)【关键词】CNG混合动力客车;能耗测试;节能效果【作者】曹冬冬;王学平;刘桂彬;王长园;周荣【作者单位】河北工业大学,天津300401;中国汽车技术研究中心,天津300300;中国汽车技术研究中心,天津300300;中国汽车技术研究中心,天津300300;中国汽车技术研究中心,天津300300;河北工业大学,天津300401;中国汽车技术研究中心,天津300300【正文语种】中文【中图分类】U469.7;U467.4+98城市客车是目前主要的公共交通工具之一,在我国现代城市交通运输中占据着十分重要的地位。
由于城市道路特殊的运行工况导致车辆燃料消耗量大,混合动力汽车可以按照实际运行工况要求灵活控制多种动力源的分配,从而确保发动机工作在综合性能最佳的区域内,能够有效降低燃料消耗。
另外,我国天然气资源丰富,开发利用潜力大、可操作性强且具有清洁环保、价格相对低的优势。
因此,在我国开发天然气混合动力城市客车具有重要的现实意义和实用价值[1]。
2014年7月1日正式执行的GB 30510-2014是国家关于重型商用车燃料消耗量限值的强制性标准[2],适用于总质量大于3 500 kg的燃用汽油和柴油的商用车辆。
该标准基于GB/T 27840-2011《重型商用车综合工况燃料消耗测试方法》[3],并根据不同的质量段对燃料消耗量限值进行了规定。
从规定中可以发现,城市客车随车重的增加,燃料消耗量迅速增长,与一般客车燃料消耗量的差值不断增加,当车重超过25 t时,城市客车的燃料消耗限值高达49 L/100 km,而同质量段的一般客车仅为29.5 L/100 km,增加了66.1%。
电动车规范整理说明
求 EN 61851-22 EN 61851-23 EN 62196-1 ETA-HTP004-2001 ETA-HTP008-2001 ETA-HTP012-2001 FMVSS305 GB 14023 GB 18655 GB 19951 GB 24155 GB 18384.1 GB 18384.2 GB 18384.3 GB18481 GB 19750 GB 19751 GB 19752 GB 19753 GB 19754 GB 19755 电力道路车辆的电气设备.电动车辆感应充电系统.第 2-2 部分_交流 电动车辆充电站 连接于交流/直流电源的电动车辆要求 电气机车输入端和机车连接器用插头和插座 电动汽车等速续驶里程试验 电池充电 电动汽车车载电池能源管理系统(BEMS)评估 电动汽车:电解液溢出及电机事故防护 车辆&船和内燃机无线电骚扰特性用于保护车外接收机的限值和 测量方法 用于保护车载接受机的无线电骚扰特性的限制和测量方法 道路车辆静电放电产生的电骚扰试验方法 电动摩托车和电动轻便摩托车安全要求 电动汽车安全要求第 1 部分:车载储能装置 电动汽车安全要求第 2 部分:功能安全和故障防护 电动汽车安全要求第 3 部分:人员触电防护 电能质量暂时过电压和瞬态过电压 混合动力电动汽车定型试验规程 混合动力电动汽车安全要求 混合动力电动汽车动力性能试验方法 轻型混合动力电动汽车能量消耗量试验方法 重型混合动力电动汽车能量消耗量试验方法 轻型混合动力电动汽车污染物排放测量方法 MOD EN 1821-2、EPA TP002 MOD ECE R101.01 MOD SAE J2711、ECE R101.01 MOD ECE R83 EQV ISO/DIS 6469-1:2000 EQV ISO/DIS 6469-2:2000 EQV ISO/DIS 6469-3:2000
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SAE Technical Standards Board Rules provide that: “This report is published by SAE to advance the state of technical and engineering sciences. The use of this report is entirely voluntary, and its applicability and suitability for any particular use, including any patent infringement arising therefrom, is the sole responsibility of the user.”SAE reviews each technical report at least every five years at which time it may be reaffirmed, revised, or cancelled. SAE invites your written comments and suggestions. Copyright ©2002 Society of Automotive Engineers, Inc.All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of SAE.TO PLACE A DOCUMENT ORDER:Tel: 877-606-7323 (inside USA and Canada)Tel: 724-776-4970 (outside USA)Fax: 724-776-0790Email: custsvc@TABLE OF CONTENTS1.Scope (2)2.References (3)3.Definitions and Terminology (4)4.State of Charge – Charge-Sustaining Hybrid-Electric Vehicles (5)5.Driving Cycles and Routes (8)6.Test Preparations (11)7.Test Procedure (15)8.Charge-Depleting Hybrid-Electric Vehicles (20)Appendix A Drive Cycles Data (22)1.Scope—This SAE Recommended Practice was established to provide an accurate, uniform and reproducibleprocedure for simulating use of heavy-duty hybrid-electric vehicles (HEVs) and conventional vehicles on dynamometers for the purpose of measuring emissions and fuel economy. Although the recommended practice can be applied using any driving cycle, the practice recommends three cycles: the Manhattan cycle, representing low-speed transit bus operation; the Orange County Transit Cycle, representing intermediate-speed bus operation; and the Urban Dynamometer Driving Schedule (UDDS) cycle representing high-speed operation for buses and tractor-trailers. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester. While the recommended practice was developed specifically to address the issue of measuring fuel economy and emissions for hybrid-electric heavy-duty vehicles on a chassis dynamometer, the document can also be applied to chassis testing of other heavy-duty vehicles.This document builds upon SAE J1711, the light-duty HEV chassis recommended practice. As in SAE J1711, this document defines a hybrid vehicle as having both a rechargeable energy storage system (RESS) capable of releasing and capturing energy and an energy-generating device that converts consumable fuels into propulsion energy. RESS specifically included in the recommended practice are batteries, capacitors and flywheels, although other RESS can be evaluated utilizing the guidelines provided in the document. Further, the recommended practice provides a detailed description of state of charge (SOC) correction for charge-sustaining HEVs. This document also has a section which provides recommendations for calculating fuel economy and emissions for charge-depleting hybrid-electric vehicles. It should be noted that most heavy-duty vehicles addressed in this document would be powered by engines that are certified separately for emissions.The engine certification procedure appears in the Code of Federal Regulations, Title 40.NOTE—This document does not make specific provisions or recommendations for testing of bus and truck emissions with air conditioning deployed because the complexity of such tests is significant and isbeyond the scope of the original document. It is recognized that a future practice that addresses airconditioning and other potentially large auxiliary loads is needed.1.1Requirements Used to Develop the Recommended Practice—This document was developed to allow forthe fair, representative, repeatable and accurate testing of heavy-duty vehicles so that direct comparisons can be made between hybrid-electric and conventional vehicles. To meet this goal, the following guidelines have been followed:a.This document will provide a recommended practice to measure emissions and fuel economy of anytype of conventional and HEV design including charge depleting and charge sustaining.b.Where applicable, driver selectable modes may be evaluated (e.g., turning off regenerative brakingand evaluating air conditioning influences).c.The use of the existing chassis test cycles provided with this document is highly recommended, butthis document allows for the creation or adjustment of test cycles to better represent the vehicle’s in-use application.d.Testing shall not require defeating or otherwise forcing a vehicle’s control system to perform differentlyfrom the way in which it would perform in use (potential exceptions include antilock brakes, tractioncontrol and other systems that may affect dynamometer testing).2.References2.1Applicable Publications—The following publications form a part of this specification to the extent specifiedherein. Unless otherwise specified, the latest issue of SAE publications shall apply.2.1.1SAE P UBLICATIO NS—Available from SAE, 400 Commonwealth Drive, Warrendale, PA 15096, and on itswebsite ():SAE J1634—Electric Vehicle Energy Consumption and Range Test ProcedureSAE J1711—Recommended Practice for Measuring the Exhaust Emissions and Fuel Economy of Hybrid-Electric VehiclesSAE J2263—Road Load Measurement Using On-Board Anemometry And Coastdown TechniquesSAE J2264—Chassis Dynamometer Simulation Of Road Load Using Coastdown TechniquesClark, N. N., Xie, W., Gautam, M., Lyons, D., Norton, P. and Balon, T., “Hybrid Diesel-Electric Heavy Duty Bus Emissions: Benefits of Regeneration and Need for State of Charge Correction,” SAE Paper 2000-01-2955, 2000McKain, D.L., Clark, N.N., Balon, T.H., Moynihan, P.J., Lynch, S.A. and Webb, T.C., “Characterization of Emissions from Hybrid and Conventional Transit Buses,” SAE Fuels & Lubricants Meeting, Paris,France, June 2000, SAE Paper 2000-01-20112.1.2C ODE O F F EDERAL R EGULATIONS—The Code of Federal Regulations (CFR) is available from theSuperintendent of Documents, U.S. Government Printing Office, Washington, DC 20402, and on its website (/nara/cfr.html).40 CFR Part 86 -- Control of Air Pollution from New and In-Use Motor Vehicles and New and In-Use MotorVehicle Engines; Certification and Test Procedure2.1.3ASTM P UBLICATIONS—Available from ASTM, 100 Barr Harbor Drive, West Conshohocken, PA 19428-2959.ASTM D 240-02—Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb CalorimeterASTM D 4809-00—Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter (Precision Method)3.Definitions3.1Battery—A device that stores chemical energy and releases electrical energy.3.2Battery C/3 Current Rate—The constant current (Ampere-hours) at which the battery can be discharged fromits rated Ampere-hour capacity in three hours to its manufacturer’s recommended minimum. Battery manufacturers typically provide ratings from C/1 to C/6. These ratings have no direct impact on this recommended practice.3.3Battery Depth of Discharge (DOD)—The percentage of rated capacity to which a cell/battery is discharged.State of charge (SOC) % + DOD% = 100%.3.4Battery Rated Ampere-Hour Capacity—The manufacturer-rated capacity of a battery in Ampere-hoursobtained from a battery discharged at the manufacturer’s recommended discharge rate (C/1 to C/6) such that a specified minimum cut-off terminal voltage is reached.3.5Battery State of Charge (SOC)—Based on the actual measured energy content of a battery and expressedas a percentage of the battery’s maximum rated Ampere hour (Ah) capacity.3.6Capacitor—A device that stores energy electrostatically and releases electrical energy.3.7Capacitor State of Charge (SOC)—Based on the actual measured energy content of a capacitor andexpressed as a percentage of the capacitor’s maximum rated voltage squared (V2).3.8Charge-Depleting HEV—A type of HEV that is designed to be recharged off-board under normal usage.3.9Charge-Sustaining HEV—The charge-sustaining HEV derives all of its energy from on board fuel undernormal usage. Over a short period of time charge-sustaining hybrid-electric vehicles may be either charge depleting or charge increasing. The definition means that that in the long term (24 hours) a RESS charge is sustained. The document includes provisions for calculating SOC corrections in the short term that reflect emissions from the vehicle as if it was charge sustaining in the short term.3.10Consumable Fuel—Any solid, liquid, or gaseous material that releases energy and is depleted as a result. 3.11Electromechanical Flywheel—A device that stores rotational kinetic energy and can release that kineticenergy to an electric motor-generator system, thereby producing electrical energy.3.12Electromechanical Flywheel State of Charge (SOC)—Based on the actual measured energy content of anelectromechanical flywheel and expressed as a percentage of the flywheel’s maximum-rated revolutions per minute squared (rpm2).3.13Hybrid-Electric Vehicle (HEV)—A road vehicle that can draw propulsion energy from both of the following on-vehicle sources of stored energy: (a) one consumable fuel and (b) one RESS that is recharged by an on-board electric generating system and/or an off-board charging system or power supply.3.14Net Energy Change (NEC)—The net change in energy level of an RESS expressed in Joules (watt-seconds) 3.15Propulsion Energy—Energy that is derived from the vehicle’s consumable fuel and/or rechargeable energystorage system to drive the wheels. If an energy source is supplying energy only to vehicle accessories (e.g.,a 12 V battery on a conventional vehicle), it is not acting as a source of propulsion energy.3.16Propulsion System—A system that, when started, provides propulsion for the vehicle in an amountproportional to what the driver commands.3.17Regenerative Braking—Deceleration of the vehicle caused by operating an electric motor-generator system,thereby returning energy to the vehicle propulsion system and providing charge to the RESS or to operate on-board auxiliaries.3.18Rechargeable Energy Storage System (Ress)—A component or system of components that stores energyand for which its supply of energy is rechargeable by an electric motor-generator system, an off-vehicle electric energy source, or both. Examples of RESS for HEVs include batteries, capacitors, and electromechanical flywheels.3.19State of Charge—See “Battery state of charge”.3.20Total Fuel Energy—The total energy content of the fuel in British Thermal Units (Btu) or kWh consumedduring a test as determined by carbon balance or other acceptable method and calculated based on the lower heating value of the fuel.4.State of Charge – Charge-Sustaining Hybrid-Electric Vehicles—When a conventional vehicle completes achassis test, the energy provided by the combustion engine is equal to the total energy necessary to complete the cycle, and this value is consistent from test run to test run. There is no energy storage on board the vehicle other than consumable fuel, and no need for state of charge (SOC) correction.In an HEV, however, a significant amount of motive energy is stored on board the vehicle within the RESS, and the vehicle may remove or add energy to this energy reservoir during a relatively short period of time. In order to compare the emission results of an HEV to a conventional vehicle, the data from the HEV must be corrected so that the net change in RESS energy is essentially zero (i.e., all of the energy and emissions are essentially provided by the APU).This document does allow for some level of tolerance between the initial SOC and final SOC to avoid correcting data that is already effectively at a net zero change in energy level. A determination of ±1% or less net change in stored energy when compared to total cycle energy expended is within tolerance levels and does not require SOC correction calculations in determining fuel economy and emissions. If the percent change in net energy change (NEC) is greater than ±1% but less than ±5%, this document allows for correction of emissions and fuel economy calculations to account for the change in energy storage if a clear relationship between NEC and emissions and fuel economy can be established. This procedure is outlined in 4.4. If the vehicle has a NEC greater than 5%, the collected data may not be reliably corrected and the test should be considered invalid. Vehicles that consistently yield net energy values of –5% on a given test cycle may follow the steps for estimating emissions as outlined in the charge-depleting section of the document (see Section 8).4.1SOC Terminology—The SOC of a battery, capacitor and electromechanical flywheel is defined in Section 3and calculations are outlined in 4.2. The following terms are used to distinguish the two different values of SOC in the test procedure.SOC initial :SOC at the beginning of the test run (Ah, V2 or rpm2)SOC final:SOC at the end of the test run (Ah, V2 or rpm2)SOC delta Delta ampere-hours measured during a testNEC calculations in 4.2 are presented in Joules (watt-seconds).4.2Net Energy Change (NEC)—Provision must be made for recording the RESS SOC at the start and stop ofeach test run. For each different test cycle a minimum of three test runs must be performed to provide sufficient data for a SOC correction, if needed. It is also recommended that at least one test run have a net positive and another a net negative NEC value so that net SOC calculations are based on interpolation and not extrapolation. Since different types of RESS store energy differently, each type of RESS will use different equations to define NEC. The following section gives the NEC calculations for batteries, capacitors and electro-mechanical flywheels.4.2.1B ATTERIES —Equations 1 and 2 calculate the NEC for batteries.(Eq. 1)where:SOC =Battery SOC at the beginning and end of the test run, in Ampere-hours (Ah).NOTE—If the SOC final and SOC initial values are in amp-seconds, the conversion factor is notused.V system = Battery’s DC nominal system voltage as specified by the manufacturer, in volts (V)K 1= Conversion factor = 3600 (seconds/hour) (not used if SOC final and SOCi nitial values are inamp seconds)or,(Eq. 2)where:SOC delta=Delta ampere-hours during a test V system= Battery’s DC nominal system voltage as specified by the manufacturer, in volts (V)K 1= Conversion factor = 3600 (seconds/hour) (not used if SOC final and SOC initial values are in amp seconds)4.2.2C APACITORS —Equation 3 calculates NEC for capacitors.(Eq. 3)where:SOC=The capacitor SOC at the beginning and end of the test run, in (V)2C = Rated capacitance of the capacitor as specified by the manufacturer, in Farads (F)4.2.3E LECTROMECHANICAL F LYWHEELS —Equation 4 calculates NEC for electromechanical flywheels.(Eq. 4)where:SOC=Flywheel state-of-charge at the beginning and end of the test run, in (rpm)2I= Rated moment of inertia of the flywheel system, in kilogram-meter 2 (kg/m 2)K 2 = Conversion factor = 4π2/3600 (rad 2/sec 2/rpm 2)4.3Determining NEC Variance 4.3.1T OTAL C YCLE E NE RG Y —This document uses total cycle energy to determine NEC tolerances, as opposed tototal fuel energy, which can vary from test run to test run. To remain consistent with the calculations for NEC, either the total cycle energy must be reported in watt-seconds or the NEC must be converted to kWh.(Eq. 5)NEC SOC final SOC initial –[]∗V system ∗K 1=NEC SOC delta []∗V system ∗K 1=NEC C 2⁄()∗SOC final SOC initial –[]=NEC 12⁄()∗l ∗SOC final SOC initial –[]∗K 2=Total Cycle Energy = Total Fuel Energy – NECTotal fuel energy is the energy value of the fuel consumed by the APU during the test and is calculated as shown in Equation 6.(Eq. 6)whereNHV fuel=Net heating value per consumable fuel analysis as specified by ASTM D 240 or D 4809(preferred), in Joules per kilogram (J/kg)m fuel= Total mass of fuel consumed over test, in kilograms (kg)4.3.2D ETERMINATION P RO CE DURE —To determine if a test run has an acceptable NEC that does not require SOCcorrection, divide NEC by total cycle energy. If the absolute value of the calculation yields a number less than or equal to 1%, as shown in Equation 7, the NEC variance is within tolerance levels and the emissions and fuel economy values for that test run do not need to be corrected for SOC.(Eq. 7)If the absolute value of the calculation yields a number greater 1%, but less than or equal to 5%, as shown in Equation 8, emissions and fuel economy values from the test run need to be corrected for SOC as described below. Test runs with NEC variance greater than ±5% are considered invalid or, if the vehicle is consistently charge depleting, may have to be tested under the charge-depleting vehicle recommendations.(Eq. 8)4.3.3E XAMPLE OF D ETERMINATION P ROCEDURE —A 40 ft hybrid-electric transit bus that achieves 3 mpg (NEC equalto zero) on the Manhattan cycle would consume about 2 gallons of diesel fuel on a 6 mile, 30-minute test cycle. The 2 gallons of diesel fuel equates to about (128000 Btu/gal x 2 gal/ 3412 Btu/kWh) 75 kWh (about 12.5 kWh per mile). In this example, a 1% NEC translates to about 750 Wh while a 5% NEC translates to3.75 kWh. If NEC is determined to be less than 0.750 kWh, then the results can be used as is; otherwise,the results should be corrected according to the procedure outlined in4.4.4.4SOC Correction Procedure—In order to compute a state of charge correction for each emissions species and for fuel economy, the emission and fuel economy values for each run must be plotted against the NEC for each run. A linear interpolation (in some cases extrapolation may be allowed) is performed to establish the fuel economy or emissions at a NEC of zero (i.e., the data is corrected to reflect a net zero change in SOC).This methodology is described in SAE Paper 2000-01-2955.4.4.1SOC C ORRECTION E XAMPLE —A sample SOC correction from the above-cited SAE Paper 2000-01-2955 is shown in Figure 1. The figure shows data collected from five runs on a single 2-mile CBD-14 with a total cycle energy of approximately 25 kWh. The two runs at about –400 Wh and +300 Wh, respectively, have NEC values in excess of 1% (1.6% and 1.2%, respectively); as a result, a SOC correction was necessary.The three inner runs were within the 1% variance, and, as a result, these three test runs could have simply been averaged to determine the representative emission at zero NEC. The end result (about 20 gram per mile) is the result for both the average and the SOC linear interpolation.Total Fuel Energy – NHV fuel ∗m fuelNEC total cycle energy ---------------------------------------------- * 100%1%≤1%NEC total cycle energy---------------------------------------------- *100%5%≤<4.4.2A CCURACY C OMBINED WITH SOC C ORRECTIO N—On a hybrid vehicle, NEC values approaching 5% of the totalcycle energy can result in emission data that can vary significantly from data with a NEC of effectively zero.This is because the vehicle was propelled by energy that is not accounted for. The only way to determine acceptable variance is to correct the data first using the SOC correction procedure. Because using the SOC correction procedure effectively turns multiple test values into a single value, the coefficient of determination, R2, of the linear best fit is used to determine whether the collected data is valid. For the purposes of this recommended practice the data is considered acceptable if the R2, which compares the predicted and actual values of the linear regression, is equal to or greater than 0.80.FIGURE 1—EXAMPLE SOC CORRECTION FACTOR FOR NOx5.Driving Cycles and Routes—The purpose of this document is to measure the emissions and fuel economy ofheavy-duty vehicles on a chassis dynamometer over one or more driving schedules so that the in-use emissions can be compared under like operating conditions. The vehicle is mounted on the chassis dynamometer so that it can be driven through a test cycle. A visual display of the desired and actual vehicle speed will be provided to the driver to allow the driver to operate the vehicle on the prescribed cycle. It is recommended that the vehicle be tested using three different driving cycles, representing low-, intermediate-and high-speed operation.5.1Recommended Driving Cycles—The first recommended cycle, representing lower speed operation, is theManhattan Cycle, which is representative of transit bus operation in city service. (See SAE Paper 2000-01-2011.) The Manhattan Cycle (Figure 2) was developed by West Virginia University from data logged from buses in operation in New York City.The second recommended cycle (Figure 3) is the heavy-duty Urban Dynamometer Driving Schedule (UDDS) (also known as “Test D”), which appears in 40 CFR Part 86.1215-85 and 40 CFR Part 86 Appendix I. This cycle mimics higher speed operation. It was developed as part of the “CAPE 21” effort, and is a Monte Carlo simulation of behavior of trucks and buses under freeway and non-freeway operation. Statistics for both of these recommended test cycles are provided in Table 1.FIGURE 2—THE MANHATTAN DRIVING CYCLEFIGURE 3—UDDS DRIVING CYCLE TABLE 1—CHASSIS DYNAMOMETER DRIVING CYCLE STATISTICSAve.Speed(mph)Std.Dev.Speed Max. Speed (mph)Max. Accel. (mph/s)Max. Decel. (mph/s)Total Time (s)Idle Time (s)Total Dist.(miles)No. of Idle Periods Manhattan x 26.837.3425.3 3.98–5.732178786 4.1341Test D x 218.8419.8458 4.19–4.51212170611.127Orange County12.3310.340.63 4.05–5.131909406 6.5430CBD x 312.588.3620 2.4–4.51722345 6.243The third cycle (Figure 4) recommended by this document is an intermediate test cycle recently developed from the operation of buses in Orange County, California. This cycle represents mid-speed heavy-duty vehicle operation and is being recommended for this type of operation over the Central Business District (CBD) cycle.West Virginia University contributed to the development and documentation of the Orange County cycle.FIGURE 4—ORANGE COUNTY CYCLEThe CBD cycle was originally configured to determine the fuel consumption of a bus driven on an oval track.Although it was subsequently adopted for determining emissions on chassis dynamometers, it does not mimic true bus operation sufficiently for accurate emissions characterization. A major issue with using the CBD is the fact that all cruise operation occurs at 20 mph, and the whole cycle contains only one (repeated) example of an acceleration ramp and one deceleration rate. This limited modal operation, in particular the cruise, can affect one bus configuration over another relative to real use. In some cases conventional automatic buses may shift gear near to 20 mph, so that the cruise speed can have a profound effect on emissions by altering the engine-operating envelope from two fairly similar buses with slightly different shift points.The Orange County bus cycle is derived from real bus operating data and reflects a wide variety of accelerations, decelerations and cruise operations. In this way the cycle more closely imitates the variety of operation found during real bus use. The Orange County cycle does have an average speed (12.33 mph) similar to that of the CBD (12.58 mph), and so does not imply operation that is substantially slower or more freeway-oriented than the CBD. Use of the Orange County cycle is also in keeping with the national trend of employing real world cycles that closely mimic real vehicle operation for emissions factor development. The only reason to employ the CBD in future studies is for comparison with archival data. (Statistics for these two cycles can be found in Table 1.)Data from all three recommended cycles can be found in the Appendix A. The CBD also appears in the Appendix A. While this document does not recommend use of the CBD as an intermediate cycle, it has been included because it is recognized that some may find it useful due to the large amount of historical data on the CBD.5.2Driving Cycle Duration—Charge-sustaining HEV evaluation requires longer test runs, because a single drivecycle is unlikely to affect SOC at a level sufficient to cause the engine management system to provide additional power to the RESS. The use of a longer cycle increases the probability of a smaller NEC between initial and final values on a percentage basis. The use of a longer test also facilitates the detection of emissions produced at laboratory threshold limits, such as PM from a vehicle with post-combustion emission control devices. It also allows for the better evaluation of emission control devices where there may be batch control (accumulation and regeneration) so that sufficient emission control events occur during the course of the drive cycle.The absolute upper limit for the length of an individual test run is about 2 hours due to the potential for analyzer drift, increased driver fatigue, and memory storage capacity limitations. This document recommends that back-to-back drive cycles be combined to produce a test run of approximately 30 minutes. The test run must include an idle period of approximately 1 minute at the end of the test run to capture any emissions lags at the end of a drive cycle.6.Test Preparations6.1Test Site—The ambient temperature levels encountered by the test vehicle shall be no less than 7 °C (45 °F)or more than 38 °C (100 °F). This represents the temperature window adopted by the U.S. Environmental Protection Agency (EPA) for in-use testing. However, if emissions from the vehicle are intended to reflect engine operation under certification conditions, the temperature window should lie between 20 °C (68 °F) and30 °C (86 °F). Ambient temperatures must be recorded at the beginning and end of the test period. Adequatetest site capabilities for safe venting and cooling of batteries, containment of flywheels, protection from exposure to high voltage, or any other necessary safety precaution shall be provided during testing. Test conditions specified in 40 CFR Part 86 shall apply, where appropriate. A fixed-speed-cooling fan shall direct cooling air to the vehicle to maintain the engine operating temperature as specified by the manufacturer during testing. These fans shall only be operating when the vehicle is in operation and shall be switched off for all key off dwell periods. Fans for brake cooling can be utilized at all times.6.2Pre-Test Data Collection—Prior to testing, detailed demographics of the vehicle should be recorded. Thesedata should include, at a minimum, the vehicle identification number, engine serial number, gross vehicle weight (from vehicle data plate), curb weight (from vehicle data plate or by weighing), engine manufacturer, model year and type, engine serial number, engine displacement and number of cylinders, engine rated power and speed, tire size, transmission type, number of speeds, presence or absence of retarder, exhaust gas aftertreatment type, and rear axle ratio. Pre-test data should also include details of the type, power and speed of the electric motor(s); type and capacity of the RESS; and, exhaust aftertreatment device type(s). The chassis test laboratory will be used to measure actual cycle distance during a test, as it is generally considereda more accurate method of calculation; as a result, an odometer on the vehicle is not required.If fuel properties are not known, a fuel sample should be gathered for subsequent analysis. Fuel properties to be determined and reported are listed in 40 CFR 86.307-82; however, at a minimum, they should include:a.For Liquid Compression Ignition Fuels—The heating value, sulfur content and aromatic densityb.For Natural Gas Information—The methane content, non-methane organic content and inert contentc.For Liquid Spark Ignition Fuels—Heating value and octane numberDeviation from the basic procedure, such as testing the vehicle in a different mode other than HEV, must be properly documented for later reproduction.6.3Condition of the Vehicle6.3.1V EHICLE S TABILIZATION—Prior to testing, the vehicle shall be stabilized to a manufacturer-determineddistance or to 4000 miles. Charge-depleting vehicles for which regular, off-vehicle charging is recommended shall have their RESS fully recharged. This recharge should occur at least once between each refilling of consumable fuel; however, charging frequency for the RESS shall not be greater than is anticipated during normal vehicle use.6.3.2V EHICLE A PPENDAGES—Vehicles shall be tested with normal appendages (mirrors, bumpers, etc.). Certainitems (e.g., hub caps) may be removed where necessary for safety on the dynamometer.。