人教版勾股定理及逆定理复习
勾股定理的逆定理知识点
要点一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形. 要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长; (2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;。
[数学]-专项17.1 勾股定理及其逆定理【九大题型】(举一反三)(人教版)(原版)
专题17.1 勾股定理及其逆定理【九大题型】【人教版】【题型1 勾股定理的运用】 (1)【题型2 直角三角形中的分类讨论思想】 (2)【题型3 勾股定理解勾股树问题】 (3)【题型4 勾股定理解动点问题】 (4)【题型5 勾股定理的验证】 (5)【题型6 直角三角形的判定】 (7)【题型7 勾股数问题】 (8)【题型8 格点图中求角的度数】 (9)【题型9 勾股定理及其逆定理的运用】 (10)【题型1 勾股定理的运用】【例1】(2022•和平区三模)如图,在△ABC中,∠C=90°,AD平分∠CAB,CD=1.5,BD=2.5,则AC的长为()A.5B.4C.3D.2【变式1-1】(2022春•上杭县期中)如图在Rt△ABC中,∠B=90°,AB=8,AC=10,AC的垂直平分线DE分别交AB、AC于D、E两点,则BD的长为()A .32B .74C .2D .52【变式1-2】(2022春•汉阳区期中)如图,在△ABC 中AB =AC =10,BC =16,若∠BAD =3∠DAC ,则CD = .【变式1-3】(2021秋•朝阳区校级期末)如图,在△ABC 中,∠C =90°,AB =30,D 是AC 上一点,AD :CD =25:7,且DB =DA ,过AB 上一点P ,作PE ⊥AC 于E ,PF ⊥BD 于F ,则PE +PF 长是 .【题型2 直角三角形中的分类讨论思想】【例2】(2022春•长沙月考)已知△ABC 中,AB =13,AC =15,BC 边上的高为12.则△ABC 的面积为( ) A .24或84B .84C .48或84D .48【变式2-1】(2022春•宁津县期中)△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长是( ) A .42B .32C .42或32D .42或37【变式2-2】(2022春•香河县期中)已知直角三角形两边的长为5和12,则此三角形的周长为( ) A .30B .√119+17C .√119+17或30D .36【变式2-3】(2022春•海淀区校级期中)在Rt △ABC 中,∠ACB =90°,AC =4,AB =5.点P 在直线AC 上,且BP =6,则线段AP 的长为 .【题型3 勾股定理解勾股树问题】【例3】(2021秋•南关区期末)如图,所有阴影部分四边形都是正方形,所有三角形都是直角三角形,若正方形A、B、D的面积依次为6、10、24,则正方形C的面积为()A.4B.6C.8D.12【变式3-1】(2021秋•高新区校级期末)如图,在四边形ABCD中,∠DAB=∠BCD=90°,分别以四边形的四条边为边向外作四个正方形,若S1+S4=135,S3=49,则S2=()A.184B.86C.119D.81【变式3-2】(2022春•泗水县期中)有一个边长为1的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了如图,如果继续“生长”下去,他将变得“枝繁叶茂”,请你计算出“生长”了2022次后形成的图形中所有正方形的面积之和为()A.2020B.2021C.2022D.2023【变式3-3】(2022春•张湾区期中)如图①,在△ABC中,∠ACB=90°,AC:BC=4:3,这个直角三角形三边上分别有一个正方形.执行下面的操作:由两个小正方形向外分别作直角边之比为4:3的直角三角形,再分别以所得到的直角三角形的直角边为边长作正方形.图②是1次操作后的图形,图③是2次操作后的图形.如果图①中的直角三角形的周长为12,那么10次操作后的图形中所有正方形的面积和为( )A .225B .250C .275D .300【题型4 勾股定理解动点问题】【例4】(2021秋•开福区校级期末)如图,Rt △ACB 中,∠ACB =90°,AB =25cm ,AC =7cm ,动点P 从点B 出发沿射线BC 以2cm /s 的速度运动,设运动时间为ts ,当△APB 为等腰三角形时,t 的值为( )A .62596或252B .252或24或12C .62596或24或12 D .62596或252或24【变式4-1】(2021秋•宛城区期末)如图,在Rt △ABC 中,∠ACB =90°,BC =40cm ,AC =30cm ,动点P 从点B 出发沿射线BA 以2cm /s 的速度运动.则当运动时间t = s 时,△BPC 为直角三角形.【变式4-2】(2022春•蚌山区校级期中)如图,在△ABC 中,∠ACB =90°,AB =10,AC =8,点P 从点A 出发,以每秒2个单位长度的速度沿折线A ﹣B ﹣C 运动.设点P 的运动时间为t 秒(t >0). (1)BC 的长是 .(2)当点P刚好在∠BAC的角平分线上时,t的值为.【变式4-3】(2022春•河东区期中)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,同时停止.(1)P、Q出发4秒后,求PQ的长;(2)当点Q在边CA上运动时,出发几秒钟后,△CQB能形成直角三角形?【题型5 勾股定理的验证】【例5】勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连接DB,过点D作BC边上的高DF,则DF=EC=b﹣a∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a)∴12b2+12ab=12c2+12a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2.【变式5-1】(2022春•巢湖市校级期中)学习勾股定理之后,同学们发现证明勾股定理有很多方法.某同学提出了一种证明勾股定理的方法:如图1点B是正方形ACDE边CD上一点,连接AB,得到直角三角形ACB,三边分别为a,b,c,将△ACB裁剪拼接至△AEF位置,如图2所示,该同学用图1、图2的面积不变证明了勾股定理.请你写出该方法证明勾股定理的过程.【变式5-2】(2021秋•朝阳区期末)【阅读理解】我国古人运用各种方法证明勾股定理,如图①,用四个直角三角形拼成正方形,通过证明可得中间也是一个正方形.其中四个直角三角形直角边长分别为a、b,斜边长为c.图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×12ab,即(a+b)2=c2+4×12ab,所以a2+b2=c2.【尝试探究】美国第二十任总统伽菲尔德的“总统证法”如图②所示,用两个全等的直角三角形拼成一个直角梯形BCDE,其中△BCA≌△ADE,∠C=∠D=90°,根据拼图证明勾股定理.【定理应用】在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边长分别为a、b、c.求证:a2c2+a2b2=c4﹣b4.【变式5-3】(2022春•寿光市期中)如图①,美丽的弦图,蕴含着四个全等的直角三角形.(1)弦图中包含了一大,一小两个正方形,已知每个直角三角形较长的直角边为a,较短的直角边为b,斜边长为c,结合图①,试验证勾股定理.(2)如图②,将这四个直角三角形紧密地拼接,形成飞镖状,已知外围轮廓(粗线)的周长为24,OC=3,求该飞镖状图案的面积.(3)如图③,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【题型6 直角三角形的判定】【例6】(2022春•绥宁县期中)若△ABC的三边长分别为a、b、c,下列条件中能判断△ABC是直角三角形的有()①∠A=∠B﹣∠C,②∠A:∠B:∠C=3:4:5,③∠A=90°﹣∠B,④∠A=∠B=12∠C,⑤a2=(b+c)(b﹣c),⑥a:b:c=5:12:13.A.3个B.4个C.5个D.6个【变式6-1】(2022春•赣州月考)下列满足条件的三角形中,不是直角三角形的是()A.在△ABC中,若a=35c,b=45c.则△ABC为直角三角形B.三边长的平方之比为1:2:3C.三内角之比为3:4:5D.三边长分别为a,b,c,c=1+n2,a=n2﹣1,b=2n(n>1)【变式6-2】(2022春•汉滨区期中)若△ABC的三边长a,b,c满足(a﹣c)2=b2﹣2ac,则()A.∠A为直角B.∠B为直角C.∠C为直角D.△ABC不是直角三角形【变式6-3】(2022春•开州区期中)下列是直角三角形的有()个①△ABC中a2=c2﹣b2②△ABC的三内角之比为3:4:7③△ABC的三边平方之比为1:2:3④三角形三边之比为3:4:5A.1B.2C.3D.4【题型7 勾股数问题】【例7】(2022春•滑县月考)在学习“勾股数”的知识时,小明发现了一组有规律的勾股数,并将它们记录在如下的表格中.a68101214…b815243548…c1017263750…则当a=24时,b+c的值为()A.162B.200C.242D.288【变式7-1】(2022•湖北)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1.柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是(结果用含m的式子表示).【变式7-2】(2022春•白云区期末)(1)3k,4k,5k(k是正整数)是一组勾股数吗?如果是,请证明;如果不是,请说明理由;(2)如果a,b,c是一组勾股数,那么ak,bk,ck(k是正整数)也是一组勾股数吗?如果是,请证明;如果不是,请说明理由.【变式7-3】(2022•石家庄三模)已知:整式A=n2+1,B=2n,C=n2﹣1,整式C>0.(1)当n=1999时,写出整式A+B的值(用科学记数法表示结果);(2)求整式A2﹣B2;(3)嘉淇发现:当n取正整数时,整式A、B、C满足一组勾股数,你认为嘉淇的发现正确吗?请说明理由.【题型8 格点图中求角的度数】【例8】(2021秋•伊川县期末)如图,正方形ABCD是由9个边长为1的小正方形组成的,点E,F均在格点(每个小正方形的顶点都是格点)上,连接AE,AF,则∠EAF的度数是.【变式8-1】(2022•惠山区一模)如图所示的网格是由相同的小正方形组成的网格,点A,B,P是网格线的交点,则∠P AB+∠PBA=°.【变式8-2】(2022春•武侯区校级期末)如图,在正方形网格中,每个小正方形的边长均为1,点A,B,C,D,P都在格点上,连接AP,CP,CD,则∠P AB﹣∠PCD=.【变式8-3】(2022春•孝南区期中)如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BCA+∠DCE=.【题型9 勾股定理及其逆定理的运用】【例9】(2021秋•蓝田县校级期末)如图,在△ABC中,AB=AC,D是CA的延长线上一点,连接BD.(1)若AC=8,AD=17,BD=15,判断AB与BD的位置关系,并说明理由;(2)若∠D=28°,∠DBC=121°,求∠DAB的度数.【变式9-1】(2022春•陵城区期中)如图,在△ABC中,AD、BE分别为边BC、AC的中线,分别交BC、AC于点D、E.(1)若CD=4,CE=3,AB=10,求证:∠C=90°;(2)若∠C=90°,AD=6,BE=8,求AB的长.【变式9-2】(2021春•当涂县期末)如图,在△ABC中.D是AB边的中点,DE⊥AB于点D,交AC于点E,且AE2﹣CE2=BC2,(1)试说明:∠C=90°;(2)若DE=6,BD=8,求CE的长.【变式9-3】(2022春•汉阳区校级月考)如图,在四边形ABCD中,∠ABC=90°,AB=6,BC=8,CD =10,AD=10√2.(1)求四边形ABCD的面积.(2)求对角线BD的长.。
专题1.2 勾股定理的逆定理【八大题型】(举一反三)(人教版)(解析版)
专题1.2 勾股定理的逆定理【八大题型】【北师大版】【题型1 判断三边能否构成直角三角形】 (1)【题型2 图形上与已知两点构成直角三角形的点】 (3)【题型3 在网格中判断直角三角形】 (6)【题型4 勾股数的探究】 (9)【题型5 利用勾股定理的逆定理证明】 (13)【题型6 利用勾股定理的逆定理求解】 (16)【题型7 勾股逆定理的应用】 (19)【题型8 勾股定理及其逆定理的综合】 (23)【知识点 勾股定理的逆定理】如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.【题型1 判断三边能否构成直角三角形】【例1】(2023春·黑龙江哈尔滨·八年级哈尔滨德强学校校考期中)由线段a 、b 、c 组成的三角形是直角三角形的是( )A .a =5,b =3,c =3B .a =13,b =15,c =14C .a =6,b =4,c =5D .a =7,b =24,c =25【答案】D【分析】根据勾股定理的逆定理,进行计算即可解答.【详解】解:A 、32+32=18≠52,故不能组成直角三角形,故不合题意;B +=41400≠,故不能组成直角三角形,故不合题意;C 、42+52=41≠62,故不能组成直角三角形,故不合题意;D 、72+242=625=252,故不能组成直角三角形,故不合题意;故选:D .【点睛】本题考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解题的关键.【变式1-1】(2023春·湖北孝感·八年级统考期中)一个三角形的三边长分别为a ,b ,c ,且满足(a +b )(a−b )=c2,则这个三角形是()A.等腰三角形B.直角三角形C.锐角三角形D.不确定【答案】B【分析】将原式整理为a2=b2+c2,即可判断.【详解】解:∵(a+b)(a−b)=c2,∴a2−b2=c2,∴a2=b2+c2,∴这个三角形是直角三角形;故选:B.【点睛】本题考查了勾股定理的逆定理和平方差公式,熟练掌握勾股定理逆定理、得出a2=b2+c2是解题的关键.【变式1-2】(2023春·八年级单元测试)如图,以△ABC的两边BC、AC分别向外作正方形,它们的面积分别是S1,S2,若S1=2,S2=3,AB2=5,则△ABC的形状是________三角形.【答案】直角【分析】根据正方形的面积公式结合勾股定理的逆定理即可得出答案.【详解】解:∵S1=2,S2=3,∴BC2=2,AC2=3,∵AB2=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,故答案为:直角.【点睛】本题考查了勾股定理的逆定理和正方形面积的应用,理解勾股定理的逆定理的内容是解题的关键.【变式1-3】(2023春·广东惠州·八年级校考期中)有四种说法:①三个内角之比为5:6:1;②三边形长分③三边之长为9、40、41;④三边之比为1.5∶2∶3.其中是直角三角形的有___________(填序号).【答案】①②③【分析】根据三角形内角和定理和勾股定理进行求解即可.【详解】解:∵三角形三个内角之比为5:6:1,=90°,∴三角形最大的内角为180°×6561∴该三角形为直角三角形,故①正确;∵2+=2,∴该三角形为直角三角形,故②正确;∵92+402=412,∴该三角形为直角三角形,故③正确;∵1.52+22≠32,∴该三角形不是直角三角形,故④错误;故答案为:①②③.【点睛】本题主要考查了三角形内角和定理,勾股定理得逆定理,熟知三角形内角和为180度和勾股定理的逆定理是解题的关键.【题型2图形上与已知两点构成直角三角形的点】【例2】(2023春·全国·八年级专题练习)同一平面内有A,B,C三点,A,B两点之间的距离为5cm,点C 到直线AB的距离为2cm,且△ABC为直角三角形,则满足上述条件的点C有______个.【答案】8【分析】该题存在两种情况;(1)AB为斜边,则∠C=90°;(2)AB为直角边,AC=2cm或BC=2cm;【详解】(1)当AB为斜边时,点C到直线AB的距离为2cm,即AB边上的高为2cm,符合要求的C点有4个,如图:(2)当AB为直角边时,AC=2cm或BC=2cm,符合条件的点有4个,如图;符合要求的C点有8个;故答案是8.【点睛】本题主要考查了勾股定理的应用,准确分析判断是解题的关键.【变式2-1】(2023春·八年级单元测试)在如图所示的5×5的方格图中,点A和点B均为图中格点.点C 也在格点上,满足△ABC为以AB为斜边的直角三角形.这样的点C有()A.1个B.2个C.3个D.4个【答案】D【分析】结合网格的性质和直角三角形的判定找到对应点即可.【详解】解:如图,满足条件的点C共有4个,故选D.【点睛】此题主要考查了勾股定理逆定理,正确进行讨论,把每种情况考虑全,是解决本题的关键.【变式2-2】(2023春·全国·八年级专题练习)点A(2,m),B(2,m-5)在平面直角坐标系中,点O为坐标原点.若△ABO是直角三角形,则m的值不可能是()A.4B.2C.1D.0【答案】B【分析】分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况考虑:当∠OAB=90°时,点A在x轴上,进而可得出m=0;当∠OBA=90°时,点B在x轴上,进而可得出m=5;当∠AOB=90°时,利用勾股定理可得出关于m的一元二次方程,解之即可得出m的值.综上,对照四个选项即可得出结论.【详解】解:分三种情况考虑(如图所示):当∠OAB=90°时,m=0;当∠OBA=90°时,m−5=0,解得:m=5;当∠AOB=90°时,AB2=OA2+OB2,即25=4+m2+4+m2−10m+25,解得:m1=1,m2=4.综上所述:m的值可以为0,5,1,4.故选B.【点睛】本题考查了坐标与图形性质以及勾股定理,分∠OAB=90°,∠OBA=90°,∠AOB=90°三种情况求出m的值是解题的关键.【变式2-3】(2023春·全国·八年级专题练习)如图,方格纸中的每个小正方形的边长均为1,点A,B在小正方形的顶点上,在图中画ΔABC(点C在小正方形的顶点上),使ΔABC为直角三角形,并说明理由.(要求画出两个,且两个三角形不全等)【答案】ΔABC为直角三角形,理由详见解析.【分析】根据勾股定理逆定理和勾股定理进行判断即可.【详解】解:如图所示.图1图2如图1,在ΔABC中,AC=5,BC=3,AB2=32+52=34因为AC2+BC2=52+32=34=AB2,所以∠ACB=90°,即ΔABC为直角三角形.如图2,在RtΔACD中,AC2=CD2+AD2=12+12=2.在RtΔBCE中,CB2=CE2+BE2=42+42=32.在RtΔABF中,AB2=AF2+BF2=32+52=34.所以AC2+CB2=AB2,所以∠ACB=90°,即ΔABC为直角三角形.【点睛】考核知识点:根据勾股定理逆定理画直角三角形.掌握勾股定理逆定理并会运用是关键.【题型3在网格中判断直角三角形】【例3】(2023春·北京西城·八年级校考期中)如图,在正方形网格中,每个小正方形的边长为1,△ABC 的三个顶点A,B,C都在格点上,AD是BC边上的中线,那么AD的长为()A.2.5B.3C.D【答案】A【分析】由勾股定理可得AC2=5,BC2=25,AB2=20,则AC2+AB2=BC2,即△ABC是直角三角形,然后由直角三角形斜边上的中线等于斜边的一半即可解答.【详解】解:由勾股定理可得AC2=5,BC2=25,AB2=20,∴AC2+AB2=BC2,即△ABC是直角三角形,∵AD是BC边上的中线,BC=2.5.∴AD=12故选:A.【点睛】本题主要考查了勾股定理、直角三角形斜边上中线的性质等知识点,根据勾股定理逆定理判定△ABC是直角三角形是基础,掌握斜边上的中线的性质是解题的关键.【变式3-1】(2023春·广东湛江·八年级校考阶段练习)如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为_________.【答案】45°【分析】根据勾股定理得到AB,BC,AC的长度,再判断△ABC是等腰直角三角形,进而得出结论.【详解】解:如图,连接AC,由题意,AC=,BC=AB∴AC=BC,AB2=AC2+BC2,∴△ABC是等腰直角三角形,且∠ACB=90°,∴∠ABC=∠CAB=45°.故答案为:45°.【点睛】本题主要考查了勾股定理及其逆定理,等腰直角三角形的判定与性质,判断出△ABC是等腰直角三角形是解决本题的关键.【变式3-2】(2023春·广东惠州·八年级校考阶段练习)如图,每个小正方形的边长为1.(1)求四边形ABCD的面积与周长;(2)求证:∠BCD=90°.【答案】(1)周长为:32(2)见解析【分析】(1)借助正方形的小格,根据勾股定理分别计算四边形的各边的长,从而求得四边形的周长;(2)在△ABC中,根据勾股定理的逆定理进行判定.【详解】(1)解:根据勾股定理可知AB=3BC=CD=AD=5∴四边形ABCD的周长为+面积为:8×8−12×3×3−12×5×5−12×5×3−12×3×5=32.(2)证明:连接BD,∵BC=CD=DB=∴BC2+CD2=BD2.∴△BCD是直角三角形,即∠BCD=90°.【点睛】本题主要考查了勾股定理的运用以及勾股定理逆定理的运用,掌握勾股定理是解题的关键.【变式3-3】(2023春·八年级单元测试)如图所示的是2×5的正方形网格,点A,B,P都在网格点上,则∠APB=________.【答案】135°【分析】根据勾股定理和勾股定理的逆定理可得△PCB是等腰直角三角形,可得∠BPC=45°,即可求解.【详解】解:延长AP至C,连接BC,CP=CB=BP∵2+2=2,即CP2+CB2=BP2,∴△PCB是等腰直角三角形,∴∠BPC=45°,∴∠APB=180°−45°=135°,故答案为:135°.【点睛】本题考查了勾股定理和勾股定理的逆定理,关键是得到△PCB是等腰直角三角形.【题型4勾股数的探究】【例4】(2023春·安徽阜阳·八年级统考期末)法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数.如(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(___________),(___________);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2−1,z=n2+1,那么,以x,y,z为三边的三角形为直角三角形(即x,y,z为勾股数),请你加以证明.【答案】(1)5,12,13;7,24,25(2)证明见解析【分析】(1)根据x2+y2=z2,即可得出5,12,13、7,24,25是勾股数;(2)根据勾股定理的逆定理,可得答案.【详解】(1)∵52+122=169,132=169,∴52+122=132,∴5,12,13是勾股数;∵72+242=625,252=625,∴72+242=252,∴7,24,25是勾股数;故答案为:5,12,13;7,24,25;(2)证明:∵x=2n,y=n2−1,∴x2+y2=(2n)2+(n2−1)2=4n2+n4−2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.∴以x,y,z为三边的三角形为直角三角形.【点睛】此题考查勾股逆定理的证明,勾股数的规律探究,掌握勾股逆定理的证明,根据勾股定理得出勾股数是解题的关键.【变式4-1】(2023春·四川达州·八年级校考期中)以下列各组数据中的三个数,其中是勾股数的是()A.B.6,8,10C.D.2,3,4【答案】B【分析】根据勾股数的定义进行分析,从而得到答案.【详解】解:A+=7=5,7≠5,故此选项错误;B、62+82=100,102=100,且100=100,故此选项正确;C、12+=3=3,3=3D、22+32=13,42=16,13≠16,故此选项错误.故答案为:B.【点睛】此题考查了勾股数,解答此题要用到勾股定理的逆定理和勾股数的定义,满足a2+b2=c2.【变式4-2】(2023春·全国·八年级专题练习)一个直角三角形三边长都是正整数,这样的直角三角形叫做“整数直角三角形”,这三个整数叫做一组“勾股数”老师给出了下表(其中m,n为正整数,且m>n):m23344…n11212…a22+1232+1232+2242+1242+22…b4612816…c22−1232−1232−2242−1242−22…(1)探究a,b,c与m,n之间的关系并用含m,n的代数式表示:a=______,b=______,c=______.(2)以a,b,c为边长的三角形是否一定为直角三角形?请说明理由.【答案】(1)m2+n2,2mn,m2−n2(2)以a,b,c为边长的三角形一定为直角三角形,理由见解析【分析】(1)根据给出的数据总结即可;(2)分别计算出a2、b2、c2,根据勾股定理逆定理进行判断.【详解】(1)解:观察可得a=m2+n2,b=2mn,c=m2−n2,故答案为:m2+n2,2mn,m2−n2;(2)以a,b,c为边长的三角形一定为直角三角形,理由如下:a2=(m2+n2)2=m4+2m2n2+n4,b2+c2=m4−2m2n2+n4+4m2n2=m4+2m2n2+n4,∴a2=b2+c2,∴以a,b,c为边长的三角形一定为直角三角形.【点睛】本题考查了勾股数,勾股定理的逆定理,熟练掌握:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.【变式4-3】(2023春·重庆北碚·八年级西南大学附中校考期中)勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;(2a和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1•c2.【答案】(1)见解析;(2)a=9730b,a=31,b=4;(3)见解析7【分析】(1)根据勾股定理:利用(m2+n2)2﹣(m2﹣n2)2,解得另一条直角边长为2mn,因为m,n为正整数,所以2mn也为正整数,即可得证;(2)首先根据勾股定理求出a关于b的代数式,再根据被开方数需大于等于0,即可求得a、b的范围,且a、b 均为正整数,将b的可能值:1,2,3,4分别代入,即可求得符合条件的正整数a、b;(3)观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,而252=152+202,故存在.【详解】(1)证明:∵(m2+n2)2﹣(m2﹣n2)2=(m2+n2+m2﹣n2)•(m2+n2﹣m2+n2)=2m2•2n2=(2mn)2,∴(2mn)2+(m2﹣n2)2=(m2+n2)2,∵m,n为正整数,且m>n,∴2mn,m2﹣n2,m2+n2均为正整数,∴该直角三角形一定为“整数直角三角形”;(2)由勾股定理得:7a﹣7+(150﹣30b)=16×15,∴a=9730b7,由题意可知:7a﹣7>0,150﹣30b>0,∴a>1,0<b<5,∵a和b均为正整数,∴b的可能值为:1,2,3,4,当b=1时,a=97307=1277,不是正整数,故b=1不符合题意;当b=2时,a=1577,不是正整数,故b=2不符合题意;当b=3时,a=97907=1877,不是正整数,故b=3不符合题意;当b=4时,a=971207=2177=31==∵2+2=240,4=240,∴2+2=4,∴b=4符合题意,∴a=9730b7,a=31,b=4;(3)证明:观察发现,当a1=b1=1,a2=b2=2时,c1•c2=5×5=25,152+202=225+400=625,252=625,∴152+202=252.∴存在一个整数直角三角形,其斜边长为c1•c2.【点睛】本题目考查勾股定理,难度一般,也是中考的常考知识点,熟练掌握勾股定理的应用以及二次根式的相关性质是顺利解答此题的关键.【题型5利用勾股定理的逆定理证明】【例5】(2023·江苏·八年级假期作业)如图,已知CD⊥AB,垂足为D,BD=1,CD=2,AD=4.求证:∠ACB=90°.【答案】见解析【分析】根据勾股定理得出BC2,AC2,进而利用勾股定理的逆定理解答即可.【详解】证明:∵CD⊥AB,垂足为D,BD=1,CD=2,AD=4,∴BC2=BD2+CD2=12+22=5,AC2=AD2+CD2=42+22=20,∵AB=AD+BD=4+1=5,∴AB2=25=AC2+BC2=20+5,∴△ABC是直角三角形,∴∠ACB=90°.【点睛】此题考查勾股定理及其逆定理,掌握勾股定理与其逆定理的区别是解题的关键.【变式5-1】(2023·江苏·八年级假期作业)在△ABC的三边分别是a、b、c,且a=n2−1,b=2n,c=n2+1,判断△ABC的形状,证明你的结论.【答案】直角三角形,理由见解析【分析】根据勾股定理的逆定理判断即可.【详解】解:∵a=n2−1,b=2n,c=n2+1∴a2=(n2−1)2=n4−2n2+1,b2=(2n)2=4n2,c2=(n2+1)2=n4+2n2+1,∴a2+b2=c2,故△ABC是直角三角形.【点睛】本题考查了勾股定理的逆定理、完全平方公式,会利用勾股定理的逆定理判定三角形是否为直角三角形是解答的关键.【变式5-2】(2023春·八年级课时练习)如图,以△ABC的每一条边为边作三个正方形.已知这三个正方形构成的图形中,绿色部分的面积与蓝色部分的面积相等,则△ABC是直角三角形吗?请证明你的判断.【答案】△ABC是直角三角形,证明见解析【分析】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,【详解】设坐标绿色部分的面积和为a,右边绿色部分的面积为b,蓝色部分的面积和为c,坐标空白部分的面积为d,右边空白部分的面积为e,然后根据绿色部分的面积与蓝色部分的面积相等列式得到(a+d)+(b+e)=c+d+e,然后由a+d=AC2,b+e=BC2求解即可..∵绿色部分的面积与蓝色部分的面积相等∴a+b=c∴a+b+d+e=c+d+e∴(a+d)+(b+e)=c+d+e∵a+d=AC2,b+e=BC2∴c+d+e=AB2∴AC2+BC2=AB2∴△ABC是直角三角形.【点睛】此题考查了勾股定理的逆定理的运用,解题的关键是熟练掌握勾股定理的逆定理.【变式5-3】(2023春·江苏盐城·八年级统考期中)如图,在△ABC中,AB=7,AC=25,AD是中线,点E在AD的延长线上,且AD=ED=12.(1)求证:△CDE≌△BDA;(2)证明:CE⊥AE;(3)求△ABC的面积.【答案】(1)见解析(2)见解析(3)84【分析】(1)根据SAS证明△CDE≌△BDA即可;(2)结论:△ACE是直角三角形;首先根据△CDE≌△BDA,推出CE=AB=7,最后根据勾股定理的逆定理即可证明;(3)由全等三角形的性质得出S △ABC =S △ACE ,所以计算△ACE 的面积,即可得出△ABC 的面积.【详解】(1)证明:∵AD 是边BC 上的中线,∴BD =CD ,在△BDA 和△CDE 中,AD =BD ∠ADB =∠EDC BD =CD,∴△CDE≌△BDA (SAS ),(2)结论:△ACE 是直角三角形;理由:由(1)知:△CDE≌△BDA ,∴CE =AB =7,∵AD =ED =12,∴AE =24,∵AE 2+CE 2=242+72=625,AC 2=252=625,∴AE 2+CE 2=AC 2,∴∠E =90°,∴△ACE 是直角三角形;(3)∵△CDE≌△BDA ,∴S △CDE +S △ADC =S △ADC +S △BDA ,∴S △ABC =S △ACE ,∵S △ACE =12AE·CE =12×24×7=84,∴S △ABC =84.【点睛】此题是三角形的综合题,考查三角形全等的判定与性质,勾股定理的逆定理的运用,三角形的面积计算方法,掌握三角形全等的判定方法与勾股定理逆定理是解决问题的关键.【题型6 利用勾股定理的逆定理求解】【例6】(2023春·山西吕梁·八年级统考期末)如图,在△ABC 中,AB =5,BC =4,AC =3,将三角形纸片沿AD 折叠,使点C 落在AB 边上的点E 处,则△BDE 的周长为( )A.3B.4C.5D.6【答案】D【分析】利用勾股定理的逆定理判断出∠C=90°,利用翻折不变性可得AE=AC=3,推出BE=2,即可解决问题.【详解】解:在△ABC中,∵AB=5,BC=4,AC=3,∴AB2=BC2+AC2,∴△ABC是直角三角形,且∠C=90°,由翻折的性质可知:AE=AC=3,CD=DE,∴BE=2,∴△BDE的周长=DE+BD+BE=CD+BD+BE=BC+BE=4+2=6,故选:D.【点睛】本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式6-1】(2023春·湖北襄阳·八年级统考期中)如图,在△ABC中,点D在AB上,AB=AC,BC=5,BD=3,CD=4.求AC的长.【答案】AC=256【分析】由勾股定理的逆定理判定∠BDC=90°,再在Rt△ADC中利用勾股定理列方程即可解答.【详解】解:∵BC=5,BD=3,CD=4,∴BD2+CD2=32+42=25=BC2.∴∠BDC=90°.∴∠ADC=180°−∠BDC=90°.∴AD2+CD2=AC2.设AC=x.∵AB=AC,BD=3,∴AD=x−3.∴(x−3)2+42=x2.解得x=256.∴AC=256.【点睛】本题主要考查了勾股定理及其逆定理的应用,解题的关键在于熟练掌握定理,灵活运用.【变式6-2】(2023春·河南开封·八年级统考期末)已知△ABC的三边分别为a、b、c,且满足(a+2b−11)2+|2a−b−2|=10c−25−c2,请你判断△ABC的形状,并求出其周长与面积.【答案】△ABC是直角三角形,它的周长是12,面积是6【分析】首先把原等式变形为(a+2b−11)2+|2a−b−2|+(c−5)2=0,利用非负数的性质,建立三元一次方程组,求得a、b、c的数值,利用勾股定理的逆定理判定三角形的形状,进一步求得周长和面积即可.【详解】解:由题意得(a+2b−11)2+|2a−b−2|+c2−10c+25=0,∴(a+2b−11)2+|2a−b−2|+(c−5)2=0,∴a+2b−11=02a−b−2=0c−5=0,∴a=3,b=4,c=5,∵a2+b2=c2,∴△ABC是直角三角形,它的周长是3+4+5=12,面积是12×3×4=6.【点睛】此题考查了完全平方公式,非负数的性质,解三元一次方程组,勾股定理逆定理以及三角形的周长和面积的计算方法;注意解题的思路与方法的灵活性.【变式6-3】(2023春·陕西榆林·八年级校考期末)已知在△ACB中,AC=12,BC=5,AB=13,点E为边AC 上的动点,点F为边AB上的动点,则FE+EB的最小值是_________.【答案】12013【分析】先根据勾股定理的逆定理可得∠ACB =90°,再作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,然后根据两点之间线段最短、垂线段最短可得当B ′F ⊥AB 时,线段FE +EB 的值最小,最小值为B ′F ,最后利用三角形的面积公式即可得.【详解】解:∵在△ACB 中,AC =12,BC =5,AB =13,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠ACB =90°,如图,作点B 关于AC 的对称点B ′,连接B ′E,B ′F,AB ′,∴B ′C =BC =5,BB ′=2BC =10,B ′E =BE ,∴FE +EB =FE +B ′E ,由两点之间线段最短可知,当点B ′,E,F 共线时,FE +B ′E 最小,最小值为B ′F ,由垂线段最短可知,当B ′F ⊥AB 时,B ′F 的值最小,又∵S △ABB ′=12AB ⋅B ′F =12AC ⋅BB ′,∴12×13B ′F =12×12×10,解得B ′F =12013,即FE +EB 的最小值为12013,故答案为:12013.【点睛】本题考查了勾股定理的逆定理、两点之间线段最短、垂线段最短、轴对称的性质等知识点,熟练掌握轴对称的性质和勾股定理的逆定理是解题关键.【题型7 勾股逆定理的应用】【例7】(2023春·广东广州·八年级统考期中)如图,在笔直的公路AB 旁有一座山,从山另一边的C 处到公路上的停靠站A 的距离为AC =15km ,与公路上另一停靠站B 的距离为BC =20km ,停靠站A 、B 之间的距离为AB =25km ,为方便运输货物现要从公路AB 上的D 处开凿隧道修通一条公路到C 处,且CD ⊥AB .(1)请判断△ABC 的形状?(2)求修建的公路CD 的长.【答案】(1)直角三角形(2)12km【分析】(1)根据勾股定理的逆定理,由AC 2+BC 2=AB 2得到△ABC 是直角三角形.(2)利用△ABC 的面积公式可得,CD ⋅AB =AC ⋅BC ,从而求出CD 的长.【详解】(1)解:△ABC 是直角三角形.理由:∵AC =15km ,BC =20km ,AB =25km ,∴ 152+202=252,∴AC 2+BC 2=AB 2,∴∠ACB =90°,∴△ABC 是直角三角形.(2)解:∵CD ⊥AB ,∴S △ABC =12AB ⋅CD =12AC ⋅BC ,∴CD =AC⋅BC AB =15×2025=12(km).答:修建的公路CD 的长是12km .【点睛】本题考查了勾股定理,勾股定理逆定理的应用,以及三角形的面积公式等知识,熟练掌握勾股定理及其逆定理是解题的关键.【变式7-1】(2023春·广西南宁·八年级南宁市天桃实验学校校考阶段练习)森林火灾是一种常见的自然灾害,危害很大.随着中国科技、经济的不断发展,开始应用飞机洒水的方式扑灭火源.如图,△ABC 区域内是一片森林,有一台救火飞机沿东西方向AB ,由点A 飞向点B ,已知点C 为其中一个着火点,且点C 与点A ,B 的距离分别为600m 和800m ,又AB =1000m ,飞机中心周围500m 以内可以受到洒水影响.(1)求△ABC 的面积.(2)着火点C 能否受到洒水影响?为什么?【答案】(1)240000m 2(2)受影响【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,再利用面积公式计算即可;(2)过点C 作CD ⊥AB 于D ,利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响.【详解】(1)解:∵AC =600m ,BC =800m ,AB =1000m ,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∴S △ABC =12×AC ×BC =240000m 2;(2)如图,过点C 作CD ⊥AB 于D ,∴S △ΔABC =12AC ⋅BC =12CD ⋅AB ,∴600×800=1000CD ,∴CD =480,∵飞机中心周围500m 以内可以受到洒水影响,∴着火点C 受洒水影响.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.【变式7-2】(2023春·广西桂林·八年级统考期中)一根12米的电线杆AB ,用铁丝AC 、AD 固定,现已知用去铁丝AC =15米,AD =13米,又测得地面上B 、C 两点之间距离是9米,B 、D 两点之间距离是5米,则电线杆和地面是否垂直,为什么?【答案】电线杆和地面垂直,理由见解析【分析】由勾股定理的逆定理判断△ABD是直角三角形,△ABC是直角三角形,即可解答.【详解】解:电线杆和地面垂直,理由如下:连接BD在△ABD中,∵BD2+AB2=52+122=169=132=AD2,∴△ABD是直角三角形,且∠ABD=90°,∴AB⊥BD,在△ABC中,∵BC2+AB2=92+122=225=152=AC2,∴△ABC是直角三角形,且∠ABC=90°,∴AB⊥BC,∴电线杆和地面垂直.【点睛】本题考查勾股定理的逆定理,是重要考点,掌握相关知识是解题关键.【变式7-3】(2023春·八年级课时练习)海面上有两个疑似漂浮目标.A舰艇以12海里/时的速度离开港口O,向北偏西50°方向航行;同时,B舰艇在同地以16海里/时的速度向北偏东一定角度的航向行驶,如图所示,离开港口5小时后两船相距100海里,则B舰艇的航行方向是______.【答案】北偏东40°【分析】根据勾股定理的逆定理判断△AOB是直角三角形,求出∠BOD的度数即可.【详解】由题意得,OA=12×5=60(海里),OB=16×5=80(海里),又∵AB=100海里,∵602+802=1002,即OB2+OA2=AB2∴∠AOB=90°,∵∠DOA=50°,∴∠BOD=40°,则B舰艇的航行方向是北偏东40°,故答案为:北偏东40°.【点睛】本题考查的是勾股定理的逆定理的应用和方位角的知识,根据题意判断出△AOB是直角三角形是解决问题的关键.【题型8勾股定理及其逆定理的综合】【例8】(2023春·全国·八年级期末)如图,在△ABC中,D是△ABC内一点,连接AD、BD,且AD⊥BD.已知AD=4,BD=3,AC=13,BC=12.则图中阴影部分的面积为________.【答案】24【分析】先根据勾股定理求出AB,然后根据勾股定理的逆定理,得△ABC是直角三角形,根据阴影部分的面积S等于S△ABC−S△ABD,即可.【详解】∵AD⊥BD,∴AB2=AD2+BD2,∵AD=4,BD=3,∴AB=5,∵AC=13,BC=12,∴AC2=169,BC2=144,AB2=25,∴AC2=BC2+AB2,∴△ABC是直角三角形,设阴影部分的面积S,∴S=S△ABC−S△ABD=12×AB×BC−12×AD×BD,∴S=24,∴设阴影部分的面积为:24.故答案为:24.【点睛】本题考查勾股定理的知识,解题的关键是掌握勾股定理的运用和勾股定理的逆定理.【变式8-1】(2023春·江西赣州·八年级期中)如图,已知正方形ABCD的边长为4,E为AB中点,F为AD上的一点,且AF=14AB,求证:∠FEC=90°.【答案】见解析【分析】由正方形的性质和已知求得AF=1,FD=3,由中点的性质得AE=EB=2,利用勾股定理求得EF,EC,FC,再根据勾股定理的逆定理,即可得出结论.AB,【详解】证明:∵正方形ABCD的边长为4,且AF=14∴AF=1,FD=3,DC=BC=4,∵E为AB的中点,∴AE=EB=2,在Rt△AEF中,EF=在Rt△DFC中,FC===5,在Rt△EBC中,EC==∴EC2+EF2=FC2,∴△EFC是以EC、EF为直角边的直角三角形,∴∠FEC=90°.【点睛】本题考查了勾股定理和勾股定理的逆定理及正方形的性质,利用勾股定理求出三角形三边长,再利用勾股定理逆定理解答是证明此题的关键.【变式8-2】(2023春·重庆九龙坡·八年级重庆实验外国语学校校考阶段练习)为迎接六十周年校庆,重庆外国语学校准备将一块三角形空地ABC进行新的规划,如图,点D是BC边上的一点,过点D作垂直于AC的小路DE,点E在AC边上.经测量,AB=26米,AD=24米,BD=10米,AC比DC长12米.(1)求△ABD的面积;(2)求小路DE的长.【答案】(1)120平方米(2)14.4米【分析】(1)根据勾股定理逆定理得出△ABD是直角三角形,再根据三角形面积公式求解即可;(2)设DC =x 米,利用勾股定理求解出DC =18米,AC =30米,再利用等积法求解即可.【详解】(1)∵BD 2=102=100,AD 2=242=576,AB 2=262=676,∴BD 2+AD 2=AB 2,∴△ABD 是直角三角形,∠ADB =90°,∴S △ABD =12BD ⋅AD =12×10×24=120(平方米);(2)设DC =x 米,则AC =(x +12)米,由(1)知∠ADB =90°,由勾股定理得x 2+242=(x +12)2,解得x =18,∴DC =18米,AC =30米,∵DE ⊥AC ,∴S △ACD =12AC ⋅DE =12DC ⋅AD ,∴30DE =18×24,∴DE =14.4(米).【点睛】本题考查了勾股定理和勾股定理逆定理,熟练运用勾股定理逆定理证明是解题的关键.【变式8-3】(2023春·江苏宿迁·八年级校考期末)如图,已知正方形OABC 的边长为8,边OA 在x 轴上,边OC 在y 轴上,点D 是x 轴上一点,坐标为(2,0),点E 为OC 的中点,连接BD 、BE 、ED .(1)求点B 的坐标;(2)判断△BED 的形状,并证明你的结论.【答案】(1)(8,8)(2)△BED 是直角三角形【分析】(1)根据正方形的性质可得OA=OC=8,进而求出点B的坐标;(2)求出BD、BE、ED的平方,根据勾股定理逆定理判断即可.【详解】(1)解:正方形OABC的边长为8,边OA在x轴上,边OC在y轴上,所以OA=OC=8,因此,点B的坐标为(8,8).(2)解:△BED是直角三角形;点D是x轴上一点,坐标为(2,0),点E为OC的中点,∴OD=2,OE=CE=4,DA=6,∴ED2=OD2+OE2=20,EB2=BC2+CE2=80,DB2=BA2+AD2=100,∴ED2+EB2=DB2,∴△BED是直角三角形.【点睛】本题考查了正方形的性质和勾股定理及逆定理,解题关键是根据正方形性质写出点的坐标,利用坐标求出线段的平方.。
勾股定理全章综合复习
勾股定理全章综合复习A. 1个B . 2个C . 3个D . 4个(2)已知a, b, c为厶ABC三边,且满足(a2—b2)(a2+b2—c2)= 0,则它的形状为( )A.直角三角形B.等腰三角形C.等腰直角三角形 D.等腰三角形或直角三角形(3)三角形的三边为a、b、c,由下列条件不能判断它是直角三角形的是( )2 2 2A. a: b: c=8 : 16 :仃B. a - b =cC. a2=(b+c)(b-c)D. a: b: c=13 : 5 : 12(4)三角形的三边长为(a+b ) 2=c2+2ab,则这个三角形是( )A.等边三角形;B.钝角三角形;C.直角三角形;D.锐角三角形(5)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为________(6)若厶ABC的三边长a,b,c满足a2 b2+c2 +200 = 12a + 16b + 20c,试判断△ ABC的形状。
例3:求最大、最小角的问题(1)若三角形三条边的长分别是7,24,25,则这个三角形的最大内角是度。
(2)已知三角形三边的比为1 : 3 : 2,则其最小角为。
考点三:勾股定理的应用例1:面积问题(1)下图是一株美丽的勾股树,其中所有的四边形都 是正方形,所有的三角形都是直角三角形,若正方形A 、 B 、C 、D 的边长分别是3、 3)(2)如图,△ ABC 为直角三角形,分别以 为直径向外作半圆,用勾股定理说明三个半圆的面积 关系,可得( ) A. S 1+ S 2> S 3B. S 1+ S 2= S 3C. S 2+S 3< S ID.以上都不是 (3 )如图所示,分别以直角三角形的三边向外作三个 正三角形,其面积分别是 S 、S 、S,贝陀们之间的关 系是( )A. S 1- S 2= S 3B. S 1+ S 2= S 3C. S 2+Sv S 1D. S 2- S 3=S 5、2、3,则最大正方形ED.(图AB, BC47 2)例2:求长度问题(1)小明想知道学校旗杆的高,他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子的下端拉开5米后, 发现下端刚好接触地面,求旗杆的高度。
人教版八年级下册数学 第17章《勾股定理》讲义 第6讲 勾股定理-逆定理(有答案)
人教版八年级下册数学第17章《勾股定理》讲义第6讲勾股定理-逆定理(有答案)第6讲 勾股定理-逆定理 第一部分 知识梳理知识点一:勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边 .①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c 为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形知识点二:勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等 ③用含字母的代数式表示n 组勾股数:221,2,1n n n -+(2,n ≥n 为正整数);2221,22,221n n n n n ++++(n 为正整数)2222,2,m n mn m n -+(,m n >m ,n 为正整数)知识点三:勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整例4、已知:△ABC 的三边分别为m 2-n 2,2mn,m 2+n 2(m,n 为正整数,且m >n),判断△ABC 是否为直角三角形.例5、三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 举一反三:1、以下列各组数为边长,能组成直角三角形的是( )A 、8,15,17B 、4,5,6C 、5,8,10D 、8,39,402、下列各组线段中的三个长度:①9、12、15;②7、24、25;③32、42、52;④3a、4a 、5a (a>0);⑤m 2-n 2、2mn 、m 2+n 2(m 、n 为正整数,且m>n )其中可以构成直角三角形的有( )A 、5组B 、4组C 、3组D 、2组3、现有两根木棒的长度分别为40厘米和50厘米,若要钉成一个直角三角形框架,那么所需木棒的长一定为( )A 、30厘米B 、40厘米C 、50厘米D 、以上都不对4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。
初二数学--勾股定理复习
初二数学 勾股定理复习一、知识点: 1、勾股定理:直角三角形两直角边的平方和等于斜边的平方。
数学式子:∠C=900⇒222a b c +=2、神秘的数组(勾股定理的逆定理):如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 数学式子:222a b c +=⇒∠C=900满足a 2+b 2=c 2三个数a 、b 、c 叫做勾股数。
要点回顾【知识点 1】 勾股定理内容: 〖基础回顾〗1、 在Rt △ABC 中, a ,b ,c 分别是三条边,∠C =90°,已知,a b 则c = ; 已知,a c 则b = 。
2、在Rt △ABC 中, a ,b ,c 分别是三条边,∠B =90°,已知a =6,b =10,则c= 。
3、在ABC Rt ∆中,,4,3cm b cm a == 则=c 。
4、在Rt △ABC 中,已知两边长分别是6和8,则其面积为 。
【知识点 2】 勾股数 回忆常见的勾股数 〖基础回顾〗1、下列各组数中,不能作为直角三角形三边长度的是( ) A .72425a b c === B . 1.52 2.5a b c === C .111345a b c === D .15817a b c === 2、、判断a 、b 、c 是否是勾股数。
(1)a=7,b=24,c=25 (2)a=5,b=13,c=12 (3)a=4,b=5,c=6 ⑷Aa【知识点 3】定理与逆定理的应用 〖基础回顾〗1、三角形的三边长为ab c b a 2)(22+=+,则这个三角形是 。
2、已知a 、b 、c 为三个正整数,如果a +b +c =12,那么以a 、b 、c 为边能组成的三角形是:①等腰三角形;②等边三角形;③直角三角形;④钝角三角形.以上符合条件的正确结论是______.3、在△ABC 中, AB=15,AD=12,BD=9,AC=13,求△ABC 的周长和面积。
第18章 勾股定理的逆定理及全章复习
18.2 勾股定理的逆定理(一)教学目标1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
重点:掌握勾股定理的逆定理及简单应用。
难点:勾股定理的逆定理的证明。
教学过程:一.预习新知(阅读教材P73 — 75 , 完成课前预习)1.三边长度分别为3 cm 、4 cm 、5 cm 的三角形与以3 cm 、4 cm 为直角边的直角三角形之间有什么关系?你是怎样得到的?2.你能证明以6cm 、8cm 、10cm 为三边长的三角形是直角三角形吗?3.如图18.2-2,若△ABC 的三边长a 、b 、c 满足222c b a =+,试证明△ABC 是直角三角形,请简要地写出证明过程.4.此定理与勾股定理之间有怎样的关系? (1)什么叫互为逆命题(2)什么叫互为逆定理(3)任何一个命题都有 _____,但任何一个定理未必都有 __ 5.说出下列命题的逆命题。
这些命题的逆命题成立吗? (1) 两直线平行,内错角相等;(2) 如果两个实数相等,那么它们的绝对值相等; (3) 全等三角形的对应角相等;(4) 角的内部到角的两边距离相等的点在角的平分线上。
二.课堂展示例1:判断由线段a 、b 、c 组成的三角形是不是直角三角形: (1)17,8,15===c b a ; (2)15,14,13===c b a . (3)25,24,7===c b a ; (4)5.2,2,5.1===c b a ;三.随堂练习1.完成书上P75练习1、2图18.2-22.如果三条线段长a,b,c 满足222b c a -=,这三条线段组成的三角形是不是直角三角形?为什么?3.A,B,C 三地的两两距离如图所示,A 地在B 地的正东方向,C 地在B 地的什么方向?4.思考:我们知道3、4、5是一组勾股数,那么3k 、4k 、5k (k 是正整数)也是一组勾股数吗?一般地,如果a 、b 、c 是一组勾股数,那么ak 、bk 、ck (k 是正整数)也是一组勾股数吗?四.课堂检测1.若△ABC 的三边a ,b ,c 满足条件a 2+b 2+c 2+338=10a+24b+26c ,试判定△ABC 的形状.2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为多少米?此三角形的形状为?3.已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。
八年级-人教版-数学-下册-第3课时-勾股定理及其逆定理的综合应用
答:从 C 岛沿 CA 方向返回 A 港所需的时
D
北 N
A东
间为 3 h.
B
(2)C 岛在 A 港的什么方向?
分析:(2)由勾股定理的逆定理推知∠BAC=90°,由方向
角的定义作答即可.
解:(2)∵AB2+AC2=1002+752=15 625,
BC2=1252=15 625,
分析:(2)利用勾股定理得出 ED 以及 EF 的长,进而可得 出拖拉机噪声影响该学校持续的时间.
B
C
F
D
E
A
解:(2)如图,取 EC=130 m,FC=130 m,当拖拉机在 EF
上时学校会受噪声影响.
∵ED2=EC2-CD2=1302-1202=502,
∴ED=50(m), ∴EF=100(m).
第3课时 勾股定理及其 逆定理的综合应用
1.勾股定理:
如果直角三角形的两条直角边长分别为 a,b,斜边长为 c, 那么 a2+b2=c2.
2.勾股定理的逆定理:
如果三角形的三边长 a,b,c 满足 a2+b2=c2,那么这个三角 形是直角三角形.
在△ABC 中,BC=a,AC=b,AB=c,设 c 为最长边,当 a2+b2=c2 时,△ABC 是直角三角形;当 a2+b2≠c2 时,利用代 数式 a2+b2 和 c2 的大小关系,探究△ABC 的形状(按角分类).
AC CD,
∴△ABC≌△CED(AAS). ∴AB=CE,BC=ED.
∵AB=6,BC=8,
D
∴CE=6,ED=8.
A
∴BE=BC+CE=8+6=14.
∴BD BE2 ED2 142 82 2 65.B
勾股定理及其逆定理复习典型例题
勾股定理及其逆定理复习典型例题1.勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。
(即:a2+b2=c2)勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形。
2.勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
3.如果用勾股定理的逆定理判定一个三角形是否是直角三角形(1)首先确定最大边(如:C,但不要认为最大边一定是C)(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的三角形。
(若c2>a2+b2则△ABC是以∠C为钝角的三角形,若c2<a2+b2则△ABC是以∠C为锐角三角形)二、例题分析例1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。
解:设此直角三角形两直角边分别是3x,4x,根据题意得:(3x)2+(4x)2=202化简得x2=16;∴直角三角形的面积=21×3x×4x=6x2=96注:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。
例2、等边三角形的边长为2,求它的面积。
解:如图,等边△ABC,作AD⊥BC于D则:BD=21BC(等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等)∴BD=1在直角三角形ABD中AB2=AD2+BD2,即:AD2=AB2-BD2=4-1=3AB CD∴AD=3S △ABC =21BC·AD=3注:等边三角形面积公式:若等边三角形边长为a ,则其面积为43a 例3、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积。
解:设此直角三角形两直角边分别是x ,y ,根据题意得:⎩⎨⎧=+=++)2(5)1(125222y x y x由(1)得:x +y =7,(x +y )2=49,x 2+2xy +y 2=49 (3) (3)-(2),得:xy =12 ∴直角三角形的面积是21xy =21×12=6(cm 2)例4、在锐角△ABC 中,已知其两边a =1,b =3,求第三边的变化范围。
人教版八年级数学下册课件勾股定理复习课(课2)
c
(1)如果∠A和∠B是邻补角,那么∠A+∠B=180〫.
重难点3:勾股定理逆定理的应用
Ca B
知识梳理
3. 勾股定理逆定理的应用
② 实质:由“数”到“形”的转化; ③ 应用:判定一个三角形是否为直角三角形.
知识梳理
4. 勾股数
勾股数
正整数
判断一组数是不是勾股数的步骤: 看、找、算、判.
重点解析
反走私艇 B 离走私艇 C 12 海里,若走私艇 C
从边的方面判断:如果已知条件与边有关系,则可以通过勾股定理的逆定理进行判断.
两个角都是40〫
重点解析
1.有些命题在不容易确定题设和结论的情况下,可 以先改写成“如果……那么……”的形式,然后确 定题设和结论. 2.判断一个命题是假命题只需要举出一个反例即可.
重点解析
重难点2:勾股定理的逆定理
判断满足下列条件的三角形是不是直角三角形.如果是, 请指出哪个角是直角. (1)在△ABC中,∠A=25〫、∠B=65〫; 解:(1)在△ABC中,因为∠A=25〫、∠B=65〫,所以 ∠C=180〫-∠A-∠B=90〫,所以这个三角形是直角三角形. ∠C是直角.
重点解析
重难点4:勾股数
判断下列各组数是不是勾股数:
深化练习
1.在△ABC中,∠A、 ∠B 、 ∠C的对边分别是a、b、c,下列判断 错误的是( B ).
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形.
深化练习
A.如果∠C- ∠B= ∠A,则△ABC是直角三角形. 解析:因为∠C- ∠B=∠A,所以 ∠C=∠B+∠A. 因为∠C+∠B+∠A=180〫,所以 ∠C+∠C=180〫. 解得:∠C=90〫,所以△ABC是直角三角形.
人教版初中数学八年级下册第十七章《勾股定理》复习教案
第17章勾股定理全章复习教学目标:1.会用勾股定理解决简单问题。
2.会用勾股定理的逆定理判定直角三角形。
3.会用勾股定理解决综合问题和实际问题。
教学重点:回顾并思考勾股定理及逆定理教学难点:勾股定理及逆定理在生活中的广泛应用。
教学过程:(一)知识结构图:见PPT(二)基础知识:1.勾股定理如果直角三角形两直角边分别为a ,b ,斜边为c ,那么a2 + b2 = c2几何语言:在Rt △ABC 中, ∠C=90°∴a2+b2=c2练习:1.求出下列直角三角形中未知的边.2.已知:直角三角形的三边长分别是 3,4,X,则X=3. 三角形ABC 中,AB=10,AC=17,BC 边上的高线AD=8,求BC8A 15B 30° 2C B A 2 45° A CB2 .勾股定理的逆定理如果三角形的三边长a ,b ,c 满足a2 +b2=c2 ,那么这个三角形是直角三角形 几何语言: 在△ABC 中,∵a2+b2=c2∴ △ABC 是直角三角形,∠C=90°互逆定理 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理.基础练习二:1.在已知下列三组长度的线段中,不能构成直角三角形的是 ( )A 5,12,13B 2,3,3C 4,7,5D 1, 2 , 52.若△ABC 中 ,AB=5 ,BC=12 ,AC=13 ,求AC 边上的高.三、典例分析:例1、如图,四边形ABCD 中,AB =3,BC=4,CD=12,AD=13, ∠B=90°,求四边形ABCD 的面积变式 有一块田地的形状和尺寸如图所示,试求它的面积。
121334归纳: 转化思想例2、下图是学校的旗杆,小明发现旗杆上的绳子垂到地面还多1米,如图(1),当他把绳子的下端拉开5米后,发现下端刚好接触地面,如图(2),你能帮他D BA C归纳: 方程思想 例3、如图,矩形纸片ABCD 的边AB=10cm,BC=6cm,E 为BC 上一点,将矩形纸片沿AE 折叠,点B 恰好落在DC 边上的点G 处,求BE 的长。
勾股定理及其逆定理全章的复习
勾股定理及其逆定理全章的复习一、复习的内容:勾股定理及其逆定理的应用1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
即:a 2+b 2=c 2;勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
2、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
如果用勾股定理的逆定理判定一个三角形是否是直角三角形:(1)首先确定最大边(如:C ,但不要认为最大边一定是C )(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的三角形;若c 2<a 2+b 2,则△ABC 是以∠C 为锐角三角形。
二、例题分析例1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。
解点评:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。
例2、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积。
点评:运用整体的数学思想方法求解比较快速、简捷、省时。
例3题目(2008年福建省莆田市中考题)已知矩形ABCD 和点P ,当点P 在BC 上任一位置(如图①所示)时,易证得结论:2222PA PC PB PD +=+,请你探究:当点P 分别在图②、图③中的位置时,2222PA PB PC PD 、、和又有怎样的数量关系?请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图②的探究结论为____________________________________.对图③的探究结论为_____________________________________.证明:如图②分析:这是一道信息给予题,引导学生创造性地利用所给信息,通过解题方法的迁移,探索2222PA PB PC PD 、、和在新的条件下又有怎样的数量关系?由于已给信息的解题方法很多,而每种方法迁移后又可解决新的问题,因此本题为学生创造了更为广阔的思维空间和探索空间;当点P 在矩形ABCD 的边BC 上任一位置,如图①所示时,运用勾股定理易得: 222PB AB PA +=,222CD PD PC -=,因为四边形ABCD 为矩形,所以AB=CD .从而得到结论:2222PA PC PB PD +=+,通过解题方法的迁移,根据点和图形之间的位置关系,可以得出当点P 分别在图2、图3中的位置时,2222PA PB PC PD 、、和之间的数量关系,并能给予证明.评注:本题既考查了学生的理解创新能力,又考查了学生探究学 习的过程,充分渗透了化归思想、变式思想和运动变化的观点.如图,盒内长,宽,高分别是30米,24米和18米,盒内可放的棍子最长是多少米?直角三角形是一种特殊的三角形,它具有许多重要的性质,特别是勾股定理在数学中有着极其广泛的应用。
人教版初二数学下册:勾股定理全章复习与巩固(基础)知识讲解
勾股定理全章复习与巩固(基础)【学习目标】1.了解勾股定理的历史,掌握勾股定理的证明方法;2.理解并掌握勾股定理及逆定理的内容;3.能应用勾股定理及逆定理解决有关的实际问题. 【知识网络】【要点梳理】【高清课堂 勾股定理全章复习 知识要点】 要点一、勾股定理 1.勾股定理:直角三角形两直角边a b 、的平方和等于斜边c 的平方.(即:222a b c +=) 2.勾股定理的应用勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用是:(1)已知直角三角形的两边,求第三边;(2)利用勾股定理可以证明有关线段平方关系的问题;(3)求作长度为的线段.要点二、勾股定理的逆定理 1.原命题与逆命题如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题. 2.勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a b c 、、,满足222a b c +=,那么这个三角形是直角三角形. 应用勾股定理的逆定理判定一个三角形是不是直角三角形的基本步骤: (1)首先确定最大边,不妨设最大边长为c ;(2)验证2c 与22a b +是否具有相等关系,若222a b c +=,则△ABC 是以∠C 为直角的直角三角形,反之,则不是直角三角形. 3.勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.常见的勾股数:①3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41. 如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.观察上面的①、②、④、⑤四组勾股数,它们具有以下特征: 1.较小的直角边为连续奇数;2.较长的直角边与对应斜边相差1.3.假设三个数分别为a b c 、、,且a b c <<,那么存在2a b c =+成立.(例如④中存在27=24+25、29=40+41等)要点三、勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,两者互为逆定理,都与直角三角形有关.【典型例题】类型一、勾股定理及逆定理的简单应用1、已知直角三角形的两边长分别为6和8,求第三边的长. 【答案与解析】 解:设第三边为x .当x 为斜边时,由勾股定理得22268x =+. 所以2268366410010x =++==. 当x 为直角边时,由勾股定理,得22268x +=. 所以228664362827x =--== 所以这个三角形的第三边为10或7【总结升华】题中未说明第三边是直角边还是斜边,应分类讨论,本题容易误认为所求的第三边为斜边. 举一反三:【变式】在△ABC 中,AB =15,AC =13,高AD =12.求△ABC 的周长. 【答案】 解:在Rt △ABD 和Rt △ACD 中,由勾股定理,得22222151281BD AB AD =-=-=. ∴ 819BD ==.同理22222131225CD AC AD =-=-=.∴ 255CD ==.①当∠ACB >90°时,BC =BD -CD =9-5=4.∴ △ABC 的周长为:AB +BC +CA =15+4+13=32. ②当∠ACB <90°时,BC =BD +CD =9+5=14.∴ △ABC 的周长为:AB +BC +CA =15+14+13=42. 综上所述:△ABC 的周长为32或42.2、如图所示,△ABC 中,∠ACB =90°,AC =CB ,M 为AB 上一点. 求证:2222AM BM CM +=.【思路点拨】欲证的等式中出现了AM 2、BM 2、CM 2,自然想到了用勾股定理证明,因此需要作CD ⊥AB . 【答案与解析】证明:过点C 作CD ⊥AB 于D . ∵ AC =BC ,CD ⊥AB , ∴ AD =BD .∵ ∠ACB =90°, ∴ CD =AD =DB .∴ ()()2222AM BM AD DM AD DM +=-++222222AD AD DM DM AD AD DM DM =-⋅+++⋅+222()AD DM =+222()CD DM =+在Rt △CDM 中,222CD DM CM +=, ∴ 2222AM BM CM +=.【总结升华】欲证明线段平方关系问题,首先联想勾股定理,从图中寻找或作垂线构造包含所证线段的直角三角形,利用等量代换和代数中的恒等变换进行论证. 举一反三:【变式】已知,△ABC 中,AB =AC ,D 为BC 上任一点,求证:22AB AD BD CD -=⋅.【答案】解:如图,作AM ⊥BC 于M ,∵AB =AC ,∴BM =CM,则在Rt △ABM 中:222AB AM BM =+……①在Rt △ADM 中:222AD AM DM =+……②由①-②得:22AB AD -=()()22BM DM BM DM BM DM -=+-= (MC +DM )•BD =CD ·BD 类型二、勾股定理及逆定理的综合应用3、(2014秋•黎川县期中)如图,在正方形ABCD 中,AB=4,AE=2,DF=1,请你判定△BEF 的形状,并说明理由.【思路点拨】根据勾股定理求出BE 2、EF 2、BF 2,根据勾股定理的逆定理判断即可. 【答案与解析】解:△BEF 是直角三角形,理由是:∵在正方形ABCD 中,AB=4,AE=2,DF=1,∴∠A=∠C=∠D=90°,AB=AD=DC=BC=4,DE=4﹣2=2,CF=4﹣1=3, ∵由勾股定理得:BE 2=AB 2+AE 2=42+22=20,EF 2=DE 2+DF 2=22+12=5,BF 2=BC 2+CF 2=42+32=25,∴BE 2+EF 2=BF 2, ∴∠BEF=90°,即△BEF 是直角三角形.【总结升华】本题考查了正方形性质,勾股定理,勾股定理的逆定理的应用,解此题的关键是求出BE 2+EF 2=BF 2. 举一反三:【变式】如图所示,已知△ABC 中,∠B =22.5°,AB 的垂直平分线交BC 于D ,BD =62,AE ⊥BC 于E ,求AE 的长.【答案】解:连接AD .∵ DF 是线段AB 的垂直平分线,∴ AD =BD =62,∴ ∠BAD =∠B =22.5° 又∵∠ADE =∠B +∠BAD =45°,AE ⊥BC , ∴ ∠DAE =45°,∴ AE =DE 由勾股定理得:222AE DE AD +=,∴ 222(62)AE =,∴ 6262AE ==. 4、如图①所示,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用123S S S 、、表示,则不难证明123S S S =+.(1)如图②,分别以直角三角形ABC 三边为边向外作三个正方形,其面积分别用123S S S 、、表示,那么123S S S 、、之间有什么关系?(不必证明)(2)如图③,分别以直角三角形ABC 三边为边向外作三个正三角形,其面积分别用123S S S 、、表示,请你确定123S S S 、、之间的关系并加以证明.【答案与解析】解:设Rt △ABC 的三边BC 、CA 、AB 的长分别为a b c 、、,则222a b c +=. (1) 123S S S =+;(2) 123S S S =+.证明如下:显然,2134S c =,2234S a =,2334S b =, 所以22223133()44S S a b c S +=+==. 【总结升华】本题可以在直角三角形外作的三个图形推及为等腰直角三角形、正五边形等. 5、如果ΔABC 的三边分别为a b c 、、,且满足222506810a b c a b c +++=++,判断ΔABC 的形状. 【答案与解析】解:由222506810a b c a b c +++=++,得 : 2226981610250a a b b c c -++-++-+= ∴ 222(3)(4)(5)0a b c -+-+-=∵ 222(3)0(4)0(5)0a b c -≥-≥-≥,, ∴ 3,4, 5.a b c === ∵ 222345+=, ∴ 222a b c +=.由勾股定理的逆定理得:△ABC 是直角三角形.【总结升华】勾股定理的逆定理是通过数量关系来研究图形的位置关系的,在证明中经常要用到.类型三、勾股定理的实际应用6、如图①,一只蚂蚁在长方体木块的一个顶点A 处,食物在这个长方体上和蚂蚁相对的顶点B 处,蚂蚁急于吃到食物,所以沿着长方体的表面向上爬,请你计算它从A 处爬到B 处的最短路线长为多少?【思路点拨】将长方体表面展开,由于蚂蚁是沿长方体木块的表面爬行,且长方体木块底面是正方形,故它爬行的路径有两种情况. 【答案与解析】解:如图②③所示.因为两点之间线段最短,所以最短的爬行路程就是线段AB 的长度. 在图②中,由勾股定理,得222311130AB =+=. 在图③中,由勾股定理,得22268100AB =+=.因为130>100,所以图③中的AB 的长度最短,为10cm ,即蚂蚁需要爬行的最短路线长为10cm . 【总结升华】解本题的关键是正确画出立体图形的展开图,把立体图形上的折线转化为平面图形上的直线,再运用勾股定理求解. 举一反三: 【变式】(2014秋•郑州期末)我国古代有这样一道数学问题:“枯木一根直立地上'高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处.则问题中葛藤的最短长度是多少尺?【答案】解:如图所示,在如图所示的直角三角形中, ∵BC=20尺,AC=5×3=15尺, ∴AB==25(尺).答:葛藤长为25尺.附录资料:菱形(基础)=【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】【高清课堂特殊的平行四边形(菱形)知识要点】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心. 要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积有两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF ⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE ⊥AB ,CF ⊥AD ,∴CE=FC ,∠CFD=∠CEB=90°. 在Rt △CDF 与Rt △CBE 中,,∴Rt △CDF ≌Rt △CBE (HL ), ∴DF=BE .【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质. 举一反三: 【变式1】(2015•温州模拟)如图,在菱形ABCD 中,点E 是AB 上的一点,连接DE 交AC 于点O ,连接BO ,且∠AED=50°,则∠CBO= 度.【答案】50;解:在菱形ABCD 中,AB ∥CD ,∴∠CDO=∠AED=50°, CD=CB ,∠BCO=∠DCO , ∴在△BCO 和△DCO 中,,∴△BCO ≌△DCO (SAS ), ∴∠CBO=∠CDO=50°.【高清课堂 特殊的平行四边形(菱形) 例1】【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ). A.21 B.4 C.1 D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1.类型二、菱形的判定2、如图所示,在△ABC中,CD是∠ACB的平分线,DE∥AC,DF∥BC,四边形DECF是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE∥AC,DF∥BC知四边形DECF是平行四边形,再由∠1=∠2=∠3得到邻边相等即可.【答案与解析】解:四边形DECF是菱形,理由如下:∵ DE∥AC,DF∥BC∴四边形DECF是平行四边形.∵ CD平分∠ACB,∴∠1=∠2∵ DF∥BC,∴∠2=∠3,∴∠1=∠3.∴ CF=DF,∴四边形DECF是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.举一反三:【变式】如图所示,AD是△ABC的角平分线,EF垂直平分AD,分别交AB于E,交AC于F,则四边形AEDF是菱形吗?请说明理由.【答案】解:四边形AEDF是菱形,理由如下:∵ EF垂直平分AD,∴△AOF与△DOF关于直线EF成轴对称.∴∠ODF=∠OAF,又∵ AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴ AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴ EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD中,AB∥CD,AB=CD ∵ E、F分别为AB、CD的中点∴ DF=12DC,BE=12AB∴ DF∥BE.DF=BE∴四边形DEBF为平行四边形∴ DE∥BF(2)证明:∵ AG∥BD∴∠G=∠DBC=90°∴△DBC为直角三角形又∵ F为边CD的中点.∴ BF=12DC=DF又∵四边形DEBF为平行四边形∴四边形DEBF是菱形类型三、菱形的应用4、如图所示,是一种长0.3m,宽0.2m的矩形瓷砖,E、F、G、H分别为矩形四边BC、CD、DA、AB的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m,宽2.8m的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m,宽2.8m,矩形瓷砖长0.3m,宽0.2m,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.。
勾股定理逆定理与勾股数(4种题型)
第02讲勾股定理逆定理与勾股数(4种题型)【知识梳理】一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c ).(2)验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C=90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.三、勾股数满足不定方程222x y z +=称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:13、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果(a b c 、、)是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;(2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+(,m n m n >、是自然数)是直角三角形的三条边长;【考点剖析】题型一、勾股定理的逆定理例1、判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34;(3)22a m n =-,22b m n =+,2c mn =(0m n >>);【变式】发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有()A.1组 B.2组 C.3组 D.4组题型二.勾股数例2.(2022春•铜梁区校级期中)下列四组数中,是勾股数的是()A .6,8,10B .0.3,0.4,0.5C .,,D .32,42,52例3.古希腊的哲学家柏拉图曾指出,如果m 表示大于1的整数,a =2m ,b =m 2﹣1,c =m 2+1,那么a ,b ,c 为勾股数,你认为正确吗?如果正确,请说明理由,并利用这个结论得出一组勾股数.【变式1】观察下列勾股数3、4、5;5、12、13;7、24、25;9、40、41;…;a 、b 、c .根据你发现的规律,回答下列问题:(1)a=17时,求b、c的值;(2)a=2n+1时,求b、c的值.【变式2】已知m>0,若3m+2,4m+8,5m+8是一组勾股数,求m的值.题型三、勾股定理逆定理的应用例4.(2022春•汉阴县月考)如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.求证AC ⊥CD.例5.古埃及人曾用下面的方法得到直角:如图他们用13个等距的结把一根绳子分成等长的12段,一个工匠同时握住绳子的第1个结和第13个结,两个助手分别握住第4个结和第8个结,拉紧绳子,就会得到一个直角三角形,其直角在第4个结处.(1)你能说说其中的道理吗?(2)仿照上面的方法,你能否只用绳子,设计一种不同于(1)的直角三角形(在图2中,只需画出示意图.)【变式】如图,在Rt ABC中,∠ACB=90°,AB=13,AC=12,点D为ABC外一点,连接BD,CD,测得CD=4,BD=3,求四边形ABDC的面积.例6.如图所示,在△ABC中,已知∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=CD=2,CD ⊥CP,求∠BPC的度数.【变式1】如果△ABC 的三边长a 、b 、c 满足关系式()226018300a b b c +-+-+-=,则△ABC 的形状是.【变式2】如图,P 是等边三角形ABC 内的一点,连接PA,PB,PC,以BP 为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP 与CQ 之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC 的形状,并说明理由.题型四、勾股定理逆定理的实际应用例7.(2022春•蚌山区校级期中)龙梅和玉荣是草原上的好朋友,可是有一次经过一场争吵之后,两人不欢而散,龙梅的速度是米/秒,4分钟后她停了下来,觉得有点后悔了,玉荣走的方向好像是和龙梅成直角,她的速度是米/秒,如果她和龙梅同时停下来,而这时候她俩正好相距200米,那么她走的方向是否成直角?如果她们现在想讲和,那么原来的速度相向而行,多长时间后能相遇?例8、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?例9.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿边向B点以每秒1cm 的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,问过3秒时,△BPQ的面积为多少?【过关检测】一.选择题1.满足下列条件的三角形中,不是直角三角形的是()A .三内角之比为3:4:5B .三边长的平方之比为1:2:3C .三边长之比为7:24:25D .三内角之比为1:2:32.下列条件中,能判断ABC 是直角三角形的有()①A B C ∠+∠=∠;②A B C ∠-∠=∠;③::2:5:3A B C ∠∠∠=;④23A B C ∠=∠=∠;⑤1123A B C ∠=∠=∠;⑥::3:4:5AB AC BC =.A .5个B .4个C .3个D .2个3.如图,根据下列条件,不能判断ABD △是直角三角形的是()A .20,70DB ∠=︒∠=︒B .5,12,13AB AD BD ===C .AC BC DC==D .3,8B D BAD D ∠=∠∠=∠二.填空题4.已知三角形三边长分别是6,8,10,则此三角形的面积为.5.勾股数为一组连续自然数的是.6.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为cm 2.7.(2022春•泗水县期中)观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑥组勾股数为.8.已知△ABC中,AB=6cm,BC=8cm,AC=10cm,则△ABC的面积是cm2.9.(2022春•孝南区月考)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…,请写出第6个数组:.10.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.三.解答题11.如图,在△ABC中,AB=5,=3,D是BC的中点,AD=2,求△ABC的面积.12.已知△ABC中,AB=AC,BC=20,D是AB上一点,且CD=16,BD=12,(1)求证:CD⊥AB;(2)求三角形ABC的周长.13.如图,AD是△ABC的中线,DE是△ADC的高,DF是△ABD的中线,且CE=1,DE=2,AE=4.(1)∠ADC是直角吗?请说明理由.(2)求DF的长.14.如图是由边长均为1的小正方形组成的网格,点A,B,C都在格点上,∠BAC是直角吗?请说明理由.。
勾股定理及逆定理复习导学案
勾股定理及逆定理复习(1)(导学案)一、复习目标1.回顾本章知识,在回顾过程中主动构建起本章知识结构。
2.思考勾股定理及其逆定理的发现证明和应用过程, 体会数形结合,分类讨 论,方程思想,转化化归, 由特殊到一般,数学建模思想在解决数学问题 中的作用。
3、在反思和交流的过程中,体验学习带来的无尽乐趣。
重点:勾股定理及逆定理的应用 难点:灵活应用勾股定理及逆定理二、学案引导、自主学习(一)本章知识结构图(二)本章相关知识 1. 勾股定理及逆定理(1)勾股定理:如果直角三角形的两直角边长分别为 ,斜边为,那么 。
A直角三角形 a 2+b 2=c 2(数) (形)B C公式的变形:(1)c 2= , c= ;(2)a 2= , a= ; (3)b 2= , b= ;(2)勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足 ,那么这个三角形是 . Aa 2+b 2=c 2(数) 直角三角形 (形)2、勾股数 B C满足a 2 + b 2= c 2的三个正整数,称为勾股数。
注意:①勾股数必须是正整数,不能是分数或小数。
②一组勾股数扩大相同的正整数倍后,仍是勾股数。
实际问题(直角三角形边长计算) 勾股定理的逆定理 勾股定理 实际问题(判定直角三角形)3、勾股定理的验证 4.互逆命题和互逆定理5、勾股定理的应用(最短路线、梯子下滑、船在水中航行等)三、合作探究、交流展示考点1:在直角三角形中,已知两边求第三边1、一种盛饮料的圆柱形杯,测得内部底面半径为2.5cm ,高为12cm ,吸管放进杯里,杯口外面至少要露出4.6cm ,问吸管要做 cm .2、已知直角三角形两直角边长分别为5和12, 求斜边上的高.(提示:直角三角形的两条直角边的积等于斜边与其高的积,ab=ch) 考点2:勾股定理与方程联手求线段的长(方程思想)1、如图 ,将一个边长为4、8的长方形纸片ABCD 折叠使C 点与A 点重合,则EB 的长是( ) A 、3 B 、4 C 、5 D 、52、如图,有一片直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,试求CD 的长。
人教版数学八年级下册17.2《勾股定理的逆定理》要点讲解
勾股定理的逆定理要点讲解一、勾股定理的逆定理1 .勾股定理的逆定理“如果直角三角形两直角边分别为a、b 、c,且满足a2+b2=c2.那么这个三角形是直角三角形.” 我们在判断一个三角形是不是直角三角形时,可直接运用这个逆定理.如图1所示,在△ABC中,如果AC2+BC2=AB2,那么△ABC就是直角三角形.2.勾股定理的逆定理与勾股定理的联系与区别联系:(1)两者都与a2+b2=c2有关,(2)两者所讨论的问题都是直角三角形区别:勾股定理是以“一个三角形是直角三角形”为条件,进而得到这个直角三角形三边的数量关系,“a2+b2=c2”;勾股定理的逆定理则是以“一个三角形的三边满足a2+b2=c2”为条件,进而得到这个三角形是直角三角形,是判别一个三角形是否是直角三角形的一个方法.特别说明:勾股定理的逆定理和勾股定理一样,不是凭空想象出来的,而是古代科学家们在实践中逐步发现和认识的,所以我们在学习勾股定理时,也应通过实践来认识和理解它.如通过勾股数画图、剪纸、户外实践等活动认识和理解逆定理,这样才能使我们的印象深刻,认识清楚,理解透彻.二、勾股定理的逆定理的应用勾股定理的逆定理是判断一个三角形是不是直角三角形的重要依据,是运用直角三角形各种性质的先决条件,它体现了数形结合的重要数学思想,在生产实践与现实生活中有着广泛的应用.例2 如图2所示,在△ABD中,∠A 是直角,AB=3,AD =4,BC=12,DC=13,△DBC是直角三角形吗?为什么?图2分析:要判断△DBC是不是直角三角形,首先要有它的三条边,而其中的BD边需要通过Rt△BAD得到,所以,解答这个问题的步骤应是,先由Rt△BAD 中的AB、AD求得BD,再根据勾股定理的逆定理进行判定.解:是直角三角形.理由:在Rt△BAD中,根据勾股定理,得BD2=AD2+AB2=33+42=25,所以BD=5 .在△DBC中,BD2+BC2=25+144=169=132=CD2.所以△DBC是直角三角形.例3 如图3所示,在某市的地图上有三个景点A、B、C,已知景点A、B 之间的距离为0.4cm,景点C、B之间的距离为0.3cm,景点A、C之间的距离为0.5cm,问这三个景点为顶点的三角形是直角三角形吗?为什么?分析:要判别三角形是不是直角三角形只要验证AB2+BC2=AC2即可.解:因为0.3 2+0.42=0.52,所以这个三角形一定是直角三角形.说明:在运用勾股定理的逆定理判断三角形是不是直角三角形时,一是要根据三角形中的三条边,看两条较小边的平方和是否等于最大边的平方;二是注意将一组勾股数同时扩大或缩小同样的倍数所得数仍是勾股数.。
第17章《勾股定理逆定理》知识点复习
第十七章《勾股定理及其逆定理》复习课审核:初二备课组 班级: 姓名: 组号 一.知识要点1:直角三角形中,已知两边求第三边1.勾股定理:若直角三角形的三边分别为a ,b ,c ,90=∠C ,则 。
公式变形①:若知道a ,b ,则=c ; 公式变形②:若知道a ,c ,则=b ; 公式变形③:若知道b ,c ,则=a ; 练习:1.在Rt △ABC 中,已知其两直角边长a=1,b=3,那么斜边c 的长为____.2.已知直角三角形的两边长为3、2,则另一条边长是 .3. 已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ;4.三个正方形的面积如图1,正方形A 的面积为( ) A . 6 B .36 C .64 D .85.酒店在装修时,在大厅的主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图2所示,则购买地毯至少需要__________元.6.如图3,所有的四边形都是正方形,所有三角形都是直角三角形,其中最大的正方形的边长是a ,则图中四个小正方形AB C D ,,,的面积之和是 .二、知识要点2:利用勾股定理在数轴找无理数。
例1:在数轴上作出表示10的点.三、知识要点3:判别一个三角形是否是直角三角形。
勾股定理逆定理:如果三角形的三边长分别为a 、b,c 满足222a b c +=,那么这个三角形是直角三角形.利用勾股定理的逆定理判定三角形是直角三角形.图1A10064例2:分别以下列四组数为一个三角形的边长:(1)3、4、5 (2)5、12、13 (3)8、15、17 (4)4、5、6, ⑸9,12,15 ⑹4,7.5,8.5 试找出哪些能够成直角三角形。
1.在下列长度的各组线段中,能组成直角三角形的是( )A .12,15,17B .9,16,25C .5a ,12a ,13a (a>0)D .2,3,42.判断由下列各组线段a ,b ,c 的长,能组成的三角形是不是直角三角形,说明理由. (1)5.6=a ,5.7=b ,4=c ; (2)11=a ,60=b ,61=c ; (3)38=a ,2=b ,310=a ; (4)433=a ,2=b ,414=c ;四、知识要点4:利用列方程求线段的长例3:如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?2. 如图,△ABC 的三边分别为AC=5,BC=12,AB=13,将△ABC 沿AD 折叠,使AC•落在AB 上,求DC 的长.ADEBC五、知识要点5:构造直角三角形解决实际问题例4:如图,小明想知道学校旗杆AB的高,他发现固定在旗杆顶端的绳子垂下到地面时还多l米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,你能求出旗杆的高度吗?六、课后巩固练习1.写出一组全是偶数的勾股数是 .2.如图,已知在△ABC中,CD⊥AB于D,AC=20,BC=15,DB=9.(1)求DC的长;(2)求AB的长;(3)求证:△ABC是直角三角形.3.在正方形ABCD中,E是BC边上中点,F是CD上一点,且CF=CD/4.求证:三角形AEF是直角三角形.AB CCA BD图4S 3S 2S 1C BA 章节小测1.木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 (填“合格”或“不合格”); 2.如图所示,以Rt ABC 的三边向 外作正方形,其面积分别为123,,S S S ,且1234,8,S S S ===则 ;3.将长为10米的梯子斜靠在墙上,若梯子的上端到梯子的底端的距离为6米,则梯子的底端到墙的底端的距离为 ;4.如果一个三角形的三个内角之比是1∶2∶3,且最小边的长度是8,最长边的长度是________. 5.若三角形的三边满足::5:12:13a b c =,则这个三角形中最大的角为 ; 6.已知一个直角三角形的两条直角边分别为6cm 、8cm ,那么这个直角三角形斜边上的高为 ;7.求知中学有一块四边形的空地ABCD ,如下图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m ,BC=12m ,CD=13m ,DA=4m ,若每平方米草皮需要200元,问学校需要投入多少资金买草皮?。
人教版八年级数学 勾股定理复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理学习
例1、图中的A 、B 、C 是正方形,D 是直角三角形。
(1)图形A 、B 的面积分别是64和36,求C 、D
(2)图中B
、C 的面积是25和169
求A 、D 的面积。
(3)图形B 、D 的面积是16和6,求A 、C 的面积。
例2、直角三角形ABC 中,∠C =90°,a 、b 、c 是三边长。
(1)c=52,a:b=5:12,求a ,b
(2)c=10,∠A =2
1∠C ,求a 、b
例3、如图,在△ABC 中,AB =AC =17,BC =16,求△ABC 的面积。
例4、在△ABC 中,∠C =90°,BD 平分∠B 交AC 于D ,AC =40,CD =15,求AB 的长。
例5、有一建筑物的墙面高16m ,梯子长20m ,它的上端靠着建筑物的墙面,下端放在地面上,(如图)
(1)当梯子的下端离地面的距离是16m 时,它的上端离墙面的最高点还有多少米?
(2)要使梯子的上端靠在墙面的最高点,则它的下端离墙面的距离最多是多少米?
例5、图为一个三级台形的立体模形,(每级台阶的长、宽、高均相等)现沿台阶的面用一条折线把A、B 两点连起来,这条折线的长度最少是多少?
例7、三角形的三边长分别是2n(n+1),2n+1,2n2+2n+1(n>0),判断这个三角形是否为直角三角形?
例6、三角形三内角的度数比为1:2:3,最大边长为10,则另两边的长分别是、。