信号与系统课后习题与解答第一章剖析
信号与系统(第1章)上册课后习题答案
0, 0 等幅 0, 0 增幅振荡 0, 0 衰减
第 21 页
4.抽样信号(Sampling Signal)
O
2
2
第 37 页
c.表示符号函数 符号函数:(Signum)
1 sgn( t ) 1
1 u( t ) [sgn( t ) 1] 2
sgnt
t 0 t0
O
t
sgn( t ) u( t ) u( t ) 2u( t ) 1
第 38 页
e
j t
cost j sint
第 20 页
3.复指数信号
f ( t ) Ke st
Ke t cos t jKe t sin t
为复数,称为复频率
( t )
s j
, 均为实常数
的量纲为1 /s , 的量纲为rad/s 讨论
瞬态信号:除准周期信号外的 一切可以用时间函数描述的非 周期信号。
第 10 页
3.连续信号和离散信号
连续时间信号:信号存在的 时间范围内,任意时刻都有定 义(即都可以给出确定的函数 值,可以有有限个间断点)。 用t表示连续时间变量。 离散时间信号:在时间上是 离散的,只在某些不连续的规 定瞬时给出函数值,其他时间 没有定义。 用n表示离散时间变量。
f t f at a 0 波形的压缩与扩展,尺度变换
f (t ) f t 2
f t
2
1
t f 2
2
信号与系统课后习题答案
习 题 一 第一章习题解答基本练习题1-1 解 (a) 基频 =0f GCD (15,6)=3 Hz 。
因此,公共周期3110==f T s 。
(b) )30cos 10(cos 5.0)20cos()10cos()(t t t t t f ππππ+==基频 =0f GCD (5, 15)=5 Hz 。
因此,公共周期5110==f T s 。
(c) 由于两个分量的频率1ω=10π rad/s 、1ω=20 rad/s 的比值是无理数,因此无法找出公共周期。
所以是非周期的。
(d) 两个分量是同频率的,基频 =0f 1/π Hz 。
因此,公共周期π==01f T s 。
1-2 解 (a) 波形如图1-2(a)所示。
显然是功率信号。
t d t f TP T TT ⎰-∞→=2)(21lim16163611lim 22110=⎥⎦⎤⎢⎣⎡++=⎰⎰⎰∞→t d t d t d T T T W(b) 波形如图1.2(b)所示。
显然是能量信号。
3716112=⨯+⨯=E J (c) 能量信号 1.0101)(lim101025=-===⎰⎰∞∞---∞→T t ttT e dt edt eE J(d) 功率信号,显然有 1=P W1-3 解 周期T=7 ,一个周期的能量为 5624316=⨯+⨯=E J 信号的功率为 8756===T E P W 1-5 解 (a) )(4)2()23(2t tt δδ=+; (b) )5.2(5.0)5.2(5.0)25(5.733-=-=----t e t e t et tδδδ(c) )2(23)2()3sin()2()32sin(πδπδπππδπ+-=++-=++t t t t 题解图1-2(a) 21题解图1-2(b) 21(d) )3()3()(1)2(-=----t e t t et δδε。
1-6 解 (a) 5)3()94()3()4(2-=+-=+-⎰⎰∞∞-∞∞-dt t dt t t δδ(b) 0)4()4(632=+-⎰-dt t t δ(c) 2)]2(2)4(10[)]42(2)4()[6(63632=+++-=+++-⎰⎰--dt t t dt t t t δδδδ(d)3)3(3)(3sin )(1010=⋅=⎰⎰∞-∞-dt t Sa t dt ttt δδ。
信号与系统课后习题参考答案.pdf
-5
-4 -3 -2
-1
2 1
2
3
-1
x(-t+4)
t
45
6
2 1
4
6
-1
x(-t/2+4)
t 8 10 12
(e)[x(t)+x(-t)]u(t)
-2
-1
2
x(-t)
1
t
01
2
-1
(f)
x(t)[δ(t +
3) − δ(t - 3)]
2
2
3
[x(t)+x(-t)]u(t)
1 t
01
2
-1
-3/2 (-1/2)
x(t)[δ(t + 3) − δ(t - 3)]
2
2
3/2
t
0 (-1/2)
6
1.22
(a)x[n-4]
x[n-4]
11 1 1
1/2 1/2
1/2 n
0 1 23 4 5 6 7 8
-1/2
-1
(b)x[3-n]
x[n+3]
11 1 1
1/2 1/2
1/2 n
-7 -6 -5 -4 -3 -2 -1 0 1
=
2π 4
=π 2
则:整个信号的周期为:T = LCM{T1,T2} = π
1.11
j 4πn
解: e 7
→
ω1
=
4πn 7
,则:
2π ω1
=
2π 4π
=7= 2
N1 k
,⇒
N1
=
7
7
j 2πn
e5
→ ω2
(完整版)信号与系统第一章答案
1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。
(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t(7))t=(kf kε(2)(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。
(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别下列各序列是否为周期性的。
如果是,确定其周期。
(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。
信号与系统课后题解第一章
(6) f (2 − t ) (8) f (− 2 − t )ε (− t )
图 1.14
【知识点窍】本题考察信号的绘制及自变量变换导致信号变换的概念 【逻辑推理】本题用到信号的时域运算与变换。 解: (1) f (2t ) 信号的波形如图 1.15 所示。 (2) f (t )ε (t ) 信号的波形如图 1.16 所示。
t
ε [sin π t ]
1 … -2 -1 1 2 3 …
t
(b) 图 1.8 (9) 2 −n ε [n ] 函数式的信号的波形如图 1.9(c )所示. 。
ε [n]
1 0 1 … 2 1
2−n
-1
n
-1 (a) 0 1 2
…
n
(b)
2 −n ε [n ]
1 … -1 0 1 2 (c )
7
n
4
cos ω (t − t 0 )
1 … …
t0பைடு நூலகம்
-1 (a)
t
cos [ω (t − t 0 )]ε (t )
1 …
t0
-1
t
(b) 图 1.3
cos ω (t − t 0 )
1 …
t0
-1
t
图 1.4 (5) ε (t 0 − t ) (6) ε (t 0 − 2t )
t 0 > 0 函数式的信号的波形如图 1.5(b)所示. 。 t 0 > 0 函数式的信号的波形如图 1.6 所示. 。
T
2
(4) 3 cos (ω 0t + θ ) 是功率信号,其平均功率为:
P = lim
1 T → ∞ 2T
2 ∫−T [3 cos (ω0 t + θ )] dt = Tlim →∞ T
信号与系统 人民邮电出版社 第二版第一章 课后答案
w
w
.k hd
第一章 信号与系统的基本概念 习题
南京邮电大学 信号分析与信息处理教学中心
aw
信号与系统
2006.1
.c
SIGNALS AND SYSTEMS
om
.c
∫
1 2 0
1-1 下列信号中哪些是周期信号,哪些是脉冲信号?哪 些是能量信号?哪些是功率信号它们的平均功率各为多 少? ω 0t ω 0t j (ω 0t +θ )
om
∫
q
w
画系统 x (t ) q ∑ 模拟图:
∫
15
∑
y (t )
w
5
11
15
w
aw
) 1-23 已知某系统的数学模型为 y " ( t ) + a y ' ( t ) + a y ( t ) = b ' x ( t ) + b x ( t, 其模拟图如下,试导出微分方程中的系数 a1, a0 , b1, b0 与模拟图 与模拟 中的系数 α1,α0 , β1, β0的关系。 解:设辅助函数 q" x(t ) β0 β1 如图所示,则 q" = β 0 x + α 0 y + α1q' y (t ) q' q"
w
w
1 y ( t ) = {[[ x1( t ) + x2 ( t )]2 [[ x1( t ) x2 (t )]2 } 4 = x1(t ) x2 ( t )
.k hd
对所假设系统,有:
q(3) (t ) = x (t ) 5q" (t ) 11q' (t ) 15q(t )
信号与系统课后习题答案
f 2 (−1) (t) =
δ (t − 2) − δ (t − 3)
*
t ε e(−t+1) (t + 1)dt
−∞
= [δ (t − 2) − δ (t − 3)]* (1 − e−(t+1) )ε (t + 1)
= (1 − e−(t−2+1) )ε (t − 2 + 1) − (1 − e−(t−3+1) )ε (t − 3 + 1)
) − iL (t) − uC (t) R1
R2
状态方程为:
⎪⎪⎧u&C (t) ⎨
=
f (t) R1C
−
uC (t) R1C
−
iL (t) C
⎪⎪⎩i&L
(t)
=
uC
(t)
− R2iL L
(t)
1.17 写出题图 1.8 系统的输入输出方程。
解: (b)系统框图等价为:
⎧x′′(t) = f (t) − 3x′(t) − 2 y(t)
x2(0-)=1 时,y2(t)=4e-t-2e-3t,t≥0 则 x1(0-)=5,x2(0-)=3 时,系统的零输入响应: yx(t)=y(t)=5y1(t)+3y2(t)=22e-t 十 9e-3t,t≥0
1.22 在题 1.21 的基础上,若还已知 f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,有 y(t)=2+e-t+2e-3t,t≥0 试求当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统响应 y(t)。 解: 记,f(t)=ε(t),x1(0-)=0,x2(0-)=0 时,系统响应 yf(t)=y(t)=2+e-t+2e-3t,t≥0 则当 f(t)=3ε(t),x1(0-)=2,x2(0-)=5 时的系统全响应 y(t)为: y(t)=3yf(t)+2y1(t)+5y2(t)
信号与系统课后习题答案—第1章
第1章 习题答案1-1 题1-1图所示信号中,哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?解: ① 连续信号:图(a )、(c )、(d ); ② 离散信号:图(b ); ③ 周期信号:图(d );④ 非周期信号:图(a )、(b )、(c ); ⑤有始信号:图(a )、(b )、(c )。
1-2 已知某系统的输入f(t)与输出y(t)的关系为y(t)=|f(t)|,试判定该系统是否为线性时不变系统。
解: 设T 为此系统的运算子,由已知条件可知: y(t)=T[f(t)]=|f(t)|,以下分别判定此系统的线性和时不变性。
① 线性 1)可加性不失一般性,设f(t)=f 1(t)+f 2(t),则y 1(t)=T[f 1(t)]=|f 1(t)|,y 2(t)=T[f 2(t)]=|f 2(t)|,y(t)=T[f(t)]=T[f 1(t)+f 2(t)]=|f 1(t)+f 2(t)|,而 |f 1(t)|+|f 2(t)|≠|f 1(t)+f 2(t)|即在f 1(t)→y 1(t)、f 2(t)→y 2(t)前提下,不存在f 1(t)+f 2(t)→y 1(t)+y 2(t),因此系统不具备可加性。
由此,即足以判定此系统为一非线性系统,而不需在判定系统是否具备齐次性特性。
2)齐次性由已知条件,y(t)=T[f(t)]=|f(t)|,则T[af(t)]=|af(t)|≠a|f(t)|=ay(t) (其中a 为任一常数)即在f(t)→y(t)前提下,不存在af(t)→ay(t),此系统不具备齐次性,由此亦可判定此系统为一非线性系统。
② 时不变特性由已知条件y(t)=T[f(t)]=|f(t)|,则y(t-t 0)=T[f(t-t 0)]=|f(t-t 0)|,即由f(t)→y(t),可推出f(t-t 0)→y(t-t 0),因此,此系统具备时不变特性。
《信号与系统》第一章作业题答案
第一章 绪 论1.试判断系统()()r t e t =-是否是时不变系统?(给出检验步骤)解:由()()r t e t =-,得到输入为()e t 时,对应的输出为()r t :()()r t e t =-再由()()r t e t =-,得到输入为()e t τ-时,对应的输出为()e t τ--。
假设()()r t e t =-是一个时不变系统,则对应的()()r t e t ττ-=-+显然()()()r t e t e t τττ-=-+≠--假设不成立,这是一个时变系统。
2.已知信号1(/2)f t 和2()f t 的波形如图所示,画出11()(1)()y t f t u t =+-和22()(53)y t f t =-的波形。
图1解:根据一展二反三平移的步骤来做,对于第一个图,第一步将1(/2)f t 展成1()f t第二步将1()f t 平移成1(1)f t +第三步将1(1)f t +乘上()u t -得到11()(1)()y t f t u t =+-对于第二个图,先写出其表达式2()9(1)f t t δ=+则22()(53)9(531)y t f t t δ=-=-+9(63)9(36)3(2)t t t δδδ=-=-=-于是得到2()y t 的图形为3.系统如图2所示,画出1()f t ,2()f t 和3()f t 的图形,并注明坐标刻度。
图2解:由系统图可以得到1()()()f t t t T δδ=--它的图形为(设T>0)21()()[()()]ttf t f t dt t t T dt δδ-∞-∞==--⎰⎰它的图形为(设T>0)32()(2)()f t t T f t δ=-+它的图形为(设T>0)4.确定下列系统是因果还是非因果的,时变还是非时变的,并证明你的结论。
1()(5)cos ()y t t x t ⎛⎫=+ ⎪⎝⎭解:令0t =,则1(0)5cos (0)y x ⎛⎫= ⎪⎝⎭,故是因果系统。
《信号与系统》第一章习题解答
(c) Is this system invertible?
x[n] = Aδ [n − 1]
y[n] = A 2δ [n − 1]δ [n − 3] = 0
No.
Chapter 1 1.17
y (t ) = x (sin (t ))
Problems Solution
Problems Solution Determine and sketch x2 (t ) → y2 (t ) = ?
(a ) x1 (t ) → y1 (t )
(b) Determine and sketch the response of the system considered in part of (a) to the input x3(t).
8
10
12
t
Chapter 1
Problems Solution
1.22 (d) x[3n + 1] (g)
1 2
x[n]
x[n] +
1 2
(− 1)n x[n]
1
L
1 2
-4 -3 -2 -1 0 1 2 3 4
− 1 2
x[3n + 1] =
1 2
0 n ≤ -2 1 n = -1 2 1 n=0 0 n≥1
(d) x (4 − t / 2 ) (e) [x (t ) + x (− t )]u (t ) (f) x (t )[δ (t + 3 / 2 ) − δ (t − 3 / 2 )]
-2
Problems Solution
x (t )
[信号与系统作业解答]第一章
1-3、分别求下列各周期信号的周期 T 1) cos(10 t ) cos(30 t) ; 2) e j 10 t ; 4)
(1)n[u(t nT ) u(t nT T )]
n 0
n
(1) [u(t nT ) u(t nT T )]
图(b)表达式为:
f ( t ) u( t ) u( t 1) 2[u( t 1) u( t 2)] 3u( t 2) ; u( t ) u( t 1) u( t 2)
图(c)表达式为: f ( t ) sin
t [u( t ) u( t T )] ; T
C1e1 (t ) C2e2 (t ) sin[C1e1 (t ) C2e2 (t )]u(t ) C1r1 (t ) C2r2 (t )
由于
所以系统是非线性的。
e( t ) r (t ) sin[e( t )]u(t )
而
e(t t0 ) sin[e(t t0 )]u(t ) r (t t0 ) sin[e(t t0 )]u(t t0 )
5)由于 e1 (t ) r1 (t ) e1 (2t ) , e2 (t ) r2 (t ) e2 (2t ) , 而
C1e1 (t ) C2e2 (t ) C1e1 (2t ) C2e2 (2t ) C1r1 (t ) C2r2 (t )
由于
所以系统是线性的。
C1e1 ( t ) C 2e2 ( t ) C1e1 (t ) C 2e2 (t ) C1r1 (t ) C 2r2 (t )
由于
2
所以系统是非线性的。
信号与系统课后答案
与奇分量的波形,相应如图题 1.12 中所示。
1-13 已知信号 f(t)的偶分量 fe(t)的波形如图题 1-13(a)所示, 信号 f(t+1)×U(-t-1)的波形如图题 1-13(b) 所示。求 f(t)的奇分量 fo(t),并画出 fo(t)的波形。
解 因
f (t ) = f e (t ) + f 0 (t )
∫
t
−∞
δ (τ )dτ ,故根据现行系统的积分性有
y (t ) = ∫ h(τ (dτ = ∫ [δ (τ ) − δ (τ − 1) − δ (τ − 2) + δ (τ − 3)]dτ = u (t ) − u (t − 1) − u (t − 2) + u (t − 3)
1-2 已知各信号的波形如图题 1-2 所示,试写出它们各自的函数式。
解: f 1 (t ) = t[u (t ) − u (t − 1)] + u (t − 1)
f 2 (t ) = −(t − 1)[u (t ) − u(t − 1)]
f 3 (t ) = (t − 2)[u(t − 2) − u(t − 3)]
y 2 (t ) 的波形如图题 1.17(c)所示.
1-18 图题 1-18(a)所示为线性时不变系统,已知 h1(t)=δ(t)-δ(t-1), h2(t)=δ(t-2)-δ(t-3)。(1)求响 应 h(t); (2) 求当 f(t)=U(t)时的响应 y(t)(见图题 1-18(b))。
解(1) h(t ) = h1 (t ) − h2 (t ) = δ (t ) − δ (t − 1) − δ (t − 2) + δ (t − 3) (2) 因 f (t ) = u (t ) =
《信号与系统(第四版)》习题详解 (1)
第1章 信号与系统的基本概念 解 此题练习离散信号的图形表示方法。要求熟悉常用指数 和正弦序列的图形表示、阶跃序列的定义和基本性质以及序列平 移和翻转操作对序列图形的影响。
7
第1章 信号与系统的基本概念
题解图 1.2 8
第1章 信号与系统的基本概念 1.3 试写出题图1.1各信号的解析表达式。
第1章 信号与系统的基本概念 24
第1章 信号与系统的基本概念
题解图 1.5-7 25
第1章 信号与系统的基本概念 26
第1章 信号与系统的基本概念
题解图 1.5-8 27
第1章 信号与系统的基本概念 (9) 两个连续信号相加,任一时刻的和信号值等于两信号在 该时刻的信号值之和。题(9)信号波形如题解图1.5-9所示。
3
第1章 信号与系统的基本概念 解 此题练习连续信号的波形图表示方法。除应熟悉常用连 续指数、正弦和斜升信号波形外,还应特别注意阶跃函数的基本 性质以及信号平移、翻转操作对信号波形的影响。
4
第1章 信号与系统的基本概念
题解图 1.1 5
第1章 信号与系统的基本概念 1.2 绘出下列信号的图形:
题图 1.1 9
第1章 信号与系统的基本概念 10
第1章 信号与系统的基本概念 11
第1章 信号与系统的基本概念 1.4 判定下列信号是否为周期信号。若是周期信号,则确
定信号周期T。
12
第1章 信号与系统的基本概念
解 (1) 若有两个周期分别为T1和T2的连续信号相加,当
T1/T2为有理数时,其和信号亦是周期信号,相应周期为T1和T2的最
题解图 1.5-9 28
第1章 信号与系统的基本概念 (10) 两个连续信号相乘,任一时刻的积信号值等于两信 号在该时刻的信号值之积。题(10)信号波形如题解图1.5-10 所示。
信号与系统(郑君里)课后答案 第一章习题解答
1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。
注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。
如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。
1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。
北理信号与系统课后答案选解第一章作业参考答案
∫
4
−4
(t 2 + 3t + 2)[δ (t ) + 2δ (t − 2)]dt = ∫ x(t )[δ (t ) + 2δ (t − 2)]dt
−4 4
4
= ∫ x(t )δ (t )dt + 2 x(t )δ (t − 2)dt
−4
= x(0) ∫ δ (t )dt + 2 x(2) ∫ δ (t − 2)dt
时变:
1.26 试判断下列每一个离散时间系统是否是线性系统和是不变系统。 (a)解:线性:
(b)解:线性:
课 后
a x1[n] + b x 2 [n] → y[n] = (a x1[n] + b x2 [n]) − 2(a x1[n − 1] + b x2 [n − 1]) = a( x1[n] + 2 x1[n − 1]) + b( x2 [n] x2 [n − 1]) = a y1 (t ) + b y 2 (t )
时不变性:
(d)解:线性:
时变:
(f) 解:线性:
课 后
a x1[n] + b x 2 [n] → y[n] = (a x1[4n + 1] + b x2 [4n + 1]) = a y1[n] + b y 2 [n]
时变:
ˆ[n] = x[4n − n0] x[n − n0] → y ≠ y[n − n0] = x[4(n − n0)] = x[4n − 4 n0]
答
案
网
x(t)
1 0 1
图 P1.23
(精品)信号与系统课后习题与解答第一章
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为 (a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问) (1))sin(t e at ω-; (2)nT e -; (3))cos(πn ;(4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -; (2)j10t e ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n ∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t +=得周期5102T ππ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1-1 分别判断图1-1所示各波形是连续时间信号还是离散时间信号,若是离散时间信号是否为数字信号?图1-1图1-2解 信号分类如下:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧--⎩⎨⎧--))(散(例见图数字:幅值、时间均离))(连续(例见图抽样:时间离散,幅值离散))(连续(例见图量化:幅值离散,时间))(续(例见图模拟:幅值、时间均连连续信号d 21c 21b 21a 21图1-1所示信号分别为(a )连续信号(模拟信号); (b )连续(量化)信号; (c )离散信号,数字信号; (d )离散信号;(e )离散信号,数字信号; (f )离散信号,数字信号。
1-2 分别判断下列各函数式属于何种信号?(重复1-1题所示问)(1))sin(t e at ω-; (2)nTe -; (3))cos(πn ; (4)为任意值)(00)sin(ωωn ;(5)221⎪⎭⎫ ⎝⎛。
解由1-1题的分析可知: (1)连续信号; (2)离散信号;(3)离散信号,数字信号; (4)离散信号; (5)离散信号。
1-3 分别求下列各周期信号的周期T : (1))30t (cos )10t (cos -;(2)j10te ;(3)2)]8t (5sin [;(4)[]为整数)(n )T nT t (u )nT t (u )1(0n n∑∞=-----。
解 判断一个包含有多个不同频率分量的复合信号是否为一个周期信号,需要考察各分量信号的周期是否存在公倍数,若存在,则该复合信号的周期极为此公倍数;若不存在,则该复合信号为非周期信号。
(1)对于分量cos (10t )其周期5T 1π=;对于分量cos (30t ),其周期15T 2π=。
由于5π为21T T 、的最小公倍数,所以此信号的周期5T π=。
(2)由欧拉公式)t (jsin )t (cos e t j ωωω+= 即)10t (jsin )10t (cos e j10t+= 得周期5102T ππ==。
(3)因为[])16t (cos 2252252)16t (cos 125)8t (5sin 2-=-⨯=所以周期8162T ππ==。
(4)由于原函数⎩⎨⎧+<≤+-+<≤=2)T (2n t T )12n (,11)T (2n t 1,2nT n 为正整数 其图形如图1-3所示,所以周期为2T 。
图1-31-4对于教材例1-1所示信号,由f (t )求f (-3t-2),但改变运算顺序,先求f (3t )或先求f (-t ), 讨论所得结果是否与原例之结果一致。
解 原信号参见例1-1,下面分别用两种不同于例中所示的运算顺序,由f (t )的波形求得f (-3t-2)的波形。
两种方法分别示于图1-4和图1-5中。
方法一:倍乘32左移方法二:32左移图1-4图1-51-5 已知f (t ),为求)(0at t f -应按下列那种运算求得正确结果(式中at ,0都为正值)?(1))(at f -左移0t; (2))(at f 右移0t;(3))(at f 左移a t 0;(4))(at f -右移a t 0。
解 (1)因为)(at f -左移0t ,得到的是[])()(00at at f t t a f --=+-,所以采用此种运算不行。
(2)因为)(at f 右移0t ,得到的是[])()(00at at f t t a f -=-,所以采用此运算不行。
(3)因为)(at f 左移a t 0,得到的是)()(00t at f a t t a f +=⎥⎦⎤⎢⎣⎡+,所以采用此运算不行。
(4)因为)(at f -右移a t 0,得到的是)()(00at t f a t t a f -=⎥⎦⎤⎢⎣⎡--,所以采用此运算不行。
1-6 绘出下列各信号的波形:(1))8sin()sin(211t t Ω⎥⎦⎤⎢⎣⎡Ω+;(2)[])8sin()sin(1t t ΩΩ+。
解 (1)波形如图1-6所示(图中)8sin()sin(211)(t t t f Ω⋅⎥⎦⎤⎢⎣⎡Ω+=)。
(2)波形如图所示1-7(图中[1)(t f +=1-7 绘出下列各信号的波形:(1)[])4sin()()(t T T t u t u π--; (2)[])4sin()2()(2)(t T T t u T t u t u π-+--。
解)4sin(t T π的周期为2T 。
(1)波形如图1-8(a )所示(图中[])4sin()()(t T T t u t u π--)。
在区间[]T ,0,内,包含有)4sin(t T π的两个周期。
图1-8(2)波形如图1-8(b )所示(图中[])4sin()2()(2)(t T T t u T t u t u π-+--)。
在区间[]T T 2,内是)4sin(t T π-,相当于将)4sin(t T π倒像。
1-8 试将教材中描述图1-15波形的表达式(1-16)和(1-17)改用阶越信号表示。
解 表达式(1-16)为⎩⎨⎧-==---)(0)(t t a atat ee e tf ()()∞<≤<<t t t t 000当当 这是一个分段函数。
若借助阶越信号,则可将其表示为[])()()(][)()(e )(0)(0)(000t t u e t u e t t u e e t t u t u t f t t a at t t a at at --=--+--=-------]表达式(1-17)为⎪⎩⎪⎨⎧∞<≤---<<-=----∞-⎰)()1(1)1(1)0()1(1)(0)(00t t e a e a t t e ad f t t a at at t ττ借助阶越信号,可将其表示为 )(]1[1)()(1)(]1[1)1(1)]()()[1(1)(0)(0)(000t t u e a t u e a a t t u e a e a t t u t u e a d f t t a at t t a atat t ----=-⎭⎬⎫⎩⎨⎧---+---=-------∞-⎰ττ1-9 粗略绘出下列各函数式的波形图:(1))()2()(t u e t f t--=; (2))()63()(2t u e e t f t t --+=; (3))()55()(3t u e e t f tt ---=;(4))]2()1()[10cos()(---=-t u t u t e t f tπ。
解图1-9(1)信号波形如图1-9(a )所示。
(2)信号波形如图1-9(b )所示。
(3)信号波形如图1-9(c )所示。
(4)信号波形如图1-9(d )所示。
在区间[1,2]包含)10cos(t π的5个周期。
1-10 写出如图所示各波形的函数式。
(a)(b)(c)图1-10解 (a )由图1-10(a )可写出⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-≤≤-+=)(0)20(211)02(211)(其它t t t t t f于是)]2()2([21)(--+⎪⎪⎭⎫ ⎝⎛-=t u t u t t f(b )由图1-10(b )可写出⎪⎪⎩⎪⎪⎨⎧>≤<≤<≤=23)21(2)10(1)0(0)(t t t t t f于是)2()1()()2(3)]2()1([2)]1()([)(-+-+=-+---+--=t u t u t u t u t u t u t u t u t f 实际上,可看作三个阶越信号)2()1()(--t u t u t u ,,的叠加,见图1-11,因而可直接写出其函数表达式为图1-11)2()1()()(-+-+=t u t u t u t f (c )由图1-10(a )可写出⎪⎩⎪⎨⎧<≤⎪⎭⎫⎝⎛=)(0)0(sin )(其它T t t TE t f π于是)]()([sin )(T t u t u t T E t f --⎪⎭⎫⎝⎛=π1-11绘出下列各时间函数的波形图:(1))(t u te t -; (2))]2()1([)1(-----t u t u e t ;(3))]2()()][cos(1[--+t u t u t π; (4))2()1(2)(-+--t u t u t u ;(5)[])()(sin 00t t a t t a --;(6))](sin [t tu e dt d t-。
解 (1)信号波形如图1-12(a)所示,图中)()(t u te t f t-=。
图1-12(b )(c )(2)信号波形如图1-12(b)所示,图中)]2()1([)()1(---=--t u t u et f t 。
(3)信号波形如图1-12(c)所示,图中)]2()()][cos(1[)(--+=t u t u t t f π。
(4)信号波形如图1-12(d)所示,图中)2()1(2)()(-+--=t u t u t u t f 。
(5)信号波形如图1-12(e)所示,图中[])()(sin )(00t t a t t a t f --=,信号关于0t t = 偶对称。
(6)因为 )(4cos 21)(cos )(sin )(sin )(cos )(sin )](sin [t u e t t tu e t tu e t t e t tu e t tu e t tu e dtd t t t t t t t-------⎪⎭⎫⎝⎛+=+-=++-=πδ所以该信号是衰减正弦波。
其波形如图1-12(f)所示,图中)](sin [)(t tu e dt d t f t-=。
1-12 绘出下列各时间函数的波形图,注意它们的区间: (1))]1()([--t u t u t ; (2))1(-⋅t u t ;(3))1()]1()([-+--t u t u t u t ; (4))1()1(--t u t ;(5))]1()()[1(----t u t u t ; (6))]3()2([---t u t u t ;(7))]3()2()[2(----t u t u t 。
解 (1)信号波形如图1-13(a)所示,图中)]1()([)(--=t u t u t t f 。
图1-13(b )(c)(e )(2)信号波形如图1-13(b)所示,图中)1()(-⋅=t u t t f 。
(3)信号波形如图1-13(c)所示,图中)1()]1()([)(-+--=t u t u t u t t f 。
(4)信号波形如图1-13(d)所示,图中)1()1()(--=t u t t f 。
(5)信号波形如图1-13(e)所示,图中)]1()()[1()(----=t u t u t t f 。