第2章函数试卷答案讲解版
北师大版九年级下册数学第二章 二次函数含答案【及含答案】
北师大版九年级下册数学第二章二次函数含答案一、单选题(共15题,共计45分)1、二次函数y=ax2+bx+c (a、b、c为常数且a≠0)中的x与y的部分对应值如下表,x …-3 -2 -1 0 1 2 3 4 5 …y …12 5 0 -3 -4 -3 0 5 12 …下列四个结论:①二次函数y=ax2+bx+c 有最小值,最小值为-3;②抛物线与y轴交点为(0,-3);③二次函数y=ax2+bx+c 的图像对称轴是x=1;④本题条件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.其中正确结论的个数是()A.4B.3C.2D.12、已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是()A.x<0B.-1<x<1或x>2C.x>-1D.x<-1或1<x<23、抛物线y=-2(x-1)2-3与y轴的交点纵坐标为()A.-3B.-4C.-5D.-14、抛物线y=3(x-1)2+2的顶点坐标是()A.(1,-2)B.(-1,2)C.(1,2)D.(-1,-2)5、对于每个非零自然数n,抛物线y=x2﹣x+ 与x轴交于An、B n 两点,以AnBn表示这两点间的距离,则A1B1+A2B2+…+A2017B2017的值是()A. B. C. D.16、二次函数()的图象是抛物线G,自变量x与函数y的部分对应值如下表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y …4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线G的开口向下B.抛物线G的对称轴是直线C.抛物线G与y轴的交点坐标为(0,4)D.当x>﹣3时,y随x的增大而增大7、将抛物线y=2x²向右平移4个单位,再向上平移3个单位,得到的图象的表达式为( )A.y=2(x-4)²-3B.y=2(x+4)²+3C.y=2(x-4)²+3D.y =2(x+4)²-38、若实数a使关于x的二次函数y=x2+(a-1)x-a+2,当x<-1时,y随x的增大而减小,且使关于y的分式方程有非负数解,则满足条件的所有整数a值的和为()A.1B.4C.0D.39、抛物线的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是 x=1 .下列结论中:① ;②;③ ;④若点在该抛物线上,则.⑤方程有两个不相等的实数根;其中正确的有()A.5个B.4个C.3个D.2个10、关于二次函数,下列说法正确的是 ( )A.当x=2时,有最大值-3;B.当x=-2时,有最大值-3;C.当x=2时,有最小值-3;D.当x=-2时,有最小值-3;11、抛物线y=3(x+1)2+1的顶点所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限12、关于x的一元二次方程(a-1)x2+2x-1=0有两个实数根,a的取值范围为()A.a≥0B.a<2C.a≥0且a≠1D.a≤2或a≠113、已知二次函数y=ax2﹣2x+2(a>0),那么它的图象一定不经过().A.第一象限B.第二象限C.第三象限D.第四象限14、由抛物线得到抛物线是经过怎样平移的()A.右移1个单位上移2个单位B.右移1个单位下移2个单位C.左移1个单位下移2个单位D.左移1个单位上移2个单位15、二次函数的图象如图所示,那么,,,这四个代数式中,值为正数的有().A.4个B.3个C.2个D.1个二、填空题(共10题,共计30分)16、将抛物线y=﹣x2+1向右平移2个单位长度,再向上平移3个单位长度所得的抛物线解析式为________.17、抛物线y=2(x+1)2的顶点坐标为________.18、二次函数y=﹣4(1+2x)(x﹣3)的一般形式y=ax2+bx+c是________.19、如果函数是关于x的二次函数, 则k=________ 。
复变函数习题答案第2章习题详解
第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→ 22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆ lim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。
只有12-=x ,即21-=x 时才满足柯西—黎曼方程。
()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。
2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。
只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。
()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。
3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。
复变函数第二章习题答案
复变函数第二章习题答案第二章 解析函数1-6题中:(1)只要不满足C-R 条件,肯定不可导、不可微、不解析 (2)可导、可微的证明:求出一阶偏导y x y x v v u u ,,,,只要一阶偏导存在且连续,同时满足C-R 条件。
(3)解析两种情况:第一种函数在区域内解析,只要在区域内处处可导,就处处解析;第二种情况函数在某一点解析,只要函数在该点及其邻域内处处可导则在该点解析,如果只在该点可导,而在其邻域不可导则在该点不解析。
(4)解析函数的虚部和实部是调和函数,而且实部和虚部守C-R 条件的制约,证明函数区域内解析的另一个方法为:其实部和虚部满足调和函数和C-R 条件,反过来,如果函数实部或者虚部不满足调和函数或者C-R 条件则肯定不是解析函数。
解析函数求导:x x iv u z f +=')(4、若函数)(z f 在区域D 上解析,并满足下列的条件,证明)(z f 必为常数。
(1)证明:因为)(z f 在区域上解析,所以。
令),(),()(y x iv y x u z f +=,即x v y u y v x u ∂∂-=∂∂∂∂=∂∂,0=∂∂+∂∂='yvi x u z f )(。
由复数相等的定义得:00=∂∂-=∂∂=∂∂=∂∂xv y u y v x u ,。
所以,1C y x u =),((常数),2C y x v =),((常数),即21iC C z f +=)(为常数。
5、证明函数在平面上解析,并求出其导数。
(1)()()0f z z D '=∈z (cos sin )(cos sin ).x xe x y y y ie y y x y -++证明:设=则,;;满足xvy u y v x u ∂∂-=∂∂∂∂=∂∂,。
即函数在平面上),(y x 可微且满足C-R 条件,故函数在平面上解析。
8、(1)由已知条件求解析函数iv u z f +=)(,xy y x u +-=22,i i f +-=1)(。
必修一第二章-一元二次函数、方程和不等式全章讲解训练-(含答案)
第二章 一元二次函数、方程和不等式全章复习讲解 (含答案)【要点梳理】(不等式性质、解一元二次不等式、基本不等式) 一、不等式1.定义 不等式:用不等号(>,<,≥,≤,≠)表示不等关系的式子.2..不等式的性质不等式的性质可分为基本性质和运算性质两部分 基本性质有:性质1 对称性:a b b a >⇔<; 性质2 传递性:,a b b c a c >>⇒>;性质3 加法法则(同向不等式可加性):()a b a c b c c R >⇔+>+∈;;性质4 乘法法则:若a b >,则000c ac bc c ac bc c ac bc ,,.>⇒>⎧⎪=⇒=⎨⎪<⇒<⎩补充:除法法则:若a b >且0c =,则00a bc c ca b c c c⎧>⇒>⎪⎪⎨⎪<⇒<⎪⎩., 性质5 可加法则:,a b c d a c b d >>⇒+>+; 性质6 可乘法则:0,00a b c d a c b d >>>>⇒⋅>⋅>; 性质7 可乘方性:()*00n n a b n a b N >>∈⇒>>;可开方性:()01a b n n N 且+>>∈>⇒要点诠释:不等式的性质是不等式同解变形的依据. 二、比较两代数式大小的方法 作差法:1. 任意两个代数式a 、b ,可以作差a b -后比较a b -与0的关系,进一步比较a 与b 的大小.*①0a b a b ->⇔>; ②0a b a b -<⇔<; ③0a b a b -=⇔=. 作商法:任意两个值为正的代数式a 、b ,可以作商a b ÷后比较ab与1的关系,进一步比较a 与b 的大小. ①1a a b b >⇔>; ②1a a b b <⇔<; ③1aa bb =⇔=. 要点诠释:若代数式a 、b 都为负数,也可以用作商法. 中间量法:若两个代数式a 、b 不容易直接判断大小,可引入第三个量c 分别与a 、b 作比较,若满足a b >且b c >,则a c >. 第三个量就是中间量. 这种方法就是中间量法,其实质是不等式的传递性.一般选择0或1为中间量.三、一元二次不等式与相应函数、方程之间的联系设()2f x ax bx c =++(0)a >,判别式24b ac ∆=-,按照0∆>,0∆=,0∆<该函数图象(抛物线)与x 轴的位置关系也分为三种情况,相应方程的解与不等式的解集形式也不尽相同. 如下表所示:】24b ac ∆=-0∆>0∆=0∆<函数()y f x = 的图象方程()=0f x#的解有两相异实根 1212,()x x x x <有两相等实根 122b x x a==-无实根不等式()0f x >的解集 {}12x x x x x <>或2b x x a ⎧⎫≠-⎨⎬⎩⎭*R不等式()0f x <的解集{}12x xx x <<∅ ∅要点诠释:(1)一元二次方程20(0)ax bx c a ++=≠的两根12x x 、是相应的不等式的解集的端点的取值,是抛物线y =2ax bx c ++与x 轴的交点的横坐标;(2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决;(3)解集分0,0,0∆>∆=∆<三种情况,得到一元二次不等式20ax bx c ++>与20ax bx c ++<的解集.…四、解一元二次不等式1. 解一元二次不等式()2ax +bx+c a ≠>00的步骤(1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20ax bx c ++=(0)a >,计算判别式∆:①0∆>时,求出两根12x x 、,且12x x <(注意灵活运用因式分解和配方法);②0∆=时,求根122b x x a==-; ③0∆<时,方程无解 (3)根据不等式,写出解集. 五、基本不等式1.对公式222a b ab +≥及2a b+≥. `(1)成立的条件是不同的:前者只要求,a b 都是实数,而后者要求,a b 都是正数; (2)取等号“=” 的条件在形式上是相同的,都是“当且仅当a b =时取等号”. 2.由公式222a b ab +≥和2a b+≥ ①2b aa b +≥(,a b 同号); ②2b aa b+≤-(,a b 异号);③20,0)112a b a b a b+≤≤>>+或222()(0,0)22a b a b ab a b ++≤≤>> 要点诠释: 222a b ab +≥可以变形为:222a b ab +≤,2a b +≥可以变形为:2()2a b ab +≤.2a b+≤求最大(小)值 在用基本不等式求函数的最值时,应具备三个条件:一正二定三取等. ① 一正:函数的解析式中,各项均为正数;-② 二定:函数的解析式中,含变数的各项的和或积必须有一个为定值; ③ 三取等:函数的解析式中,含变数的各项均相等,取得最值. 要点诠释:1.基本不等式的功能在于“和积互化”.若所证不等式可整理成一边是和,另一边是积的形式,则考虑使用平均不等式;若对于所给的“和式”中的各项的“积”为定值,则“和”有最小值,对于给出的“积式”中的各项的“和”为定值,则“积”有最大值.2.利用两个数的基本不等式求函数的最值必须具备三个条件: ①各项都是正数; ②和(或积)为定值; ③各项能取得相等的值.…【典型例题】类型一 不等式性质例1.对于实数a b c ,,判断以下说法的对错.(1)若a b >,则ac bc <; (2)若22ac bc >,则a b >; (3)若0a b <<, 则22a ab b >>; (4)若0a b <<, 则a b >; (5)若a b >,1a >1b, 则00a b ,><. ~举一反三:【变式1】如果a <b <0,那么下列不等式成立的是( ) A .B .a+c <b+cC .a ﹣c >b ﹣cD .a •c <b •c例2、比较下列两代数式的大小:(1)(5)(9)x x ++与2(7)x +;举一反三:—【变式1】比较22x x +与2x +的大小【变式2】已知0a b >>,则2222a b a b -+ _________a ba b-+ (填,,><=)类型二 解二次不等式例3. 解下列一元二次不等式(1)250x x -<; (2)2440x x -+>; (3)2450x x -+->:举一反三:【变式1】已知函数222,0,()2,0x x x f x x x x ⎧+≥⎪=⎨-+<⎪⎩解不等式f (x )>3.;【变式2】 不等式组⎩⎪⎨⎪⎧x 2-1<0x 2-3x <0的解集为( )A .{x |-1<x <1}B .{x |0<x <3}C .{x |0<x <1}D .{x |-1<x <3} 【变式3】下列选项中,使不等式x <1x<x 2成立的x 的取值范围是( )A .(-∞,-1)B .(-1,0)C .(0,1)D .(1,+∞)例4. 不等式20x mx n +-<的解集为(4,5)x ∈,求关于x 的不等式210nx mx +->的解集./【总结升华】二次方程的根是二次函数的零点,也是相应的不等式的解集的端点.根据不等式的解集的端点恰为相应的方程的根,我们可以利用韦达定理,找到不等式的解集与其系数之间的关系,这一点是解此类题的关键. 举一反三:【变式1】不等式ax 2+bx+12>0的解集为{x|-3<x<2},则a=_______, b=________.【变式2】已知关于x 的不等式20x ax b ++<的解集为(1,2),求x 的不等式210bx ax ++>的解集."【变式3】 若关于x 的不等式2260ax x a -+<的解集为(1,)m ,则实数m 等于 . 【变式4】 已知关于x 的不等式x 2+bx +c >0的解集为{x |x <-1或x >2},则b 2+c 2=( )A .5B .4C .1D .2例5.已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.【思路点拨】不等式对一切实数恒成立,即不等式的解集为R ,要解决这个问题还需要讨论二次项的系数。
(必考题)高中数学必修一第二单元《函数》测试(有答案解析)(4)
一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Qg x x Q∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( ) A .1B .2C .3D .42.若关于x 的不等式342xx a +-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞3.函数()f x 的定义域为D ,若对于任意的12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数.设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则12017f ⎛⎫⎪⎝⎭等于( ) A .116B .132 C .164D .11284.已知函数()2,125,1x ax x f x ax x ⎧-+≤=⎨->⎩若存在12,x x R ∈,且12x x ≠,使得()()12f x f x =成立,则实数a 的取值范围是( ) A .4a < B .2a < C .2a > D .R5.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1- D .()(),13,-∞+∞6.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x <<D .{|4x x >或0}x <7.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3x y =具有性质M ; ②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =. 其中正确的个数是( ) A .0个B .1个C .2个D .3个8.已知函数()31,03,0x x x f x e x ⎧<⎪=⎨⎪≥⎩,则()()232f x f x ->的解集为( )A .()(),31,-∞-⋃+∞B .()3,1-C .()(),13,-∞-+∞ D .()1,3-9.设二次函数2()()f x x bx b =+∈R ,若函数()f x 与函数(())f f x 有相同的最小值,则实数b 的取值范围是( ) A .(,2]-∞B .(,0]-∞C .(,0][2,)-∞+∞D .[2,)+∞10.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .4 11.已知53()1f x ax bx =++且(5)7,f =则(5)f -的值是( ) A .5-B .7-C .5D .712.已知函数()f x 是奇函数,()f x 在(0,)+∞上是减函数,且在区间[,](0)a b a b <<上的值域为[3,4]-,则在区间[,]b a --上( ) A .有最大值4B .有最小值-4C .有最大值-3D .有最小值-3二、填空题13.定义在R 上的减函数()f x 满足(0)4f =,且对任意实数x 都有()(2)4f x f x +-=,则不等式|()2|2f x -<的解集为____________.14.已知函数()31f x ax bx =-+,若()25f =,则()2f -=______.15.已知存在[1,)x ∈+∞,不等式2212a x x x ≥-+成立,则实数a 的取值范围是__________.16.设集合A 是集合*N 的子集,对于*i N ∈,定义()1,,0,i i A A i Aϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意*i N ∈都满足()0i A B ϕ=且()1A B ⋃=;②任取*N 的两个不同子集A ,B ,对任意*i N ∈都有()()()i i i A B A B ϕϕϕ⋃=+; ③设{}*2,A x x n n N==∈,{}*42,B x x n n N ==-=,对任意*i N∈,都有()()()i i i A B A B ϕϕϕ⋂=其中正确结论的序号为______.17.已知函数f (x )满足2f (x )+f (-x )=3x ,则f (x )=________. 18.已知函数()f x 的值域为[]0,4(2,2x),函数()1=-g x ax ,2,2x ,[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立,则实数a 的取值范围为________________.19.已知函数()4f x x a a x=-++,若当[]1,4x ∈时,()5f x ≤恒成立,则实数a 的取值范围是______.20.已知函数22, 1()+1, 1x ax x f x ax x ⎧-+≤=⎨>⎩,若()f x 在定义域上不是单调函数,则实数a 的取值范围是_______.三、解答题21.已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,2()2f x x x =-.(1)求函数()f x 的解析式,并作出函数的大致的简图;(作图要求:①列表描点;②先用铅笔作出图象,再用黑色签字笔将图象描黑); (2)根据图象写出函数单调区间;(3)若不等式()21f x m -≥在[1,3]x ∈-上有解,求m 的取值范围. 22.已知函数()2f x x =,()1g x x =-.(1)若存在x ∈R 使()()f x b g x <⋅,求实数b 的取值范围;(2)设()()()21F x f x mg x m m =-+--,且()F x 在[0,1]上单调递增,求实数m 的取值范围. 23.定义在11,22⎛⎫-⎪⎝⎭上的函数()f x 满足:对任意的11,,22x y ⎛⎫∈- ⎪⎝⎭都有()()()1()()f x f y f x y f x f y ,且当102x <<时,()0f x >.(1)判断()f x 在10,2⎛⎫ ⎪⎝⎭上的单调性并证明; (2)求实数t 的取值集合,使得关于x 的不等式1()02f t x f x ⎛⎫-+> ⎪⎝⎭在11,22⎛⎫- ⎪⎝⎭上恒成立.24.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值. 25.已知函数()()90f x x x x=+≠. (1)当()3,x ∈+∞时,判断并证明()f x 的单调性; (2)求不等式()()2330f xf x +≤的解集.26.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”. 【详解】解:对(1),由①得()00f ≥, 在②中令0x y ==, 即()()020f f =, 解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误; 对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥, 即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B. 【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.D解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.3.D解析:D 【分析】由③可得()11f =,1122f ⎛⎫=⎪⎝⎭,然后由②可得111113232n n n f f -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭,然后结合()f x 在[0,1]上非减函数可得答案. 【详解】由③得(10)1(0)1f f -=-=,111122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,∴()11f =,1122f ⎛⎫= ⎪⎝⎭. 由②得()12201111111111323232322n n n n n nf f f f f --⎛⎫⎛⎫⎛⎫⎛⎫======⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,12231011111111232232232232n n n n nf f f f ----⎛⎫⎛⎫⎛⎫⎛⎫===== ⎪ ⎪ ⎪ ⎪⋅⋅⋅⋅⎝⎭⎝⎭⎝⎭⎝⎭. ∵761113201723<<⨯且61123128f ⎛⎫= ⎪⨯⎝⎭,7113128f ⎛⎫= ⎪⎝⎭. 又()f x 在[0,1]上非减函数,∴112017128f ⎛⎫= ⎪⎝⎭, 故选:D 【点睛】关键点睛:解答本题的关键是由条件得到111113232n n n f f -⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,111232n n f -⎛⎫= ⎪⋅⎝⎭. 4.A解析:A 【分析】首先确定1x ≤时()f x 的对称轴2a x =,分别在12a <和12a≥两种情况下,结合二次函数的对称性和数形结合的方式确定不等关系求得结果. 【详解】当1x ≤时,()2f x x ax =-+是开口方向向下,对称轴为2ax =的二次函数, ①当12a<,即2a <时,由二次函数对称性知:必存在12x x ≠,使得()()12f x f x =; ②当12a≥,即2a ≥时,若存在12x x ≠,使得()()12f x f x =,则函数图象需满足下图所示:即125a a -+>-,解得:4a <,24a ∴≤<; 综上所述:4a <. 故选:A. 【点睛】思路点睛:根据()()12f x f x =可知分段函数某一段自身具有对称轴或两个分段的值域有交集,通过函数图象进行分析即可确定结果.5.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D 【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题 6.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >.故选:B 【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.7.C解析:C 【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断. 【详解】解:对于①:3xy =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=, 所以函数3xy =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =, 故③正确; 故选:C. 【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.8.B解析:B 【分析】先分析分段函数的单调性,然后根据单调性将关于函数值的不等式转化为关于自变量的不等式,从而求解出解集. 【详解】 因为313y x =在R 上单调递增,所以313y x =在(),0-∞上单调递增, 又因为xy e =在R 上单调递增,所以xy e =在[)0,+∞上单调递增,且0311003e =>=⋅,所以()f x 在R 上单调递增, 又因为()()232f x f x ->,所以232xx ->,解得()3,1x ∈-,故选:B. 【点睛】思路点睛:根据函数单调性求解求解关于函数值的不等式的思路: (1)先分析出函数在指定区间上的单调性;(2)根据单调性将函数值的关系转变为自变量之间的关系,并注意定义域; (3)求解关于自变量的不等式,从而求解出不等式的解集.9.C解析:C 【分析】由于参数b 的不确定性,可进行分类讨论,再结合二次函数对称轴和最值特点求解即可. 【详解】当0b =时,()2f x x =,()[)0,f x ∈+∞,()()[)0,ff x ∈+∞,符合题意;当0b <时,22()24b f b x x ⎛⎫=+ ⎪⎝-⎭,对称轴为02b x =->,画出大致图像,令()t f x =,min 0t <,则()()()f f x f t =,[)min,t t∈+∞,显然能取到相同的最小值,符合;当0b >时,对称轴为b x 02=-<,()2min 24b b f x f ⎛⎫=-=- ⎪⎝⎭,令()t f x =,2,4b t ⎡⎫∈-+∞⎪⎢⎣⎭,要使()f x 与函数()f t 有相同的最小值,则需满足:242b b-≤-,解得[2,)b ∈+∞综上所述,则b ∈(-∞,0]∪[2,+∞) 故选:C. 【点睛】本题解题关键是对二次函数对称轴进行分类讨论,同时结合最值与对称轴的关系解决问题.10.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.11.A解析:A 【解析】()()53531,1f x ax bx f x ax bx =++∴-=--+,()()()()2,552f x f x f f +-=∴+-=,()5275f -=-=-,故选A. 12.B解析:B 【分析】根据奇函数的性质,分析()f x 在对称的区间上单调性相同,即可找出最大值与最小值. 【详解】∵()f x 是奇函数,在(0,)+∞上是减函数,∴()f x 在(,0)-∞上也是减函数,即在区间[,](0)a b a b <<上递减. 又∵()f x 在区间[,](0)a b a b <<上的值域为[3,4]-, ∴()()4,3,f a f b ==-根据奇函数的性质可知()()4,3,f a f b -=--=且在区间[,]b a --上单调递减, ∴()f x 在区间[,]b a --上有最大值3,有最小值-4. 故选:B. 【点睛】本题考查了奇函数的单调性和值域特点,如果性质记不熟,可以将大致图像画出.本题属于中等题.二、填空题13.【分析】由绝对值不等式可知利用中x 的任意性得再利用函数的单调性解不等式即可【详解】因为任意实数都有且令则故不等式解得即又函数为上的减函数解得故不等式的解集为故答案为:【点睛】方法点睛:本题考查了解抽 解析:(0,2)【分析】由绝对值不等式可知0()4f x <<,利用()(2)4f x f x +-=中x 的任意性得(2)0f =,再利用函数的单调性解不等式即可.【详解】因为任意实数x 都有()(2)4f x f x +-=,且(0)4f =, 令2x =,则(2)(0)4f f +=,故(2)0f =不等式|()2|22()22f x f x -<⇒-<-<,解得0()4f x <<,即(2)()(0)f f x f << 又函数()f x 为R 上的减函数,解得02x <<,故不等式|()2|2f x -<的解集为(0,2) 故答案为:(0,2) 【点睛】方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.14.【分析】根据题意令从而得到得到为奇函数整理得到将代入求得的值【详解】设则即为奇函数故即即【点睛】方法点睛:该题考查的是有关函数值的求解问题解题方法如下:(1)构造奇函数;(2)利用奇函数的性质得到进 解析:3-【分析】根据题意,令()()31g x f x ax bx =-=-,从而得到()()3g x ax bx g x -=-+=-,得到()g x 为奇函数,整理得到()()2121f f --=--⎡⎤⎣⎦,将()25f =代入求得()2f -的值.【详解】设()()31g x f x ax bx =-=-,则()()3g x ax bx g x -=-+=-,即()g x 为奇函数,故()()22g g -=-,即()()2121f f --=--⎡⎤⎣⎦, 即()()222523f f -=-+=-+=-. 【点睛】方法点睛:该题考查的是有关函数值的求解问题,解题方法如下: (1)构造奇函数()()31g x f x ax bx =-=-;(2)利用奇函数的性质得到()()22g g -=-,进而求得()()222f f -=-+,得到结果.15.【分析】问题转化为即可由令问题转化为求的最大值根据二次函数的性质求出的最大值从而求出的范围即可【详解】若存在不等式成立即即可由令问题转化为求的最大值而的最大值是2故故故答案为:【点睛】方法点睛:本题解析:1[,)2+∞【分析】问题转化为22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x =-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,根据二次函数的性质求出()f x 的最大值,从而求出a 的范围即可.【详解】若存在[1,)x ∈+∞,不等式2212a x x x -+成立, 即22()2min x a x x -+即可,[1,)x ∈+∞,由22211221x x x x x=-+-+,令221()1f x x x=-+,[1,)x ∈+∞,问题转化为求()f x 的最大值,而2117()2()48f x x =-+,[1,)x ∈+∞的最大值是2, 故221()22min x x x =-+,故12a, 故答案为:1[,)2+∞ 【点睛】方法点睛:本题考查函数的有解问题, 一般通过变量分离,将不等式有解问题转化为求函数的最值问题:()f x m >有解max ()f x m ⇔>;()f x m <有解min ()f x m ⇔<.16.①③【分析】根据题目中给的新定义对于或可逐一对命题进行判断举实例证明存在性命题是真命题举反例可证明全称命题是假命题【详解】∵对于定义∴对于①例如集合是正奇数集合是正偶数集合①正确;对于②例如:当时;解析:①③ 【分析】根据题目中给的新定义,对于()*,0i i N A ϕ∈=或1,可逐一对命题进行判断,举实例证明存在性命题是真命题,举反例可证明全称命题是假命题. 【详解】∵对于*i ∈N ,定义1,()0,i i AA i Aϕ∈⎧=⎨∉⎩,∴对于①,例如集合A 是正奇数集合,B 是正偶数集合,,*AB A B N ∴=∅=,()()01i i A B A B ϕϕ∴==;,①正确;对于②, 例如:{}{}{}1232341234A B AB ===,,,,,,,,,,当2i =时,()1i A B ϕ⋃=;()()1,1i i A B ϕϕ==;()()()i i i A B A B ϕϕϕ∴≠+; ②错误;对于③, {}*2,A x x n n N ==∈,{}*42,B x x n n N ==-=,明显地,,A B 均为偶数集,A B ∴≠∅,()1i AB ϕ=,若i 为偶数,则()i A B ∈,则i A ∈且i B ∈;()()1i i A B ϕϕ∴⋅=,则有()()()i i i A B A B ϕϕϕ⋂=;若i 为奇数,此时,()0i A B ϕ=,则i A ∉且i B ∉,()()0,0i i A B ϕϕ==,()()()i i i A B A B ϕϕϕ⋂=∴也成立;③正确∴所有正确结论的序号是:①③; 故答案为:①③【点睛】关键点睛:解题关键在于对题目中新定义的理解和应用,结合特殊值法和反证法进行证明,难度属于中档题.17.【分析】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x)=-3x②解上面两个方程即得解【详解】因为2f(x)+f(-x)=3x①所以将x 用-x 替换得2f(-x)+f(x) 解析:3x【分析】因为2f (x )+f (-x )=3x ,①,所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,②,解上面两个方程即得解. 【详解】因为2f (x )+f (-x )=3x ,①所以将x 用-x 替换,得2f (-x )+f (x )=-3x ,② 解由①②组成的方程组得f (x )=3x . 故答案为3x 【点睛】本题主要考查函数的解析式的求法,意在考查学生对该知识的理解掌握水平,属于基础题.18.【分析】依题意分析的值域A 包含于的值域B 再对分类讨论得到的值域列关系计算即可【详解】因为总使得成立所以的值域A 包含于的值域B 依题意A=又函数因此当时不满足题意;当时在上递增则故即得;当时在上递减则故解析:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭【分析】依题意分析()f x 的值域A 包含于()g x 的值域B ,再对a 分类讨论得到()g x 的值域,列关系计算即可. 【详解】因为[]12,2x ∀∈-,总[]02,2x ∃∈-,使得()()01g x f x =成立, 所以()f x 的值域A 包含于()g x 的值域B ,依题意A =[]0,4, 又函数()1=-g x ax ,2,2x,因此,当0a =时,{}1B =-,不满足题意;当0a >时,()g x 在[]2,2-上递增,则[][]21,210,4B a a =---⊇,故210214a a --≤⎧⎨-≥⎩,即得52a ≥;当0a <时,()g x 在[]2,2-上递减,则[][]21,210,4B a a =---⊇,故210214a a -≤⎧⎨--≥⎩,即得52a ≤-.综上,实数a 的取值范围为55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 故答案为:55,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭. 【点睛】本题考查了恒成立问题、函数的值域,以及利用包含关系求参数范围问题,属于中档题.19.【分析】对分段讨论去绝对值计算求解【详解】当时可得当时符合题意;当时则不符合题意;当时此时不符合题意综上的取值范围是故答案为:【点睛】本题考查函数不等式的恒成立问题解题的关键是对分段讨论求解 解析:(],1-∞【分析】对a 分段讨论去绝对值计算求解. 【详解】当1a ≤时,()44f x x a a x x x=-++=+,可得当[]1,4x ∈时,()45f x ≤≤,符合题意;当14a <<时,()42,14,4a x x a xf x x a x x ⎧-+≤<⎪⎪=⎨⎪+≤≤⎪⎩,则()1325f a =+>,不符合题意;当4a ≥时,()42f x a x x=-+,此时()13211f a =+≥,不符合题意, 综上,a 的取值范围是(],1-∞. 故答案为:(],1-∞. 【点睛】本题考查函数不等式的恒成立问题,解题的关键是对a 分段讨论求解.20.【分析】结合二次函数的图象与性质按照分类再由分段函数的单调性即可得解【详解】因为函数的图象开口朝下对称轴为且所以当时函数在上不单调符合题意;当时函数在上均单调递增若要使在定义域上不是单调函数则解得故 解析:(),1(2,)-∞+∞【分析】结合二次函数的图象与性质,按照1a <、1a ≥分类,再由分段函数的单调性即可得解. 【详解】因为函数22y x ax =-+的图象开口朝下,对称轴为x a =,且22,?1()+1,?1x ax x f x ax x ⎧-+≤=⎨>⎩,所以当1a <时,函数()f x 在(],1-∞上不单调,符合题意; 当1a ≥时,函数()f x 在(],1-∞,()1,+∞上均单调递增, 若要使()f x 在定义域上不是单调函数,则2121a a -+>+,解得2a >,故2a >符合题意; 综上,实数a 的取值范围是(),1(,)2-∞⋃+∞. 故答案为:(),1(,)2-∞⋃+∞. 【点睛】解决本题的关键是将分段函数不单调转化为两种情况,分类求解.三、解答题21.(1)222,0()2,0x x x f x x x x ⎧-≥=⎨--<⎩,简图答案见解析;(2)单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-;(3)1m .【分析】(1)设0x <,则0x ->,利用()f x f x =--()即可求出0x <时,()f x 的解析式,进而可得函数()f x 的解析式,按步骤列表描点连线即可作出函数图象; (2)根据图象上升和下降趋势即可得单调区间;(3)将原问题转化为max 21m f x ≤-(),利用单调性求出()f x 在区间[1,3]-上的最大值即可求解. 【详解】(1)设0x <,则0x ->,因为f x ()是奇函数所以()()()2222f x f x x x x x ⎡⎤=--=----=--⎣⎦() 所以222,02,0x x x f x x x x ⎧-≥=⎨--<⎩() , 列表如下:(2)由图知:函数f x ()的单调增区间为(,1)-∞-和(1,)+∞,单调减区间为[]1,1-(3)不等式21f x m -≥()在1[]3x ∈-,上有解, 等价于在21m f x ≤-()在1[]3x ∈-,有解.可得max 21m f x ≤-(), 由(2)可知f x ()在[11-,)上单调递减,在[1]3,上单调递增, 因为()()()211211f -=---⨯-=,()233233f =-⨯=所以()max 3f x =,所以2312m ≤-=,所以1m 【点睛】方法点睛:求不等式有解问题常用分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)有解,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈有解,进而转化为()min g x λ≥或()()max g x x D λ≤∈,求()g x 的最值即可. 22.(1)(,0)(4,)-∞+∞;(2)[1,0][2,)-⋃+∞.【分析】(1)由题意可得x R ∃∈,20x bx b -+<,所以2()40b b ∆=-->,即可求解; (2)22()1F x x mx m =-+-,然后讨论0∆≤时满足对称轴为02mx =≤,当0∆>时,讨论对称轴与区间的关系,012m <<,显然不成立,所以有212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩或202(0)10mF m ⎧≤⎪⎨⎪=-≥⎩解不等式,最后求并集即可. 【详解】(1)x R ∃∈,()()f x bg x <, 即x R ∃∈,20x bx b -+<, 所以判别式2()40b b ∆=-->, 解得:0b <或4b >. 故实数b 的取值范围为(,0)(4,)-∞+∞.(2)22()1F x x mx m =-+-,对称轴为2m x =, ()F x 在[0,1]上单调递增,当()2241m m ∆=--=254m-①当0∆≤,即55m -≤≤时,则有02mm ⎧≤⎪⎪⎨⎪≤≤⎪⎩解得:m 0≤≤②当0∆>,即m <m > 设方程()0F x =的根为1x ,()212x x x <.若12m ≥,则10x ≤,即212(0)10mF m ⎧≥⎪⎨⎪=-≤⎩解得:2≥m 若02m ≤,则20x ≤,即202(0)10m F m ⎧≤⎪⎨⎪=-≥⎩解得:10m -≤≤ 若012m<<,不符合题意, 综上所述,实数m 的取值范围为[1,0][2,)-⋃+∞.【点睛】结论点睛:一元二次不等式恒成立求参数(1)对于20ax bx c ++≥对于x ∈R 恒成立,等价于00a >⎧⎨∆≤⎩, (2)对于20ax bx c ++≤对于x ∈R 恒成立,等价于00a <⎧⎨∆≤⎩. 23.(1)单调递增;证明见解析;(2)14⎧⎫⎨⎬⎩⎭. 【分析】(1)首先判断()00f =,再令y x =-,判断函数的奇偶性,再设任意1210,2x x ⎛⎫>∈ ⎪⎝⎭,利用已知条件列式()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,判断符号,证明函数的单调性;(2)不等式转化为1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭,再利用函数的单调性,去掉“f ”后,求t 的取值范围. 【详解】解:(1)令0x y ==,则22(0)(0)1(0)f f f =-,得(0)0f =,再令y x =-,则()()(0)01()()f x f x f f x f x +-==-⋅-,∴()()0f x f x +-=,∴()f x 为奇函数, 对任意1210,2x x ⎛⎫>∈ ⎪⎝⎭, 令1x x =,2y x =-, 则()()()()()()()()()121212121211f x f x f x f x f x x f x f x f x f x +---==-⋅-+⋅,∵当102x <<时,()0f x >, ∴()120f x x ->,()()1210f x f x +>, 从而()()120f x f x ->, ∴()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增. (2)∵()f x 为奇函数,∴1()()2f t x f x f x ⎛⎫->-=- ⎪⎝⎭, ∵()f x 在10,2⎛⎫ ⎪⎝⎭上的单调递增,且(0)0f =, ∴()f x 在11,22⎛⎫-⎪⎝⎭上单调递增,由题意得: 111222t x -<-<及12t x x ->-在11,22x ⎛⎫∈- ⎪⎝⎭上恒成立, ∴max min11112222x t x ⎛⎫⎛⎫-≤≤+⎪ ⎪⎝⎭⎝⎭,得1144t -≤≤①;max 12t x ⎛⎫≥- ⎪⎝⎭,11,22x ⎛⎫∈- ⎪⎝⎭,得14t ≥②,由①②可知,t 的取值集合是14⎧⎫⎨⎬⎩⎭. 【点睛】关键点点睛:本题考查抽象函数证明单调性和奇偶性,以及不等式恒成立求参数的取值范围,一般抽象函数证明单调性和奇偶性时,采用赋值法,利用定义证明,本题不等式恒成立求参数,采用参变分离的方法,转化为求函数的最值. 24.(1)()23f x x =+(2)2λ=- 【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+, 所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+.(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选②, (1)由142a f ⎛⎫=⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++,区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键. 25.(1)单调递增,证明见解析;(2){}1-. 【分析】(1)根据函数单调性定义,判断当123x x <<时,()()120,0?f x f x -><即可; (2)法一:根据函数()()90f x x x x=+≠得到()()233f x f x +解析式,解关于x 的二次型不等式即可.法二:根据函数为奇函数,和定义域内的单调性,将()()2330f xf x +≤转化为解()()233f x f x ≤-,分0x >,1x =-,1x <-,10x -<<讨论使得()()233f x f x ≤-成立x 时的范围为其解集. 【详解】解:(1)设123x x <<,则()()()()121212121212999x x x x f x f x x x x x x x --⎛⎫⎛⎫-=+-= ⎪ ⎪⎝⎝⎭+⎭因为12120,90x x x x -<->, 所以()()120f x f x -<,所以()f x 在(3,)+∞上单调递增. (2)法一:原不等式可化为2233330x x x x+++, 即21120x x x x ⎛⎫⎛⎫+++- ⎪ ⎪⎝⎭⎝⎭,所以121x x -+, 当0x >时,12x x+,不合题意,舍去; 当0x <时,只需解12x x-+,可化为2(1)0x +,所以1x =-. 综上所述,不等式的解集为{}1-.法二:由(1)的解答过程知()f x 在(0,3)上单调递减,在()3,+∞上单调递增, 又()f x 为奇函数,()()2330f x f x +≤,所以()()()2333f xf x f x ≤-=-,当0x >时,2(3)0,(3)0f x f x >-<,与上式矛盾,故舍去; 当1x =-时,上式成立;当1x <-时,2333x x >->,则()()233f x f x >-,与上式矛盾,故舍去;当10x -<<时,20333x x <<-<,则()()233f x f x >-,与上式矛盾,故舍去;综上所述,不等式的解集为{}1-. 【点睛】确定函数单调性的四种方法: (1)定义法:利用定义判断;(2)导数法:适用于初等函数、复合函数等可以求导的函数;(3)图象法:由图象确定函数的单调区间需注意两点:一是单调区间必须是函数定义域的子集;二是图象不连续的单调区间要分开写,用“和”或“,”连接,不能用“∪”连接; (4)性质法:利用函数单调性的性质,尤其是利用复合函数“同增异减”的原则时,需先确定简单函数的单调性.26.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥ 【分析】 (1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域;(2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果. 【详解】(1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈, 又()0f x ≥,所以()2]f x ∈. (2)()h x ==令t =2]∈,则22t =-,所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或,所以1m ≤-或1m ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。
微积分第二章习题参考答案
f ( 0 )
lim
x 0
(2e x
1) x
1
2,
f ( 0 )
lim
x 0
(x2
bx x
1)
1
b ,
b
2.
当 a 1,b 2时 , f ( x )在 x 0处 可 导 .
5.设 t时 刻 水 面 的 高 度 为 h , 液 面 半 径 为 r ,则 r R h , H
2.当 0时 ,函 数 在 x 0处 连 续 ,
当 0时 ,函 数 在 x 0处 不 连 续 ;
当 1时 ,函 数 在 x 0处 可 导 ,
当 1时 ,函 数 在 x 0处 不 可 导 .
五 .证 明.
设 切 点 为( x0, y0 ),
y( x0 )
a2
x
2 0
y0 x0
y
x
y y( y x ln y) . x( x y ln x)
3.解 : y ln(1 t) ln(1 t),
y(n)
(1)n1 [(1 t)n
1 (1 t)n
](n 1)!.
4.解 : f (0 0 ) lim (2e x a ) 2 a , x 0 f (0 0) lim ( x 2 bx 1) 1, x 0
,
切线方程为
:
y
y0
y0 x0
(x
x0 ),其 截 距 式 为
xy 1,
2 x0 2 y0
切线与两坐标轴构成的三角形面积
S
1 2
| 2x0
|
| 2 y0
|
2a 2为 常 数 ,与 切 点 无 关 .
§2.2求导法则(21-22)
九年级下数学第二章二次函数测试题及答案
九年级下数学第二章二次函数测试题及答案2九年级下册数学第二章《二次函数》测试一、 选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( )A. 直线3-=xB. 直线3=xC. 直线2-=xD. 直线2=x2. 二次函数c bx ax y ++=2的图象如右图,则点),(a cb M 在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3. 已知二次函数cbx ax y ++=2,且0<a ,>+-c b a ,则一定有( ) A.042>-ac b B.42=-ac b C.42<-ac b D. acb 42-≤04. 把抛物线cbx xy ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( ) A.3=b ,7=c B.9-=b ,15-=c347.已知抛物线c=2与x轴有两个交y++axbx点,那么一元二次方程02=bxax的根+c+的情况是______________________.8.已知抛物线c x=2与x轴交点的横+axy+坐标为1-,则ca+=_________.9.请你写出函数2)1y具有的y与12+=x(+=x一个共同性质:_______________. 10.有一个二次函数的图象,三位同学分别说出它的一些特点:甲:对称轴是直线4=x;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请你写出满足上述全部特点的一个二次函数解析式:11.已知二次函数的图象开口向上,且与y轴的正半轴相交,请你写出一个5满足条件的二次函数的解析式:_____________________.12.如图,抛物线的对称轴是1=x,与x轴交于A、B两点,若B点坐标是)0,3(,则A点的坐标是________________.三、解答题:1.已知函数12-y的图象经过点(3,x=bx+2).(1)求这个函数的解析式;(2)当0>x时,求使y≥2的x的取值范围.62.如右图,抛物线n x2经过点)0,1(A,-=5+xy+与y轴交于点B.(1)求抛物线的解析式;(2)P是y轴正半轴上一点,且△Array PAB是以AB为腰的等腰三角形,试求点P的坐标.73.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到赢利的过程,下面的二次函数图象(部分)刻画了该公司年初以来累积利润s(万元)与销售时间t(月)之间的关系(即前t个月的利润总和s与t之间的关系).(1)由已知图象Array上的三点坐标,求累积利润s(万元)与销售时间t(月)之间的函数关系式;(2)求截止到几月累积利润可达到30万元;(3)求第8个月公司所获利润是多少万元?84.5.6.7.卢浦大桥拱形可以近似地看作抛物线的一部分. 在大桥截面1:11000的比例图上去,跨度AB=5cm,拱高OC=0.9cm,线段DE表示大桥拱内桥长,DE∥AB,如图(1). 在比例图上,以直线AB为x轴,抛物线的对9称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2). (1)求出图(2)上以这一部分抛物线为图象的函数解析式,写出函数定义域;(2)如果DE与AB的距离OM=0.45cm,求卢浦大桥拱内实际桥长(备用数据:2≈1.4,计算结果精确到1米).(1)A BCD EMO(2)8.已知二次函数maxaxy+-=2的图象交x轴10于)0,(1x A 、)0,(2x B 两点,21x x <,交y 轴的负半轴与C 点,且AB =3,tan ∠BAC = tan ∠ABC =1.(1)求此二次函数的解析式;(2)在第一象限......,抛物线上是否存在点P ,使S △PAB =6?若存在,请你求出点P 的坐标;若不存在,请你说明理由.提高题1. 已知抛物线c bx x y ++=2与x 轴只有一个交点,且交点为)0,2(A .(1)求b 、c 的值;(2)若抛物线与y 轴的交点为B ,坐标原点为O ,求△OAB 的面积(答案可带根号).2. 启明星、公司生产某种产品,每件产品成本是3元,售价是4元,年销售量为10万件. 为了获得更好的效益,公司准备拿出一定的资金做广告. 根据经验,每年投入的广告费是x (万元)时,产品的年销售量将是原销售量的y 倍,且107107102++-=x x y ,如果把利润看作是销售总额减去成本费和广告费:(1)试写出年利润S (万元)与广告费x (万元)的函数关系式,并计算广告费是多少万元时,公司获得的年利润最大,最大年利润是多少万元?(2)把(1)中的最大利润留出3万元做广告,其余的资金投资新项目,现有6个项目可供选择,各项目每股投资金额和预计年收益如下表:如果每个项目只能投一股,且要求所有投资项目的收益总额不得低于1.6万元,问有几种符合要求的投资方式?写出每种投资方式所选的项目.3. 如图,有一座抛物线形拱桥,在正常水位时水面AB 的宽为20m ,如果水位上升3m 时,水面CD 的宽是10m.(1)求此抛物线的解析式;(2)现有一辆载有救援物资的货车从甲地出发需经过此桥开往乙地,已知甲地距此桥280km (桥长忽略不计). 货车正以每小时40km 的速度开往乙地,当行驶1小时时,忽然接到紧急通知:前方连降暴雨,造成水位以每小时0.25m 的速度持续上涨(货车接到通知时水位在CD 处,当水位达到桥拱最高点O时,禁止车辆通行). 试问:如果货车按原来速度行驶,能否安全通过此桥?若能,请说明理由;若不能,要使货车安全通过此桥,速度应超过每小时多少千米?4.某机械租赁公司有同一型号的机械设备40套. 经过一段时间的经营发现:当每套机械设备的月租金为270元时,恰好全部租出. 在此基础上,当每套设备的月租金提高10元时,这种设备就少租出一套,且未租出的一套设备每月需要支出费用(维护费、管理费等)20元,设每套设备的月租金为x(元),租赁公司出租该型号设备的月收益(收益=租金收入-支出费用)为y(元).(1)用含x的代数式表示未租出的设备数(套)以及所有未租出设备(套)的支出费用;(2)求y与x之间的二次函数关系式;(3)当月租金分别为4300元和350元时,租赁公司的月收益分别是多少元?此时应该租出多少套机械设备?请你简要说明理由;(4)请把(2)中所求的二次函数配方成a b ac a b x y 44)2(22-++=的形式,并据此说明:当x 为何值时,租赁公司出租该型号设备的月收益最大?最大月收益是多少?九年级下册数学第二章《二次函数》测试参考答案一、选择题:二、填空题: 1. 2)1(2+-=x y 2. 有两个不相等的实数根 3. 14. (1)图象都是抛物线;(2)开口向上;(3)都有最低点(或最小值)5. 358512+-=x x y 或358512-+-=x x y 或178712+-=x x y 或178712-+-=x x y 6.122++-=x x y 等(只须0<a ,0>c ) 7.)0,32(-8. 3=x ,51<<x ,1,4三、解答题: 1. 解:(1)∵函数12-+=bx x y 的图象经过点(3,2),∴2139=-+b . 解得2-=b . ∴函数解析式为122--=x xy . (2)当3=x 时,2=y .根据图象知当x ≥3时,y ≥2. ∴当0>x 时,使y ≥2的x 的取值范围是x ≥3.2. 解:(1)由题意得051=++-n . ∴4-=n . ∴抛物线的解析式为452-+-=x xy . (2)∵点A 的坐标为(1,0),点B 的坐标为)4,0(-.∴OA =1,OB =4.在Rt △OAB 中,1722=+=OB OA AB ,且点P 在y 轴正半轴上.①当PB =PA 时,17=PB . ∴417-=-=OB PB OP . 此时点P 的坐标为)417,0(-.②当PA =AB 时,OP =OB =4此时点P 的坐标为(0,4).3. 解:(1)设s 与t 的函数关系式为c bt at s ++=2,由题意得⎪⎩⎪⎨⎧=++-=++-=++;5.2525,224,5.1c b a c b a c b a 或⎪⎩⎪⎨⎧=-=++-=++.0,224,5.1c c b a c b a 解得⎪⎪⎩⎪⎪⎨⎧=-==.0,2,21c b a ∴t t s 2212-=. (2)把s =30代入t t s 2212-=,得.221302t t -= 解得101=t ,62-=t (舍去)答:截止到10月末公司累积利润可达到30万元.(3)把7=t 代入,得.5.10727212=⨯-⨯=s 把8=t 代入,得.16828212=⨯-⨯=s 5.55.1016=-. 答:第8个月获利润5.5万元.4. 解:(1)由于顶点在y 轴上,所以设这部分抛物线为图象的函数的解析式为1092+=ax y .因为点)0,25(-A 或)0,25(B 在抛物线上,所以109)25(·02+-=a ,得12518-=a .因此所求函数解析式为109125182+-=x y (25-≤x ≤25). (2)因为点D 、E 的纵坐标为209,所以10912518209+-=,得245±=x . 所以点D 的坐标为)209,245(-,点E 的坐标为)209,245(. 所以225)245(245=--=DE . 因此卢浦大桥拱内实际桥长为385227501.01100225≈=⨯⨯(米).5. 解:(1)∵AB =3,21x x<,∴312=-x x . 由根与系数的关系有121=+x x.∴11-=x ,22=x . ∴OA =1,OB =2,2·21-==am x x . ∵1tan tan =∠=∠ABC BAC ,∴1==OB OC OA OC .∴OC =2. ∴2-=m ,1=a . ∴此二次函数的解析式为22--=x xy .(2)在第一象限,抛物线上存在一点P ,使S △PAC =6.解法一:过点P 作直线MN ∥AC ,交x 轴于点M ,交y 轴于N ,连结PA 、PC 、MC 、NA .∵MN ∥AC ,∴S △MAC =S △NAC = S △PAC =6. 由(1)有OA =1,OC =2. ∴6121221=⨯⨯=⨯⨯CN AM . ∴AM =6,CN =12.∴M (5,0),N (0,10).∴直线MN 的解析式为102+-=x y .由⎩⎨⎧--=+-=,2,1022x x y x y 得⎩⎨⎧==;4311y x ⎩⎨⎧=-=18,422y x (舍去)∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6.解法二:设AP 与y 轴交于点),0(m D (m >0)∴直线AP 的解析式为m mx y +=.⎩⎨⎧+=--=.,22m mx y x x y∴02)1(2=--+-m x m x .∴1+=+m x x P A ,∴2+=m x P .又S △PAC = S △ADC + S △PDC =P x CD AO CD ·21·21+=)(21Px AO CD +. ∴6)21)(2(21=+++m m ,0652=-+m m∴6=m (舍去)或1=m .∴在 第一象限,抛物线上存在点)4,3(P ,使S △PAC =6.提高题 1. 解:(1)∵抛物线c bx xy ++=2与x 轴只有一个交点,∴方程02=++c bx x有两个相等的实数根,即042=-c b. ① 又点A 的坐标为(2,0),∴024=++c b . ②由①②得4-=b ,4=a .(2)由(1)得抛物线的解析式为442+-=x x y .当0=x 时,4=y . ∴点B 的坐标为(0,4).在Rt △OAB 中,OA =2,OB =4,得5222=+=OB OA AB .∴△OAB 的周长为5265241+=++. 2. 解:(1)76)34()10710710(1022++-=--⨯++-⨯=x x x x x S . 当3)1(26=-⨯-=x 时,16)1(467)1(42=-⨯-⨯-⨯=最大S .∴当广告费是3万元时,公司获得的最大年利润是16万元.(2)用于投资的资金是13316=-万元.经分析,有两种投资方式符合要求,一种是取A 、B 、E 各一股,投入资金为13625=++(万元),收益为0.55+0.4+0.9=1.85(万元)>1.6(万元);另一种是取B 、D 、E 各一股,投入资金为2+4+6=12(万元)<13(万元),收益为0.4+0.5+0.9=1.8(万元)>1.6(万元).3. 解:(1)设抛物线的解析式为2ax y =,桥拱最高点到水面CD 的距离为h 米,则),5(h D -,)3,10(--h B .∴⎩⎨⎧--=-=.3100,25h a h a 解得⎪⎩⎪⎨⎧=-=.1,251h a∴抛物线的解析式为2251x y -=.(2)水位由CD 处涨到点O 的时间为1÷0.25=4(小时),货车按原来速度行驶的路程为40×1+40×4=200<280,∴货车按原来速度行驶不能安全通过此桥.设货车的速度提高到x 千米/时,当2801404=⨯+x 时,60=x .∴要使货车安全通过此桥,货车的速度应超过60千米/时.4. 解:(1)未出租的设备为10270-x 套,所有未出租设备的支出为)5402(-x 元.(2)54065101)5402()1027040(2++-=----=x x x x x y . ∴540651012++-=x x y .(说明:此处不要写出x 的取值范围)(3)当月租金为300元时,租赁公司的月收益为11040元,此时出租的设备为37套;当月租金为350元时,租赁公司的月收益为11040元,此时出租的设备为32套. 因为出租37套和32套设备获得同样的收益,如果考虑减少设备的磨损,应选择出租32套;如果考虑市场占有率,应选择出租37套.(4)5.11102)325(1015406510122+--=++-=x x x y .∴当325x时,y有最大值11102.5. 但是,当月租金为325元时,租出设备套数为34.5,而34.5不是整数,故租出设备应为34套或35套. 即当月租金为为330元(租出34套)或月租金为320元(租出35套)时,租赁公司的月收益最大,最大月收益均为11100元.。
复变函数第二章答案
第二章第二章 解析函数解析函数1.用导数定义,求下列函数的导数:.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因0()()lim z f z z f z z D ®+D -D0()Re()Re lim z z z z z z zz D ®+D +D -=D 0Re Re Re limz z z z z z zz D ®D +D +D D =D0Re lim(ReRe )z zz z z z D ®D =+D +D00Re lim(Re )lim(Re ),z x y zx z z z z z x i y D ®D ®D ®D D =+=+D D +D当0z ¹时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =× 解: 22222222()||()()()(),f z z z z z z z zx y x iy x x y iy x y =×=××=×=++=+++这里2222(,)(),(,)().u x y x x y v x y y x y =+=+2222222,2,2,2.x y y x u x y x v x y y u xy v xy =++=++==要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x yu u v v 均连续,故2().f z z z =×仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+-解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=-226,6,33,y x y u xy v xy v x y =-==-四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az bc d cz d++至少有一不为零解: 当0c ¹时,()az b f z cz d +=+除d z c =-外在复平面上处处解析, dz c=-为奇点, 222()()()()()()()()().()()az b f z cz daz b cz d cz d az b cz d a cz d c az b ad cb cz d cz d +¢¢=+¢¢++-++=++-+-==++ 当0c =时,显然有0d ¹,故()az b f z d +=在复平面上处处解析,且()a f z d ¢=. 4.若函数()f z 在区域D 内解析,并满足下列条件之一,试证()f z 必为常数. (1) ()f z 在区域D 内解析; (2) 2;v u =(3) arg ()f z 在D 内为常数; (4) (,,).au bv c a b c +=为不全为零的实常数 证 (1) 因为()f z 在D 中解析,所以满足C R -条件条件,,u v u v x y y x¶¶¶¶==-¶¶¶¶又()f z u iv =-也在D 中解析,也满足C R -条件条件()(),.u v u v x y y x¶¶-¶¶-==-¶¶¶¶ 从而应有0u u v v x y x y¶¶¶¶====¶¶¶¶恒成立,故在D 中,u v 为常数, ()f z 为常数. (2) 因()f z 在D 中解析且有2()f z u iu =+,由C R -条件,有2,2.u uu x y u u u yx ¶¶ì=ﶶïí¶¶ï=-ﶶî 则可推出0u u x y¶¶==¶¶,即u C =(常数).故()f z 必为D 中常数. (3) 设()f z u iv =+,由条件知arctan v C u =,从而22(/)(/)0,0,1(/)1(/)v u v u yx v u v u ¶¶¶¶==++计算得计算得2222()/0v uu u v u xxu v ¶¶-¶¶=+,2222()/0,v uu u v u yy u v ¶¶-¶¶=+化简,利用C R -条件得条件得0,0.uu u v yx u u u v xy ¶¶ì--=ﶶïí¶¶ï-=ﶶî 所以0,u u x y ¶¶==¶¶同理0,v vx y ¶¶==¶¶即在D 中,u v 为常数,故()f z 在D 中为常数. (4) 法一:设0,a ¹则()/,u c bv a =-求导得求导得,,u b v u b v xa x ya y ¶¶¶¶=-=-¶¶¶¶由C R -条件条件,,u b u v b vx a y x a y ¶¶¶¶==¶¶¶¶ 故,u v 必为常数,即()f z 在D 中为常数. 设0,0,0a b c =¹¹则bv c =,知v 为常数,又由C R -条件知u 也必为常数,所以()f z 在D 中为常数. 法二:等式两边对,x y 求偏导得:00x x y y au bv au bv +=ìí+=î,由C R -条件,我们有条件,我们有0,00x y x x y y au bu u a b bu au u b a -=-ìæöæö=íç÷ç÷+=èøîèø即, 而220a b+¹,故0x y u u ==,从而u 为常数,即有()f z 在D 中为常数. 5.设()f z 在区域D 内解析,试证: 222222()|()|4|()|.f z f z xy¶¶¢+=¶¶证: 设 222(),|()|,f z u i v f z u v =+=+ 222(),|()|()().uuu u f z i f z x yx y ¶¶¶¶¢¢=-=+¶¶¶¶ 而2222222222222222222222222()|()|()()2()()()(),f z u v u v xyx y u u v v u u v vu v u v x x x x y y y y ¶¶¶¶+=+++¶¶¶¶éù¶¶¶¶¶¶¶¶=+++++++êú¶¶¶¶¶¶¶¶ëû又()f z 解析,则实部u 及虚部v 均为调和函数.故222222220,0.u u v v u v xyx y¶¶¶¶=+==+=¶¶¶¶则22222222()|()|4(()())4|()|.u u f z f z x yxy¶¶¶¶¢+=+=¶¶¶¶6.由下列条件求解解析函数().f z u iv =+ (1)22()(4);u x y x xy y =-++ 解: 因22363,u v x xy y x y ¶¶==+-¶¶所以所以 22(363)v x xy y dy =+-ò22333(),x y xy y x j =+-+又222263(),363,()3,v u xy y x x xy y x x xxj j ¶¶¢¢=++=--=-¶¶而所以 则3()x x C j =-+.故2222222233332222222233()()(4)(33)(1)()(1)()2(1)2(1)(1)()2(1)(1)(2)(1)f z u ivx y x xy y i x y xy y x C i x x iy y i x iy x y i xy i Ciz i x y xyi iz i Cii z x y xyi Ci i z Ci=+=-++++--+=-+--+-+--+=---×-+=---+=-+ (2) 23;v xy x =+解: 因23,2,v v y x xy¶¶=+=¶¶由()f z 解析,有22,2().u v x u xdx x y x yf ¶¶====+¶¶ò又23,u v y y x ¶¶=-=--¶¶而(),u y y f ¶¢=¶所以()23,y y f ¢=--则2()3.y y y C f =--+故 22()3(23).f z x y y C i xy x =--+++ (3) 2(1),(2);u x y f i =-=-解: 因2,2(1),u u y x x y ¶¶==-¶¶由()f z 的解析性,有2(1),v ux x y ¶¶=-=--¶¶22(1)(1)(),v x d x x y f =--=--+ò 又2,v uy y x ¶¶==¶¶而(),v y yf ¶¢=¶所以2()2,(),y y y y C f f ¢==+则22(1),v x y C =--++故22()2(1)((1)),f z x y i x y C =-+--++由(2)f i =-得(2)(1),f i C i =-+=-推出0.C =即2222()2(1)(21)(21)(1).f z x y i y x x i z z i z =-+-+-=-+-=--7.设sin ,pxv e y =求p 的值使v 为调和函数,并求出解析函数().f z u iv =+解: 要使(,)v x y 为调和函数,则有0.xx yyv v v D =+=即2sin sin 0,px px p e y e y -=所以1p =±时,v 为调和函数,要使()f z 解析,则有,.xy y x uv u v ==-1(,)cos cos (),1sin ()sin .pxpx x px px y u x y u dx e ydx e y y pu e y y pe y pf f ===+¢=-+=-òò()3i 33)i 3p),i p p p.22ee e e ==c t 3(1)l n 2(2)4l n22l n 2244ln 224cos(ln 2)sin(ln 2).44i i k k i k k ee ei p p p p p p pp p p éù++-+êúëûéù+-++-êúëû+-==éù=-+-êúëû(4) 33;i- 解: 3(3)ln3(3)(ln32)3ii i k i eep---+==(3)l n 323l n 32227(c o s l n3s i n l n 3).i k k i ik ee eee i p p p-+-=×=×=-。
(完整版)复变函数习题答案第2章习题详解
第二章习题详解1. 利用导数定义推出: 1)()1-=n n nzz '(n 为正整数)解: ()()()()()z z z z z n n z nz z z z z z z nn n n n z n n z n∆∆∆∆∆∆∆∆-⎥⎦⎤⎢⎣⎡++-++=-+=--→→Λ22100121limlim '()()11210121----→=⎥⎦⎤⎢⎣⎡++-+=n n n n z nz z z z n n nz ∆∆∆Λlim 2) 211z z -=⎪⎭⎫⎝⎛'解: ()()2000111111z zz z z z z z z z z z z z z z z -=+-=+-=-+=⎪⎭⎫ ⎝⎛→→→∆∆∆∆∆∆∆∆∆lim lim lim '2. 下列函数何处可导?何处解析? 1)()iy x z f -=2解:设()iv u z f +=,则2x u =,y v -=x x u 2=∂∂,0=∂∂y u ,0=∂∂xv,1-=∂∂y v 都是连续函数。
只有12-=x ,即21-=x 时才满足柯西—黎曼方程。
()iy x z f -=∴2在直线21-=x 上可导,在复平面内处处不解析。
2)()3332y i x z f +=解:设()iv u z f +=,则32x u =,33y v =26x x u =∂∂,0=∂∂y u ,0=∂∂xv ,29y y v =∂∂都是连续函数。
只有2296y x =,即032=±y x 时才满足柯西—黎曼方程。
()3332y i x z f +=∴在直线032=±y x 上可导,在复平面内处处不解析。
3)()y ix xy z f 22+=解:设()iv u z f +=,则2xy u =,y x v 2=2y x u =∂∂,xy y u 2=∂∂,xy xv 2=∂∂,2x y v =∂∂都是连续函数。
复变函数 刘敏思 第二章 习题解答
z =iy
+i
∂v ∂x
z =iy
= k ⋅ 0 + i ⋅0 = 0 。
3. 讨论下列函数在复平面 ℂ 上的可微性和解析性,并在可导的情况下求它们的导函数: ( 1) f ( z ) = x + i y ; (2) f ( z ) = e + ie ; (3) f ( z ) = x − 3 xy + i (3 x y − y ) ; ( 4) f ( z ) = e x ( x cos y − y sin y ) + i e x ( y cos y + x sin y ) . 解 (1)记 f ( z ) = u ( x, y ) + iv ( x , y ) ,则 u ( x, y ) = x , v( x, y ) = y 。易见它们都在复平面上可 微。要使柯西—黎曼条件满足,只须
4. 设 f ( z ) 在区域 D 内解析,若下列关系之一成立, ( 1) Im[ f ( z)] ≡ c ,其中 c 为实常数; ( 2) α Re[ f ( z )] + β Im[ f ( z)] = c ,其中 α , β , c ∈ ℝ 且 α + β ≠ 0 ;
2 2
( 3) Re[ f ( z )] = {Im[ f ( z)]} , 则 f ( z) 在区域 D 内为常数 . 证明 记 f ( z ) = u ( x, y ) + iv ( x , y ) ( 1)由条件得, v( x, y ) ≡ c ,因为 f ( z ) 在区域 D 内解析,由柯西—黎曼条件,在区域 D 内
f ( z ) = x 2 + y 2 , u ( x, y ) = x 2 + y 2 , v( x, y) = 0 。
微积分课后题答案第二章习题详解
第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<Q而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭L =0; (2) lim n →∞2!n n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+L而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭L . (2)因为22222240!1231n n n n n<=<-g g g L g g ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11ne +,n =1,2,…;(2) x 1,x n +1,n =1,2,…. 证:(1)略。
必修一第二单元《函数》测试(答案解析)
一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Qg x x Q∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( ) A .1B .2C .3D .42.若关于x 的不等式342xx a +-在[0x ∈,1]2上恒成立,则实数a 的取值范围是( )A .(-∞,1]2-B .(0,1]C .1[2-,1]D .[1,)+∞3.函数()(3)()f x x ax b =--为偶函数,且在(0,)+∞上单调递增,则(2)0f x ->的解集为( ) A .{|22}x x -<< B .{|5x x >或1}x <- C .{|04}x x <<D .{|4x x >或0}x <4.下列函数中,在其定义域内既是奇函数又是减函数的是( )A .1y x=B .y =C .2x y =D .||y x x =-5.对二次函数()2f x ax bx c =++(a 为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是( ). A .1-是()0f x =的一个解 B .直线1x =是()f x 的对称轴 C .3是()f x 的最大值或最小值D .点()2,8在()f x 的图象上6.对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零,则x 的取值范围是( ) A .13x <<B .1x <或3x >C .12x <<D .1x <或2x >7.高斯函数属于初等函数,以大数学家约翰·卡尔·弗里德里希·高斯的名字命名,其图形在形状上像一个倒悬着的钟,高斯函数应用范围很广,在自然科学、社会科学、数学以及工程学等领域都能看到它的身影,设x ∈R ,用[]x 表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[]3.14-=-,[]4.84=.则函数21()122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为( ) A .{}0,1B .{}1,1-C .{}1,0-D .{}1,0,1-8.若定义运算,,b a b a b a a b≥⎧*=⎨<⎩,则函数()()()2242g x x x x =--+*-+的值域为( )A .(],4-∞B .(],2-∞C .[)1,+∞D .(),4-∞9.已知函数()y f x =的定义域为[]0,4,则函数0(2)y x =-的定义域是( ) A .[1,5]B .((1,2)(2,5) C .(1,2)(2,3]⋃D .[1,2)(2,3]⋃10.设f (x )、g (x )、h (x )是定义域为R 的三个函数,对于以下两个结论:①若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均为增函数,则f (x )、g (x )、h (x )中至少有一个增函数; ②若f (x )+g (x )、f (x )+h (x )、g (x )+h (x )均是奇函数,则f (x )、g (x )、h (x )均是奇函数, 下列判断正确的是( ) A .①正确②正确B .①错误②错误C .①正确②错误D .①错误②正确11.已知函数f (x )(x ∈R )满足f (x )=f (2-x ),且对任意的x 1,x 2∈(-∞,1](x 1≠x 2)有(x 1-x 2)(f (x 1)-f (x 2))<0.则( ) A .()()()211f f f <-< B .()()()121f f f <<- C .()()()112f f f <-<D .()()()211f f f <<-12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.14.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.15.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.16.已知定义在R 上的函数()f x 满足:①(1)0f =;②对任意x ∈R 的都有()()f x f x -=-;③对任意的12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-.记2()3()()1f x f xg x x --=-,则不等式()0g x ≤的解集______.17.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______.18.若对任意02x ≤≤,恒有2x ax b c ++≤成立,则当c 取最小值时,函数()24f x x a x b x c =-+-+-的最小值为________.19.函数y =a x (a >0且a ≠1)在[1,2]上的最大值比最小值大2a,则a =______. 20.函数()()122x x f x x N +⎡⎤⎡⎤=-∈⎢⎥⎢⎥⎣⎦⎣⎦的值域为_______(其中[]x 表示不大于x 的最大整数)三、解答题21.已知函数()22mf x x x =-. (1)当1m =时,判断()f x 在()0,∞+上的单调性,并用定义法加以证明. (2)已知二次函数()g x 满足()()2446g x g x x =++,()13g =-.若不等式()()g x f x >恒成立,求m 的取值范围.22.(1)已知()()43f x x a =-+时,当实数a 为何值时,()f x 是偶函数?(2)已知()g x 是偶函数,且()g x 在[)0,+∞是增函数,如果当[]1,2x ∈时()()6g x a g x +≤-恒成立,求实数a 的取值范围.23.已知函数()243f x x x =-+.(1)若函数()f x 在区间[]1,2t t ++上是单调的,求t 的取值范围;(2)在区间[]1,1-上,()y f x =的图象恒在22y x m =+-的图象上方,求实数m 的取值范围.24.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域;(3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 25.已知函数f (x )=x 2+(1-x )·|x -a |. (1)若a =0,解不等式f (x )>3;(2)若函数f (x )在[2a ,a +2]上的最小值为g (a ),求g (a )的解析式.26.设函数()()2288f x x x ax a R x x=++-+∈. (1)若函数()f x 为偶函数,求实数a 的值; (2)若关于x 的不等式()16f x x ≤-在区间0,上有解,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”. 【详解】解:对(1),由①得()00f ≥, 在②中令0x y ==, 即()()020f f =, 解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误; 对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥,即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B. 【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.D解析:D 【分析】利用参数分离法进行转化,构造函数求函数的最大值即可得到结论. 【详解】解:由题意知,342xx a +-在(0x ∈,1]2上恒成立,设3()42x f x x =+-,则函数在102⎛⎤ ⎥⎝⎦,上为增函数,∴当12x =时,()12max 113()4211222f x f ==+-=-=, 则1a , 故选:D . 【点睛】 关键点睛:本题的关键是将已知不等式恒成立问题,通过参变分离得到参数的恒成立问题,结合函数的单调性求出最值.3.B解析:B 【分析】根据函数是偶函数,求出a ,b 关系,结合单调性确定a 的符号即可得到结论. 【详解】2()(3)()(3)3f x x ax b ax a b x b =--=-++为偶函数, 所以22()(3)3(3)3f x ax a b x b ax a b x b -=+++-=++ 30a b ∴+=,即3b a =-,则2()(3)(3)(3)(3)9f x x ax a a x x ax a =-+=-+=-, 在(0,)+∞上单调递增,0a ∴>,则由(2)(1)(5)0f x a x x -=--->,得(1)(5)0x x +->, 解得1x <-或5x >,故不等式的解集为{|1x x <-或5}x >. 故选:B【点睛】思路点睛:解答本题只要按部就班化简转化函数为偶函数和单调性即可得解.由函数的奇偶性得到3b a =-,由函数的单调性得到0a >.4.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2xy =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-,当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).5.A解析:A 【分析】可采取排除法,分别考虑A 、B 、C 、D 中有一个错误,通过解方程求得a ,判断a 是否为非零整数,即可得出结论. 【详解】①若A 错,则B 、C 、D 正确,直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得212434428b a ac baa b c ⎧-=⎪⎪-⎪=⎨⎪++=⎪⎪⎩,解得5108a b c =⎧⎪=-⎨⎪=⎩,合乎题意; ②若B 错,则A 、C 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=,3是()f x 的最大值或最小值,则2434ac b a-=,点()2,8在()f x 的图象上,则()2428f a b c =++=,可得20434428a b c ac b a a b c -+=⎧⎪-⎪=⎨⎪++=⎪⎩,该方程组无解,不合乎题意; ③若C 错误,则A 、B 、D 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 点()2,8在()f x 的图象上,则()2428f a b c =++=,可得012428a b c b a a b c -+=⎧⎪⎪-=⎨⎪++=⎪⎩,解得831638a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,不合乎题意;④若D 错误,则A 、B 、C 正确,1-是()0f x =的一个解,则()10f a b c -=-+=, 直线1x =是()f x 的对称轴,则12ba-=, 3是()f x 的最大值或最小值,则2434ac b a-=,可得2012434a b c b a ac b a⎧⎪-+=⎪⎪-=⎨⎪⎪-=⎪⎩,解得343294a b c ⎧=-⎪⎪⎪=⎨⎪⎪=⎪⎩,不合乎题意. 故选:A.【点睛】关键点点睛:本题考查利用二次函数的基本性质求解参数,解本题的关键就是根据已知信息列出关于a 、b 、c 的方程组,解出参数的值,再逐一判断.6.B解析:B 【分析】将函数()f x 的解析式变形为()2()244f x x a x x =-+-+,并构造函数()2()244g a x a x x =-+-+,由题意得出()()1010g g ⎧->⎪⎨>⎪⎩,解此不等式组可得出实数x 的取值范围 【详解】对任意[]1,1a ∈-,函数()()2442f x x a x a =+-+-的值恒大于零设()()2244g a x a x x =-+-+,即()0g a >在[]1,1a ∈-上恒成立.()g a 在[]1,1a ∈-上是关于a 的一次函数或常数函数,其图象为一条线段.则只需线段的两个端点在x 轴上方,即()()2215601320g x x g x x ⎧-=-+>⎪⎨=-+>⎪⎩,解得3x >或1x < 故选:B 【点睛】关键点睛:本题考查不等式在区间上恒成立问题,解答本题的关键是构造函数()()2244g a x a x x =-+-+,将问题转化为()0g a >在[]1,1a ∈-上恒成立,从而得到()()1010g g ⎧->⎪⎨>⎪⎩,属于中档题.7.C解析:C 【分析】先求出函数()21122x x f x =-+的值域,再根据题干中要求即可得出()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域. 【详解】()21121111=122122212x x x x xf x +-=--=-+++, ()121,x +∈+∞,()10,112x∴∈+,()11,012x∴-∈-+, 1111,21222x ⎛⎫∴-∈- ⎪+⎝⎭, 即函数()21122x xf x =-+的值域为11,22⎛⎫- ⎪⎝⎭, 由高斯函数定义可知:函数()21122x xf x ⎡⎤=-⎢⎥+⎣⎦的值域为{}1,0- 故选:C. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.8.A解析:A 【分析】 根据,,b a ba b a a b≥⎧*=⎨<⎩可得()g x 的解析式,画出图象可得答案.【详解】由,,b a ba b a a b ≥⎧*=⎨<⎩,得()()()222,[2,1]24224,(1,)(,2)x x g x x x x x x x -+∈-⎧=--+*-+=⎨--+∈+∞⋃-∞-⎩,当[2,1]x ∈-,()2[1,4g x x =-+∈], 当(1,)(,2)x ∈+∞-∞-,()2()154g x x =-++<,可得()4g x ≤- 故选:A. 【点睛】本题的关键点是根据已知定义求出函数解析式,然后画出图象求解.9.C解析:C 【分析】由函数定义域的定义,结合函数0(2)1y x x =--有意义,列出相应的不等式组,即可求解. 【详解】由题意,函数()y f x =的定义域为[]0,4,即[]0,4x ∈,则函数0(2)1y x x =--满足0141020x x x ≤+≤⎧⎪->⎨⎪-≠⎩,解得13x <≤且2x ≠, 所以函数0(2)1y x x =+--的定义域是(1,2)(2,3]⋃. 故选:C. 【点睛】本题主要考查了抽象函数的定义域的求解,其中解答中熟记函数的定义域的定义,根据题设条件和函数的解析式有意义,列出不等式组是解答的关键,着重考查推理与运算能力.10.D解析:D 【分析】可举出反例判断①错误;根据奇偶性的性质可判断②正确,结合选项可得答案. 【详解】①错误,可举反例:21()31xx f x x x ⎧=⎨-+>⎩,230()30121x x g x x x x x +⎧⎪=-+<⎨⎪>⎩,0()20x x h x x x -⎧=⎨>⎩,均不是增函数; 但()()f x g x +、()()f x h x +、()()g x h x +均为增函数;故①错误;②()()f x g x +,()()f x h x +,()()g x h x +均是奇函数;()()()()[()()]2()f x g x f x h x g x h x f x ∴+++-+=为奇函数;()f x ∴为奇函数;同理,()g x ,()h x 均是奇函数;故②正确.故选:D .【点睛】本题考查增函数的定义,一次函数和分段函数的单调性,举反例说明命题错误的方法,以及奇函数的定义与性质,知道()f x 和()g x 均是奇函数时,()()f x g x ±也是奇函数. 11.B解析:B【分析】由已知得函数f (x )图象关于x=1对称且在(-∞,1]上单调递减,在(1,+∞)上单调递增,从而可判断出大小关系.【详解】解:∵当x 1,x 2∈(-∞,1](x 1≠x 2)时有(x 1-x 2)(f (x 1)-f (x 2))<0,∴f (x )在(-∞,1]上单调递减,∵f (x )=f (2-x ),∴函数f (x )的图象关于x=1对称,则f (x )在∈(1,+∞)上单调递增,∴f (-1)=f (3)>f (2)>f (1)即f (-1)>f (2)>f (1)故选B .【点睛】本题考查函数的对称性及单调性的应用,解题的关键是函数性质的灵活应用. 12.C解析:C【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值.【详解】分别画出2y x ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫ ⎪⎝⎭A . 所以()h x 的最小值为4811. 故选:C.【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题. 二、填空题13.【分析】根据题意求得ab 的值可得的解析式分别讨论三种情况结合二次函数图像与性质即可求得结果【详解】由题意得:所以所以解得所以为开口向上对称轴为的抛物线当即时在上单调递减所以当即时在上单调递减在上单调解析:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【分析】根据题意,求得a ,b 的值,可得()f x 的解析式,分别讨论3t <-,31t -≤≤-,1t >-三种情况,结合二次函数图像与性质,即可求得结果.【详解】由题意得:22(1)(1)(1)121f x a x b x ax a ax bx b +=++++=+++++,所以()()222111223ax a ax bx b ax bx ax a f b x x x f +++++---=++=-=++, 所以223ax x a b =⎧⎨+=⎩,解得1,2a b ==,所以22()21(1)f x x x x =++=+,为开口向上,对称轴为1x =-的抛物线,当21t +<-,即3t <-时,()f x 在[],2t t +上单调递减,所以2()(2)(3)g t f t t =+=+,当12t t ≤-≤+,即31t -≤≤-时,()f x 在[,1)t -上单调递减,在[1,2]t -+上单调递增,所以()(1)0g t f =-=;当1t >-时,()f x 在[],2t t +上单调递增,所以2()()(1)g t f t t ==+,综上:22(3),3()0,31(1),1t t g t t t t ⎧+<-⎪=-≤≤-⎨⎪+>-⎩故答案为:22(3),30,31(1),1t t t t t ⎧+<-⎪-≤≤-⎨⎪+>-⎩【点睛】求二次函数在区间[,]a b 上最值时,一般用分类讨论的方法求解,讨论对称轴位于区间的左右两侧,位于区间内,再根据二次函数图像与性质,求解即可,考查分析求解的能力,属中档题.14.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函 解析:1- 2【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可;(2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可.【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数,只需1b =-.综上,当1a =时,1b =-时,()x xf x e e -=-为增函数.(2)当0ab 时,()f x 为单调函数,此时函数没有最小值,当0a <,0b <,()f x 有最大值,无最小值,所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯,1=,即1ab =, 则22a b ab +=,当1a b ==时等号成立,即+a b 的最小值为2.故答案为:1,1,2-【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).15.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围.【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+, 所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-, 又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥, ()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤,又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3.【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.16.【分析】根据题意分析可得函数为奇函数且结合单调性的定义可得在上为增函数结合(1)以及函数奇偶性的性质分析可得与的的取值范围转化为或或可得的取值范围即可得答案【详解】根据题意满足对任意的都有即函数为奇 解析:[]1,0-【分析】根据题意,分析可得函数()f x 为奇函数且(0)0f =,结合单调性的定义可得()f x 在(0,)+∞上为增函数,结合f (1)0=以及函数奇偶性的性质分析可得()0f x >与()0f x <的x 的取值范围,转化为()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩,可得x 的取值范围,即可得答案.【详解】根据题意,()f x 满足对任意x ∈R 的都有()()f x f x -=-,即函数()f x 为奇函数,则有(0)0f =;又由对任意的1x ,2(0,)x ∈+∞且12x x ≠时,总有1212()()0f x f x x x ->-,即函数()f x 在(0,)+∞上为增函数,若f (1)0=,则在区间(0,1)上,()0f x <,在区间(1,)+∞上,()0f x >,又由()f x 为奇函数,则在区间(,1)-∞-上,()0f x <,在区间(1,0)-上,()0f x >, 则()0g x 即2()3()5()()011f x f x f x g x x x --==--,即()010f x x <⎧⎨->⎩或()010f x x >⎧⎨-<⎩或()010f x x =⎧⎨-≠⎩, 解可得:10x -,即不等式()0g x 的解集为[1-,0];故答案为:[]1,0-.【点睛】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的解法,属于中档题. 17.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集.【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =,作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得, 所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃.故答案为:(3,0)(0,3)-⋃.【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.18.【分析】由题意结合二次函数的图象与性质可得当c 可取最小值时再由零点分段法可得分段函数的解析式即可得解【详解】令由题意知当时c 可取最小值此时解得则所以所以的最小值为故答案为:【点睛】本题考查了二次函数 解析:198【分析】 由题意结合二次函数的图象与性质可得当c 可取最小值时,2a =-、12==b c ,再由零点分段法可得分段函数()f x 的解析式,即可得解.【详解】令()2h x x ax b =++,由题意知当()()()021h h h ==-时,c 可取最小值, 此时()421b a b b a b =++⎧⎨=-++⎩,解得212a b =-⎧⎪⎨=⎪⎩,则()102c h ==, 所以()112422422f x x a x b x c x x x =-+-+-=++-+- 171,41132,84153,2871,2x x x x x x x x ⎧+≥⎪⎪⎪+<<⎪=⎨⎪-+-<≤⎪⎪⎪--≤-⎩,所以()f x 的最小值为15193888f ⎛⎫=-+= ⎪⎝⎭. 故答案为:198. 【点睛】 本题考查了二次函数的图象与性质与应用,考查了零点分段法的应用及分段函数最值的求解,属于中档题.19.或【分析】由题意按照分类结合指数函数的性质可得方程即可得解【详解】当时是增函数则解得或(舍去);当时是减函数则解得或(舍去);综上或故答案为:或【点睛】关键点点睛:涉及指数函数单调性问题底数为参数时 解析:12或32【分析】由题意按照1a >、01a <<分类,结合指数函数的性质可得方程,即可得解.【详解】当1a >时,x y a =是增函数,则22a a a -=,解得32a =或0a =(舍去); 当01a <<时,x y a =是减函数,则22a a a -=,解得12a =或0a =(舍去); 综上,12或32故答案为:12或32 【点睛】关键点点睛:涉及指数函数单调性问题,底数为参数时,一般都要分类讨论,分底数大于1与底数大于0小于1两种情况解决.本题考查了指数函数单调性的应用,考查了运算求解能力及分类讨论思想.20.【分析】由题设中的定义可对分区间讨论设表示整数综合此四类即可得到函数的值域【详解】解:设表示整数①当时此时恒有②当时此时恒有③当时此时恒有④当时此时此时恒有综上可知故答案为:【点睛】此题是新定义一个 解析:{}0,1【分析】由题设中的定义,可对x 分区间讨论,设m 表示整数,综合此四类即可得到函数的值域【详解】解:设m 表示整数.①当2x m =时,1[0.5]2x m m +⎡⎤=+=⎢⎥⎣⎦,[]2x m m ⎡⎤==⎢⎥⎣⎦. ∴此时恒有0y =.②当21x m =+时,1[1]12x m m +⎡⎤=+=+⎢⎥⎣⎦,[0.5]2x m m ⎡⎤=+=⎢⎥⎣⎦. ∴此时恒有1y =.③当221m x m <<+时,21122m x m +<+<+0.52x m m ∴<<+ 10.512x m m ++<<+ 2x m ⎡⎤∴=⎢⎥⎣⎦,12x m +⎡⎤=⎢⎥⎣⎦∴此时恒有0y =④当2122m x m +<<+时,22123m x m +<+<+0.512x m m ∴+<<+ 11 1.52x m m ++<<+ ∴此时2x m ⎡⎤=⎢⎥⎣⎦,112x m +⎡⎤=+⎢⎥⎣⎦∴此时恒有1y =.综上可知,{}0,1y ∈.故答案为:{}0,1.【点睛】此题是新定义一个函数,根据所给的规则求函数的值域,求解的关键是理解所给的定义,一般从函数的解析式入手,要找出准确的切入点,理解[]x 表示数x 的整数部分,考察了分析理解,判断推理的能力及分类讨论的思想 三、解答题21.(1)减函数,证明见解析;(2)1m <-.【分析】(1)()212f x x x=-在区间()0+∞,上为减函数,运用单调性的定义证明,注意取值、作差和变形、定符号、下结论等步骤; (2)设()()20g x ax bx c a =++≠,由题意可得关于,,a b c 的方程,解得,,a b c 的值,可得222m x x ->,由参数分离和二次函数的最值求法,可得所求范围. 【详解】(1)当1m =时,()212f x x x=-,函数()f x 是区间()0+∞,上的减函数, 证明如下: 设1x ,2x 是区间()0+∞,上的任意两个实数,且12x x <, 则()()121222121122f x f x x x x x -=--+ ()()22212121212222121222x x x x x x x x x x x x ⎛⎫-+=+-=-+ ⎪⎝⎭. ∵120x x <<,∴210x x ->,210x x +>,22120x x >,∴()()120f x f x ->,()()12f x f x >,∴函数()f x 是区间()0,∞+上的减函数.(2)设()()20g x ax bx c a =++≠,则()2242g x ax bx c =++, ()()244644446g x x ax b x c ++=++++.又∵()()2446g x g x x =++,∴442,46,b b c c +=⎧⎨+=⎩∴2b =-,2c =-, 又∵()13g a b c =++=-,∴1a =,∴()222g x x x =--.∵()()g x f x >,∴222m x x->,∴()4220m x x x <-≠, 又∵()2422211x x x -=--,∴1m <-.【点睛】 方法点睛:该题考查的是有关函数的问题,解题方法如下:(1)先判断函数()f x 在()0,∞+上的单调性,再用定义证明,在证明的过程中,注意其步骤要求;(2)先用待定系数法求得函数()g x 的解析式,将恒成立问题转化为最值来处理,求得结果.22.(1)0a =;(2)62a -≤≤.【分析】(1)当0a =时,由()43f x x =+判断,当0a ≠时,由()(),f a f a -的关系判断; (2)根据()g x 是偶函数,将()()6g x a g x +≤-,转化为 ()()6g x a g x +≤-,再根据()g x 在[)0,+∞是增函数,转化为[]1,2x ∈时,6x a x +≤-恒成立求解.【详解】(1)当0a =时,()43f x x =+是偶函数, 当0a ≠时,a a ≠-,而()()()420f a f a a --=≠,()f x 不可能是偶函数, 所以当0a =时,()f x 是偶函数;(2)由()g x 是偶函数知()()g x a g x a +=+,()()66g x g x -=-,且x a +,60x -≥,因为()g x 在[)0,+∞是增函数,及()()6g x a g x +≤-,所以当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,6x a x +≤-恒成立,即当[]1,2x ∈时,66x x a x -≤+≤-恒成立,即当[]1,2x ∈时,662a x -≤≤-恒成立, 所以62a -≤≤.【点睛】方法点睛:函数奇偶性与单调性求参数问题,当涉及到偶函数时,要利用()()()f x f x f x -==转化为求解.23.(1)(][),01,-∞⋃+∞;(2)【分析】(1)分函数()f x 在区间[]1,2t t ++上单调递增和单调递减两种情况讨论,可得出关于实数t 的不等式,由此可解得实数t 的取值范围;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,利用参变量分离法可得出265m x x <-+,利用二次函数求出函数()265g x x x =-+在区间[]1,1-上的最小值,由此可得出实数m 的取值范围.【详解】(1)二次函数()243f x x x =-+的图象开口向上,对称轴为直线2x =. ①若函数()f x 在区间[]1,2t t ++上单调递增,则12t +≥,解得1t ≥;②若函数()f x 在区间[]1,2t t ++上单调递减,则22t +≤,解得0t ≤.综上所述,实数t 的取值范围是(][),01,-∞⋃+∞;(2)由题意可得出24322x x x m -+>+-对任意的[]1,1x ∈-恒成立,则265m x x <-+对任意的[]1,1x ∈-恒成立,令()()226534g x x x x =-+=--,则函数()g x 在区间[]1,1-上单调递减, 所以,()()min 10g x g ==,0m ∴<.因此,实数m 的取值范围是(),0-∞.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤;(2)x D ∀∈,()()max m f x m f x ≥⇔≥;(3)x D ∃∈,()()max m f x m f x ≤⇔≤;(4)x D ∃∈,()()min m f x m f x ≥⇔≥.24.(1)23,106()0,0(23),01x xx x x x f x x x ⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩;(2) [){}(]5,202,5--;(3)⎤⎥⎝⎦. 【分析】 (1)利用函数为奇函数有()()f x f x -=-求(0,1]x ∈上的解析式,且(0)0f =即可得()f x 的解析式;(2)根据(1)所得解析式及对应定义域即可求其值域;(3)讨论10a -≤<、01a <<、1a =时不等式成立,结合()f x 的区间单调性即可求得a 的取值范围.【详解】(1)由题意,令(0,1]x ∈,则[1,0)x -∈-,即23()236x xx x x f x ---+-==+, 又∵()()f x f x -=-,有(0,1]x ∈时,()(23)x x f x =-+, ∴23,106()0,0(23),01x xx x x x f x x x ⎧+-≤<⎪⎪⎪==⎨⎪-+<≤⎪⎪⎩. (2)由(1)解析式知:()f x 在[1,0)-和(0,1]上递减,对应值域分别为(2,5]、[5,2)--,则有:()f x 的值域[){}(]5,202,5--. (3)1()()0a f f a a -+<,即1()(1)f a f a<-,有[1,0)(0,1]a ∈-,∴当10a -≤<时,11a a >-,解得12a +<-或12a >,无解; 当01a <<时,11a a >-,解得a <a >1a <<; 当1a =时,1()(1)5(1)(0)0f a f f f a ==-<-==成立;∴综上有1,1]2a ∈. 【点睛】关键点点睛:首先利用函数奇偶性求函数解析式,并依据所得解析式和定义域求值域,再由函数不等式,结合区间单调性,在区间[1,0)(0,1]-⋃上讨论参数使不等式成立,求参数范围. 25.(1)(,1)(3,)-∞-+∞;(2)()222221{102,02a a a g a a a a a a ++<-=-<+<.【分析】(1)通过讨论x 的范围,去掉绝对值号,得到关于x 的不等式,解出即可;(2)通过讨论a 的范围,求出()f x 的最小值,得g (a )的解析式即可.【详解】(1)当0a =时,220()(1)||20x x f x x x x x x x ⎧=+-=⎨-<⎩, 因为f (x )>3,03x x ⎧∴⎨>⎩或203230x x x x <⎧∴>⎨-->⎩或1x <-. 所以不等式的解集为(,1)(3,)-∞-+∞. (2)由222(1)()(1)||(1)x a x a x a f x x x x a a x a x a ⎧-++<=+--=⎨+-⎩由22a a <+得2a <.①当1a <-时:122,4a a a a a +<<+>,所以函数在(2,)a a 上单调递减, 又10a +<,所以函数在(,2)a a +上单调递减, 所以函数()f x 在R 上单调递减,则g (a )2()(2)(1)(2)22min f x f a a a a a a ==+=++-=++②当10a -<时:此时22a a a <+,14a a +>,所以函数在(2,)a a 上单调递减, 又10a +≥,所以函数在(,2)a a +上单调递增,所以函数()f x 在[2x a ∈,]a 上单调递减,在[x a ∈,2]a +上单调递增,则2()()()(1)min g a f x f a a a a a ===+-=③当02a <时:此时22a a a <+,因为10a +>,所以函数()f x 在[2x a ∈,2]a +上单调递增,则2()()(2)(1)22min g a f x f a a a a a a ===+-=+综上()222221{102,02a a a g a a a a a a ++<-=-<+<.【点睛】关键点睛:解答本题的关键是通过图象分析出每一种情况下分段函数的单调性,再利用函数的单调性得到函数的最小值.26.(1)0;(2)1a ≤-.【分析】(1)由()f x 为偶函数有()(11)f f -=即可求a 的值;(2)由绝对值不等式及函数不等式在区间有解,讨论2,02x x ><≤,应用参变分离将问题转化为不等式能成立问题即可求a 的取值范围.【详解】(1)因为()f x 为偶函数,则有()(11)f f -=,即1616a a -=+,解得0a =. (2)①当2x >时,()16f x x ≤-有解,即2216x ax x +≤-有解,1621a x x≤--+,所以max 16211a x x ⎛⎫≤--+=- ⎪⎝⎭当且仅当x = ②当02x <≤时,()16f x x ≤-有解,即1616ax x x+≤-有解, 216161a x x≤--+,所以2max 1616111a x x ⎛⎫≤--+=- ⎪⎝⎭当2x =时等号成立; 综上,实数a的取值范围是1a ≤-.【点睛】结论点睛:本题考查不等式的有解问题,可按如下规则转化:一般地,将函数不等式转化为()a f x ≤或()a f x ≥在区间能成立.(1)()a f x ≤即在相应区间内仅需()max a f x ≤即可.(2)()a f x ≥即在相应区间内仅需()min a f x ≥即可.。
北师大版九年级数学下《第二章二次函数》单元测试题含答案
A .y 轴B .直线 x =C .直线 x =2D .直线 x = 4.一次函数 y =ax +b 和反比例函数 y = 在同一平面直角坐标系中的图象如图 8-Z -1第二章 二次函数 .一、选择题(本大题共 7 小题,共 28 分).1.已知抛物线 y =ax 2+bx +c 的开口向下,顶点坐标为(2,-3),那么该抛物线有( )A .最小值-3B .最大值-3C .最小值 2D .最大值 2..2.已知二次函数 y =ax 2+bx +c 的 x 与 y 的部分对应值如下表..:xy-15 01 1-1 2-131则该二次函数图象的对称轴为().52323.若二次函数 y =(m -1)x 2-mx -m 2+1 的图象过原点,则 m 的值为()A .±1B .0C .1D .-1图 8-Z -1cx所示,则二次函数 y =ax 2+bx +c 的图象大致为()图 8-Z -25.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为 x ,该药品原价为 18 元,降价后的价格为 y 元,则 y 与 x 之间的函数关系式为()A .y =36(1-x )B .y =36(1+x )为直线 x =-1,给出四个结论:①b 2>4ac ;②2a +b =0;③a +b +c >0;④若点 B ⎝-2,y 1⎭, C ⎝-2,y 2⎭为函数图象上的两点,则 y 1<y 2.其中正确的是(物线的表达式为 y =- x 2+b ,则隧道底部宽 AB 为________m.C .y =18(1-x )2D .y =18(1+x 2)图 8-Z -36.如图 8-Z -3 是二次函数 y =ax 2+bx +c 图象的一部分,图象过点(-3,0),对称轴⎛ 5 ⎫⎛ 1 ⎫A .②④B .①④C .①③D .②③)图 8-Z -47.如图 8-Z -4,△Rt OAB 的顶点 A (-2,4)在抛物线 y =ax 2 上,将 △Rt OAB 绕点 O顺时针旋转 90°△,得到 OCD ,边 CD 与该抛物线交于点 P ,则点 P 的坐标为()A .( 2, 2)B .(2,2)C .( 2,2)D .(2, 2)二、填空题(本大题共 5 小题,共 25 分)8.函数 y =(x -2)(3-x )取得最大值时,x =________.9.将抛物线 y =2(x -1)2+2 向左平移 3 个单位,再向下平移 4 个单位长度,那么得到的抛物线的表达式为____________.10.如图 8-Z -5,某公路隧道横截面为抛物线,其最大高度为 8 m ,以隧道底部宽 AB所在直线为 x 轴,以 AB 垂直平分线为 y 轴建立如图 2-Z -7 所示的平面直角坐标系,若抛1 2图8-Z-5图8-Z-6 11.如图8-Z-6所示,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为-2,现将抛物线向右平移2个单位长度,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是________.(写出所有正确结论的序号)①b>0;②a-b+c<0;③阴影部分的面积为4;④若c=-1,则b2=4a.12.二次函数y=x2-2x-3的图象如图8-Z-7所示,若线段AB在x轴上,且AB为23个单位长度,以AB为边作等边三角形ABC,使点C落在该函数y轴右侧的图象上,则点C的坐标为________________.图8-Z-7三、解答题(共47分)13.(14分)如图8-Z-8,已知矩形ABCD的周长为12,E,F,G,H为矩形ABCD 的各边中点,若AB=x,四边形EFGH的面积为y.(1)请直接写出y与x之间的函数关系式;(2)根据(1)中的函数关系式,计算当x为何值时,y最大,并求出最大值.图8-Z-814.(16分)大学毕业生小王响应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元,每月要少卖10件;售价每下降1元,每月要多卖20件.为了获得更大的利润,现将饰品售价调整为(60+x)元/件(x>0即售价上涨,x<0即售价下降),每月饰品销量为y件,月利润为w元.(1)直接写出y与x之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元,应如何控制销售价格?15.(17分)如图8-Z-9,在平面直角坐标系中,二次函数的图象交坐标轴于A(-1,0),B(4,0),C(0,-4)三点,P是直线BC下方抛物线上一动点.(1)求这个二次函数的表达式.(2)是否存在点P△,使POC是以OC为底边的等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.(3)动点P运动到什么位置时△,PBC的面积最大,求出此时点P的坐标和△PBC的最大面积.图8-Z-9)= .故选 D.轴为直线 x =-1,则- =-1,即 2a -b =0,所以②错误;③因为抛物线经过点 A (-3,以③错误;④点 B ⎝-2,y 1⎭在对称轴左侧 1.5 个单位长度处,点 C ⎝-2,y 2⎭在对称轴右侧7.C8. 10.8 [解析] 由题意可知抛物线 y =- x 2+b 的顶点坐标为(0,8),∴b =8,∴抛物线的函数表达式为 y =- x 2+8.当 y =0 时,0=- x 2+8,解得 x =4 或-4,∴x =- >0,详解详析1.B [解析] 因为抛物线开口向下,其顶点坐标为(2,-3),所以该抛物线有最大值-3.故选 B.2.D [解析] 观察表格可知,点(0,1)与点(3,1)、点(1,-1)与点(2,-1)的纵坐标分别相等,所以可知它们分别关于图象的对称轴对称,进而可求得对称轴为直线 x = 0+3 2(或1+2 32 23.D 4.C 5.C6.B [解析]①由抛物线与 x 轴有两个交点,得 b 2-4ac >0,所以①正确;②因为对称b2a0),对称轴为直线 x =-1,则抛物线与 x 轴的另一个交点为(1,0),于是有 a +b +c =0,所⎛ 5 ⎫ ⎛ 1 ⎫0.5 个单位长度处,找出相应的点,显然 y 1<y 2,所以④正确.故选 B.5 29.y =2(x +2)2-2(或 y =2x 2+8x +6)1 21 2 1 2∴水面宽 AB =4+4=8(m).故答案为 8.11.③④ [解析] 由题图知,抛物线开口向上, ∴a >0.又对称轴在 y 轴的右侧,b2a∴b <0,①错误.当 x =-1 时,抛物线在 x 轴上方,∴y =a -b +c >0,②错误.设平移后的抛物线顶点为 E ,与 x 轴右边的交点为 D ,则阴影部分的面积与平行四边形 CEDB 的面积相同.∵平移了 2 个单位长度,点 C 的纵坐标是-2,∴S =2×2=4,③正确.由抛物线的顶∴BC = ×12-x =6-x .∴y = x (6-x )=- x 2+3x ,即 y =- x 2+3x .(2)y =- x 2+3x =- (x -3)2+4.5, ∵a =- <0,∴ =-2.⎩点坐标公式,得 y C =-2,4ac -b 2 4a∵c =-1,解得 b 2=4a ,④正确.故填③④.12.(1+ 7,3)或(2,-3)13.解:(1)∵矩形 ABCD 的周长为 12,AB =x ,12∵E ,F ,G ,H 为矩形 ABCD 的各边中点,1 12 21 21 12 2 12∴y 有最大值,当 x =3 时,y 有最大值,为 4.5. 14.解:(1)由题意可得:⎧⎪300-10x (0≤x ≤30), y =⎨⎪300-20x (-20≤x <0).(2)由题意可得:⎧(20+x )(300-10x )(0≤x ≤30), w =⎨⎩(20+x )(300-20x )(-20≤x <0),化简得:⎧-10x 2+100x +6000(0≤x ≤30), w =⎨⎩-20x 2-100x +6000(-20≤x <0),⎪⎩ -20(x + )2+6125(-20≤x <0). 即 6000=-20(x + )2+6125,6000=-10(x -5)2+6250,⎧⎪-10(x -5)2+6250(0≤x ≤30),即 w =⎨ 5 2由题意可知 x 应取整数,所以当 x =-2 或 x =-3 时,w <6125<6250,故当销售价格为每件 65 元时,月利润最大,最大月利润为 6250 元.(3)由题意得 w ≥6000,如图,令 w =6000,52解得 x 1=-5,x 2=0,x 3=10,∴-5≤x ≤10,故将销售价格控制在 55 元到 70 元之间(含 55 元和 70 元),才能使每月利润不少于 6000元.15.解:(1)设这个二次函数的表达式为 y =ax 2+bx +c ,⎧a -b +c =0,⎧a =1,把 A ,B ,C 三点的坐标分别代入可得⎨16a +4b +c =0,解得⎨b =-3,⎩c =-4,⎩c =-4,∴这个二次函数的表达式为 y =x 2-3x -4.(2)作 OC 的垂直平分线 DP ,交 OC 于点 D ,交 BC 下方抛物线于点 P ,连接 OP ,CP ,如图①,∴PO =PC ,此时点 P 即为满足条件的点.∵C (0,-4), ∴D (0,-2),∴点 P 的纵坐标为-2.当 y =-2 时,即 x 2-3x -4=-2,(不合题意,舍去),x 2=∴存在满足条件的点 P ,其坐标为( ,-2).3- 17 3+ 17解得 x 1= 2 2.3+ 17 2(3)∵点 P 在抛物线上,∴可设 P (t ,t 2-3t -4).过点 P 作 PE ⊥x 轴于点 E ,交直线 BC 于点 F ,如图②, ∵B (4,0),C (0,-4),∴直线 BC 的函数表达式为 y =x -4, ∴F (t ,t -4),∴PF =(t -4)-(t 2-3t -4)=-t 2+4t ,1 1 1 1 1 ∴S △PBC =S △PFC +S △PFB =2PF · OE +2PF · BE =2PF ·(OE +BE )=2PF · OB =2(-t 2+4t )×4=-2(t -2)2+8,∴当 t =2 时,△S PBC 最大,且最大值为 8,此时 t 2-3t -4=-6,∴当点 P 的坐标为(2,-6)时△, PBC 的面积最大,最大面积为 8.。
高中第二章数学试题及答案
高中第二章数学试题及答案一、选择题(每题3分,共15分)1. 若函数f(x) = 2x^2 + 3x + 1,下列哪个选项是f(x)的对称轴?A. x = -1/4B. x = 1/4C. x = -3/2D. x = 3/22. 已知等差数列{a_n}的首项a_1 = 2,公差d = 3,求a_5的值。
A. 17B. 14C. 11D. 83. 若复数z满足|z| = 1,且z的实部为1/2,则z的虚部的值是多少?A. √3/2B. -√3/2C. √3/2iD. -√3/2i4. 已知直线l的方程为y = 2x + 3,点P(1, 2)是否在直线l上?A. 是B. 否5. 函数y = x^3 - 3x^2 + 2在区间[0, 2]上的最大值是多少?A. 0B. 1C. 2D. 3二、填空题(每题4分,共20分)6. 计算等比数列1, 2, 4, ...的前四项和S_4。
7. 已知圆的方程为(x - 2)^2 + (y + 1)^2 = 9,求该圆的半径。
8. 若函数f(x) = ax^2 + bx + c在x = 1处取得极值,且f(1) = 0,则a的值是多少?9. 计算双曲线x^2/4 - y^2/9 = 1的渐近线方程。
10. 已知向量a = (2, -1),b = (1, 3),求向量a与向量b的数量积。
三、解答题(每题10分,共50分)11. 证明:若a, b, c是等差数列,则a^2 + c^2 = 2b^2。
12. 已知函数f(x) = x^2 - 4x + m,求证:对于任意x ∈ R,都有f(x) ≥ m - 4。
13. 已知抛物线y = x^2 + 2x - 3与x轴交于点A和点B,求线段AB的长度。
14. 已知三角形ABC的顶点坐标分别为A(-1, 2),B(2, 3),C(3, -1),求三角形ABC的面积。
15. 已知函数f(x) = x^3 - 6x^2 + 9x + a,求证:对于任意x ∈ R,都有f(x) ≥ 2a + 3。
高等数学第二章参考答案
第二章参考答案习题2.11.解:0000()()()limt t t t t tθθω∆→+∆-=∆2.解:0(1)(1)(1)lim x f x f f x ∆→+∆-'=∆ 202(1)2=lim x f x x∆→+∆-∆0lim (4)4x x ∆→=+∆= 3.证明:()f x 是偶函数。
x R ∴∀∈ 有()()f x f x -=()()()limx f x x f x f x x ∆→-+∆--'∴-=∆0()()lim x f x x f x x ∆→-∆-=∆ '0(())()lim ()x f x x f x f x x∆→+-∆-==-∆ 故()f x '是R 上的奇函数4、解:3()s t t =2()()3v t s t t '∴== 2()t s ∴= 时,22(2)312t v t===5、解:x y e = x y e '∴= 故在(0,1) 处(0,1)1y '= ∴过(0,1)切线方程为1y x -=,即1y x =+ ,过(0,1)直线方程为1y x -=,即1y x =-+6、解20()0x x f x x x -≤⎧=⎨≥⎩000()()(0)lim lim 1x x f x f x xf xx ---∆→∆→∆--∆'∴===-∆∆ 2000()()(0)lim lim 0x x f x f x x f x x+++∆→∆→∆--∆'===∆∆(0)(0)f f +-''≠ (0)f '∴ 不存在 7、21sin 0()0x x f x xx ⎧≠⎪=⎨⎪=⎩∴ 当0x ≠时,21()sin f x x x=,函数连续又201lim sin 0(0)x x f x →== 0x ∴=时,()f x 连续()f x ∴在(,)-∞+∞连续又0x ≠时,2111()(sin )2sin cos f x x x x x x''==-0x =时,2001sin()(0)(0)lim lim x x x f x f x f x x∆→∆→∆∆-'==∆∆ 01lim sin 0x x x ∆→=∆=∆ 112sin cos0()00x x f x x xx ⎧-≠⎪'∴=⎨⎪=⎩8、证明:()f x 在0x x =点可导0000()()()limh f x h f x f x h→+-'∴=000()()limh f x h f x h hαβ→+--∴00000()()()()lim h f x h f x f x h f x h h αβ→+---⎡⎤=-⎢⎥⎣⎦00000()()()()lim h f x h f x f x h f x h h αβααβ→⎡+---⎤=+⎢⎥⎣⎦ 000()()()()f x f x f x αβαβ'''=+=+习题2.21、解:(1)3()f x x =22()3,(21)3(21)f x x f x x ''∴=+=+(2)由3(21)f x x +=,另1212t t x x -=+⇒=3311()()(1)28t f t t -∴==- 31()(1)8f x x ∴=-222333()(1),'(21)(211)882f x x f x x x '∴=-+=+-=2.解:(1)532225(3)232y x x x x x ''=+-=+-(2)22()()2()()()a x a x a x ay a x a x a x --+---''===+++ (3)2221((arccos )ln )2(arccos )ln (arccos )y x x x x x x x x x x ''=⋅=⋅+⋅2(arccos )ln arccos y x x x x x x '=⋅+⋅ (4)122[(27)(13)]y x x ''=++112227(13)+6(27)2x x x x -=++ 3.解:(1)211(ln tan )sec tan sin cos y x x x x x''==⋅= (2)22223311(2)(21)(21)(2)33y x x x x x x --''==++⋅+=+++(3)22221111(1)(1)1(arctan)()1111(1)11()1()11x x x x y x x x x x x x x ++--+'''==⋅=⋅=-++---+++--(4)y ''=111222{[()]}x x x '=++ 11111222221[([()]2x x x x -'=++⋅+ 111111222222111[()][1()(1)]222x x x x xx ---=++++⋅+111222111()[1()(1)]222x x x ---=+⋅+1()]=+4解:22sin y x x =+2cos 2y x x '∴=+00||2cos 2|2x x y x x =='∴=+=∴曲线22sin y x x =+在(0,0)点切线方程为:2y x = 法线方程为:12y x =- 5 证明2x x e e shx -+=2x xe e chx -+= ()()22x x x xe e e e chx shx --+-''∴===()()22x x x xe e e e shx chx ---+''===6解:21,6()1,0a x f x x bx x +<⎧=⎨++≥⎩在0x =点可得,(0)(0)f f +-∴=且(0)(0)f f +-''=又2(0)lim ()lim(1)1(0)x x f f x x bx f +++→→==++== 0(0)lim ()lim(1)1x x f f x a a ---→→==+=+, 110a a ∴+=⇒=而2000(0)(0)11(0)lim lim =lim (+)x x x f x f x b x f x b b x x++++∆→∆→∆→+∆-∆+∆+-'==∆=∆∆0(0)(0)11(0)lim lim =0x x f x f a f x x---∆→∆→+∆-+-'==∆∆ 0b a ∴==7.解:()f x 在0x 点可导,0()=0f x ,()g x 在0x 点连续, 000000()()()()limlim x x f x x f x f x x f x x x∆→∆→+∆-+∆'∴==∆∆00lim ()()x x g x g x →=,000000()()()()[()()]lim x x x f x x g x x f x g x f x g x x =∆→+∆+∆-'∴=∆ xx x g x x f x ∆∆+∆+=→∆)()(lim 000 )()()(lim 0000x x g xx f x x f x ∆+⋅∆-∆+=→∆ )(lim )()(lim 00000x x g xx f x x f x x ∆+⋅∆-∆+=→∆→∆)()(00x g x f '=习题2.31.解(1)xx x x e x x e x xe e x y -----=-='=')2(2)(222x x x e x x e x e x x y ------='-='')2()22(])2[(22 )222(2x x x e x +--=- x e x x -+-=)24(2(2)12122)(--='='x x e e y ,12124)2(--='=''x x e e y (3)22211)1(arctan 2]arctan )1[(xx x x x x y +++='+='1arctan 2+=x x 212arctan 2)1arctan 2(x xx x x y ++='+='' (4)222211)1221(11])1[ln(xxx xx x x y +=++++='++='232222)1(12121)11(-+-=+⋅+-='+=''x x x xx x y2.解 56)10(6)()10()(+='∴+=x x f x x f34)10(120)()10(30)(+='''+=''x x f x x f 101212120)2(43⨯=⨯='''∴f3.证明:wt A s sin = wt Aw dt ds cos =∴wt Aw dtsd a sin 222-==∴ (运动物体加速度) 0sin sin 22222=⋅+-=+∴wt A w wt Aw s w dtsd 4.)(ln x f y = )(ln 11)(ln x f xx x f y '='='∴ x x f x x f x x f x y 1)(ln 1)(ln 1])(ln 1[2''+'-=''='')](ln )(ln [1)(ln 1)(ln 1222x f x f xx f x x f x '+''=''+'-=})](ln )(ln [1{2''-''=∴x f x f x y]1)(l n 1)(l n[1)](ln )(ln [223xx f x x f x x f x f x ''-'''+'-''-=)](ln )(ln [1)](ln )(ln [233x f x f xx f x f x ''-'''+'-''-= )](ln )(ln )(ln 2)(ln 2[13x f x f x f x f x ''-'''+'+''-=)](ln 3)(ln )(ln 2[13x f x f x f x''-'''+'=5.2)21(111-='∴-=y x y 34)1(2)1()1)(1(2x x x y -=----=''.....)1(23)1()1()1(32462x x x y -⋅=---⋅-='''设1)()1(!+-=k k x k y则222)1()1()!1()1()]1([)1(!+++-+=-+---=k k k k x k x k x k y1)()1(!+-=∴n n x n y6、解:22(1)x y x e =+(8)2212(7)22(6)88(1)()2+C ()2x x x y e x C e x e ∴=++⋅⋅221126287(1)2222x x e x xe e ⨯=+++⋅⋅ 22119(1272)x e x x =+++⋅22(20483585)x x x e =++7解:()21sin ,00,0x x f x xx ⎧≠⎪=⎨⎪=⎩ 00x x ≠= 0x ∴≠时,2111()(sin )2sin cos f x x x x x x''==-0x =时:()2001sin()(0)limlim 0x x x f x f x f x xx∆→∆→∆∆-∆===∆∆()000112sincos ()(0)111limlim lim(2sin cos )x x x x f x f x x f x x xx x x x∆→→→∆-∆-∆∆===∆-∆∆∆∆∆112sin cos ,0()0,0x x f x x xx ⎧-≠⎪'∴=⎨⎪=⎩00112sincos ()(0)111(0)limlim lim(2sin cos )x x x x f x f x x f xx x x x→→→∆-∆-∆∆'===-∆∆∆∆∆故(0)f '不存在。
教材全解北师大版九年级数学下册第二章检测题及答案解析
第二章二次函数检测题【本检测题满分:120分,时间:120分钟】一、选择题(每小题3分,共30分)1.已知二次函数y=a(x+1)2b(a≠0)有最小值1,则a、b的大小关系为()A.a>bB.a<bC.a=bD.不能确定2.(2019·成都中考)将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为()A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x-1)2+4D.y=(x-1)2+23.(河南中考)在平面直角坐标系中,将抛物线y=x24先向右平移2个单位长度,再向上平移2个单位长度,得到的抛物线的表达式是()A.y=(x+2)2+2B.y=(x2)2 2C.y=(x2)2+2D.y=(x+2)2 24.一次函数与二次函数在同一平面直角坐标系中的图象可能是()5.已知抛物线的顶点坐标是,则和的值分别是()A.2,4B.C.2,D.,06.对于函数,使得随的增大而增大的的取值范围是()A.x>-1B.x>0C.x<0D.x<-17.(2019·兰州中考)二次函数y=a+bx+c的图象如图所示,点C在y轴的正半轴上,且OA=OC,则()A.ac+1=bB.ab+1=cC.bc+1=aD.以上都不是8.(2019·陕西中考)下列关于二次函数y=a-2ax+1(a>1)的图象与x轴交点的判断,正确的是()第7题图A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧9. (2019·浙江金华中考)图②是图①中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=-+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴.若OA=10米,则桥面离水面的高度AC为( )①②第9题图A.16米B.米C.16米D.米10.(重庆中考)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=.下列结论中,正确的是()A.abc>0B.a+b=0C.2b+c>0D.4a+c<2b二、填空题(每小题3分,共24分)11.(苏州中考)已知点A(x 1,y1)、B(x2,y2)在二次函数y=(x1)2+1的图象上,若x1>x2>1,则y1 y2(填“>”“=”或“<”).12.(2019·安徽中考)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为y= .13(2019·黑龙江绥化中考)把二次函数y=的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的表达式是________.14.(2019·杭州中考)设抛物线y=ax2+bx+c(a≠0)过A(0,2),B(4,3),C三点,其中点C在直线x=2上,且点C到抛物线对称轴的距离等于1,则抛物线的函数表达式为.15.(湖北襄阳中考)某一型号飞机着陆后滑行的距离y(单位:m)与滑行时间x(单位:s)之间的函数表达式是y=60x 1.5x2,该型号飞机着陆后需滑行m才能停下来.16.设三点依次分别是抛物线与轴的交点以及与轴的两个交点,则△的面积是.17.(河南中考)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点.若点A的坐标为(-2,0),抛物线的对称轴为直线x=2,则线段AB的长为.18.有一个二次函数的图象,三位同学分别说出了它的一些特点:甲:对称轴为直线;乙:与轴两个交点的横坐标都是整数;丙:与轴交点的纵坐标也是整数.请你写出满足上述全部特点的一个二次函数表达式__________________.三、解答题(共66分)19.(7分)把抛物线向左平移2个单位长度,同时向下平移1个单位长度后,恰好与抛物线重合.请求出的值,并画出函数的示意图.20.(7分)炮弹的运行轨道若不计空气阻力是一条抛物线.现测得我军大炮A与射击目标B 的水平距离为600 m,炮弹运行的最大高度为1 200 m.(1)求此抛物线的表达式.(2)若在A、B之间距离A点500 m处有一高350 m的障碍物,计算炮弹能否越过障碍物.21.(8分)某商店进行促销活动,如果将进价为8元/件的商品按每件10元出售,每天可销售100件,现采用提高售价,减少进货量的办法增加利润,已知这种商品的单价每涨1元,其销售量就要减少10件,问将售价定为多少元/件时,才能使每天所赚的利润最大?并求出最大利润.22.(8分)已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.(1)求二次函数的表达式;(2)若一次函数y=kx+6(k≠0)的图象与二次函数的图象都经过点A(3,m),求m和k的值.23.(8分)(哈尔滨中考)小磊要制作一个三角形的钢架模型,在这个三角形中,长度为x(单位:cm)的边与这条边上的高之和为40 cm,这个三角形的面积S(单位:cm2)随x(单位:cm)的变化而变化.(1)请直接写出S与x之间的函数表达式(不要求写出自变量x的取值范围).(2)当x是多少时,这个三角形面积S最大?最大面积是多少?(参考公式:当x=时,二次函数y=ax2+bx+c(a≠0)有最小(大)值24.(8分)如图所示,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE、ED、DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的表达式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h (单位:米)随时间t (单位:时)的变化满足函数关系h =9)2+8(0≤t ≤40),且当水面到顶点C 的距离不大于5米时,需禁止船只通行,请通过计算说明在这一时段内,需多少小时禁止船只通行?25.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28 m 长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,BC 两边),设AB =x m.(1)若花园的面积为192 m 2,求x 的值;(2)若在P 处有一棵树与墙CD ,AD 的距离分别是15 m 和6 m ,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S 的最大值.26.(10分)已知二次函数y =x 2-2mx +m 2+3(m 是常数).(1)求证:不论m 为何值,该函数的图象与x 轴没有公共点.(2)把该函数的图象沿y 轴向下平移多少个单位长度后,得到的函数的图象与x 轴只有一个公共点?第二章 二次函数检测题参考答案一、选择题1. A 解析:∵ 二次函数y =a (x +1)2b (a ≠0)有最小值1,∴ a >0且x =1时,b =1.∴ a >0,b = 1.∴ a >b .2.D 解析:y =x 2-2x +3=x 2-2x +1-1+3=(x -1)2+2.3.B 解析:根据平移规律“左加右减”“上加下减”,将抛物线y =x 2-4先向右平移2个单位长度得y =(x -2)2-4,再向上平移2个单位长度得y =(x -2)2-4+2=(x -2)2-2.4.C 解析:当时,二次函数图象开口向下,一次函数图象y 随x 的增大而减小,此时C ,D 符合.又由二次函数图象的对称轴在轴左侧, 所以,即,只有C 符合.同理可讨论当时的情况. 5.B 解析: 抛物线的顶点坐标是(), 所以,解得. 6.D 解析:由于函数图象开口向下,所以在对称轴左侧随的增大而增大,由对称轴为直线,知的取值范围是x <-1.7. A 解析:因为OA =OC ,点C (0,c ),所以点A (-c ,0),即当x = -c 时,y =0,则20ac bc c -+=,所以a ,b ,c 满足的关系式是ac -b +1=0,即ac +1=b .8.D 解析:当y =0时,得到0122=+-ax ax (a >1),则22(2)444Δa a a a =--=-=4a (a -1),因为a >1,所以4a (a -1)>0,即Δ>0,所以方程0122=+-ax ax 有两个不相等的实数根,即二次函数122+-=ax ax y 的图象与x 轴有两个交点,设与x 轴两个交点的横坐标为21,x x ,由题意,得a x x 121=⋅>0,221=+x x >0,所以21,x x 同号,且均为正数,所以这两个交点在y 轴的右侧.所以选项D 正确.9. B 解析:∵ OA =10米,∴ 点C 的横坐标为10.把x =10代入y =-+16得,y =,故选B.10. D 解析:由图象知a >0,c <0,又对称轴x ==<0, ∴ b >0,∴ abc <0.又=,∴ a =b ,a +b ≠0.∵ a =b ,∴ y =ax 2+bx +c =bx 2+bx +c .由图象知,当x =1时,y =2b +c <0,故选项A,B,C 均错误.∵ 2b +c <0,∴ 4a 2b +c <0.∴ 4a +c <2b ,D 选项正确.二、填空题11.> 解析:∵ a =1>0,对称轴为直线x =1,∴ 当x >1时,y 随x 的增大而增大.故由x 1>x 2>1可得y 1>y 2.12. a (1+x )2 解析:二月份新产品的研发资金为a (1+x )元,因为每月新产品的研发资金的增长率都相等,所以三月份新产品的研发资金为a (1+x )(1+x )元,即a (1+x )2元.13.224y x x =+或22(1)2y x =+-(答出这两种形式中任意一种均得分) 解析:根据抛物线的平移规律“左加右减,上加下减”可得,平移后的抛物线的表达式为222(1)224y x x x =+-=+.14.y =18x 2-14x +2或y =-18x 2+34x +2 解析:由题意知抛物线的对称轴为直线x =1或x =3. (1)当对称轴为直线x =1时,b =-2a ,抛物线经过A (0,2),B (4,3),∴ 2,3168,c a a c =⎧⎨=-+⎩解得1,82.a c ⎧=⎪⎨⎪=⎩∴ y =18x 2-14x +2. (2)当对称轴为直线x =3时,b =-6a ,抛物线经过A (0,2), B (4,3),∴ 2,31624,c a a c =⎧⎨=-+⎩解得1,82.a c ⎧=-⎪⎨⎪=⎩∴ y =-18x 2+34x +2. ∴ 抛物线的函数表达式为y =18x 2-14x +2或y =-18x 2+34x +2. 15. 600 解析:y =60x 1.5x 2= 1.5(x 20)2+600,当x =20时,y 最大值=600,则该型号飞机着陆时需滑行600 m 才能停下来.16. 解析:令,令,得,所以, 所以△的面积是.17. 8 解析:因为点A 到对称轴的距离为4,且抛物线为轴对称图形,所以AB =2×4=8. 18.221818117777y x x y x x =-+=-+-或 解析:本题答案不唯一,只要符合题意即可,如2218181 1.7777y x x y x x =-+=-+-或 三、解答题 19.解:将整理,得.因为抛物线向左平移2个单位长度,再向下平移1个单位长度,得,所以将向右平移2个单位长度,再向上平移1个单位长度,即得,故,所以.示意图如图所示.20.解:(1)建立平面直角坐标系,设点A 为原点,则抛物线过点(0,0),(600,0),从而抛物线的对称轴为直线.又抛物线的最高点的纵坐标为1 200,则其顶点坐标为(300,1 200),所以设抛物线的表达式为,将(0,0)代入所设表达式,得, 所以抛物线的表达式为.(2)将代入表达式,得, 所以炮弹能越过障碍物.21.分析:日利润=销售量×每件利润,每件利润为元,销售量为[ 件,据此得表达式. 解:设售价定为元/件.由题意得,,∵ ,∴ 当时,有最大值360.答:将售价定为14元/件时,才能使每天所赚的利润最大,最大利润是360元.22.分析:(1)根据抛物线的对称轴为直线x ==1,列方程求t 的值,确定二次函数表达式.(2)把x =3,y =m 代入二次函数表达式中求出m 的值,再代入y =kx +6中求出k 的值. 解:(1)由题意可知二次函数图象的对称轴为直线x =1,则=1,∴t=.∴y=x2+x+.(2)∵二次函数图象必经过A点,∴m=×()2+(3)+= 6.又一次函数y=kx+6的图象经过A点,∴3k+6=6,∴k=4.23.分析:(1)由三角形面积公式S=得S与x之间的表达式为S=·x(40x)=x2+20x.(2)利用二次函数的性质求三角形面积的最大值.解:(1)S=x2+20x.(2)方法1:∵a=<0,∴S有最大值.∴当x===20时,S有最大值为==200.∴当x为20 cm时,三角形面积最大,最大面积是200 cm2.方法2:∵a=<0,∴S有最大值.∴当x===20时,S有最大值为S=×202+20×20=200.∴当x为20 cm时,三角形面积最大,最大面积是200 cm2..点拨:最值问题往往转化为求二次函数的最值.24.分析:(1)设抛物线的表达式为y=ax2+b(a≠0),将(0,11)和(8,8)代入即可求出a,b;(2)令h=6,解方程(t19)2+8=6得t 1,t2,所以当h≥6时,禁止船只通行的时间为|t2-t1|.解:(1)依题意可得顶点C的坐标为(0,11),设抛物线表达式为y=ax2+11.由抛物线的对称性可得B(8,8),∴8=64a+11,解得a=,∴抛物线表达式为y=x2+11.(2)画出h=(t-19)2+8(0≤t≤40)的图象如图所示.当水面到顶点C的距离不大于5米时,h≥6,当h=6时,解得t1=3,t2=35.由图象的变化趋势得,禁止船只通行的时间为|t2-t1|=32(小时).答:禁止船只通行的时间为32小时.点拨:(2)中求出符合题意的h的取值范围是解题的关键,本题考查了二次函数在实际问题中的应用.25.分析:(1)根据矩形的面积公式列出方程x(28-x)=192,解这个方程求出x的值即可.(2)列出S与x的二次函数表达式,根据二次函数的性质求S的最大值.解:(1)由AB=x m,得BC=(28-x)m,根据题意,得x(28-x)=192,解得x1=12,x2=16.答:若花园的面积为192 m2,则x的值为12或16.(2)S=x(28-x)=-x2+28x=-(x-14)2+196,因为x≥6,28-x≥15,所以6≤x≤13.因为a=-1<0,所以当6≤x≤13时,S随x的增大而增大,所以当x=13时,S有最大值195 m2.点拨:求实际问题中的最大值或最小值时,一般应该列出函数表达式,根据函数的性质求解.在求最大值或最小值时,应注意自变量的取值范围.26.分析:(1)求出根的判别式,根据根的判别式的符号,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质进行解答.(1)证法1:因为(-2m)2-4(m2+3)=-12<0,所以方程x2-2mx+m2+3=0没有实数根,所以不论m为何值,函数y=x2-2mx+m2+3的图象与x轴没有公共点.证法2:因为a=1>0,所以该函数的图象开口向上.又因为y=x2-2mx+m2+3=(x-m)2+3≥3,所以该函数的图象在x轴的上方.所以不论m为何值,该函数的图象与x轴没有公共点.(2)解:y=x2-2mx+m2+3=(x-m)2+3,把函数y=(x-m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x-m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点.所以把函数y=x2-2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.点拨:二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点与一元二次方程ax2+bx+c=0的根之间的关系.Δ=b2-4ac决定抛物线与x轴的交点个数,当Δ=b2-4ac>0时,抛物线与x轴有2个交点;当Δ=b2-4ac=0时,抛物线与x轴有1个交点;当Δ=b2-4ac<0时,抛物线与x轴没有交点.。
人教B版高中数学必修一学第二章函数的单调性讲解与例题
2.1.3 函数的单调性1.函数单调性的概念一般地,设函数y =f (x )的定义域为A ,区间M ⊆A . 如果取区间M 中的任意两个值x 1,x 2,改变量Δx =x 2-x 1>0,则当Δy =f (x 2)-f (x 1)>0时,就称函数y =f (x )在区间M 上是增函数,如下图所示.当Δy =f (x 2)-f (x 1)<0时,就称函数y =f (x )在区间M 上是减函数,如下图所示.如果一个函数在某个区间M 上是增函数或是减函数,就说这个函数在这个区间M 上具有单调性(区间M 称为单调区间).谈重点 对函数单调性的理解1.函数的单调性是对定义域内某个区间而言的,即单调区间是定义域的子集.如函数y =x 2的定义域为R ,当x ∈[0,+∞)时是增函数,当x ∈(-∞,0)时是减函数.2.函数单调性定义中的x 1,x 2有三个特征:一是任意性,即“任意取x 1,x 2”,“任意”二字决不能丢掉;二是有大小,即x 1<x 2(x 1>x 2);三是同属一个单调区间,三者缺一不可.3.单调性是一个“区间”概念,如果一个函数在定义域的几个区间上都是增(减)函数,但不能说这个函数在其定义域上是增(减)函数.如函数f (x )=1x在(-∞,0)上是减函数,在(0,+∞)上也是减函数,但不能说f (x )=1x在(-∞,0)∪(0,+∞)上是减函数.因为当x 1=-1,x 2=1时有f (x 1)=-1<f (x 2)=1,不满足减函数的定义.4.单调区间端点的写法:对于单独的一个点,由于它的函数值是唯一确定的常数,没有增减性变化,所以不存在单调问题,因此在写此单调区间时,包括端点可以,不包括端点也可以,但对于某些无意义的点,单调区间就一定不包括这些点.【例1-1】下列说法不正确的有( )①函数y =x 2在(-∞,+∞)上具有单调性,且在(-∞,0)上是减函数;②函数1=y x的定义域为(-∞,0)∪(0,+∞),且在其上是减函数; ③函数y =kx +b (k ∈R )在(-∞,+∞)上一定具有单调性;④若x 1,x 2是f (x )的定义域A 上的两个值,当x 1>x 2时,有f (x 1)<f (x 2),则y =f (x )在A 上是增函数.A .1个B .2个C .3个D .4个解析:①函数y =x 2在(-∞,0]上是减函数,在[0,+∞)上是增函数,故其在(-∞,+∞)上不具有单调性;②(-∞,0)和(0,+∞)都是函数1=yx的单调区间,在这两个区间上都是减函数,但1=yx在整个定义域上不是减函数;③当k=0时,y=b,此时函数是一个常数函数,不具有单调性;④因为x1,x2是定义域上的两个定值,不具有任意性,所以不能由此判定函数的单调性.答案:D【例1-2】若对于任意实数x总有f(-x)=f(x),且f(x)在区间(-∞,-1]上是增函数,则( )A.32f⎛⎫-⎪⎝⎭<f(-1)<f(2)B.f(-1)<32f⎛⎫-⎪⎝⎭<f(2)C.f(2)<f(-1)<32 f⎛⎫-⎪⎝⎭D.f(2)<32f⎛⎫-⎪⎝⎭<f(-1)解析:∵函数f(x)对于任意实数x总有f(-x)=f(x),∴f(-2)=f(2).∵f(x)在区间(-∞,-1]上是增函数,且-2<32-<-1,∴f(-2)<32f⎛⎫-⎪⎝⎭<f(-1),即f(2)<32f⎛⎫-⎪⎝⎭<f(-1).答案:D【例1-3】定义在R上的函数f(x)是增函数,A(0,-1),B(3,1)是其图象上的两点,那么不等式|f(x+1)|<1的解集为( )A.(-1,2) B.[3,+∞)C.[2,+∞) D.(-∞,-1]∪(2,+∞)解析:∵A(0,-1),B(3,1)是函数f(x)图象上的两点,∴f(0)=-1,f(3)=1.由|f(x+1)|<1,得-1<f(x+1)<1,即f(0)<f(x+1)<f(3).∵f(x)是定义在R上的增函数,∴由单调函数的定义,可知0<x+1<3.∴-1<x<2.答案:A2.函数单调性的判断方法(1)图象法对于简单函数或可化为简单函数的函数,由于其图象较容易画出,因此,可利用图象的直观性来判断函数的单调性,写出函数的单调区间.【例2-1】写出下列函数的单调区间: (1)y =|2x -1|;(2)y =|x 2-3x +2|;(3)2=3xy x -+. 分析:本题画出各个函数的图象后,就可以得出相应的单调递增或单调递减区间了.图1解:(1)y =|2x -1|=121,,2121,<.2x x x x ⎧-≥⎪⎪⎨⎪-+⎪⎩ 如图1所示,函数的单调递增区间是1,2⎡⎫+∞⎪⎢⎣⎭;单调递减区间是1,2⎛⎤-∞ ⎥⎝⎦.(2)y =|x 2-3x +2|=2232,12321<<2.x x x x x x x ⎧-+≤≥⎨-(-+)⎩或,, 如图2所示,函数的单调递增区间是31,2⎡⎤⎢⎥⎣⎦和[2,+∞);单调递减区间是(-∞,1]和3,22⎡⎤⎢⎥⎣⎦.图2图3(3)255==1=1333xyx x x-⎛⎫---+⎪+++⎝⎭.如图3所示,函数的单调递减区间是(-∞,-3)和(-3,+∞).谈重点由图象得出函数的单调区间对于函数求单调区间,可以根据图象及结合基本函数的单调性来寻找的.对于有些函数,如果能够画出函数的图象,那么寻找单调区间就比较容易了,此类题目通常是与基本函数(如一次函数、二次函数、反比例函数以及后面学的指数函数与对数函数等)有关的函数.【例2-2】已知四个函数的图象如下图所示,其中在定义域内具有单调性的函数是( )解析:已知函数的图象判断其在定义域内的单调性,应从它的图象是上升的还是下降的来考虑.根据函数单调性的定义可知选项B中的函数在定义域内为增函数.答案:B谈重点单调函数的图象特征函数的单调性反映在图象上是在指定的区间(也可以是定义域)从左到右图象越来越高或越来越低(注意一个点也不能例外,如本例C中的函数只有一个点例外,受此点影响,该函数在整个定义域上不具有单调性),这是函数单调性在函数图象上的直观表现.【例2-3】画出函数f(x)=-x2+2|x|+3的图象,说出函数的单调区间,并指明在该区间上的单调性.分析:含有绝对值符号的函数解析式,可根据绝对值的意义,将其转化为分段函数,画出函数图象后,观察曲线在哪些区间上是上升的,在哪些区间上是下降的,即可确定函数的单调区间及单调性.解:2223,0, ()=23,<0.x x xf xx x x⎧-++≥⎨--+⎩当x≥0时,f(x)=-(x-1)2+4,其开口向下,对称轴为x=1,顶点坐标为(1,4),且f(3)=0,f(0)=3;当x<0时,f(x)=-(x+1)2+4,其开口向下,对称轴为x=-1,顶点坐标为(-1,4),且f(-3)=0.作出函数的图象(如图),由图看出,函数在(-∞,-1],[0,1]上是增函数,在[-1,0],[1,+∞)上是减函数.辨误区写函数的单调区间易忽略的问题1.如果一个函数有多个单调增(减)区间,这些增(减)区间应该用逗号隔开(即“局部”)或用“和”来表示,而不能用并集的符号“∪”连接;2.确定已知函数的单调区间要有整体观念,本着宁大勿小的原则,即求单调区间则应求“极大”区间.如虽然函数y=x2在区间[2,3],[5,9],[1,+∞)上都是递增的,但在写这个函数的递增区间时应写成[0,+∞),而不能写区间[0,+∞)的任一子区间;3.书写函数的单调区间时,区间端点的开或闭没有严格规定,若函数在区间端点处有定义且图象在该点处连续,则书写函数的单调区间时,既可以写成闭区间,也可以写成开区间;若函数在区间端点处没有定义,则书写函数的单调区间时必须写成开区间.(2)定义法如果要证明一个函数的单调性,目前只能严格按照定义进行,步骤如下:①取值:设x1,x2为给定区间内任意的两个值,且x1<x2(在证明函数的单调性时,由于x1,x2的取值具有任意性,它代表区间内的每一个数,所以,在证题时不能用特殊值来代替它们);②作差变形:作差Δy=f(x2)-f(x1),并通过因式分解、配方、有理化等方法,向有利于判断差值的符号的方向变形(作差后,尽量把差化成几个简单因式的乘积或几个完全平方式的和的形式,这是值得学习的解题技巧,在判断因式的正负号时,经常采用这种变形方法);③定号:确定差值Δy的符号,当符号不确定时,可考虑分类讨论(判断符号的依据是自变量的范围、假定的大小关系及符号的运算法则);④判断:根据定义作出结论(若Δx=x2-x1与Δy=f(x2)-f(x1)同号,则给定函数是增函数;异号,就是减函数).【例2-4】(1)证明函数()=f x在定义域上是减函数;(2)证明函数f(x)=x3+x在R上是增函数;(3)证明函数f(x)=x+1x在(0,1)上为减函数.分析:证明函数的单调性,关键是对函数在某一区间上任意两个函数值f(x1),f(x2)的差Δy=f(x2)-f(x1)进行合理的变形,尽量变为几个最简单的因式的乘积或几个完全平方式的和的形式.证明:(1)()=f x的定义域为[0,+∞),任取x1,x2∈[0,+∞),且x1<x2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=((--=<0,由单调函数的定义可知,函数()=f x在定义域[0,+∞)上是减函数.(2)设x1,x2∈R,且x1<x2,则Δx=x2-x1>0,Δy=f(x2)-f(x1)=(x23+x2)-(x13+x1)=(x23-x13)+(x2-x1)=(x 2-x 1)(x 22+x 1x 2+x 12)+(x 2-x 1)=(x 2-x 1)(x 22+x 1x 2+x 12+1)=222121113()1024x x x x x ⎡⎤⎛⎫-+++>⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由单调函数的定义可知,函数f (x )=x 3+x 在R 上是增函数.(3)设x 1,x 2∈(0,1),且x 1<x 2,则Δx =x 2-x 1>0,Δy =f (x 2)-f (x 1)=212111x x x x ⎛⎫⎛⎫+-+ ⎪ ⎪⎝⎭⎝⎭ =(x 2-x 1)+1212x x x x -=(x 2-x 1)1211x x ⎛⎫- ⎪⎝⎭=2112121x x x x x x (-)(-).∵0<x 1<x 2<1,∴x 1x 2-1<0,x 1x 2>0.∴Δy =f (x 2)-f (x 1)<0.∴由单调函数的定义可知,函数1()=f x x x+在(0,1)上为减函数.辨误区 利用定义证明函数的单调性需谨慎在第(1)题中,有的同学认为由0≤x 1<x 2,可得0≤x 1<x 2,这种证明实际上利用了函数y =x 的单调性,而y =x 的单调性我们没作证明,因此不能使用;在第(1)题中还使用了“分子有理化”的变形技巧,要注意观察这类题目的结构特点.3.利用函数的单调性比较两个函数值的大小若函数y =f (x )在给定的区间A 上是增函数,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)<f (x 2);若函数y =f (x )在给定的区间A 上是减函数,设x 1,x 2∈A ,且x 1<x 2,则有f (x 1)>f (x 2).所以,当给定的两个自变量在同一单调区间上时,可直接比较相应的两个函数值的大小.否则,可以先把它们转化到同一单调区间上,再利用单调性比较大小.【例3】设函数f (x )是区间(0,+∞)上的减函数,那么f (a 2-a +1)与34f ⎛⎫⎪⎝⎭的大小关系为________.解析:∵a 2-a +1=2133244a ⎛⎫-+≥ ⎪⎝⎭>0,又∵f (x )在(0,+∞)上是减函数,∴当12a ≠时,a 2-a +1>34,有f (a 2-a +1)<34f ⎛⎫ ⎪⎝⎭;当1=2a 时,a 2-a +1=34,有f (a 2-a +1)=34f ⎛⎫ ⎪⎝⎭.综上可知,f (a 2-a +1)≤34f ⎛⎫ ⎪⎝⎭.答案:f (a 2-a +1)≤34f ⎛⎫ ⎪⎝⎭4.利用函数的单调性确定参数范围已知函数的单调性,求函数解析式中参数的取值范围时,要注意利用数形结合的思想,运用函数单调性的逆向思维思考问题.这类问题能够加深对概念、性质的理解.例如:已知函数f (x )=x 2-2(1-a )x +2在(-∞,4]上是减函数,求实数a 的取值范围.由于二次函数是我们最熟悉的函数,遇到二次函数就画图象,会给我们研究问题带来很大方便.要使f (x )在(-∞,4]上是减函数,由二次函数的图象可知,只要对称轴x =1-a ≥4即可,解得a ≤-3.谈重点 对分段函数的单调性的理解求分段函数在定义域上的单调性问题时,不但要考虑各段上函数的类型及其单调性,而且还要考虑各段图象之间的上下关系.【例4】已知函数(3)4,<1,()=,1a x a x f x a x x-+⎧⎪⎨≥⎪⎩是(-∞,+∞)上的减函数,求实数a 的取值范围.分析:函数f (x )是一个分段函数,其图象由两部分组成.当x <1时,f (x )=(3-a )x +4a ,其图象是一条射线(不包括端点);当x ≥1时,()=af x x,其图象由a 的取值确定,若a =0,则为一条与x 轴重合的射线,若a ≠0,则为反比例函数图象的一部分(曲线).已知函数f (x )是(-∞,+∞)上的减函数,则在两段上必须都是递减的,且要保证x <1时的图象位于x ≥1时的图象的上方.解:由题意知,函数f (x )=(3-a )x +4a (x <1)与()=af x x(x ≥1)都是递减的,且前者图象位于后者图象的上方(如图所示).∴3<0,>0,34,a a a a a -⎧⎪⎨⎪(-)+≥⎩即>3,>0,3.2a a a ⎧⎪⎪⎨⎪⎪≥-⎩ ∴a >3.∴实数a 的取值范围是{a |a >3}. 5.利用函数的单调性求函数的最值若函数在给定的区间上是单调函数,可利用函数的单调性求最值.若给定的单调区间是闭区间,函数的最值在区间的两个端点处取得,也就是说,若函数f (x )在某一闭区间[a ,b ]上是增函数,则最大值在右端点b 处取得,最小值在左端点a 处取得;若函数f (x )在某一闭区间[a ,b ]上是减函数,则最大值在左端点a 处取得,最小值在右端点b 处取得.解题时也可结合函数的图象,得出问题的答案.【例5-1】求()=f x x +的最小值.分析:求函数()=f x x +的最小值,可先利用单调函数的定义判断其在定义域上的单调性,再利用单调性求出最值.解:()=f x x +的定义域为[1,+∞),任取x 1,x 2∈[1,+∞),且x 1<x 2,Δx =x 2-x 1>0,则Δy =f (x 2)-f (x 1)=(x 2)-(x 1=(x 2-x 1)+(-=(x 2-x 1)=(x 2-x 1)·1⎛ ⎝.∵Δx =x 2-x 1>0,1>0,∴f (x 2)-f (x 1)>0.∴f (x )在[1,+∞)上为增函数,∴f (x )min =f (1)=1.【例5-2】已知函数2=1xy x +(x ∈[-3,-2]),求函数的最大值和最小值. 解:设-3≤x 1<x 2≤-2,则f (x 1)-f (x 2)=12122211x x x x -++=122112212111x x x x x x (+)-(+)(+)(+)=1212211x x x x (-)(+)(+).由于-3≤x 1<x 2≤-2,则x 1-x 2<0,x 1+1<0,x 2+1<0. 所以f (x 1)<f (x 2). 所以函数2=1xy x +在[-3,-2]上是增函数. 又因为f (-2)=4,f (-3)=3,所以函数的最大值是4,最小值是3. 6.利用函数的单调性解不等式函数的单调性具有可逆性,即f (x )在区间D 上是递增的,则当x 1,x 2∈D 且f (x 1)>f (x 2)时,有x 1>x 2〔事实上,若x 1≤x 2,则f (x 1)≤f (x 2),这与f (x 1)>f (x 2)矛盾〕.类似地,若f (x )在区间D 上是递减的,则当x 1,x 2∈D 且f (x 1)>f (x 2)时,有x 1<x 2.利用函数单调性的可逆性,可以脱去某些函数符号,把抽象的不等式化为具体的不等式.此时要特别注意处在自变量位置的代数式必须满足定义域要求,最后取几个不等式的解的交集即可.利用函数的单调性可以比较函数值或自变量值的大小,在解决比较函数值的大小问题时,要注意将对应的自变量放在同一个单调区间上.【例6】已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (a 2-1),求a 的取值范围.分析:由于函数y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (a 2-1),所以由单调函数的定义可知1-a ∈(-1,1),a 2-1∈(-1,1),且1-a >a 2-1,解此关于a 的不等式组,即可求出a 的取值范围.解:由题意可得221<1<1,1<1<1,1>1,a a a a --⎧⎪--⎨⎪--⎩①②③由①得0<a <2,由②得0<a 2<2,∴0<|a |,∴a ,且a ≠0.由③得a 2+a -2<0,即(a -1)(a +2)<0, ∴1>0,2<0a a -⎧⎨+⎩或1<0,2>0,a a -⎧⎨+⎩∴-2<a <1.综上可知0<a <1, ∴a 的取值范围是0<a <1.7.复合函数单调性的判断方法一般地,如果f(x),g (x)在给定区间上具有单调性,则可以得到如下结论:(1)f(x),g(x)的单调性相同时,f(x)+g(x)的单调性与f(x),g(x)的单调性相同.(2)f(x),g(x)的单调性相反时,f(x)-g(x)的单调性与f(x)的单调性相同.(3)y=f(x)在区间I上是递增(减)的,c,d都是常数,则y=cf(x)+d在I上是单调函数.若c>0,y=cf(x)+d在I上是递增(减)的;若c<0,y=cf(x)+d在I上是递减(增)的.(4)f(x)恒为正或恒为负时,y=1f x与y=f(x)单调性相反.(5)若f(x)>0,则函数y=f(x)与y=f x具有相同的单调性.(6)复合函数y=f[g(x)]的单调区间求解步骤:①将复合函数分解成基本初等函数y=f(u),u=g(x);②分别确定各个函数的定义域;③分别确定分解成的两个函数的单调区间;④若两个函数在对应区间上的单调性相同,则y=f[g(x)]为增函数;若不同,则y=f[g(x)]为减函数.该法可简记为“同增异减”.值得注意的是:在解选择题、填空题时我们可直接运用此法,但在解答题中不能利用它作为论证的依据,必须利用定义证明.【例7】求y的单调区间,并指明在该区间上的单调性.分析:这是一个复合函数,应先求出函数的定义域,再利用复合函数单调性的判断法则确定其单调性.解:要使函数y需满足x2+2x-3≥0,即(x-1)(x+3)≥0.∴10,30xx-≥⎧⎨+≥⎩或10,30.xx-≤⎧⎨+≤⎩∴x≥1,或x≤-3.∴函数y的定义域为{x|x≥1,或x≤-3}.令u=x2+2x-3,则=y u=(x+1)2-4,其开口向上,对称轴为x=-1.∴当x≥1时,u是x的增函数,y是u的增函数,从而y是x的增函数;当x≤-3时,u是x的减函数,y是u的增函数,从而y是x的减函数.∴y的递增区间是[1,+∞),递减区间是(-∞,-3].辨误区求函数的单调区间易忽略的问题由于函数的单调区间一定是函数定义域的子集,所以我们在求函数的单调区间时,一定要先求函数的定义域,在函数的定义域内讨论函数的单调区间;在处理函数的相关问题时,往往会把函数问题转化成方程问题或简单不等式问题来处理,但要注意转化时应确保转化前后式子的等价性.8.抽象函数的单调性问题没有具体的函数解析式的函数,我们称为抽象函数,关于抽象函数的单调性,常见的有以下题型:(1)抽象函数单调性的证明.证明抽象函数的单调性,必须用单调函数的定义作出严格证明,而不能用几个特殊值的大小来检验,证明时要同时注意特殊值的应用.(2)抽象函数单调性的应用.如,利用抽象函数的单调性求函数的最值、解不等式等.解决抽象函数的有关问题,常采用赋值法.在解不等式时关键是将已知不等式转化为f(x1)≥f(x2)的形式,然后利用单调性结合定义域求解.【例8】已知函数f(x)对任意x,y∈R,总有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,2 (1)=3f .求证:f(x)在R上是减函数;证明:令x=y=0,得f(0)+f(0)=f(0),∴f(0)=0. 令y=-x,得f(x)+f(-x)=f(0),∴f(-x)=-f(x).任取x1,x2∈R,且x1<x2,Δx=x2-x1>0,则Δy=f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1).∵x1<x2,∴x2-x1>0.又∵当x>0时,f(x)<0,∴f(x2-x1)<0,即Δy<0.∴f(x)在R上是减函数.。
高中数学第二章函数试题试卷附答案解析
2013高中数学精讲精练第二章函数【方法点拨】函数是中学数学中最重要,最基础的内容之一,是学习高等数学的基础.高中函数以具体的幂函数,指数函数,对数函数和三角函数的概念,性质和图像为主要研究对象,适当研究分段函数,含绝对值的函数和抽象函数;同时要对初中所学二次函数作深入理解.“定义法”解题.定义是一切法则与性质的基础,是解题的基本出发点.利用定义,可直接判断所给的对应是否满足函数的条件,证明或判断函数的单调性和奇偶性等.“数形结合思想”渗透.“数缺形时少直观,形缺数时难入微”.当你所研究的问题较为抽象时,当你的思维陷入困境时,当你对杂乱无章的条件感到头绪混乱时,一个很好的建议:画个图像!利用图形的直观性,可迅速地破解问题,乃至最终解决问题.“分类讨论思想”应用.分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法.进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”.“函数与方程思想”.函数与方程思想是最重要,最基本的数学思想方法之一,它在整个高中数学中的地位与作用很高.函数的思想包括运用函数的概念和性质去分析问题,转化问题和解决问题.第1课 函数的概念【考点导读】1.在体会函数是描述变量之间的依赖关系的重要数学模型的基础上,通过集合与对应的语言刻画函数,体会对应关系在刻画函数概念中的作用;了解构成函数的要素,会求一些简单函数的定义域和值域.2.准确理解函数的概念,能根据函数的三要素判断两个函数是否为同一函数. 【基础练习】1.设有函数组:①y x =,y =②y x =,y =③y =y =;④1(0),1(0),x y x >⎧=⎨-<⎩,x y x =;⑤lg 1y x =-,lg 10xy =.其中表示同一个函数的有___②④⑤___. 2.设集合{02}M x x =≤≤,{02}N y y =≤≤,从M 到N 有四种对应如图所示:其中能表示为M 到N 的函数关系的有_____②③____. 下列函数定义域:(1) ()13f x x =-的定义域为______________; (2) 21()1f x x =-的定义域为______________; (3)1()f x x =的定义域为______________; (4)()f x =_________________.4.已知三个函数:(1)()()P x y Q x =;(2)y =(*)n N ∈; (3)()log ()Q x y P x =.写出使各函数式有意义时,()P x ,()Q x 的约束条件:(1)______________________; (2)______________________; (3)______________________________. 5.写出下列函数值域:(1) 2()f x x x =+,{1,2,3}x ∈;值域是{2,6,12}. (2) 2()22f x x x =-+; 值域是[1,)+∞. (3) ()1f x x =+,(1,2]x ∈. 值域是(2,3].【范例解析】①②③④R {1}x x ≠± [1,0)(0,)-⋃+∞ (,1)(1,0)-∞-⋃- ()0Q x ≠ ()0P x ≥ ()0Q x >且()0P x >且()1Q x ≠例1.设有函数组:①21()1x f x x -=-,()1g x x =+;②()f x =,()g x =③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有③④.分析:判断两个函数是否为同一函数,关键看函数的三要素是否相同.解:在①中,()f x 的定义域为{1}x x ≠,()g x 的定义域为R ,故不是同一函数;在②中,()f x 的定义域为[1,)+∞,()g x 的定义域为(,1][1,)-∞-⋃+∞,故不是同一函数;③④是同一函数.点评:两个函数当它们的三要素完全相同时,才能表示同一函数.而当一个函数定义域和对应法则确定时,它的值域也就确定,故判断两个函数是否为同一函数,只需判断它的定义域和对应法则是否相同即可. 例2.求下列函数的定义域:①12y x =+- ②()f x = 解:(1)① 由题意得:220,10,x x ⎧-≠⎪⎨-≥⎪⎩解得1x ≤-且2x ≠-或1x ≥且2x ≠,故定义域为(,2)(2,1][1,2)(2,)-∞-⋃--⋃⋃+∞.② 由题意得:12log (2)0x ->,解得12x <<,故定义域为(1,2).例3.求下列函数的值域:(1)242y x x =-+-,[0,3)x ∈;(2)221x y x =+()x R ∈;(3)y x =-分析:运用配方法,逆求法,换元法等方法求函数值域. (1) 解:2242(2)2y x x x =-+-=--+,[0,3)x ∈,∴函数的值域为[2,2]-;(2) 解法一:由2221111x y x x ==-++,21011x <≤+,则21101x -≤-<+,01y ∴≤<,故函数值域为[0,1).解法二:由221x y x =+,则21y x y =-,20x ≥,∴01y y ≥-,01y ∴≤<,故函数值域为[0,1).(3t =(0)t ≥,则21x t =-,2221(1)2y t t t ∴=--=--,当0t ≥时,2y ≥-,故函数值域为[2,)-+∞.点评:二次函数或二次函数型的函数求值域可用配方法;逆求法利用函数有界性求函数的值域;用换元法求函数的值域应注意新元的取值范围.【反馈演练】(,0]-∞1.函数f (x )=x21-的定义域是___________.2.函数)34(log 1)(22-+-=x x x f 的定义域为_________________. 3. 函数21()1y x R x=∈+的值域为________________. 4.函数23y x =-+的值域为_____________. 5.函数)34(log 25.0x x y -=的定义域为_____________________.6.记函数f (x )=132++-x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ;(2) 若B ⊆A ,求实数a 的取值范围. 解:(1)由2-13++x x ≥0,得11+-x x ≥0,x <-1或x ≥1, 即A =(-∞,-1)∪[1,+ ∞) . (2) 由(x -a -1)(2a -x )>0,得(x -a -1)(x -2a )<0.∵a <1,∴a +1>2a ,∴B=(2a ,a +1) . ∵B ⊆A , ∴2a ≥1或a +1≤-1,即a ≥21或a ≤-2,而a <1, ∴21≤a <1或a ≤-2,故当B ⊆A 时, 实数a 的取值范围是(-∞,-2]∪[21,1).第2课 函数的表示方法【考点导读】(1,2)(2,3)⋃ (0,1] (,4]-∞ 13[,0)(,1]44-⋃1.会根据不同的需要选择恰当的方法(如图像法,列表法,解析法)表示函数.2.求解析式一般有四种情况:(1)根据某个实际问题须建立一种函数关系式;(2)给出函数特征,利用待定系数法求解析式;(3)换元法求解析式;(4)解方程组法求解析式. 【基础练习】1.设函数()23f x x =+,()35g x x =-,则(())f g x =_________;(())g f x =__________. 1()1f x x=+,2()2g x x =+,则(1)g -=_____3_______;[(2)]f g =17;[()]f g x =213x +.3.已知函数()f x 是一次函数,且(3)7f =,(5)1f =-,则(1)f =__15___.4.设f (x )=2|1|2,||1,1, ||11x x x x --≤⎧⎪⎨>⎪+⎩,则f [f (21)]=_____________. 解析式为__________________________. 【范例解析】()y f x =的最小值等于4,且(0)(2)6f f ==,求()f x 的解析式.分析:给出函数特征,可用待定系数法求解.解法一:设2()(0)f x ax bx c a =++>,则26,426,4 4.4c a b c ac b a ⎧⎪=⎪⎪++=⎨⎪-⎪=⎪⎩解得2,4,6.a b c =⎧⎪=-⎨⎪=⎩故所求的解析式为2()246f x x x =-+.解法二:(0)(2)f f =,∴抛物线()y f x =有对称轴1x =.故可设2()(1)4(0)f x a x a =-+>.将点(0,6)代入解得2a =.故所求的解析式为2()246f x x x =-+.解法三:设()() 6.F x f x =-,由(0)(2)6f f ==,知()0F x =有两个根0,2, 可设()()6(0)(2)F x f x a x x =-=--(0)a >,()(0)(2)6f x a x x ∴=--+,将点(1,4)代入解得2a =.故所求的解析式为2()246f x x x =-+.点评:三种解法均是待定系数法,也是求二次函数解析式常用的三种形式:一般式,顶点式,零点式. 例2.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2km ,甲10时出发前往乙家.如图,表示甲从出发到乙家为止经过的路程y (km )与时间x (分)的关系.试写出()y f x =的函数解析式.分析:理解题意,根据图像待定系数法求解析式.解:当[0,30]x ∈时,直线方程为115y x =,当[40,60]x ∈时,直线方程为1210y x =-, 第5题xy O 1 2 3 4 10 20 30 40 50 60 例267x - 64x + 413|1|2323--=x y (0≤x ≤2)1[0,30],15()2(30,40),1[40,60].210x x f x x x x ⎧⎪∈⎪∴=∈⎨⎪∈⎪-⎩点评:建立函数的解析式是解决实际问题的关键,把题中文字语言描述的数学关系用数学符号语言表达.要注意求出解析式后,一定要写出其定义域. 【反馈演练】1.若()2x x e e f x --=,()2x xe e g x -+=,则(2)f x =( D )A. 2()f x B.2[()()]f x g x + C.2()g x D. 2[()()]f x g x ⋅2.已知1(1)232f x x -=+,且()6f m =,则m 等于________.3. 已知函数f (x )和g (x )的图象关于原点对称,且f (x )=x 2+2x .求函数g (x )的解析式. 解:设函数()y f x =的图象上任意一点()00,Q x y 关于原点的对称点为(),P x y ,则0000,,2.0,2x xx x y y y y +⎧=⎪=-⎧⎪⎨⎨+=-⎩⎪=⎪⎩即 ∵点()00,Q x y 在函数()y f x =的图象上∴()22222,2y x x y x x g x x x -=-=-+=-+,即 故.第3课 函数的单调性【考点导读】14-1.理解函数单调性,最大(小)值及其几何意义; .【基础练习】 1.下列函数中: ①1()f x x=; ②()221f x x x =++; ③()f x x =-; ④()1f x x =-.其中,在区间(0,2)上是递增函数的序号有___②___.y x x =的递增区间是___ R ___.y =__________. ()y f x =在定义域R 上是单调减函数,且(1)(2)f a f a +>,则实数a 的取值范围__________.5.已知下列命题:①定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 是R 上的增函数; ②定义在R 上的函数()f x 满足(2)(1)f f >,则函数()f x 在R 上不是减函数;③定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间[0,)+∞上也是增函数,则函数()f x 在R 上是增函数;④定义在R 上的函数()f x 在区间(,0]-∞上是增函数,在区间(0,)+∞上也是增函数,则函数()f x 在R 上是增函数.其中正确命题的序号有_____②______. 【范例解析】例 . 求证:(1)函数2()231f x x x =-+-在区间3(,]4-∞上是单调递增函数; (2)函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调递增函数. 分析:利用单调性的定义证明函数的单调性,注意符号的确定. 证明:(1)对于区间3(,]4-∞内的任意两个值1x ,2x ,且12x x <,因为22121122()()231(231)f x f x x x x x -=-+---+-2221122233x x x x =-+-1212()[32()]x x x x =--+,又1234x x <≤,则120x x -<,1232x x +<,得1232()0x x -+>, 故1212()[32()]0x x x x --+<,即12()()0f x f x -<,即12()()f x f x <.(,1]-∞- (1,)+∞所以,函数2()231f x x x =-+-在区间3(,]4-∞上是单调增函数. (2)对于区间(,1)-∞-内的任意两个值1x ,2x ,且12x x <, 因为1212122121()()11x x f x f x x x ---=-++12123()(1)(1)x x x x -=++, 又121x x <<-,则120x x -<,1(1)0x +<,2(1)0x +<得,12(1)(1)0x x ++> 故12123()0(1)(1)x x x x -<++,即12()()0f x f x -<,即12()()f x f x <.所以,函数21()1x f x x -=+在区间(,1)-∞-上是单调增函数. 同理,对于区间(1,)-+∞,函数21()1x f x x -=+是单调增函数;所以,函数21()1x f x x -=+在区间(,1)-∞-和(1,)-+∞上都是单调增函数.点评:利用单调性定义证明函数的单调性,一般分三步骤:(1)在给定区间内任意取两值1x ,2x ;(2)作差12()()f x f x -,化成因式的乘积并判断符号;(3)给出结论.()f x =分析:作差后,符号的确定是关键.解:由120x ->,得定义域为1(,)2-∞.对于区间1(,)2-∞内的任意两个值1x ,2x ,且12x x <,则12()()f x f x -===又120x x -<0>,12()()0f x f x ∴-<,即12()()f x f x <.所以,()f x 在区间1(,)2-∞上是增函数.点评:运用有理化可以对含根号的式子进行符号的确定.【反馈演练】(0,1)1.已知函数1()21x f x =+,则该函数在R 上单调递__减__,(填“增”“减”)值域为_________. 2.已知函数2()45f x x mx =-+在(,2)-∞-上是减函数,在(2,)-+∞上是增函数,则(1)f =__25___.3.函数y =1[2,]2--.4. 函数2()1f x x x =-+的单调递减区间为1(,1],[,1]2-∞-. 5. 已知函数1()2ax f x x +=+在区间(2,)-+∞上是增函数,求实数a 的取值范围. 解:设对于区间(2,)-+∞内的任意两个值1x ,2x ,且12x x <, 则12121211()()22ax ax f x f x x x ++-=-++2112(12)()0(2)(2)a x x x x --=<++,120x x -<,1(2)0x +>,2(2)0x +>得,12(2)(2)0x x ++>,120a ∴-<,即12a >.第4课 函数的奇偶性【考点导读】1.了解函数奇偶性的含义,能利用定义判断一些简单函数的奇偶性;2.定义域对奇偶性的影响:定义域关于原点对称是函数为奇函数或偶函数的必要但不充分条件;不具备上述对称性的,既不是奇函数,也不是偶函数. 【基础练习】1.给出4个函数:①5()5f x x x =+;②421()x f x x-=;③()25f x x =-+;④()x xf x e e -=-. 其中奇函数的有___①④___;偶函数的有____②____;既不是奇函数也不是偶函数的有____③____. 2. 设函数()()()xa x x x f ++=1为奇函数,则实数=a -1 .3.下列函数中,在其定义域内既是奇函数又是减函数的是( A )A .R x x y ∈-=,3B .R x x y ∈=,sinC .R x x y ∈=,D .R x x y ∈=,)21(【范例解析】例1.判断下列函数的奇偶性:(1)2(12)()2x xf x +=; (2)()lg(f x x =;(3)221()lg lgf x x x=+; (4)()(1f x x =- (5)2()11f x x x =+-+; (6)22(0),()(0).x x x f x x x x⎧-+≥⎪=⎨<+⎪⎩分析:判断函数的奇偶性,先看定义域是否关于原点对称,再利用定义判断. 解:(1)定义域为x R ∈,关于原点对称;2222(12)2(12)()222x x x x x x f x ----+⋅+-===⋅2(12)()2x xf x +=, 所以()f x 为偶函数.(2)定义域为x R ∈,关于原点对称;()()lg(lg(lg10f x f x x x -+=-+==,()()f x f x ∴-=-,故()f x 为奇函数.(3)定义域为(,0)(0,)x ∈-∞⋃+∞,关于原点对称;()0f x =,()()f x f x ∴-=-且()()f x f x -=,所以()f x 既为奇函数又为偶函数.(4)定义域为[1,1)x ∈-,不关于原点对称;故()f x 既不是奇函数也不是偶函数. (5)定义域为x R ∈,关于原点对称;(1)4f -=,(1)2f =,则(1)(1)f f -≠且(1)(1)f f -≠-,故()f x 既不是奇函数也不是偶函数.(6)定义域为x R ∈,关于原点对称;22()()(0),()(0).()()x x x f x x x x ⎧--+-->⎪-=⎨-<-+-⎪⎩,22(0),()(0).x x x f x x x x ⎧-->⎪∴-=⎨<-⎪⎩又(0)0f =, 22(0),()(0).x x x f x x x x⎧--<⎪∴-=⎨≥-⎪⎩()()f x f x ∴-=-,故()f x 为奇函数.点评:判断函数的奇偶性,应首先注意其定义域是否关于原点对称;其次,利用定义即()()f x f x -=-或()()f x f x -=判断,注意定义的等价形式()()0f x f x -+=或()()0f x f x --=.例2. 已知定义在R 上的函数()f x 是奇函数,且当0x >时,2()22f x x x =-+,求函数()f x 的解析式,并指出它的单调区间.分析:奇函数若在原点有定义,则(0)0f =. 解:设0x <,则0x ->,2()22f x x x ∴-=++.又()f x 是奇函数,()()f x f x ∴-=-,2()()22f x f x x x ∴=--=---. 当0x =时,(0)0f =.综上,()f x 的解析式为2222,0()0,0022,x x x f x x x x x ⎧-+>⎪==⎨⎪<---⎩. 作出()f x 的图像,可得增区间为(,1]-∞-,[1,)+∞,减区间为[1,0)-,(0,1].点评:(1)求解析式时0x =的情况不能漏;(2)两个单调区间之间一般不用“⋃”连接;(3)利用奇偶性求解析式一般是通过“x -”实现转化;(4)根据图像写单调区间.【反馈演练】1.已知定义域为R 的函数()x f 在区间()+∞,8上为减函数,且函数()8+=x f y 为偶函数,则( D )A .()()76f f >B .()()96f f >C .()()97f f >D .()()107f f >2. 在R 上定义的函数()x f 是偶函数,且()()x f x f -=2,若()x f 在区间[]2,1是减函数,则函数()x f ( B )[]1,2--上是增函数,区间[]4,3上是增函数 []1,2--上是增函数,区间[]4,3上是减函数 []1,2--上是减函数,区间[]4,3上是增函数 []1,2--上是减函数,区间[]4,3上是减函数3. 设⎭⎬⎫⎩⎨⎧-∈3,21,1,1α,则使函数αx y =的定义域为R 且为奇函数的所有α的值为____1,3 ___. 4.设函数))((R x x f ∈为奇函数,),2()()2(,21)1(f x f x f f +=+=则=)5(f ________.5.若函数)(x f 是定义在R 上的偶函数,在]0,(-∞上是减函数,且0)2(=f ,则使得0)(<x f 的x 的取 值范围是(-2,2).6. 已知函数21()ax f x bx c+=+(,,)a b c Z ∈是奇函数.又(1)2f =,(2)3f <,求a ,b ,c 的值;解:由()()f x f x -=-,得()bx c bx c -+=-+,得0c =.又(1)2f =,得12a b +=,而(2)3f <,得4131a a +<+,解得12a -<<.又a Z ∈,0a ∴=或1. 若0a =,则12b Z =∉,应舍去;若1a =,则1b Z =∈.所以,1,1,0a b c ===.综上,可知()f x 的值域为{0,1,2,3,4}.第5 课 函数的图像【考点导读】1.掌握基本初等函数的图像特征,学会运用函数的图像理解和研究函数的性质;252.掌握画图像的基本方法:描点法和图像变换法. 【基础练习】1.根据下列各函数式的变换,在箭头上填写对应函数图像的变换:(1)2x y =12x y -= 123x y -=+;(2)2log y x =2log ()y x =- 2log (3)y x =-. 2.作出下列各个函数图像的示意图:(1)31xy =-; (2)2log (2)y x =-; (3)21xy x -=-. 解:(1)将3xy =的图像向下平移1个单位,可得31xy =-的图像.图略; (2)将2log y x =的图像向右平移2个单位,可得2log (2)y x =-的图像.图略;(3)由21111x y x x -==---,将1y x =的图像先向右平移1个单位,得11y x =-的图像,再向下平移1个单位,可得21x y x -=-的图像.如下图所示:3.作出下列各个函数图像的示意图:(1)12log ()y x =-; (2)1()2xy =-; (3)12log y x =; (4)21y x =-.解:(1)作12log y x =的图像关于y 轴的对称图像,如图1所示;(2)作1()2xy =的图像关于x 轴的对称图像,如图2所示;(3)作12log y x =的图像及它关于y 轴的对称图像,如图3所示;(4)作21y x =-的图像,并将x 轴下方的部分翻折到x 轴上方,如图4所示.图3向右平移1个单位 向上平移3个单位作关于y 轴对称的图形 向右平移3个单位图44. 函数()|1|f x x =-的图象是( B )【范例解析】2()223f x x x =-++及()f x -,()f x -,(2)f x +,()f x ,()f x 的图像.分析:根据图像变换得到相应函数的图像. 解:()y f x =-与()y f x =的图像关于y 轴对称;()y f x =-与()y f x =的图像关于x 轴对称;将()y f x =的图像向左平移2个单位得到(2)y f x =+的图像;保留()y f x =的图像在x 轴上方的部分,将x 轴下方的部分关于x 轴翻折上去,并去掉原下方的部分; 将()y f x =的图像在y 轴右边的部分沿y 轴翻折到y 轴的左边部分替代原y 轴左边部分,并保留()y f x =在y 轴右边部分.图略.点评:图像变换的类型主要有平移变换,对称变换两种.平移变换:左“+”右“-”,上“+”下“-”;对称变换:()y f x =-与()y f x =的图像关于y 轴对称;()y f x =-与()y f x =的图像关于x 轴对称;()y f x =--与()y f x =的图像关于原点对称;()y f x =保留()y f x =的图像在x 轴上方的部分,将x 轴下方的部分关于x 轴翻折上去,并去掉原下方的部分;()y f x =将()y f x =的图像在y 轴右边的部分沿y 轴翻折到y 轴的左边部分替代原y 轴左边部分,并保留()y f x =在y 轴右边部分. 例54)(2--=x x x f .(1)在区间]6,2[-上画出函数)(x f 的图像; (2)设集合{}),6[]4,0[]2,(,5)(∞+-∞-=≥= B x f x A . 试判断集合A 和B 之间的关系,并给出证明.分析:根据图像变换得到)(x f 的图像,第(3)问实质是恒成立问题. 解:(1)(2)方程5)(=x f 的解分别是4,0,142-和142+,由于)(x f 在]1,(-∞-和]5,2[上单调递减,在]2,1[-和),5[∞+上单调递增,因此(][)∞++-∞-=,142]4,0[142, A . 由于A B ⊂∴->-<+,2142,6142.【反馈演练】1.函数111--=x y 的图象是( B )Oyx11 Oy11 x2. 为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象向右平移1个单位长度得到. 3.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k =14-. 4.设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线21=x 对称,则f (1)+ f (2)+ f (3)+ f (4)+ f (5)=_____0____ . 5. 作出下列函数的简图:(1)2(1)y x x =-+; (2)21x y =-; (3)2log 21y x =-.第6课 二次函数【考点导读】1.理解二次函数的概念,掌握二次函数的图像和性质;2.能结合二次函数的图像判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.【基础练习】1. 已知二次函数232y x x =-+,则其图像的开口向__上__;对称轴方程为32x =;顶点坐标为 31(,)24-,与x 轴的交点坐标为(1,0),(2,0),最小值为14-. 2. 二次函数2223y x mx m =-+-+的图像的对称轴为20x +=,则m =__-2___,顶点坐标为(2,3)-,递增区间为(,2]-∞-,递减区间为[2,)-+∞.3. 函数221y x x =--的零点为11,2-. 4. 实系数方程20(0)ax bx c a ++=≠两实根异号的充要条件为0ac <;有两正根的充要条件为0,0,0b c a a ∆≥->>;有两负根的充要条件为0,0,0b ca a∆≥-<>.5. 已知函数2()23f x x x =-+在区间[0,]m 上有最大值3,最小值2,则m 的取值范围是__________.【范例解析】例1.设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈. (1)讨论)(x f 的奇偶性;(2)若2a =时,求)(x f 的最小值. 分析:去绝对值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数.当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠.此时)(x f 既不是奇函数,也不是偶函数.(2)⎪⎩⎪⎨⎧<+-≥-+=2123)(22x x x x x x x f由于)(x f 在),2[+∞上的最小值为3)2(=f ,在)2,(-∞内的最小值为43)21(=f . 故函数)(x f 在),(∞-∞内的最小值为43. 点评:注意分类讨论;分段函数求最值,先求每个区间上的函数最值,再确定最值中的最值.()f x 212ax x a =+-()a R ∈在区间2]的最大值记为)(a g ,求)(a g 的表达式.分析:二次函数在给定区间上求最值,重点研究其在所给区间上的单调性情况.解:∵直线1x a =-是抛物线()f x 212ax x a =+-的对称轴,∴可分以下几种情况进行讨论: (1)当0>a 时,函数()y f x =,2]x ∈的图象是开口向上的抛物线的一段,由10x a=-<知()f x在2]x ∈上单调递增,故)(a g (2)f =2+=a ;(2)当0=a 时,()f x x =,2]x ∈,有)(a g =2;[1,2](3)当0<a 时,,函数()y f x =,[2,2]x ∈的图象是开口向下的抛物线的一段,若1x a=-]2,0(∈即22-≤a 时,)(a g (2)2f ==,若1x a =-]2,2(∈即]21,22(--∈a 时,)(a g 11()2f a a a=-=--, 若1x a =-),2(+∞∈即)0,21(-∈a 时,)(a g (2)f =2+=a .综上所述,有)(a g =⎪⎪⎪⎩⎪⎪⎪⎨⎧-≤-≤<---->+)22(2)2122(,21)21(2a a a a a a . 点评:解答本题应注意两点:一是对0a =时不能遗漏;二是对0a ≠时的分类讨论中应同时考察抛物线的开口方向,对称轴的位置及()y f x =在区间[2,2]上的单调性.【反馈演练】1.函数[)()+∞∈++=,02x c bx x y 是单调函数的充要条件是0b ≥.2.已知二次函数的图像顶点为(1,16)A ,且图像在x 轴上截得的线段长为8,则此二次函数的解析式为2215y x x =-++.3. 设0>b ,二次函数122-++=a bx ax y 的图象为下列四图之一:则a 的值为 ( B )A .1B .-1C .251-- D .251+- 4.若不等式210x ax ++≥对于一切1(0,)2x ∈成立,则a 的取值范围是5[,)2-+∞. 5.若关于x 的方程240x mx -+=在[1,1]-有解,则实数m 的取值范围是(,5][5,)-∞-⋃+∞.6.已知函数2()223f x x ax =-+在[1,1]-有最小值,记作()g a . (1)求()g a 的表达式; (2)求()g a 的最大值.解:(1)由2()223f x x ax =-+知对称轴方程为2ax =, 当12a≤-时,即2a ≤-时,()(1)25g a f a =-=+; 当112a-<<,即22a -<<时,2()()322a a g a f =-=-;当12a≥,即2a ≥时,()(1)52g a f a ==-; 综上,225,(2)()3,(22)252,(2)a a a g a a a a +≤-⎧⎪⎪=--<<⎨⎪-≥⎪⎩.(2)当2a ≤-时,()1g a ≤;当22a -<<时,()3g a ≤;当2a ≥时,()1g a ≤.故当0a =时,()g a 的最大值为3.7. 分别根据下列条件,求实数a 的值:(1)函数2()21f x x ax a =-++-在在[0,1]上有最大值2; (2)函数2()21f x ax ax =++在在[3,2]-上有最大值4.解:(1)当0a <时,max ()(0)f x f =,令12a -=,则1a =-; 当01a ≤≤时,max ()()f x f a =,令()2f a =,a ∴=; 当1a >时,max ()(1)f x f =,即2a =. 综上,可得1a =-或2a =.(2)当0a >时,max ()(2)f x f =,即814a +=,则38a =; 当0a <时,max ()(1)f x f =-,即14a -=,则3a =-.综上,38a =或3a =-. 8. 已知函数2(),()f x x a x R =+∈.(1)对任意12,x x R ∈,比较121[()()]2f x f x +与12()2x x f +的大小; (2)若[1,1]x ∈-时,有()1f x ≤,求实数a 的取值范围.解:(1)对任意1x ,2x R ∈,212121211[()()]()()0224x x f x f x f x x ++-=-≥ 故12121[()()]()22x x f x f x f ++≥. (2)又()1f x ≤,得1()1f x -≤≤,即211x a -≤+≤,得2max 2min (1),[1,1](1),[1,1]a x x a x x ⎧≥--∈-⎪⎨≤-+∈-⎪⎩,解得10a -≤≤.第7课 指数式与对数式【考点导读】1.理解分数指数幂的概念,掌握分数指数幂的运算性质;2.理解对数的概念,掌握对数的运算性质;3.能运用指数,对数的运算性质进行化简,求值,证明,并注意公式成立的前提条件;4.通过指数式与对数式的互化以及不同底的对数运算化为同底对数运算. 【基础练习】1.写出下列各式的值:(0,1)a a >≠=3π-; 238=____4____; 3481-=127; log 1a =___0_____; log a a =____1____;log 4=__-4__.2.化简下列各式:(0,0)a b >>(1)2111333324()3a ba b ---÷-=6a -;(2)2222(2)()a a a a ---+÷-=2211a a -+.3.求值:(1)35log(84)⨯=___-38____;(2)33(lg 2)3lg 2lg 5(lg 5)+⋅+=____1____;(3)234567log 3log 4log 5log 6log 7log 8⨯⨯⨯⨯⨯=_____3____. 【范例解析】 例1. 化简求值:(1)若13a a -+=,求1122a a --及442248a a a a --+-+-的值;(2)若3log 41x =,求332222x xx x--++的值. 分析:先化简再求值. 解:(1)由13a a-+=,得11222()1a a --=,故11221a a--=±;又12()9a a -+=,227a a -+=;4447a a -∴+=,故44224438a a a a --+-=-+-. (2)由3log 41x =得43x=;则33227414223x x x xx x---+=-+=+. 点评:解条件求值问题:(1)将已知条件适当变形后使用;(2)先化简再代入求值.例2.(1)求值:11lg9lg 240212361lg 27lg 35+-+-+; (2)已知2log 3m =,3log 7n =,求42log 56. 分析:化为同底.解:(1)原式=lg10lg3lg 240136lg10lg9lg 5+-+-+1lg810lg8=+=;(2)由2log 3m =,得31log 2m =;所以33342333log 563log 2log 73log 56log 4213log 2log 71mn m mn ++===++++.点评:在对数的求值过程中,应注意将对数化为同底的对数. 例3. 已知35abc ==,且112a b+=,求c 的值. 分析:将a ,b 都用c 表示. 解:由35a bc ==,得1log 3c a =,1log 5c b =;又112a b+=,则log 3log 52c c +=, 得215c =.0c >,c ∴=.点评:三个方程三个未知数,消元法求解.【反馈演练】 1.若21025x=,则10x -=15. 2.设lg321a =,则lg0.321=3a -. 3.已知函数1()lg1xf x x-=+,若()f a b =,则()f a -=-b . 4.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(,21x xx x f x 若1)(0>x f ,则x 0的取值范围是(-∞,-1)∪(1,+∞).5.设已知f (x 6) = log 2x ,那么f (8)等于12. 6.若618.03=a,)1,[+∈k k a ,则k =__-1__.7.已知函数21(0)()21(1)xc cx x c f x c x -+⎧⎪=⎨⎪+≤⎩<<<,且89)(2=c f . (1)求实数c 的值; (2)解不等式182)(+>x f . 解:(1)因为01c <<,所以2c c <, 由29()8f c =,即3918c +=,12c =.(2)由(1)得:4111022()12112x x x f x x -⎧⎛⎫+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪+< ⎪⎪⎝⎭⎩≤由()18f x >+得,当102x <<时,解得142x <<. 当112x <≤时,解得1528x <≤,所以()1f x >+的解集为58x ⎧⎫⎪⎪<<⎨⎬⎪⎪⎩⎭.第8课 幂函数、指数函数及其性质【考点导读】1.了解幂函数的概念,结合函数y x =,2y x =,3y x =,1y x=,12y x =的图像了解它们的变化情况;2.理解指数函数的概念和意义,能画出具体指数函数的图像,探索并理解指数函数的单调性;3.在解决实际问题的过程中,体会指数函数是一类重要的函数模型. 【基础练习】()(1)x f x a =-是R 上的单调减函数,则实数a 的取值范围是(1,2).()f x 的图像分别沿x 轴方向向左,沿y 轴方向向下平移2个单位,得到()2x f x =的图像,则()f x =222x -+.220.3x x y --=的定义域为___R __;单调递增区间1(,]2-∞-;值域14(0,0.3].1()41x f x a =++是奇函数,则实数a 的取值12-. 11()2x y m -=+的图像不经过第一象限,则实数m 的取值范围2m ≤-.21()1x f x a -=-(0,1)a a >≠过定点,则此定点坐标为1(,0)2.【范例解析】例1.比较各组值的大小: (1)0.20.4,0.20.2,0.22, 1.62;(2)b a -,ba ,aa ,其中01ab <<<;(3)131()2,121()3.分析:同指不同底利用幂函数的单调性,同底不同指利用指数函数的单调性.解:(1)0.20.200.20.40.41<<=,而0.2 1.6122<<,0.20.20.2 1.60.20.422∴<<<.(2)01a <<且b a b -<<,b a ba a a -∴>>.(3)111322111()()()223>>.点评:比较同指不同底可利用幂函数的单调性,同底不同指可利用指数函数的单调性;另注意通过0,1等数进行间接分类.R 的函数12()2x x bf x a+-+=+是奇函数,求,a b 的值; 解:因为()f x 是奇函数,所以(0)f =0,即111201()22xx b b f x a a +--=⇒=∴=++ 又由f (1)= -f (-1)知11122 2.41a a a --=-⇒=++2()(1)1x x f x a a x -=+>+,求证:(1)函数()f x 在(1,)-+∞上是增函数; (2)方程()0f x =没有负根. 分析:注意反证法的运用.证明:(1)设121x x -<<,122112123()()()(1)(1)xxx x f x f x a a x x --=-+++,1a >,210x x a a ∴->,又121x x -<<,所以210x x ->,110x +>,210x +>,则12()()0f x f x -< 故函数()f x 在(1,)-+∞上是增函数.(2)设存在00x <0(1)x ≠-,满足0()0f x =,则00021x x ax -=-+.又001xa <<,002011x x -∴<-<+ 即0122x <<,与假设00x <矛盾,故方程()0f x =没有负根. 点评:本题主要考察指数函数的单调性,函数和方程的内在联系.【反馈演练】1.函数)10()(≠>=a a a x f x且对于任意的实数y x ,都有( C ) A .)()()(y f x f xy f =B .)()()(y f x f xy f +=C .)()()(y f x f y x f =+D .)()()(y f x f y x f +=+2.设713=x,则( A )A .-2<x <-1B .-3<x <-2C .-1<x <0D .0<x <13.将y =2x 的图像 ( D ) 再作关于直线y =x 对称的图像,可得到函数2log (1)y x =+的图像.A .先向左平行移动1个单位B .先向右平行移动1个单位C .先向上平行移动1个单位D . 先向下平行移动1个单位4.函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( C )A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a5.函数xa y =在[]1,0上的最大值与最小值的和为3,则a 的值为___2__. 6.若关于x 的方程4220x xm ++-=有实数根,求实数m 的取值范围. 解:由4220xxm ++-=得,219422(2)224x x xm =--+=-++<,(,2)m ∴∈-∞ 7.已知函数2()()(0,1)2x xa f x a a a a a -=->≠-. (1)判断()f x 的奇偶性;(2)若()f x 在R 上是单调递增函数,求实数a 的取值范围.解:(1)定义域为R ,则2()()()2x xa f x a a f x a --=-=--,故()f x 是奇函数. (2)设12x x R <∈,12121221()()()(1)2x x x x a f x f x a a a a-+-=-+-,当01a <<时,得220a -<,即01a <<;当1a >时,得220a ->,即a >综上,实数a 的取值范围是(0,1))⋃+∞.第9课 对数函数及其性质【考点导读】1.理解对数函数的概念和意义,能画出具体对数函数的图像,探索并理解对数函数的单调性;2.在解决实际问题的过程中,体会对数函数是一类重要的函数模型;3.熟练运用分类讨论思想解决指数函数,对数函数的单调性问题. 【基础练习】1. 函数)26(log 21.0x x y -+=的单调递增区间是1[,2)4.2. 函数2()log 21f x x =-的单调减区间是1(,)2-∞. 【范例解析】例1. (1)已知log (2)a y ax =-在[0,1]是减函数,则实数a 的取值范围是_________.(2)设函数2()lg()f x x ax a =+-,给出下列命题:①)(x f 有最小值; ②当0=a 时,)(x f 的值域为R ; ③当40a -<<时,)(x f 的定义域为R ;④若)(x f 在区间),2[+∞上单调递增,则实数a 的取值范围是4-≥a . 则其中正确命题的序号是_____________. 分析:注意定义域,真数大于零. 解:(1)0,1a a >≠,2ax ∴-在[0,1]上递减,要使log (2)a y ax =-在[0,1]是减函数,则1a >;又2ax -在[0,1]上要大于零,即20a ->,即2a <;综上,12a <<.(2)①)(x f 有无最小值与a 的取值有关;②当0=a 时,2()lg f x x R =∈,成立;③当40a -<<时,若)(x f 的定义域为R ,则20x ax a +->恒成立,即240a a +<,即40a -<<成立;④若)(x f 在区间),2[+∞上单调递增,则2,2420.aa a ⎧-≤⎪⎨⎪+->⎩解得a ∈∅,不成立.点评:解决对数函数有关问题首先要考虑定义域,并能结合对数函数图像分析解决.xxx x f -+-=11log 1)(2,求函数)(x f 的定义域,并讨论它的奇偶性和单调性. 分析:利用定义证明复合函数的单调性.解:x 须满足,11011,0110<<->-+⎪⎩⎪⎨⎧>-+≠x x x xx x 得由所以函数)(x f 的定义域为(-1,0)∪(0,1).因为函数)(x f 的定义域关于原点对称,且对定义域内的任意x ,有)()11log 1(11log 1)(22x f xxx x x x x f -=-+--=+---=-,所以)(x f 是奇函数.研究)(x f 在(0,1)内的单调性,任取x 1、x 2∈(0,1),且设x 1<x 2 ,则,0)112(log )112(log ,011)],112(log )112([log )11(11log 111log 1)()(1222211222212222112121>----->------+-=-++--+-=-x x x x x x x x x x x x x x x f x f 由得)()(21x f x f ->0,即)(x f 在(0,1)内单调递减, 由于)(x f 是奇函数,所以)(x f 在(-1,0)内单调递减.点评:本题重点考察复合函数单调性的判断及证明,运用函数性质解决问题的能力. 【反馈演练】1.给出下列四个数:①2(ln 2);②ln(ln 2);③ln 2;④ln 2.其中值最大的序号是___④___. 2.设函数()log ()(0,1)a f x x b a a =+>≠的图像过点(2,1),(8,2),则a b +等于___5_ _.3.函数log (3)1(0,1)a y x a a =+->≠的图象恒过定点A ,则定点A 的坐标是(2,1)--.4.函数]1,0[)1(log )(在++=x a x f a x上的最大值和最小值之和为a ,则a 的值为12. 5.函数()⎩⎨⎧>+-≤-=1,341,442x x x x x x f 的图象和函数()x x g 2log =的图象的交点个数有___3___个.6.下列四个函数:①lg y x x =+; ②lg y x x =-;③lg y x x =-+;④lg y x x =--.其中,函数图像只能是如图所示的序号为___②___.7.求函数22()log 2log 4x f x x =⋅,1[,4]2x ∈的最大值和最小值. 解:2222()log 2log (log 1)(log 2)4xf x x x x =⋅=+-222log log 2x x =-- 令2log t x =,1[,4]2x ∈,则[1,2]t ∈-,即求函数22y t t =--在[1,2]-上的最大值和最小值. 故函数()f x 的最大值为0,最小值为94-. 8.已知函数()log ax bf x x b+=-(0,1,0)a a b >≠>. (1)求()f x 的定义域;(2)判断()f x 的奇偶性;(3)讨论()f x 的单调性,并证明. 解:(1)解:由0x bx b+>-,故的定义域为()(,)b b -∞-⋃+∞. 第6题(2)()log ()()a x bf x f x x b-+-==---,故()f x 为奇函数. (3)证明:设12b x x <<,则121221()()()()log ()()ax b x b f x f x x b x b +--=+-,12212121()()2()10()()()()x b x b b x x x b x b x b x b +---=>+-+-.当1a >时,12()()0f x f x ∴->,故)(x f 在(,)b +∞上为减函数;同理)(x f 在(,)b -∞-上也为减函数; 当01a <<时,12()()0f x f x ∴-<,故)(x f 在(,)b +∞,(,)b -∞-上为增函数.第10课 函数与方程【考点导读】1.能利用二次函数的图像与判别式的正负,判断一元二次方程根的存在性及根的个数,了解函数零点与方程根的联系.2.能借助计算器用二分法求方程的近似解,并理解二分法的实质.3.体验并理解函数与方程的相互转化的数学思想方法. 【基础练习】2()44f x x x =++在区间[4,1]--有_____1 ___个零点.()f x 的图像是连续的,且x 与()f x 有如下的对应值表:则()f x 在区间[1,6]上的零点至少有___3__个. 【范例解析】例1.()f x 是定义在区间[-c ,c ]上的奇函数,其图象如图所示:令()()g x af x b =+, 则下列关于函数()g x 的结论:①若a <0,则函数()g x 的图象关于原点对称;②若a =-1,-2<b <0,则方程()g x =0有大于2的实根; ③若a ≠0,2b =,则方程()g x =0有两个实根; ④若0a ≠,2b =,则方程()g x =0有三个实根. 其中,正确的结论有___________. 分析:利用图像将函数与方程进行互化.解:当0a <且0b ≠时,()()g x af x b =+是非奇非偶函数,①不正确;当2a =-,0b =时,()2()g x f x =-是奇函数,关于原点对称,③不正确;当0a ≠,2b =时,2()f x a=-,由图知,当222a -<-<时,2()f x a=-才有三个实数根,故④不正确;故选②. 点评:本题重点考察函数与方程思想,突出考察分析和观察能力;题中只给了图像特征,因此,应用其图,察其形,舍其次,抓其本.2()32f x ax bx c =++,若0a b c ++=,(0)0f >,(1)0f >.求证:(1)0a >且12-<<-ab; (2)方程()0f x =在(0,1)内有两个实根.分析:利用0a b c ++=,(0)0f >,(1)0f >进行消元代换. 证明:(1)(0)0f c =>,(1)320f a b c =++>,由0a b c ++=,得b a c =--,代入(1)f 得:0a c ->,即0a c >>,且01c a <<,即1(2,1)b ca a=--∈--,即证. (2)11()024f a =-<,又(0)0f >,(1)0f >.则两根分别在区间1(0,)2,1(,1)2内,得证. 点评:在证明第(2)问时,应充分运用二分法求方程解的方法,选取(0,1)的中点12来考察1()2f 的正负是首选目标,如不能实现1()02f <,则应在区间内选取其它的值.本题也可选3ba-,也可利用根的分布来做.【反馈演练】1.设123)(+-=a ax x f ,a 为常数.若存在)1,0(0∈x ,使得0)(0=x f ,则实数a 的取值范围是1(,1)(,)2-∞-⋃+∞.2.设函数2,0,()2,0.x bx c x f x x ⎧++≤=⎨>⎩若(4)(0)f f -=,(2)2f -=-,则关于x 的方程()f x x =解的个数为( C ) A .1B .2C .3D .43.已知2()(0)f x ax bx c a =++≠,且方程()f x x =无实数根,下列命题:①方程[()]f f x x =也一定没有实数根;②若0a >,则不等式[()]f f x x >对一切实数x 都成立; ③若0a <,则必存在实数0x ,使00[()]f f x x >④若0a b c ++=,则不等式[()]f f x x <对一切实数x 都成立. 其中正确命题的序号是 ①②④ .4.设二次函数2()f x x ax a =++,方程()0f x x -=的两根1x 和2x 满足1201x x <<<.求实数a 的取值范围.解:令2()()(1)g x f x x x a x a =-=+-+,则由题意可得01012(1)0(0)0a g g ∆>⎧⎪-⎪<<⎪⎨⎪>⎪>⎪⎩,,,,01133a a a a ⎧>⎪⇔-<<⎨⎪<->+⎩,,03a ⇔<<- 故所求实数a的取值范围是(03-,. 5.已知函数2()log (41)()xf x kx k R =++∈是偶函数,求k 的值;解:()f x 是偶函数,()()f x f x ∴-=22log (41)log (41)x x kx kx -∴+-=++220x kx ∴+=由于此式对于一切x R ∈恒成立,1k ∴=-6.已知二次函数c bx ax x f ++=2)(.若a>b >c , 且f (1)=0,证明f (x )的图象与x 轴有2个交点.。
高等数学第二章习题详细解答答案
1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时
第二章 解析函数习题及解答
第二章解析函数习题及解答2.1 研究下列函数在任一点处的可导性、解析性,若可导求其导数值.1); 2); 3); 4). 2.2 证明 如果在区域内解析且满足下列条件之一,则必为一常数.1)在内为实值. 2)在内解析.3)在内为常数.4)在内为一常数.5)在内有,其中,,是不全为0的实常数.6)或在内为常数.7)在内有.2.3 证明在极坐标系下的柯西-黎曼条件为【提示:另一证明方法,可利用,然后根据复合函数求导证明】2.4 设在内解析.证明.2.5 证明解析函数的实、虚部所确定的曲线族与在的点处是正交的.(,为任意实数)2.6 已知下列调和函数求复势表达式.并写成关于的表达式.1), 2),2.7设,求之值,使为一调和函数,并求一解析函数.2.8 计算下列复数1) 2),其中; 3); 4); 5); 6)Ln(1+i) 2.9 求解方程 2.10 解下列方程1) 2)2.11 证明,对任何数(复数、实数),方程均有解. 2.12 求,使对任意,有.2.13 若某解析函数的实部等于虚部的平方,证明该解析函数必为常数.(提示:参考例2.6.1即可证明,这是该例的一个特殊情况)本章计算机编程实践与思考()33i y x z f -=()z z f =()z z f =()y y z f x x sin ie cos e +=()()()y x v y x u z f ,i ,+=D ()z f ()z f D ()z f D ()z f D ()z f arg D D ()()c y x bv y x au =+,,a b c ()()z f Re ()()z f Im D D ()0='z f 11, u u r ρϕρρϕ∂∂∂∂==-∂∂∂∂v v cos ,sin x y ρϕρϕ==()()()y x v y x u z f ,i ,+=D ()()2222224z f z f y x '=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂()()()y x v y x u z f ,i ,+=()C y x u =,()B y x v =,()0≠'z f C B ()()()y x v y x u z f ,i ,+=z ()()12,-=x y y x u ()i 2-=f ()x yy x v arctan,=0>x ()y y x v pxsin e ,=p v ()()()y x v y x u z f ,i ,+=()ii 1+z 1y x z i +=()i ln -i 1i +()2ln -sin cos 0z z +=0sin =z 0e 1=+zωω=z cos ωz ()zz sin sin =+ω(说明:读者可参考第五部分 计算机仿真编程实践)2.14 计算机编程计算2.15 计算机编程计算2.16 计算机编程解方程 2.17 计算机编程计算2.18 计算机求解方程2.19 计算机仿真(Matlab,Mathcad,Mathmatic )绘出 的图形. 2.20 对于下列解析函数,分别用计算机仿真方法(Matlab,Mathcad,Mathmatic )绘出其实部和虚部的等值曲线图.(如等势线、电力线)本章习题解答2.1 研究下列函数在任一点处的可导性、解析性.1); 2); 3); 4).解 1)故,;,,,显见,,在全平面有连续一阶偏导,故,全平面处处可微,又令得,即即,当且仅当时,C-R 方程成立.所以仅在处可导,其他任何点不可导.由解析的定义可知,于全平面处处不解析.注 由此结果可见,复变函数可存在孤立的甚至唯一的可导点,而无孤立的解析点.2),对任一,考虑极限即对任一,上述极限不存在,由可导定义知,于任一点处不可导.故全平面不解析.3)其中,.所以,当时,有π1i i i1234, (1i), i z ez z z -===+=12Ln(34i), ln(i 1)z z =-+=-sin 2z =tan(1i)Arc +10ze +=sin , cos , tan , ctan z z z z23(1)(); (2)()f z z f z z ==()33i y x z f -=()z z f =()z z f =()y y z f x x sin ie cos e +=()()()y x v y x u y x z f ,i ,i 33+=-= ()3,x y x u =()3,y y x v -=23x x u =∂∂0≡∂∂y u 0≡∂∂x v 23y y v -=∂∂u v()y x u ,()y x v ,⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂y u xv y vx u 2233y x -=0022==⇔=+y x y x 0==y x ()z f 0=z ()z f ()y x z z f i -==0z ()()⎩⎨⎧≠∆=∆-=∆≠∆=∆+∆∆-∆=∆-∆+→∆→∆0,0,10,0,1i i lim lim0000y x y x y x y x z z f z z f z z0z ()z z f =0z ()()()y x v y x u y x z z f ,i ,22+=+==()22,y x y x u +=()0,≡y x v ()()0,0,≠y x,,因此,对,C-R 方程不成立.而当时,由于不存在,即不存在,同理,不存在,故在处不可导.于是,于全平面处处不可导,不解析.注 在本题讨论中,仍然采用检验可导充要条件的方法,由于时,,,,均连续,故,可微,但C-R 方程处处不成立.对,从偏导定义出发,得知与不存在,从而在处不可微,故对平面任一点,可导的充要条件不满足.4),,,且,于全平面连续,故于全平面处处可导,全平面处处解析.又,因此有注 1.这里用区域解析的充分条件得到结论; 2.本题中的是一性质极好的函数:不仅全平面解析,且具有特性,它正是实指数函数在复平面的推广,即.但应注意这一推广产生的新性质:1) 由于与以为周期,使得以的整数倍为周期.2) 可取到除0以外的任意复值,包括负值.这两点是值得注意的.2.2 证明 如果在区域内解析且满足下列条件之一,则必为一常数.1)在内为实值. 2)在内解析.3)在内为常数.4)在内为一常数.22y x x xu +=∂∂22y x yyu +=∂∂0≡∂∂=∂∂yu x v ()()0,0,≠∀y x ()()0,0,=y x ()()x x x x x u x u x x x 0200limlim 0,00,lim →→→=-=-()x u ∂∂0,0()y u ∂∂0,0()z z f =0=z ()zz f =()()0,0,≠y x x u∂∂y u ∂∂x v ∂∂y v∂∂u v ()()0,0,=y x x u ∂∂y u∂∂()y x u ,()0,0()()()y x v y x u y y z f xx ,i ,sin ie cos e +=+=()y y x u x cos e ,=()y y x v x sin e ,=y v y x u x ∂∂==∂∂cos e x v y y u x ∂∂-=-=∂∂sin e x u ∂∂y u ∂∂()z f ()x vx u z f ∂∂+∂∂='i ()()z f y y z f xx =+='sin ie cos e ()f z ()()z f z f ='x e ()ecos ie sin exp e xx zf z y y z '=+==ycos y sin πk 2z e i 2πz e ()()()y x v y x u z f ,i ,+=D ()z f ()z f D ()z f D ()z f D ()z f arg D5)在内有,其中,,是不全为0的实常数.6)或在内为常数.7)在内有.证 首先,由条件在内解析a ),均在内可微,且b )在内处处成立.1)因为在内取实值,即,.于是,.将此结果代入C-R 方程b ),得,.所以..即(为一常数)2)于在内解析.因而除条件a ),b )成立之外,条件c )成立.联立b ),c )得,即,.又由b )或c )得.所以在内,恒有,.即为常数.3)由于,.若,则,,.若,则由,两端分别关于,求偏导得:e )将b )代入e )得D ()()c y x bv y x au =+,,a b c ()()z f Re ()()z f Im D D ()0='z f ()()()y x v y x u z f ,i ,+=D ⇔u v D ⎪⎪⎩⎪⎪⎨⎧∂∂-=∂∂∂∂=∂∂x v yu y v x u D ()z f D ()0,≡y x v ()D y x ∈,0≡∂∂=∂∂y v x v ()D y x ∈,0≡∂∂=∂∂y u x u ()D y x ∈,()A y x u =,()D y x ∈,()A z f =D z ∈A ()()()()()[]y x v y x u y x v y x u z f ,i ,,i ,-+=-=D ()()⎪⎪⎩⎪⎪⎨⎧∂∂=∂-∂-=∂∂∂∂-=∂-∂=∂∂x v x v yu y v y v x u y v y v ∂∂-=∂∂x vx v ∂∂-=∂∂0=∂∂=∂∂y v x u ()D y x ∈,0=∂∂=∂∂y ux u D ()A y x u =,()B y x v =,()B A z f i +=()()()Cy x v y x u z f ≡+=,,22()D y x ∈, 10=C ()0≡z f ()0≡⇔∈z f D z D z ∈ 20≠C ()()0,,222≠≡+C y x v y x u x y ⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00y v v y u u x v v xuu ()D y x ∈,由得 ,代入b )得,于是, 即, (,为任意实常数)3)因为常数,,由主值支的表达式得f )常数,及, 若,则 归为1)的情形,得证.若,对c )两端分别关于,求偏导得 即将b )代入得,再由b )即得 ,从而得,(,为任意实常数)5),,且,,是不全为0的实常数.所以有.于是对上式两端分别关于,求偏导得⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂-∂∂00y u u xu v y u v x uu ()D y x ∈,()()0,,222≠≡+C y x v y x u 0≡∂∂=∂∂y u x u ()D y x ∈,0≡∂∂=∂∂y vx v ()D y x ∈,()A y x u ≡,()B y x v ≡,()B A z f i +=D z ∈A B ()≡z f arg D z ∈ωarg ()()≡y x u y x v ,,arctan C =()()0,,222≠≡+C y x v y x u ()D y x ∈, 10=C ()()⎩⎨⎧>≡0,0,y x u y x v ()D y x ∈, 20≠C x y ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+∂∂-∂∂=+∂∂-∂∂002222v u y u v y v u v u x u v x vu ()022≠+v u ⎪⎪⎩⎪⎪⎨⎧=∂∂-∂∂=∂∂-∂∂00y u v yvu x u v x v u ⎪⎪⎩⎪⎪⎨⎧=∂∂-∂∂=∂∂-∂∂00x u u xv v x u v x vu ()D y x ∈,()()0,,22≠+y x v y x u 0=∂∂=∂∂∴x vx u 0=∂∂y v 0=∂∂y u ()B A z f i +=D z ∈A B ()()c y x bv y x u =+,,a ()D y x ∈,a b c 022≠+b a x y将b )代入得因为,故得 再由条件b )即得,.于是得,(,为任意实常数)6)若,则在内取实值.即1)所证.若即,则,,,代入b ),即得,.,, (,为任意实常数) 若,即,则,,则由b )知,,即,7)由于.所以若在内有,则,, 由条件b )即得,. 所以, (,为任意实常数).注 以上各命题的论证均是在于区域上解析的前提下进行的,否则结论不一定成立.例如,为一实值函数,满足条件1).但它于全平面不解析(见1-26题,3).显然在任何区域上不可能取常数值,即无题中的结论. 2.3 证明在极坐标系下的柯西-黎曼条件为【提示:另一证明方法,可利用,然后根据复合函数求导证明】⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00y v b yu a x v b x ua ⎪⎪⎩⎪⎪⎨⎧=∂∂-∂∂=∂∂+∂∂00x v a x u b x v b x ua 022≠+b a ⎪⎪⎩⎪⎪⎨⎧=∂∂=∂∂00xv x u()D y x ∈,0=∂∂y v 0=∂∂y u ()B A z f i +≡D z ∈A B1()()0Im =≡C z f ()z f D ()()0Im ≠≡C z f ()C y x v ≡,()D y x ∈,0≡∂∂x v0≡∂∂y v ()D y x ∈,0≡∂∂x u0≡∂∂y u ()D y x ∈,()B A z f i +=∴ D z ∈A B 2()()C z f ≡Re ()C y x u ≡,()D y x ∈,0≡∂∂x u 0≡∂∂x u 0≡∂∂x v0≡∂∂y v ()B A z f i += D z ∈()x v x u z f ∂∂+∂∂='i D ()0='z f 0=∂∂x u 0=∂∂x v()D y x ∈,0=∂∂y u 0=∂∂y v()D y x ∈,()B A z f i +=D z ∈A B ()z f D ()zz f =()zz f =D 11, u u r ρϕρρϕ∂∂∂∂==-∂∂∂∂v v cos ,sin x y ρϕρϕ==2.4 设在内解析.证明.证 令则(1) 同理得(2) 并注意在内解析.所以有即且,均为调和函数,即.于是(1)+(2)得注 本题证明中用到解析函数三条性质:(1)实、虚部满足C-R 方程.(2).(3)实部、虚部均为调和函数.即,.2.5 证明解析函数的实、虚部所确定的曲线族与在的点处是正交的.(,为任意实数)证 因为在的点,曲线族在该点处的切线斜率为.曲线族在该点处的切线斜率为.所以.即曲线族与曲线族正交.(2)对使得,的点,曲线族在该点处的切线为铅直线(∵),而曲线族在该点处的切线为水平线(∵),故二者正交,同理,当,时,二者也正交.注 1.本题证明中用到曲线与曲线正交即为二者在交点处切线的正交这一概念; 2.本题的结论是解析函数在处的又一性质.2.6 已知下列调和函数求复势表达式.并写成关于的表达式.()()()y x v y x u z f ,i ,+=D ()()2222224z f z f y x '=⎪⎪⎭⎫ ⎝⎛∂∂+∂∂()()()()y x G y x v y x u z f ,,,222=+=⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=∂∂222222222x v v x u u x v x u x G ⎥⎥⎦⎤⎢⎢⎣⎡∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=∂∂222222222y v v y u u y v y u y G ()z f D ()y u y v x v x u z f ∂∂-∂∂=∂∂+∂∂='i i ()22222⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂='y v y u x v x u z f u v 0=∆=∆v u ()222224zf y G x G '=∂∂+∂∂()y u y v x v x u z f ∂∂-∂∂=∂∂+∂∂='i i 0=∆u 0=∆v ()()()y x v y x u z f ,i ,+=()C y x u =,()B y x v =,()0≠'z f C B ()0≠'z f ()y x ,()C y x u =,x v x u y u x u x y k ∂∂∂∂=∂∂∂∂-==d d 1()B y x v =,x uxvy v xvx y k ∂∂∂∂-=∂∂∂∂-==d d 2121-=k k ()C y x u =,()B y x v =,0≠∂∂x u 0=∂∂x v ()y x ,()C y x u =,0d d =y x ()B y x v =,0d d =x y0≠∂∂x v 0=∂∂x u ()0≠'z f ()()()y x v y x u z f ,i ,+=z1), 2), 解 由于解析,所以,满足C-R 方程.1),故.由此得,这里为的任一可导函数.又由得所以,为任一实常数. 于是. 令,即得 ∴ 于是,满足条件的解析函数为所以2)在极坐标系下,C-R 方程为形式. 令(则由得),有,,所以得,即解得 为的任一可导函数. 又由得.为任一实常数. 所以注意,得2.7设,求之值,使为一调和函数,并求一解析函数.解 因为,所以 ,,,()()12,-=x y y x u ()i 2-=f ()x yy x v arctan,=0>x ()()()y x v y x u z f ,i ,+=()y x u ,()y x v ,()()12,-=x y y x u yx u y v 2=∂∂=∂∂()()x C y y x v +=2,()x C x y ux v ∂∂-=∂∂()()12--='x x C ()122C x x x C ++-=1C ()1222,C x x y y x v ++-=2=z ⎩⎨⎧==02y x ()i i 21-==C f 11-=C ()()()12i 1222-+-+-=x x y x y z f ()()21i --=z z f ⎪⎪⎩⎪⎪⎨⎧∂∂=∂∂∂∂-=∂∂r u r v r v r uθθθ==x y v arctan 0>x ⎪⎭⎫ ⎝⎛-∈2,2ππθ1=∂∂θv 0=∂∂r v 1=∂∂r u r r r u 1=∂∂()()θθC r r u +=ln ,()θC θ()0=∂∂-='=∂∂r v r C u θθ()1C C =θ1C ()1ln ,C r r u +=θ()()()θθθi ln ,i ,1++=+=C r r v r u z f z r =()0arg arctan >==x z x yθ()1arg i ln C z z z f ++=()y y x v pxsin e,=p v ()()()y x v y x u z f ,i ,+=()y y x v pxsin e ,=y p x v px sin e =∂∂y p x v px sin e 222=∂∂y y v px cos e =∂∂y y v px sin e -=∂∂由,得. (1)当时,.由1-32题的方法易求出调和函数,则为所求解析函数,其中为任意实常数.(2)当时,.可求得调和函数.(为任一实常数).于是所求的解析函数为(全平面解析)2.8 计算下列复数1) 2),其中; 3); 4);5)解 1)(为整数)2)当时得3)4);5) 注 (i ).以上各题均由定义求得;(ii). 值得注意的是,1只是无穷多个值中的一个值(对应于),这与实变量函数中的概念不同.2.9 求解方程【解】2.10 解下列方程1) 2)解2) ∵∴ ,即由对数函数定义得∴ ,为任意整数. 3)由得由对数函数定义得为任意整数[]1sin e 22222=-=∂∂+∂∂=∆p y y vx v v px 1±=p 1=p ()y y x v xsin e ,=()c y y x u x +=cos e ,()C y C y z f z x x +=++=e sin ie cos e C 1-=p ()y y x v x sin e ,-=()1cos e ,C y y x u x +-=-1C ()()()[]111e sin i cos e sin ie cos e C C y y y C y z f x z x x +-=+-+--=++-=----()ii 1+z 1y x z i +=()i ln -i 1i +()2ln -()()2iln 2412i 4i 2ln i i 1iln i ee e i 1+⎪⎭⎫⎝⎛+-⎥⎦⎤⎢⎣⎡+++===+πππk k k ()()()x k x k yk y y x z ππππ2sin i 2cos e e 11k 22i i x i +===-++() ,2,1,0±±=k 0=k 11=z()()πππk k 2i 2i2i i iarg i ln i ln +-=+-+-=-() ,2,1,0±±=k ()() ,2,1,0ie k 22/1±±=+k π()() ,2,1,012i 2ln ±±=++k k πz10=k sin cos 0z z +=(2)2sin cos 0(1)(1)2211/4, (0,1,2,)iz iz iz iziz iz i n iz e e e e z z e i e i i i e i eiz n n ππππ-----++=+=∴-=-++=-=-=-∴=-=±±0sin =z 0e 1=+zi 2e e sin i i =-=-zz z z z i i e e -=1e 2i =zπk z 2i 1ln 2i ==πk z k=k 01e =+z 1e -=z()()π12i 1ln +=-=k z k k主值为2.11 证明,对任何数(复数、实数),方程均有解.证 在中,令,则,且,所以.且可取到任意非0值.于是,原方程即为,即.所以.(这里有两个根)故,由对数函数定义得所以.故右端对任意均有意义,得证. 注 这里的结果说明两点:(1)复变量余弦函数可取到任意值(复、实值),而不象实余弦函数取值区间仅为;(2)所得结果改变与的位置,即得).这正是的反函数.可对进行同样讨论,此略. 2.12 求,使对任意,有.解 由的定义,即求满足方程的一切值.整理化简即得 ,对任意成立.且因. 故得,即.为任意整数. 所以注 由此题结果可见,复变量正、余弦函数为周期函数,且周期与实变量正、余弦的相同. 2.13 若某解析函数的实部等于虚部的平方,证明该解析函数必为常数. 【提示,参考例2.6.1即可证明,这是该例的一个特殊情况】i0π=z ωω=z cos 2e e cos i i zz z -+=zt i e =⎪⎭⎫ ⎝⎛+=t t z 121cos ()x x t y z sin i cos e e i +==-0≠t t ω=⎪⎭⎫ ⎝⎛+t t 1210122=+-t t ω12-+=ωωt 12-ω01e 2i ≠-+=ωωz ()()1iln 1ln i 122-+-=-+=ωωωωz 012≠-+ωωω[]1,1-z ω()1iln 2-+-=z z ωz cos =ωz sin ωz ()z z sin sin =+ωz sin ()()zz z z i i i i e e e e -+-+-=-ωωω()()ωωωi i i 2i e 1e 1e e ----=-⋅z z 0e e i 2i ≠⋅ωz 0e1i =--ωπωk 2i 1ln i ==-k πωm 2=(),2,1,0±±=m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学同步测试(10)—函数单元测试一、选择题:(本题共12题,每小题5分,满分60分) 1.若a 、b 、c ∈R +,则3a =4b =6c ,则( )A .bac111+=B .b a c 122+=C .ba c 221+=D .ba c 212+=令3a =4b =6c =m,那么,a=log 3m.b=log 4m,c=log 6m. 1/c=log m 3,1/b=log m 4,1/c=log m 6然后验证:A ,bac111+=,=log m 3=log m 4+log m 6错!B ,b ac122+==2log m 3=2log m 4+log m 6 对!2.集合}5,4,3,2,1{},1,0,2{=-=N M ,映射N M f →:,使任意M x ∈,都有)()(x xf x f x ++是奇数,则这样的映射共有( )A .60个B .45个C .27个D .11个此题不具备参考价值,故舍弃。
3.已知()1a xf x x a -=--的反函数...f -1(x )的图像的对称中心是(—1,3),则实数a 等于 A .2 B .3 C .-2 D .-4反函数的对称中心是(-1,3)。
那么原函数的对称中心是(3,-1) 有关对称中心的问题可参考反比例函数y=1/x.的图象。
将原函数化简为反比例函数的变形。
F(x)=-(x-a)/(x-a-1) =-(x-a-1+1)/(x-a-1)=-1-1/(x-a-1),现在研究该函数的对称中心是 (a+1,-1),很明显a+1=3.a=2.4.已知()|log |a f x x =,其中01a <<,则下列不等式成立的是 ( )A .11()(2)()43f f f >>B .11(2)()()34f f f >>C .11()()(2)43f f f >>D .11()(2)()34f f f >>可以将所给函数的图象画出来,研究图象,也可以直接分析结论。
|log a ¼|=|-log a 4|=|log a 4|. |log a ⅓|=|-log a 3|=|log a 3|现在比较|log a 4|.>|log a 3|。
>|log a 2|。
(C)已知01a <<。
5.函数f (x )=1-x +2 (x ≥1)的反函数是 ( )A .y =(x -2)2+1 (x ∈R)B .x =(y -2)2+1 (x ∈R)C .y =(x -2)2+1 (x ≥2)D .y =(x -2)2+1 (x ≥1)此题以前就讲过,估计没有错。
6.函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么 ( )A .F ∩G=∅B .F=GC .F GD .G F有的人把这道题都解错了,确实不应该。
F ,x>2或x<1. G,x>1且x>2⇒x>2 那么很明显。
7.已知函数y =f (2x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是 ( ) A .(0,+≦) B .(0,1) C .[1,2] D .[2,4]有关函数的定义域变换一再强调,一再讲解,希望没有下次了。
解此类题一定要注意,原函数f(x)中的x 被谁取代了。
此处x 被2x 取代。
而[-1,1]是指2x中x 的取值范围。
不知这次是否理解了。
那么2x的值域也即x 即原函数的定义域。
[½,2]。
接下来要求函数y =f (log 2x )的定义域即,已知log 2x 的值域,求定义域的问题。
自己解。
8.若()()25log 3log 3x x -≥()()25log 3log 3y y---,则 ( )A .x y -≥0B .x y +≥0C .x y -≤0D .x y +≤0令(log 23)x ≥(log 23)-y,现在变成了指数函数的比较。
log 23应该是大于1,所以,x ≥-y.x+y ≥0. 对于另一面同理可得。
(自己解另一面)9.函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是 ( )A .0≥bB .0≤bC .0<bD .0>b单调函数?二次函数是不可能单调的,除非在对称轴的一面,而题中给定了范围,显然是限定了对称轴的范围,对称轴是-b/2.开口向上,在[0,+≦]上单调,则-b/2<0.b>0 10.函数)2()(||)(x x x g x x f -==和的递增区间依次是 ( ) A .]1,(],0,(-∞-∞B .),1[],0,(+∞-∞C .]1,(),,0[-∞+∞D ),1[),,0[+∞+∞估计不能错。
其中g(x)=-x2-2x,开口向下,11.将进货单价为80元的商品按90元一个出售时,能卖出400个,根据经验,该商品若每个涨(降)1元,其销售量就减少(增加)20个,为获得最大利润,售价应定为 ( ) A .92元 B .94元 C .95元D .88元这样的计算题自己静下心来应该是可以解对的。
找到利润的函数表达式,然后求最值。
y=[400-(x-90)x20](x-80)=-20(x-95)2-@#,当x=95时最大。
12.某企业2002年的产值为125万元,计划从2003年起平均每年比上一年增长20%,问哪一年这个企业的产值可达到216万元( ) A .2004年 B .2005年C .2006年D .2007年此类题考查过多。
知道方法即可。
y=125(1+0.2)xy=216时,x=3,自己解,看能否解到不同的答案。
能否解出4?二、填空题:(本题共4小题,每小题4分,满分16分) 13.函数xxy +=12[),1((+∞-∈x ]图象与其反函数图象的交点坐标为 .答案(0,0)&(1,1).少一个都是错。
先求反函数自己解,y=x/(2-x).比较原函数可以看到他们都多什么点。
14.若4log 15a <(0a >且1)a ≠,则a 的取值范围是 . 答案:(0,4/5)U (1,+≦) 分类讨论的情况,见过很多次了。
1).当a>1. 4log 15a <=log a a, 函数递增4/5<a.故最后a>1. 2).当0<a<1, 4log 15a <=log a a,函数递减,4/5>a,最后0<a<4/5 15.lg25+32lg8+lg5〃lg20+lg 22= . 答案,3化简lg25=2lg5, 32lg8=32lg23=32x3lg2=2lg2,2lg5+2lg2=2.lg5〃lg20=lg5(lg4+lg5)=lg 25+lg5〃lg4= lg 25+2lg5〃lg2. lg 25+2lg5〃lg2+ lg 22=(lg5+lg2)2=116.已知函数221)(xx x f +=,那么 =⎪⎭⎫⎝⎛++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++41)4(31)3(21)2()1(f f f f f f f _____7/2_____题中有1/2与2,1/3与3,1/4与4,故求f(1/x)=1/(x 2+1). F(x)+f(1/x)=1,(自己解),然后解f(1)=1/2.三、解答题:(本题共6小题,满分74分)17.(本题满分12分)设A={x∈R|2≤x ≤π},定义在集合A上的函数y=log a x (a >0,a≠1)的最大值比最小值大1,求a的值.答案:π/2。
或2/π。
此题需分类讨论。
a>1, y=log a x 增函数,log aπ-log a2=1,自己解。
a=π/2.0<a<1, y=log a x减函数,log a2- log aπ=1,自己解,a=2/π18.(本题满分12分)已知f(x)=x2+(2+lg a)x+lg b,f(-1)=-2且f(x)≥2x恒成立,求a、b的值.答案:a=100,b=10由f(-1)=-2.得到什么?(自己解)得:a=10b, (1)由f(x)≥2x恒成立,虽然是一个不等式,但是是恒成立,应该可以解出来东西的,f(x)-2x≥0恒成立。
(自己解)得:lg2a-4lgb≤0.将(1)代入,(自己解)(lga-2)2≤0.所以lga-2=0。
得a=100.b=1019.(本题满分12分)“依法纳税是每个公民应尽的义务”,国家征收个人工资、薪金所得税是分段计算的:总收入不超过800元的,免征个人工资、薪金所得税;超过800元部分需征税,设纳税所得额(所得额指月工资、(1)若应纳税额为f (x ),试用分段函数表示1~3级纳税额f (x )的计算公式;(2)某人2004年10月份工资总收入为4000元,试计算这个人10月份应纳个人所得税多少元?可能不知道税收是怎么回事才解不对。
1).税收的性质是这样的,依据税率表有, 第1段;x ·5%第2段:(x-500)·10%+500·5%第3段:(x-200)·15%+1500·10%+500·5% 即: f(x)=2).这个人10月份的总工资收入为4000元,应该在第3段。
计算以下可以得,x=3200.f(3200)=355.20.(本题满分12分)设函数f (x ) =21+x +lg xx +-11 . (1)试判断函数f (x )的单调性 ,并给出证明;(2)若f (x )的反函数为f -1 (x ) ,证明方程f -1 (x )= 0有唯一解.方法正确即可,1).首先判断函数的定义域,(-1,1) 用定义法证明函数单调性,步骤固定。
设:-1<x 1<x 2<1. f(x1)-f(x2)=….(自己解) =然后自己判断。
2).此问很有意思,它有着很简单的一面,想复杂了可能就南辕北辙了。
若方程f -1 (x )= 0有唯一解.那么也就是说f(0)=?=1/2.21.(本题满分13分)某地区上年度电价为0.80元/kW 〃 h ,年用电量为a kW 〃 h .本年度计划将电价降到0.55元/kW 〃h 至0.75元/kW 〃h 之间,而用户期望电价为0.4元/kW 〃h .经测算,下调电价后新增的用电量与实际电价和用户期望电价的差成反比(比例系数为k ).该地区电力的成本为0.3元/kW 〃h .(1) 写出本年度电价下调后,电力部门的收益y 与实际电价x 的函数关系式.(2) 设k =0.2a ,当电价最低定为多少时,仍可保证电力部门的收益比上年至少增长20%? (注:收益=实际用电量×(实际电价-成本价)).1).不写定义域扣1分。