复变函数第二章解析函数的概念
解析函数的概念
第二章 解析函数解析函数是本课程讨论的中心,是复变函数研究的主要对象.它在理论和实际中有着广泛的应用.本章在先学习复变函数概念的基础上,讨论解析函数.学习函数解析的的一个充要条件,以及如何用实部、虚部所具有的微分性质表达函数的解析.学习常用的初等复变函数.§2.1 解析函数的概念教学目的:1.理解并掌握复变函数可微和解析的定义,以及复变函数在一点和闭区域上解析的含义;能正确判断所给函数在一点或在一个区间上的可导性与解析性.2.能理解并掌握复变函数可微、解析与实、虚部两个二 元实函数的关系(C —R 条件);正确运用解析的充要条 件判断函数的解析性.3.熟练掌握几类初等单值解析函数,并了解几类典型的 初等多值解析函数.重难点:证明函数的可导性与解析性;掌握函数可导与解析的联系 与区别.教学方法:启发式讲授与指导练习相结合教学过程:§2.1.1 复变函数的导数解析函数是复变函数论的主要研究对象, 它是一类具有某种特性的可微函数.首先, 我们类似于实函数的导数引进复变函数的导数.【定义2.1】设)(z f w =在某0()U z 内有定义,记0z z z -=∆且对 00()z z z ∀+∆∈,)()(0z f z f w -=∆)()(00z f z z f -∆+=, 如果z w z ∆∆→∆0lim00)()(lim 0z z z f z f z z --=→(A =≠∞的常数)存在 (即对0ε∀>, 0δ∃>,..s t 当D z ∈且0z z δ-<时, 总有 ε<---A z z z f z f 00)()(), 则称)(z f 在0z 可导或可微(其中D 为)(z f 的定义域).A 称为)(z f 在0z 的导数, 记为)(0z f A '=或0|z z dw A dz ==,即 A =zw z f z ∆∆='→∆00lim )(00)()(lim 0z z z f z f z z --=→. 如果z w z ∆∆→∆0lim 00)()(lim 0z z z f z f z z --=→不存在, 则称)(z f 在0z 不可导或不可微.如果)(z f 在区域D 内每一点都可微, 则称)(z f 在D 内可微.注:10. 由于复变函数导数的定义与实函数导数的定义形式一致,容易验证, 实函数求导的基本公式大多可不加更改地移植到复变函数上来.20.由定义2.1易得, 若函数)(z f 在0z 可导, 则)(z f 在0z 连续(即连续是可导的必要条件) .例1 讨论z z f =)(在z 平面上的可导性.解 在复平面上任取一点z ,由于当0→∆z 时,zz z z f z z f ∆∆=∆-∆+)()(的 极限不存在, 所以 z z f =)(在点z 不可导.再由z 的任意性, z z f =)(在z 平面上处处不可导.(注意z zz z f z z f ∆∆=∆-∆+)()(的极限不存在图2 .1)例2 证明 函数2()f z z =在 0z =点可导,且导数等于0. 证明 由于 0000()()()(0)lim lim 0z z z f z f z f z f z z z →→--=--200lim lim 0z z zz z →→===,故函数2()f z z =在 0z =点可导,且导数等于0.例3 设()Re f z z =,证明 ()f z 在全平面处处不可导. 证明 因为对平面上任意一点0z ,000000()()Re Re Re()f z f z z z zz z z z z z z ---==---,考虑当z 沿直线0Im Im z z =趋于0z 时00000000Im Im Im Im ()()Re()lim lim 1z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- 考虑当z 沿直线0Re Re z z =趋于0z 时00000000Re Re Re Re ()()Re()lim lim 0z z z z z z z z z z f z f z z z z z z z →→∈=∈=--==-- ;所以当0z z →时,极限000Re()limz z z z z z →--不存在, 即()f z 在0z 没有导数. 由0z 的任意性知函数()f z 在全平面处处不可导.例4 证明: 函数nz z f =)(在z 平面上处处可导, 且 1)(-='n n nz z (n 为正整数) .证明 在z 平面任取一点z , 因为()()()n nf z z f z z z z z z+∆-+∆-=∆∆121(1)2n n n n n nz z z z ----=+∆++∆ 所以 0lim →∆z 1)()(-=∆-∆+n nz z z f z z f , 即n z z f =)(在点z 可 导,且1)(-='n n nz z . 由点z 的任意性知, 结论成立.练习:试说明函数 224(),0()0,0xy x iy z f z x y z ⎧+≠⎪=+⎨⎪=⎩在原点不可导.提示: 22224200()(0)lim lim 01y y x ky x kyf z f xy k z x y k →→==-==-++ 则()f z 在原点的导数随k 而变化,故结论成立.§2.1.2 解析函数的概念与求导法则1.【定义2.2】如果)(z f 在点0z 的某邻域内处处可导, 则称)(z f 在点0z 解析;如果)(z f 在区域D 内可微(即)(z f 在D 内每一点都可导), 则称)(z f 在区域D 解析; 如果)(z f 在区域G 内解析, 而闭区域G D ⊂,则称)(z f 在闭区域D 上解析.如果)(z f 在0z 处 不解析,则称0z 为)(z f 的奇点.(如图2 .2)说明: 由定义2.2知,10.函数解析一定是与相关区域联系在一起的.即函数在一点解 析不是函数在该孤立点的性质. 函数在一点可导与在一点解析不等价;指函数在此点的某邻域内可导;20. 函数在一个区域D 内解析有时也称此函数为区域D 上的全纯函数或正则函数.函数在区域D 内解析等价于函数在区域D 内处处可导(即在区域D 内每一点都解析).函数在某闭区域上解析是指函数在包含此闭区域的更大的区域内解析.2.类似于实函数的求导法则, 关于解析函数我们有如下法则:1) 四则运算:如果)(z f , )(z g 都在区域D 内解析, 则他们的和、 差、乘积以及商(商的情形要求分母函数不为零)在区域D 内仍解析, 并且 [()()]()()f z g z f z g z '''±=± ;[()()]()()()f z g z f z g z f z g z'''⋅=+⋅;2()()()()()[](()0)()()f z f z g z f z g z g z g z g z ''⋅-⋅'=≠.另:(1)常数的导数为零.(2)()1n n z nz -'=(n 为正整数);(3)[()]()kf z kf z ''=(k 为常数).(4)多项式函数n n n a z a za z P +++=- 110)(在z 平面上解析, 且12110)1()(---++-+='n n n a za n z na z p (5)而有理函数m m n nb z b a z a z R ++++=00)(在z 平面上使分母不为零点处处都是解析的. 2) 复合函数求导法则:设()f z ξ=在z 平面上的区域D 内解析, ()w g ξ=在ξ平面上的区域G 内解析, 并且()f D G ⊂, 则复合 函数[()]w g f z =在区域D 内也解析, 并且{[()]}()()[()]()g f z g f z g f z f z ξ'''''=⋅=⋅.3) 反函数求导法则:设函数()w f z =在区域D 内为解析函数且 ()0f z '≠,又反函数1()()z f w w ϕ-==存在且连续,则 ()11()|()(())z w w f z f w ϕϕϕ='==''. 提问:1.设41()(1)4f z z i z =-+,则方程 ()0f z '=的全部解为 . 答案: 32244(1)0sin )33k k z i z i ππππ++-+=⇒==+(其中 0,1,2)k =2.若0z 是函数 ()f z 的奇点,则()f z 在点0z 不可导.( × )3.若0z 是函数 ()f z 的解析点,则()f z 在点0z 可导. ( √ )4.0()f z '存在,则()f z 在点0z 解析. ( × ) 例5 设212)23()(+-=z zz f , 由上述法则知, 2202()21(32)(32)f z z z z z ''=-+-+22021(32)(61)z z z =-+-.例6 求函数 5223()41z z f z z -+=+的解析性区域以及在该区域上的导数.解 设52()23,()41P z z z Q z z =-+=+,则P(z) , Q(z)在全平面上 解析,再由商的求导法则知()0Q z ≠时, ()()()P z f z Q z =在平面上解析,由()0Q z =得2i z =±;故函数)(z f 的解析区域是全平面除点2i z =±外的区域.且由商式求导公式得4222246104241()(41)z z z z f z z ++--'=+. §2.1.3 解析函数的一个充要条件(柯西—黎曼条件)与判别从形式上,复变函数的导数及其运算法则与实函数几乎没有什么差别,但实质上它们之间存在很大的的差异.下面,我们来研究复变函数的可微和解析与其实部、虚部两个二元实函数之间的关系.【定理2. 1】(可微的充要条件)设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在点D iy x z ∈+=可微(可导)的充要条 件是 :(1) ),(),,(y x v v x u 在点iy x z +=可微;(2) ),(),,(y x v v x u 在点iy x z +=满足x v y u y v x u ∂∂-=∂∂∂∂=∂∂, ( 柯西—黎曼条件也称为C R -方程 ).证明 必要性:若 )(z f 在点D iy x z ∈+=可微记ib a z f +=')(,v i u w ∆+∆=∆, y i x z ∆+∆=∆, 其中 (,)(,)u u x x y y u x y ∆=+∆+∆-,(,)(,)v v x x y y v x y ∆=+∆+∆-由导数的定义知()()()()()w f z z o z a ib x i y o z '∆=∆+∆=+∆+∆+∆()0()(0)a x b y i b x a y z z =∆-∆+∆+∆+∆∆→比较上式两边的实部、虚部得 ),(),(y x u y y x x u u -∆+∆+=∆y b x a ∆-∆=()o z +∆)(0z ∆→)),(),(y x v y y x x v v -∆+∆+=∆)()b x a y o z =∆+∆+∆(0z ∆→)再由实函数中二元实函数可微的定义知, ),(),,(y x v v x u 在点iy x z +=可微, 且xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,. 充分性: 记xv b y u y v a x u ∂∂-=-=∂∂∂∂==∂∂,, 且),(),,(y x v v x u 在点iy x z +=可微,所以 w u i v ∆=∆+∆[()][()]x y x y u x u y o z i v x v y o z ''''=∆+∆+∆+∆+∆+∆ ()()()]x x y y u i v x u i vy o z ''''=+∆++∆+∆ ()()()a b i x b i a y o z=+∆+-+∆+∆ ()()()a b i x i a b i y o z =+∆++∆+∆()()()a b i x i y o z =+∆+∆+∆ ()()f z z o z '=∆+∆. 所以 00()lim lim ()x x o z w a bi f z z z∆→∆→∆∆'=++=∆∆. 说明:10. 定理2.1中条件xv y u y v x u ∂∂-=∂∂∂∂=∂∂,称柯西—黎曼条件或柯西—黎曼方程或C R -方程.20. 由定理2.1的证明知,如果),(),()(y x iv y x u z f +=在 点iy x z +=可微, 则有导数公式 yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(. (由C R -方程还可以写出其它形式)30.特别注意:C R -方程是函数可导的必要而非充分条件.例如:函数 2222220(,)(,)00xy x y x y u x y v x y x y ⎧+≠⎪+==⎨⎪+=⎩令 ()(,)(,)f z u x y iv x y =+,则()f z 在点0z =处满足C R -方程即0,0u v u v x y y x∂∂∂∂===-=∂∂∂∂, 但是由于()f z 在点0z =处不连续,所以函数在0z =处不可导. 在实函数中,我们知道由二元实函数具有一阶连续的偏导数可以 推得二元函数可微, 由此可得【推论】※ (可微的充分条件) 设),(),()(y x iv y x u z f +=定义在 区域D 上,则)(z f 在点D iy x z ∈+=可微的充分条件是(1) ),(),,(y x v v x u 在点iy x z +=处具有一阶连续的偏导数;(2) ),(),,(y x v v x u 在点iy x z +=满足C —R 条件.将上述定理1及其推论运用到区域D 的每一点上,可得函数解析的充要条件.【定理2.2】 设),(),()(y x iv y x u z f +=定义在区域D 上,则)(z f 在D 内解析的充要条件是(1) ),(),,(y x v v x u 在D 内处处可微;(2) ),(),,(y x v v x u 在D 内满足C R -方程xv y u y v x u ∂∂-=∂∂∂∂=∂∂,. 【推论】设),(),()(y x iv y x u z f +=定义在区域D 上, 则)(z f 在D 内解析的充分条件是 (1) ),(),,(y x v v x u 在D 内具有一阶连续的偏导数; (2) ),(),,(y x v v x u 在D 内满足C —R 方程. 注: 定理2.2的充分性由推论立即可得, 但必要性的证明需要用到第三章中的解析函数的无穷可微性.例7 讨论下列函数的可导性与解析性.(1)()Re f z z =解: 设iy x z +=, 则有()Re f z z x ==,记 (,)u x y x =, 0),(=y x v . 因1,0u u x y∂∂==∂∂, 0,0=∂∂=∂∂y v x v , 显然它们不满足C —R 条件, 所以 由定理1知, ()Re f z z =在z 平面上处处不可导且处处不解析.(2)2)(zz f =.解: 设iy x z +=, 则有222)(y x zz f +==, 记 22),(y x y x u +=, 0),(=y x v . 因y y u x x u 2,2=∂∂=∂∂, 0,0=∂∂=∂∂yv x v , 显然它们都是连续的.要使C —R 条件满足, 只需0,0==y x 即可,所以 2)(zz f =仅在原点可导, 但在z 平面上处处不解析. (3)()(cos sin )x f z e y i y =+.解:设iy x z +=,),(),()(y x iv y x u z f +=,则有 cos ,sin x xu e y v e y ==因为 cos ,sin x x x y y x u e y v u v e y ''''===-=,且四个偏导数存在且连续,所以 ()f z 在z 平面上处处可导且处处解析且)()(z f z f =' ()(cos sin )()x z u v f z i e y i y e f z x x∂∂'=+=+==∂∂. 注: 满足此例题条件的解析函数称为复指数函数.说明:在讨论具体函数的可导性和解析性时, 可先找出实部和虚部实函数,再验证定理2.2或者推论的条件(1)和(2)得出可导性. 但在回答解析性时一定要慎重, 必须再考虑函数在可导点的邻域内的可导性后才能给出正确的回答.若C —R 方程不成立,则函数一定不可导.用推论有时更方便.提问:5.函数 22()f z x iy =+在点1z i =+处是(B )(A )不可导的. (B) 可导的. (C) 解析的. (D)既不可导也不解析. 解 由C-R 方程可推出在 x y =上()f z 可导,在复平面上处处不 解析.6.若)(z f 在曲线C 上每点不解析,则)(z f 在C 上不可导.( ⨯ )7.若)(z f 在曲线C 上每点可导,则)(z f 在C 上每一点解析.( ⨯ ) 练习:(1)讨论函数iy xz f -=2)(的可微性与解析性. 解 记2),(x y x u =, y y x v -=),(,因0,2=∂∂=∂∂y u x x u , 1,0-=∂∂=∂∂yv x v ,显然它们都是连续的.要使C —R 条件满足, 只需,12-=x 即21-=x , 所以 iy x z f -=2)(仅在直线21-=x 上可导, 但在z 平面上处处不解析.(2) 讨论函数 3232()3(3)f z x xy i y x y =+++的可导性与解析性. 解 记 32(,)3u x y x xy =+, 32(,)3v x y y x y =+, 因 2233,6u u x y xy x y ∂∂=+=∂∂, 226,33,v v xy y x x y∂∂==+∂∂,显然它们都是连续的. 要使C —R 条件满足, 只需0xy = 即()f z 仅在x 轴或y 轴上的点可导, 但在z 平面上处处不解析.例8 求函数 ()f z =Im Re z z z ⋅-在可导点处的导数. 解 ()f z =2Im Re z z z xy x iy ⋅-=-+,则(,)u x y xy x =-,2(,)v x y y =,1,,0,2,u u v v y x y x y x y∂∂∂∂=-===∂∂∂∂四个一阶偏导数连续, 由C —R 方程得01x y =⎧⎨=-⎩ 故函数 ()f z 仅在一点z i =-可导,且导数为()(1)|2z i f i y =-'-=-=-.例9若函数()f z u iv =+在区域D 内解析, 则函数()i f z 也在区域D 内解析.证明 因为()()i f z if z =-, 而()f z 在区域D 内解析, 所以()i f z 也在区域D 内也解析.例10 判断函数 ()f z =232x y i +在何处可导,何处解析,并求 (3),(32)f i f i ''++.解 2(,)u x y x =, 3(,)2v x y y =,22,0,0,6,u u v v x y x y x y∂∂∂∂====∂∂∂∂ 四个一阶偏导数连续,由C —R 方程得23x y =故 函数 ()f z 仅在曲线23x y =上可导,又点3z i =+在此曲线上,所以(3)f i '+存在且(3)f i '+=6,而32z i =+不在曲线上, 所以 (32)f i '+ 不存在.故函数 ()f z 仅在z i =-可导,且()(1)|2z i f i y =-'-=-=-. 例11判断函数 ()f z =322331(3)x xy i x y y -++-在复平面上 的解析性;若解析,试求()f z '.解 32(,)31u x y x xy =-+, 23(,)3v x y x y y =-,2233,6u u x y xy x y ∂∂=-=-∂∂,6v xy x∂=∂,2233v x y y ∂=-∂,四个一阶偏导数连续,由C —R 方程得xv y u y v x u ∂∂-=∂∂∂∂=∂∂,成立, 故函数 ()f z 在复平面上处处解析且()f z '=23z .例12 求实数,a b ,使()f z =2()x y i ax by -++在复平面上解析. 解()()2f x x y i ax by =-++在复平面上处处解析设(),2u x y x y =-,(),v x y ax by =+则2u x ∂=∂ 1u y ∂=-∂ v a x∂=∂ v b y ∂=∂满足C R -条件 u v x y∂∂⇒=∂∂⇒2b = u v y x ∂∂⇒=-∂∂⇒1a = 练习:设3232(,)()f x y my nyx i x xly =+++为解析函数,试确定n m l ,,的值.解:令32(,)u x y my nyx =+, 32(,)v x y x lxy =+,iv u y x f +=),(,则2x u nxy =, 323y u my nx =+, 223x v x ly =+, 2y v lxy =,这四个一阶偏导数存在且连续,因为解析函数()f z 满足C-R 方程,即:x y u v =,y x u v =-,亦即:lxy nxy 22=且323my nx +=22(3)x ly -+ 解得:m =1, 3-==l m .例13 函数)(z f 在区域D 内解析, 且满足下列条件之一,证明: )(z f 在区域D 内必为常数.(1) ()0f z '=.(2)Re ()f z =常数.(3))(z f 在区域D 内解析. (4) )(z f 在区域D 内为常数.(5)c bv au =+,其中a,b,c 为不 全为零的实常数.证明(1) 由()0u v v u f z i i x x y y∂∂∂∂'=+=-=∂∂∂∂ 知 0u v v u x x y y∂∂∂∂====∂∂∂∂, 故 u ,v 都是常数,从而 )(z f 在D 内必为常数.(2)因为 u =常数,故 0u u x y∂∂==∂∂,由C R -方程 v v x y∂∂=∂∂=0,从而 )(z f 在D 内必为常数. (3) 设),(),()(y x iv y x u z f +=, 则 ),(),()(y x iv y x u z f -=.由题设)(z f 和)(z f 都在区域D 内解析,由C —R 条件得x v y u y v x u ∂∂-=∂∂∂∂=∂∂,, xv y u y v x u ∂∂=∂∂∂∂-=∂∂,, 解得 0,0=∂∂=∂∂y u x u , 0,0=∂∂=∂∂yv x v 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在区域D 内为常数.(4) 设),(),()(y x iv y x u z f +=, 则222)(v u z f +=. 由题设)(z f 在区域D 内解析, 且)(z f 为常数, 记为A , 从而xv y u y v x u ∂∂-=∂∂∂∂=∂∂, (1) 222A v u =+ (2)由(2)式得 022=∂∂+∂∂xv v x u u (3) 022=∂∂+∂∂yv v y u u (4) 若0A =, 则0)(=z f , 结论显然成立;若0A ≠,联立(1)(3)(4)得 0,0=∂∂=∂∂y u x u ,0,0=∂∂=∂∂yv x v ; 再由实函数的知识, ),(y x u 与),(y x v 均为实常数, 所以)(z f 在 区域D 内为常数.(5)设a ≠0,则a bv c u -=,于是有 y y x x v a b u v a b u -=-=,. 由C-R 方程 .;x y y x v u v u -== 得0122=⎪⎪⎭⎫ ⎝⎛+⇒⎪⎭⎫ ⎝⎛-==-==y y y x x y v a b v a b a b u a b v a b u v ∴u,v 必为常数,即f(z)为常数.说明:在讨论满足一定条件的解析函数的性质时, 柯西黎曼条件常 常起着关键的作用.例14 ※ 如果)(z f 在上半平面内解析, 则)(z f 在下半平面内解析.证明 在下半平面内任取定一点z 0以及任一点z , 则 0z ,z 都属 于上半平面, 并且 ))()(()()(0000z z z f z f z z z f z f --=-- 因为)(z f 在上半平面内解析, 所以)()()(lim 0000z f z z z f z f z z '=--→,从而)())()((lim )()(lim 0000000z f z z z f z f z z z f z f z z z z '=--=--→→, 即)(z f 在点z 0可导. 再由z 0的任意性, )(z f 在下半平面内解析. 说明:在讨论函数的解析性时, 有时可直接利用导数的定义. 练习:1.函数在一点可导就是函数在一点解析这种说法对吗?答:不对,函数在一点解析是指函数在此点的某邻域内解析,因此只能说函数在一点解析函数在此点一定可导.2.函数在一条曲线上可导,则函数在此曲线上解析这种说法对吗?(不对,理由同上.)3.讨论下列函数的可导性 (1) z w =; (2)z w Re =或z Im .解 (1)设z x iy =+, w u iv =+,则 u =0v =. 由高数学知识知 u =, 0v =在平面上微, 所以, z w =在原点不可导.又当(,)(0,0)x y ≠时,u x ∂=∂,u y ∂=∂, 0v x ∂=∂, 0v y ∂=∂ 要使C R -条件满足, 只须0=,0=, 即0x =且0y =这与(,)(0,0)x y ≠矛盾, 故当(,)(0,0)x y ≠时u和v 不满足C R -条件, 所以z w = 当(,)(0,0)x y ≠时, 也不可导.综上所述, z w =在平面上处处不可导.(2) 设z x iy =+, w u iv =+,则 u x =,0v =. 由高数知识 u x =与0v =在平面上可微,但 10u v x y ∂∂=≠=∂∂, 0u v y x∂∂==-∂∂, 即C R -.条件不满足, 所以, z w Re =在平面上处处不可导.同理可得, Im w z =在平面上处处不可导.5.利用z w =的不解析性据理说明函数)0(1≠=z z w 在z 平面上不解析.解 (反证法) 显然)0(1≠=z z w 在0z =不解析(因它在0z =无意义) ; 假设)0(1≠=z z w 在某一点0z '≠解析, 由解析函数的四则运算性得, z w =在某一点0z '≠也解析, 这与z w =在平面上处处不解析矛盾.故 )0(1≠=z z w 在z 平面上处处不解析.6.讨论下列函数的可微性和解析性:(1)y ix xy z f 22)(+=; (2) 22)(iy x z f +=;(3) )3(3)(3223y y x i xy x z f -+-=.解 (1) 设()f z u iv =+, 则2u xy =, 2v x y =. 显然它们都在平面上具有一阶连续的偏导数 又2u y x ∂=∂, 2u xy y ∂=∂, 2v xy x∂=∂, 2v x y ∂=∂. 要使C R -条件满足, 只须22y x =,22xy xy =-, 即0x =且0y =所以, y ix xy z f 22)(+=仅在原点可导, 在平面上处处不解析.(2) 设()f z u iv =+, 则2u x =, 2v y =. 显然它们都在平面上具有一阶连续的偏导数又2u x x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 2v y y ∂=∂. 要使C R -条件满足, 只须22x y =, 即x y =.所以, 22)(iy x z f +=仅在直线0x y -=上解析, 在平面上处处不解析.(3) 设()f z u iv =+, 则323u x xy =-, 233v x y y =-. 显然它们都在平面上具有一阶连续的偏导数又2233u v x y x y ∂∂=-=∂∂,6u v xy y x ∂∂=-=-∂∂, 即u ,v 满足C R -条件.所以, )3(3)(3223y y x i xy x z f -+-=在平面上处处可导, 也处处解析.7.证明下列函数在平面上解析,并利用yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')(分别求出其导数: (1))sin cos ()sin cos ()(y x y y ie y y y x e z f x x ++-=;(2) )3(3)(3223y y x i xy x z f -+-=.证明 (1) 设()f z u iv =+,则(cos sin )x u e x y y y =-, (cos sin )x v e y y x y =+. 显然它们都在平面上具有一阶连续的偏导数又(cos cos sin )x u v e y x y y y x y∂∂=+-=∂∂, (sin sin cos )x u v e x y y y y y x∂∂=-++=-∂∂, 即u ,v 满足C.R 条件. 所以, ()f z 在平面上解析, 且()u v f z i x x∂∂'=+∂∂ (cos cos sin )(sin sin cos )x x e y x y y y ie y x y y y =+-+++[cos sin cos sin (sin cos )]x e y i y x y y y i x y y y =++-++(cos sin )(cos sin )(cos sin )x x x e y i y e x y i y iye y i y =+++++(cos sin )(1)(1)x z e y i y x iy e z =+++=+(2) 同习题3(3)可证()f z 在平面上解析, 于是2222()3363()3u v f z i x y i xy x iy z x x∂∂'=+=-+=+=∂∂. 9.若函数)(z f 在区域D 内解析, 且满足下列条件之一, 证明)(z f 在区域D 内必为常数.(1)在D 内0)(='z f ; (2))(Re z f 或)(Im z f 在区域D 内为常数. 证明 (1) 设()f z u iv =+. 因)(z f 在区域D 内解析,且由解析函数的导数与实部、虚部实函数的关系:yu i y v x v i x u z f ∂∂-∂∂=∂∂+∂∂=')( 得 0u x ∂=∂, 0u y ∂=∂, 0v x∂=∂, 0v y ∂=∂. 所以 u 和v 都是实常数. 故 )(z f 在区域D 内必为常数.(2) 设()f z u iv =+, 由题设 u 为实常数, 而)(z f 在区域D 内解析,由C.R.条件知0v u x y ∂∂=-=∂∂, 0v u y x∂∂==∂∂v 也是实常数.所以 )(z f 在区域D 内必为常数.小结:1.函数在一点解析与函数在一点可导不是等价命题;函数在一个区域上解析与函数在一个区域上可导是等价命题.2.判断函数的解析性时最好将其转化为运用推论即对应实、虚部函数是否具有一阶连续偏导数,是否满足柯西-黎曼条件来判定.3.多项式复函数、整数次幂的幂函数、有理函数(分母不为零时)在整个复平面上解析.解析函数的四则运算解析(作商式运算时分母不为零).4.函数的导数公式只须记住:()u v f z i x x∂∂'=+∂∂及柯西-黎曼方程,则在求导数时可根据条件写出相应公式.易犯错误:函数在一点的解析性与在一个区域上的解析性概念混淆.判断函数解析性时方法不妥或错误运用概念.不能正确灵活地求函数的导数.。
复变函数2-1解析函数的概念
n1 ( 2) ( z ) nz , 其中n为正整数.
n
19
( 3) (4)
f ( z ) g( z ) f ( z ) g( z )
f ( z ) g( z ).
f ( z ) g( z ) f ( z ) g( z ).
f ( z ) g( z ) f ( z ) g( z ) f ( z ) ( 5) . ( g ( z ) 0) 2 g (z) g( z )
x 2yi lim z 0 x yi
z
o
y 0
x
设z z沿着平行于 x 轴的直线趋向于z,
x x 2yi lim 1, lim x 0 x z 0 x yi
设z z沿着平行于 y 轴的直线趋向于z,
x 2yi 2yi lim lim 2, z 0 x yi y 0 yi
u v u v , . x y y x
23
证明:必要性
设f ( z )在z x iy处可导,记作 f ( z ) a ib,
'
则由定义有f ( z 源自 ) f ( z ) (a ib)z ( z )
(a ib)(x iy) ( z )
所以f ( z ) x 2 yi的导数 不存在.
o
x 0
y
z
y 0
x
9
二、解析函数的概念与求导法则
1. 解析函数的定义
如果函数 f ( z ) 在 z0 及 z0 的邻域内处处可 导,那末称 f ( z ) 在 z0 解析.
如果函数 f ( z )在 区域 D内每一点解析, 则称 f ( z )在 区域 D内解析. 或称 f ( z )是 区域 D 内的一 个解析函数(全纯函数或正则函数).
复变函数复变函数2
z0
)或
dw dz
z z0
.
应该注意:上述定义中z 0的方式是任意的。
容易证明: 可导
可微 ;可导
连续。
如果 f (z) 在区域D内处处可导, 就说 f (z) 在D内可导.
例1 求 f (z) = z2 的导数。
[解] 因为 lim f (z Δ z) f (z) lim (z Δ z)2 z2
§2.2 解析函数和调和函数的关系
定义1 实函数u(x, y)为区域D内的调和函数:
u(x, y)在区域D内有二阶连续偏导数,
且满足u uxx uyy 0
(称为调和方程或Laplace方程)
定理1:f (z) u(x, y) iv(x, y)是区域D内的解析函数
u与v是区域D内的调和函数
f (z)在区域D内解析:f (z)在D内处处解析.
函数在一点解析 在该点可导。反之不一定成立。
在区域内: 解析 可导 .
例如 f (z) = z2 在整个复平面上解析;w f (z) z 2
仅在原点可导,故在整个复平面上不解析;
f (z) = x +2yi 在整个复平面上不解析。
例4 讨论函数 f (z)=1/z 的解析性.
是区域内的正交 曲线族。
(正交:两曲线在交点处的切线垂直 )
证:u ( x,
y)
C1在( x,
y)处切线的斜率ku
ux uy
,
v(x,
y)
C2在(x,
y)处切线的斜率kv
vx vy
ku kv
ux uy
vx vy
C
R
vy uy
uy vy
1,
得证。
例如 f z z2 x2 y2 i2xy, f z 2z 0z 0.
复变函数
f(z) 在全平面除
1 1 z1 i , z2 i 外解析。 2 2
3、函数解析的条件(C-R条件) 定理 函数 f(z)=u(x,y)+iv(x,y) 在点 z=x+iy 可导的充分必要条件是 (1) 函数 u(x,y),v(x,y) 在点 (x,y) 可微; (2) 函数 u(x,y),v(x,y) 在点 (x,y) 的微分满足 C-R 方程:
(3) 满足
e z1 z2 e z1 e z2 ,
(4) 以2kπi (k=0, ±1, ± 2,...)为复周期。这是因为 ei2kπ=cos(2kπ) +i sin(2kπ)=1, 所以 ez+i2kπ= ez·i2kπ=ez. e
我们发现导数定义与实函数完全类似。因此我们也有与实函数完 全相似的符号(例如以 △f=f(z+△z)-f(z)称为函数增量等等)。并且有 完全相同的求导运算法则。
例:函数 f(z)=|z|2 在 z=0 可导并且 f’(0)=0. 证:
f ( z ) f ( 0) | z |2 zz lim lim lim lim z 0. z 0 z 0 z 0 z z 0 z0 z
vx=-uy=6xy , 所以 v=3x2y+g(y), (2) 这一步中的g(y) 也是必须的。
(2) 曲线积分法
例:求 u=x3-3xy2 的共轭调和函数。
解:因为 u 是调和函数,因此其共轭调和函数 v 存在并且其全微分 dv=vxdx+vy=-uydx+uxdy=6xydx+(3x2-3y2)dy, 利用高等数学中全微分的原函数求法,取顶点为 (0,0), (x,0), (x,y) 的 折线作为积分路径,由此求出
复变函数第二章 解析函数
第 一 节 解 析 函 数 的 概 念
( 5)
f ( z ) ′ g ( z ) f ′ ( z ) − f ( z ) g ′ ( z ) , g (z) ≠ 0 = 2 g ( z) g ( z)
( 6)
{
f g ( z )
}
′
= f ′ ( w ) g ′ ( z ) , 其中w = g ( z )
dw 可见:可导 ⇔ 可微, f ′ ( z0 ) = 且 dz
z = z0
如果f ( z ) 在区域D内每一点可微,
则称f ( z ) 在D内可微.
记作 dw = f ′ ( z ) dz
第 一 节 解 析 函 数 的 概 念
二、解析函数 定义 1o 如果f ( z ) 在z0 及z0的某邻域内处处可导,
设w = f ( z ) 定义于区域D, z0 ∈ D , z0 + ∆ z ∈ D
f ( z0 + ∆ z ) − f ( z0 ) 如果 lim 存在 ∆ z →0 ∆z 则 称 f ( z ) 在 z0点 可 导 , 而 极 限 值 为 f ( z ) 在 z0点 dw 的导数,记作 f ′ ( z0 ) 或 dz z = z0
∴ ∆ u = a ∆ x − b ∆ y + o1 ∆ v = b∆ x + a ∆ y + o2
反之,不成立。
( 2)
( 3)
f ( z ) 在区域D内解析
⇔ f ( z ) 在 区 域 D内 可 导 。
f ( z ) 在 z0 解析 ⇔
f ( z ) 在 z0的某邻域 N δ ( z0 )内解析。
第 一 节 解 析 函 数 的 概 念
复变函数第二章
2连续、可导、解析的关系
f ( z ) 在D内解析
f ( z ) 在D内可导
f ( z ) 在z0解析
f ( z ) 在z0可导
f ( z ) 在z0连续
3 复变函数与二元实函数的关系
设f ( z ) = u ( x, y ) + iv( x, y ), A = u0 + iv0 , z0 = x0 + y0i
例5
求出下列各函数的解析区域,并求出导数.
1)f ( z ) =
z
2
2
z +1
,
x+ y x− y 2) f ( z ) = 2 +i 2 2 2 x +y x +y
f ( z )在z 2 + 1 ≠ 0,即z ≠ ±i外处处可导,因此 解: 1) 其解析区域为复平面内除去z ≠ ±i两点.且
2z 2 z ( z 2 + 1) − z 2 2 z = 2 f ′( z ) = 2 2 ( z + 1) 2 ( z + 1)
则称f ( z )在z 0 可导.这个极限值称为f ( z )在z 0的导数.
dω 记作f ′( z0 ) = dz
z = z0
f ( z 0 + ∆z ) − f ( z 0 ) = lim . ∆z → 0 ∆z
在定义中应注意: 在定义中应注意
z0 + ∆z → z0 (即∆z → 0)的方式是任意的 .
∂u ∂u ∂x ∂u ∂y ∂u ∂u 则 = + = cos θ + sin θ ∂r ∂x ∂r ∂y ∂r ∂x ∂y
导数公式的其它形式 导数公式
∂u ∂v f ′( z ) = +i ∂x ∂x
复变函数第二章2解析函数
u v 2y x y
u v 2x
y x
u u du dx dy (2y)dx (2x)dy
x y
( x, y)
u(x, y) (2 y)dx (2x)dy c (0,0)
x
y
0 0dx 0 (2x)dy c
2xy c
(x,y)
等势线方程为xy c 课件 (0,0)
且它们的一阶偏导数满足柯课西件 - 黎曼方程.(解析的充要12条件)
解析函数的实部,虚部为调和函数,且虚部为实部 的共轭调和函数.
例3 设u(x, y) x2 y2 , v(x, y) 2xy
问u(x, y)和v(x, y)为调和函数么?
v(x, y)为u(x, y)的共轭调和函数么?
解: u(x, y), v(x, y)具有连续的二阶偏导数
v 0 x
v 2 y y
都是初等函数,在复平面内处处连续;
u
针对柯西
黎曼方程
x u
f (z)仅在z 0处可导 y
v y 仅在z v
x
0处成立
f (z)在整个复平面上处课处件 不解析。
7
(2) f (z) 2x(1 y) i(x2 y2 2 y)
解: u(x, y) 2x(1 y) v(x, y) x2 y2 2 y
课件
20
平面静电场的分析
例: f (z) u iv为解析函数,f '(z) 0,则曲线u(x, y) c1
v(x, y) c2必互相正交。
证:
曲 线u ( x,
y)
c1斜率为k1
ux uy
曲 线v( x,
y)
c2斜率为k2
vx vy
根据柯西-黎曼方程, k1 k2 1 所以,相互正交.
【复变函数】第二章 解析函数(工科2版)
2 2 2 解: f ( z ) = | z | = x + y
∴ u( x , y ) = x 2 + y 2 , v ( x , y ) = 0
∂u ∂u ∂v ∂v = 2 x, = 2 y, = 0, =0 ∂x ∂y ∂x ∂y
条件, 由C-R条件 x=0, y=0 , 条件 所以在z=0处可导 处处不解析. 所以在 处可导, 处处不解析 处可导
目录
上页
下页
返回
结束
【例3】讨论下列函数的解析性 可导性 . 】讨论下列函数的解析性, (1). f ( z ) = x + 2 yi 在复平面上处处不可导, 解:f (z) 在复平面上处处不可导,处处不解析
( 2 ). f ( z ) = z 2
在复平面上处处可导, 解:f (z) 在复平面上处处可导,处处解析 1 ( 3 ). f ( z ) = z 1 解:f ′( z ) = − 2 除 z = 0 外处处可导,处处解析. 外处处可导,处处解析. z 1+ z ( 4 ). f ( z ) = 1− z 2 解:f ′( z ) = 外处处可导,处处解析. 2 除 z = 1 外处处可导,处处解析. (1 − z )
返回 结束
目录
上页
下页
内处处为0, 内为一个常数. 【例6】若f'(x)在D内处处为 则f(x)在D内为一个常数 】 在 内处处为 在 内为一个常数 Proof: 由导数的计算公式
∂u ∂v ∂u ∂v f ′( z ) = +i =0 ⇔ = 0, = 0, ∂x ∂x ∂x ∂x
∂u ∂v ∂v ∂u = 0, = 0, f ′( z ) = −i =0 ⇔ ∂y ∂y ∂y ∂y
复变函数2
解析函数的虚部为实部的共轭调和数
已知共轭调和函数中的一个,可利用 C-R 方程求得另 一个,从而构成一个解析函数。
例题1 已知一调和函数
u x, y x y xy ,
2 2
求一解析函数 f z u iv 使 f 0 0. 解: (法一) ux 2x y , u y 2 y x
由 C-R 方程 v y u x 2 x y v
2 x y dy
2
1 2 2 xy y c x vx 2 y c x , 2 1 2 由vx uy 2 y c x 2 y x c x x c ,
u与v是区域D内的调和函数 证明:f ( z)在D内解析 u x v y , vx u y ,
u xx vxy , u yy vxy uxx u yy 0. 同样可得 vxx v yy 0.
且u, v有任意阶连续偏导数
注:逆定理显然不成立,即 对区域D内的任意两个调和函数 u, v, f ( z ) u iv 不一定是解析函数 .
2
2
lim (2 z Δ z ) 2 z .
Δ z 0
所以 f '(z) = 2z . (即f (z) = z2 在复平面处处可导。)
复变函数的导数具有与实函数同样的求导法则 。
例2 问 f (z) = x +2yi 是否可导?
f ( z z ) f ( z ) [解] 这里 lim z 0 z ( x x) 2( y y )i x 2 yi x 2yi lim lim z 0 z 0 x yi x yi x 2yi x lim 1. 取z x 0, lim z 0 x yi z 0 x x 2yi 2y 取z iy 0, lim lim 2. z 0 x yi z 0 y 所以 f (z) = x + 2yi 的导数不存在.
§2.1-复变函数
定理2:在闭区域D中连续的函数具有两个重要性质: 定理 (1) |f(z)|在 D 中有界,并达到它的上、下界。 (2) |f(z)|在 D 中一致连续,即对于任意正数ε>0,存在与z无关 的正数δ,使 D中任意两点z1,z2,当|z1-z2|<δ,则有:
f ( z1 ) − f ( z2 ) <ε
第二节 解析函数的概念
1、导数的定义 定义1(导数 定义 导数):设函数w=f(z)在区域D中有定义,且z及z+∆z均 导数 属于D,如果极限: f ( z + ∆z ) − f ( z ) lim ∆z → 0 ∆z 存在,则称此极限为函数f(z)在z点的导数 导数,记为: 导数
df ( z ) or f ' ( z ) dz 并且称函数f(z)在z点可微。
*本定理对于开区域D不一定成立。
1 定义在区域|z|<1内。 1− z 很显然,在区域D内,函数连续,但函数在趋近 z → 1时,显 然函数无界。
例4,设 f ( z ) =
定理3: 定理 :两个连续函数的和、差、积仍然为连续函数,当分母 不为0时,商也为连续函数;而连续函数的复合函数依然为 连续函数。
显然,函数f(z)在z点可微,且: ' ( z ) = f
∂u ∂v −i ∂x ∂x
例4,证明 f ( z ) =
xy 在原点虽然满足定理一,但不可微。
xy , v( x, y ) = 0
证明:由题意得: ( x, y ) = u
∂u (0, 0) 所以: ∂u (0, 0) = 0, =0 ∂x ∂y ∂v(0, 0) ∂v(0, 0) = 0, =0 ∂x ∂y 考虑极限: ∆x∆y ∆ u + i∆v lim = lim ∆z → 0 ∆ x + i ∆ y ∆z → 0 ∆ x + i ∆ y 若沿两个坐标轴趋近0点,极限值都为0,而若 沿第一象限的对角线走,则:
复变函数解析函数
(2)求导公式与法则
----实函数中求导法则的推广
① 常数的导数 c=(a+ib)=0. ② (zn)=nzn-1 (n是自然数). 证明 对于复平面上任意一点z0,有 n z n z0
z lim
z z0
lim
z z0
z z0
n ( z z0 )(z n1 z n 2 z0 z0 1 ) n lim nz0 1 z z0 z z0
与z=(w)互为单值的反函数,且(w)0。
思考题
2
实 函 数 中 f ( x ) x 在( , )内 可 导 , ; 复 函 数 中 f (z) z 的 可 导 性 , ?
2
1 例2 已 知 f ( z ) ( z 5 z ) , 求f ' ( z ) z 1 1 2 解 f ( z ) 2( z 5 z )(2 z 5) ( z 1)2 例3 问:函数f (z)=x+2yi是否可导?
v u x y
称为Cauchy-Riemann方程(简称C-R方程).
定理1 设 f (z) = u (x, y) + iv(x, y)在 D 内有定义, 则 f (z)在点 z=x+iy ∈D处可导的充要条件是
u(x, y) 和 v(x, y) 在点 (x, y ) 可微,且满足
Cauchy-Riemann方程
z 0
lim f ( z0 z ) f ( z0 ), 所 以f ( z )在z0连 续
二. 解析函数的概念
定义 如果函数w=f (z)在z0及z0的某个邻域内处处 可导,则称f (z)在z0解析;
如果f (z)在区域D内每一点都解析,则称
(最新整理)(完整版)复变函数解析函数
成立, 则称当z趋于z0时, f(z)以A为极限,并记做 limf(z)A 或 f(z) A (z z0 ).
zz0
注意: 定义中zz0的方式是任意的.
几何意义
y
(z)
v
w f(z)
z0 d
o
xo
(w)
e
A
u
几何意义: 当变点z一旦进
入z0 的充分小去 心邻域时,它的象
点f(z)就落入A的
(最新整理)(完整版)复变函数解析函数
2021/7/26
1
第二章 解析函数
2.1 复变函数的概念 2.2 解析函数的概念 2.3 解析的充要条件 2.4 初等函数
2.1 复变函数的概念、极限与连续性
复变函数的概念
1. 复变函数的定义 2. 映射的概念 3. 反函数或逆映射
1. 复变函数的定义—与实变函数定义相类似
0)
A
zz0 g(z) l i mg(z) zz0
B
zz0
以上定理用极限定义证!
例1
证明 wx2yi(xy2)在平面上处处 . x2 y, x y2在平面上处处有极限
例2
求 f(z)zz
z 在 z0时的极 . 限 z
f(z)2(xx22yy22)在(0,0)处极限不 . 存在
例3
证 明 f(z)Rez z在z0时 的 极 限.不 存
y (z)
v (w)
w z2
2
o
x
o
u
y (z)
v (w)
w z2
w z2
o
6
x w z2 o
3
u
x2 y2 4
3. 反函数或逆映射
《复变函数论》第二章
第二章 复变函数第一节 解析函数的概念及C.-R.方程1、导数、解析函数定义2.1:设()w f z =是在区域D 内确定的单值函数,并且0z D ∈。
如果极限00,0()()limz z z Df z f z z z →∈--存在,为复数a ,则称)(z f 在0z 处可导或可微,极限a 称为)(z f 在0z 处的导数,记作0'()fz ,或z z dw dz=。
定义2.2:如果()f z 在0z 及0z 的某个邻域内处处可导,则称()f z 在0z 处解析;如果()f z 在区域D 内处处解析,则我们称()f z 在D 内解析,也称()f z 是D 的解析函数。
解析函数的导(函)数一般记为'()f z 或d ()d f z z。
注解1、εδ-语言,如果任给0ε>,可以找到一个与ε有关的正数()0δδε=>,使得当z E ∈,并且0||z z δ-<时,00()()||f z f z a z z ε--<-,则称)(z f 在0z 处可导。
注解2、解析性与连续性:在一个点的可导的函数必然是这个点的连续函数;反之不一定成立;注解3、解析性与可导性:在一个点的可导性是一个局部概念,而解析性是一个整体概念;注解4、函数在一个点解析,是指在这个点的某个邻域内解析,因此在此点可导;反之,在一个点的可导性不能得到在这个点解析。
解析函数的四则运算:()f z 和()g z 在区域D 内解析,那么()()f z g z ±,()()f z g z ,()/()f z g z (分母不为零)也在区域D内解析,并且有下面的导数的四则运算法则:(()())''()'()[()()]''()()()'()f zg z f z g z f z g z f z g z f z g z ±=±=+2()'()()()'()()[()]'f z f z g z f z g z g z g z -⎡⎤=⎣⎦。
复变函数
u v u v , 。 x y y x
证明:
必要性
f(z)在D内一点z可导,则:
f f ( z z ) f ( z ) f '( z )z ( z )z
比较两边实部与虚部得:
u ax by 1x 2 y v bx ay 2 x 1y
由于 lim ( z ) 0 ,所以
z 0
x 0 y 0
lim 1 0 lim 2 0
x 0 y 0
所以u,v可微,且
lim 其中,A与z无关, z0 ( z ) 0. 则称f(z)在z0处可微。
并称Az为f(z)在z0处的微分。记作 dw Az 可以证明, f(z)在z0处可微的充要条件是f(z)在z0处 可导。且 A f ( z0 ),即 dw f ( z0 )z 由于在dz z ,故dw f ( z0 )dz。
f ( z ) f ( z ) g ( z ) f ( z ) g ( z ) , ( g ( z ) 0) 2 g( z ) [ g( z )]
{ f [ g( z )]} f ( w ) g( z ), 其中w g( z ).
1 f ( z ) , 其中w f ( z )与z ( w )是两个互为反 ( w ) 函数的单值函数,且 ( w ) 0.
h( z0 z ) h( z0 ) z 的极限不存在。 因此,函数h(z)=|z|2仅在z0=0处可导,而在其它点 均不可导. 故它在整个复平面上不解析。
几个重要结论: 1、两个解析函数的和、差、积 、商(分母不为零) 是解析函数。
复变函数与积分变换第二章_解析函数
z0 可微等价.
与一元实函数类似, 记
df ( z0 ) f ( z0 ) z f ( z0 ) dz ,
称之为 f ( z ) 在 z0 处的微分. 如果函数 f ( z ) 在区域D内处处可微, 则称
f ( z ) 在区域D内可微, 并记为
df ( z ) f ( z ) dz .
也称 z0 是 f ( z ) 的解析点. (2) 若 f ( z ) 在区域D内每一点都解析,则称
f ( z ) 在区域D内解析, 或者称 f ( z ) 是区域D内的
解析函数.
(3) 设G是一个区域,若闭区域 D G , 且 f ( z ) 在G内解析,则称 f ( z ) 在闭区域 D 上 解析. 函数 f ( z ) 在 z0 处解析和在 z0 处可导意义 不同,前者指的是在 z0 的某一邻域内可导, 但后者只要求在 z0 处可导. 函数 f ( z ) 在 z0 处解析和在 z0的某一个邻 域内解析意义相同.
连续,但处处不可导.
定理1.1
例2.2 证明 f ( z ) x 2 yi 在复面内处处
设 f ( z ) u( x , y ) iv ( x , y ), 则 f (x)
(3) 求导法则
复变函数中导数的定义与一元实函数
导数的定义在形式上完全一致,同时,复变函
数中的极限运算法则也和实函数中一样,因而
当 z0 0 时, 由 z zz , z0 z0 z0 得
2
2
f ( z ) f ( z0 ) z 2 z z0 2 z0
( z 2 z z0 2 z ) ( z0 2 z z0 2 z0 ).
f ( z ) f ( z0 ) 2 z z0 ( z z0 ) z z 0 . 故 z z0 z z0
《复变函数》第二章 解析函数
28
解析函数的判定方法: (1) 如果能用求导公式与求导法则证实复变函 数 f (z) 的导数在区域 D内处处存在, 则可根据 解析函数的定义断定 f (z) 在 D内是解析的.
令 z0 z 沿直线 y y0 k( x x0 ) 趋于 z0,
z z
x x
iy iy
1 1
i i
y
x y
1 ik 1 ik
x
18
由于 k 的任意性,
z 1 ki 不趋于一个确定的值. z 1 ki
lim h(z0 z) h(z0 )不存在.
z0
z
因此 h(z) z 2 仅在 z 0 处可导, 而在其他点都 不可导,根据定义, 它在复平面内处处不解析.
0, 0, 使得当 0 | z | 时,
有
f
( z0
z) z
f
(z0 )
f
(z0 )
,
令 (z)
f (z0 z) z
f (z0 )
f (z0 )
9
则 lim (z) 0, z0
因为 f (z0 z) f (z0 ) f (z0 )z (z)z,
所以
lim
z0
f
( z0
3
例1 求f (z) z2的导数.
解 f (z) lim f (z z) f (z)
ห้องสมุดไป่ตู้
z0
z
lim (z z)2 z2
z0
z
复变函数:第2章 解析函数
• 知 zlim f ( z ) = f ( z 0 ),故 →z
0
f (z )在点 z 0 处连续.
• 2.1.3 复变函数的微分 • 定义2 称函数 f (z)的改变量 ∆w的线性部分 定义 f ′( z0 )∆z 为函数 f (z)在点 z 0 处的微分,记作
n
k ( z + ∆z ) n = ∑ C n z k ( ∆ z ) n − k = n k =0
1 2 n ( ∆z ) n + C n (∆z ) n −1 z + C n ( ∆z ) n − 2 z 2 + ⋯ + C n ( ∆z ) n − n z n
所以,由导数定义有
n
( z + ∆z ) − z f ′( z ) = ( z )′ = lim ∆z →0 ∆z
n
n
= lim [(∆z )
∆z →0
n −1
+ C (∆z )
1 n
n−2
z +⋯+ C
n −1 n −1 n
z
]
= nz
n −1
• 例2 求 f ( z ) = • 解 由例1
z 的导数.
2
df f ′( z ) = = 2z dz
• 2.1.2 可导与连续的关系 • 若函数 w = f (z )在点 z 0处可导,则 点 z 0 处必连续. • 证 因为
dw 或 dz
,即
z = z0
dw f ′( z0 ) = dz
z = z0
f ( z0 + ∆z ) − f ( z0 ) = lim ∆z →0 ∆z
复变函数课件2-2函数解析的充要条件
(1) w z; ( 2) f ( z ) e x (cos y i sin y ); ( 3) w z Re( z ).
解 (1) w z ,
u x, v y,
u u v v 1, 0, 0, 1. x y x y 不满足柯西-黎曼方程,
5
由于 k 的任意性,
z 1 ki 不趋于一个确定的值 . z 1 ki
h( z0 z ) h( z0 ) lim 不存在. z 0 z
因此 h( z ) z 仅在 z 0 处可导, 而在其他点都 不可导, 根据定义, 它在复平面内处处不解 析.
2
6
例2 解
函数 f ( z ) xy 在点 z 0 不可导.
18
例5 设 f ( z ) u( x , y ) iv( x , y ) 在区域 D 内解
析, 并且 v u , 求 f ( z ).
2
解
u v u 2u , x y y u v u 2 u , y x x
2 2
2
4
z ( z0 z )( z0 z ) z0 z0 z0 z z0 , z z h( z0 z ) h( z0 ) lim 0. (1) z0 0, z 0 z
( 2) z0 0,
令 z0 z 沿直线 y y0 k ( x x0 ) 趋于 z0 , y 1 i 1 ik z x i y x z x iy 1 i y 1 ik x
所以 u 常数, v 常数,
因此 f ( z ) 在区域 D 内为一常数.
21
参照以上例题可进一步证明:
如果 f ( z ) 在区域 D 内解析, 则以下条件彼此等价 . (1) f ( z ) 恒取实值;
复变函数课件02章 解析函数
试求: f (i)
答案:-3
复变函数与积分变换
第2章 解析函数
定理2.3(解析的充要条件)
函数f(z)=u(x,y)+iv(x,y)在区域D内解析的充要条件是: u(x,y)和v(x,y)在D内可微,且满足柯西——黎曼方程。
u v , v u x y x y
复变函数与积分变换
第2章 解析函数
和、差、积、商(除z 去0 分母为0点)仍为解析函数;
由解析函数构成的复合函数也是解析函数。
复变函数与积分变换
第2章 解析函数
§2.2 复变函数可导与 解析的充要条件
定理2.2(可导的充要条件)
函数f(z)=u(x,y)+iv(x,y)在定义域内一点z=x+iy可导的 充要条件是:u(x,y)和v(x,y)在点(x,y)可微,且满足柯 西——黎曼方程。
u v , v u x y x y 则称v(x,y)为u(x,y)的共轭调和函数。
定理2.6
函数f(z)=u(x,y)+iv(x,y)在区域D内是解析的函数的充 要条件为:虚部v(x,y)是实部u(x,y)的共轭调和函数。
复变函数与积分变换
第2章 解析函数
例2.12 试求一解析函数f(z) ,使其实部为 u(x,y)=x2+y2-2xy.
第2章 解析函数
例2.1 求函数 f (z) zn 的导数(n为正
整数)。
f (z) (zn ) lim (z z)n zn nzn1
z 0
z
例2.2 求函数 f (z) z2 的导数(n为正
整数)。
(z2 ) 2z
复变函数与积分变换
第2章 解析函数
某点可导
该点连续
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 因为 w 1在复平面内除 z 0 处处可导, z
且
dw dz
1 z2
,
所以 w在复平面内除 z 0 外处处解析,
z 0 为它的奇点.
18
选讲: 例6 研究函数 f (z) z Re(z)的可导性与解析性.
解 (1) z 0,
lim f (0 z) f (0) lim z Re(z) 0,
一、主要定理
定理一 设函数 f (z) u( x, y) iv( x, y) 定义在区域
D 内, 则 f (z) 在 D内一点 z x yi 可导的充要条 件是 : u( x, y) 与 v( x, y) 在点 ( x, y) 可微, 并且在该 点满足柯西-黎曼方程
u v , u v . x y y x
30
证 (1) 必要性. 设 f (z) u( x, y) iv( x, y) 定义在区域 D内, 且 f (z) 在 D内一点 z x yi 可导, 则对于充分小的 z x iy 0,
有 f (z z) f (z) f (z)z (z)z, 其中 lim (z) 0,
z0
z0
小, f (z0 ) z 是函数 w f (z)的改变量 w 的 线性部分. f (z0 ) z 称为函数 w f (z)在点 z0 的微分, 记作 dw f (z0 ) z.
13
如果函数在 z0 的微分存在, 则称函数 f (z) 在 z0 可微.
特别地, 当 f (z) z 时,
因为 lim (z) 0, z0
所以
lim
x0
1
lim
x0
2
0,
y0
y0
32
由此可知 u( x, y) 与 v( x, y) 在点( x, y) 可微, 且满足方程 u v , u v . x y y x
(2) 充分性. 由于 f (z z) f (z) u( x x, y y) u( x, y)
z于虚轴的方向(x 0)而使z 0时,
lim f lim f (z z) f (z) lim y 1,
z0 z z0
z
y0 x iy i
x0
当点沿不同的方向使z 0时,极限值不同,
故f (z) Im z在复平面上处处不可导.
注:讨论函数在某点的可导性与讨论极限是否存在的方法类似.
5、要记住自变量取复值时初等函数的定义和它们的一些重 要性质.
1
2.1 解析函数的概念
一、复变函数的导数与微分 二、解析函数的概念 三、小结与思考
2
一、复变函数的导数与微分
1.导数的定义:
设函数 w f (z) 定义于区域 D, z0 为D中的一
点,点 z0 z 不出 D 的范围,
如果极限 lim f (z0 z) f (z0 ) 存在,
f (z0 )
,
令 (z)
f (z0
z) z
f (z0 )
f (z0 )
9
则 lim (z) 0, z0
因为 f (z0 z) f (z0 ) f (z0 )z (z)z,
所以
lim
z0
f (z0 z)
f (z0),
即f (z)在 z0 连续.
[证毕]
例 f (z) z 在z 0 处连续但不可导。 f (z) Re z 在C上处连续但不可导。
i[v( x x, y y) v( x, y)] u iv, 又因为 u( x, y) 与 v( x, y) 在点( x, y) 可微,
33
于是
u
u x x
u y
y
1x
2y,
第二章 解析函数(6学时)
基本要求:
1、正确理解复变函数可导与解析的概念,弄清可导与解析 两概念之间的关系,弄清复变函数可导与其实部、虚部作为 二元函数可微之间的联系与差别.
2、能运用C-R条件判别给定函数的解析性.
3、熟练掌握解析函数的和、差、积、商、复合函数及反函 数的求导公式 .
4、要知道解析函数与调和函数的关系,并能从已知调和函 数u和v,求解析函数u+iv.
11
(3) f (z) g(z) f (z) g(z).
(4) f (z)g(z) f (z)g(z) f (z)g(z).
(5)
f (z) g(z)
f (z)g(z) f (z)g(z)
g2(z)
.
(g(z) 0)
(6) f [g(z)] f (w)g(z). 其中w g(z)
x
故f (z)在z 0可导,在其他点均不可导.
8
2.可导与连续:
函数 f (z) 在 z0 处可导则在 z0 处一定连续, 但 函数 f(z) 在 z0 处连续不一定在 z0 处可导. 证 根据在 z0 可导的定义,
0, 0, 使得当0 | z | 时,
有
f
( z0
z) z
f
(z0 )
以上定理的证明, 可利用求导法则.
22
根据定理可知: (1) 所有多项式在复平面内是处处解析的.
(2) 任何一个有理分式函数P(z) 在不含分母为 Q(z)
零的点的区域内是解析的, 使分母为零的点是 它的奇点.
例7:求函数f
(z)
z5 z 的解析性区域及导函数。 4z2 1
23
三、小结与思考
理解复变函数导数与微分以及解析函数的 概念; 掌握连续、可导、解析之间的关系以及 求导方法.
设函数若 f (z)解析,则
f (z) lim f (z Δ z) f (z) lim Δ u i Δ v
Δ z0
Δz
Δx0 Δ x i Δ y
y0
z沿x轴方向趋于0
u(x, y) x
i v(x, y) x
ux
ivx
z沿y轴方向趋于0
i
u(x, y
y)
v(x, y
y)
iuy
vy
10
3.求导法则: 由于复变函数中导数的定义与一元实变函
数中导数的定义在形式上完全一致, 并且复变函 数中的极限运算法则也和实变函数中一样, 因而 实变函数中的求导法则都可以不加更改地推广 到复变函数中来, 且证明方法也是相同的. 求导公式与法则: (1) (c) 0, 其中c为复常数.
(2) (zn ) nzn1, 其中n为正整数.
令 f (z z) f (z) u iv,
f (z) a ib, (z) 1 i2 ,
31
所以 u iv
(a ib) (x iy) (1 i2 ) (x iy) (ax by 1x 2y)
i(bx ay 2x 1y)
于是 u ax by 1x 2y, v bx ay 2x 1y.
解 f f (z z) f (z) Im( z z) Im z
z
z
z
Im z Im z Im z Im z
z
z
Im( x iy) y , x iy x iy
当点沿平行于实轴的方向(y 0)而使z 0时,
6
lim f lim f (z z) f (z) lim y 0,
y 0
x iy
, 1 ik
与方向有关.
x0
20
所以 lim f (z z) f (z) 不存在.
z0
z
即当 z 0时, f (z) 不可导,
因此 f (z) 仅在 z 0 处可导, 而在其他点都不 可导,根据定义, 它在复平面内处处不解析.
课堂练习 研究函数 w 1 的解析性. z
答案 处处不可导,处处不解析.
f (z) 在点 z0 解析必在 z0 可导, 反之不对. 例如 f (z) z 2 在 z0 0 处可导,
但在 z0 0 处不解析.
放映结束,按Esc退出.
26
2.1.2 函数解析的充要条件
设函数若 f (z) u(x, y) iv(x, y)解析
一、主要定理 二、典型例题 三、小结与思考
故有 u v , u v x y y x
上式称为柯西-黎曼方程。
28
注:柯西-黎曼方程是可导的必要条件,例:
f (z) u(x, y) iv(x, y),其中
u(x,
y)
v(x,
y)
x2
xy y2
,
x2
y2
0
0
, x2 y2 0
在点(0,0)处满足柯西-黎曼方程,但不可导。
29
注意: 复变函数的导数定义与一元实变函数 的导数定义在形式上完全一样, 它们的一些求 导公式与求导法则也一样, 然而复变函数极限 存在要求与z 趋于零的方式无关, 这表明它在 一点可导的条件比实变函数严格得多.
24
思考题
复变函数 f (z) 在点 z0 可导与在 z0 解析有无区别?
25
思考题答案
z 如果函数 f (z) 在区域 D内处处可导, 我们 就称 f (z) 在区域内D 可导.
4
例1 求f (z) z2的导数.
解 f (z) lim f (z z) f (z)
z0
z
lim (z z)2 z2
z0
z
lim(2z z) 2z. z0
(z2 ) 2z
5
例2 讨论f (z) Im z的可导性.
7
掌握讨论复变函数在一点处不可导的方法。
例3:讨论f (z) | z |2 在复平面的可导性。
解:f (z0 z) f (z0 ) | z0 z |2 | z0 |2
z
z
z
( z0
z x
)(z z)
z yi 1
z0z0
y x
i
1
z0 ki
z
z0