小学奥数数论讲义 第十九讲 数论在方程、计数、最值、行程等问题的应用竞赛篇
五年级奥数讲义(学生版)30讲全
-1-五年级奥数第1讲数字迷〔一〕第16讲巧算24第2讲数字谜(二)第17讲位置原那么第3讲定义新运算(一)第18讲最大最小第4讲定义新运算(二)第19讲图形的分割与拼接第5讲数的整除性(一)第20讲多边形的面积第6讲数的整除性(二)第21讲用等量代换求面积第7讲奇偶性〔一〕第22用割补法求面积第8讲奇偶性〔二〕第23讲列方程解应用题第9讲奇偶性〔三〕第24讲行程问题〔一〕第10讲质数与合数第25讲行程问题〔二〕第11讲分解质因数第26讲行程问题〔三〕第12讲最大公约数与最小公倍数〔一〕第27讲逻辑问题〔一〕第13讲最大公约数与最小公倍数〔二〕第28讲逻辑问题〔二〕第14讲余数问题第29讲抽屉原理(一)第15讲孙子问题与逐步约束法第30讲抽屉原理(二)-2-第1讲数字谜〔一〕例1把+,-,×,÷四个运算符号,分别填入下面等式的○内,使等式成立〔每个运算符号只准使用一次〕:〔5○13○7〕○〔17○9〕=12。
例2将1~9这九个数字分别填入下式中的□中,使等式成立:□□□×□□=□□×□□=5568。
例3在443后面添上一个三位数,使得到的六位数能被573整除。
例4六位数33□□44是89的倍数,求这个六位数。
例5在左下方的加法竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字,请你用适当的数字代替字母,使加法竖式成立。
FORTYTENTENSIXTY例6在左下方的减法算式中,每个字母代表一个数字,不同的字母代表不同的数字。
请你填上适当的数字,使竖式成立。
练习11.在一个四位数的末尾添零后,把所得的数减去原有的四位数,差是621819,求原来的四位数。
在以下竖式中,不同的字母代表不同的数字,相同的字母代表相同的数字。
请你用适当的数字代替字母,使竖式成立:〔1〕AB (2)ABAB+BCA - ACAABC BAAC在下面的算式中填上括号,使得计算结果最大:1÷2÷3÷4÷5÷6÷7÷8÷9。
五年级数学奥数精品讲义1-34讲
五年级数学奥数精品讲义1-34讲(总87页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除目录第一讲消去问题(一)第二讲消去问题(二)第三讲一般应用题第四讲盈亏问题(一)第五讲盈亏问题(二)第六讲流水问题第七讲等差数列第八讲找规律能力测试(一)第九讲加法原理第十讲乘法法原理第十一讲周期问题(一)第十二讲周期问题(二)第十三讲巧算(一)第十四讲巧算(二)第十五讲数阵问题(一)第十六讲数阵问题(二)能力测试(二)第十七讲平面图形的计算(一)第十八讲平面图形的计算(二)第十九讲列方程解应用题(一)第二十讲列方程解应用题(二)第二十一讲行程问题(一)第二十二讲行程问题(二)第二十三讲行程问题(三)第二十四讲行程问题(四)能力测试(三)第二十五讲平均数问题(一)第二十六讲平均数问题(二)第二十七讲长方体和正方体(一)第二十八讲长方体和正方体(二)第二十九讲数的整除特征第三十讲奇偶性问题第三十一讲最大公约数和最小公倍数第三十二讲分解质因数(一)第三十三讲分解质因数(二)第三十四讲牛顿问题能力测试(四)2第一讲消去问题(一)在有些应用题里,给出了两个或者两个以上的未知数量间的关系,要求出这些未知数的数量。
我们在解题时,可以通过比较条件,分析对应的未知数量变化的情况,想办法消去其中的一个未知量,从而把一道数量关系较复杂的题目变成比较简单的题目解答出来。
这样的解题方法,我们通常把它叫做“消去法”。
例题与方法在学习例题前,我们先进行一些基本数量关系的练习,为用消去法解题作好准备。
(1)买1个皮球和1个足球共用去40元,买同样的5个皮球和5个足球一共用去多少元?(2)3袋子、大米和3袋面粉共重225、千克,1袋大米和1袋面粉共重多少千克?(3)6行桃树和6行梨树一共120棵,照这样子计算8行桃树和8行梨树一共有多少棵?(4)学校买了4个水瓶和25个茶杯,一共用去172元,每个水瓶18元,每个茶杯多少元?例1学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个差杯,共用去118元。
小学六年级奥数课件:数论问题
一、 整除的特征:
(1)2的倍数特征:末位数是0、2、4、6、8的数. (2)3、9的倍数特征:各位数之和是3的倍数或9的倍数. (3)5的倍数特征:末位数是0或5. (4)4的倍数特征:末两位数是4的倍数. (5)8的倍数特征:末3位数是8的倍数. (6)11的倍数特征:奇位数字之和与偶位数字之和的差是0或11的倍数.
二、分解质因数:指的就是把一个合数表示成质数乘积的形式的过程。 唯一分解定理:N a1p1 a2 p2 a3 p3 an pn (a1、a2an 为N不同的质因数)
那么N的因数个数n=(1+p1)×(1+p2) × …(1+pn) 三、辗转相除法
辗转相除法主要针对两个较大数求最大公因数而言的。 就是用其中较大数除以较小数,得余数r1;接下来每一步都用上一步的除数除以余
原数:A1994BC
(2)七位数可被8整除,则后三位数"4B0"可被8整除,
故B只能为0、4或8。
(3)七位数又能被9整除,则各位数字之和可被9整除.
故当B=0时,A=4; 当B=4时,A=9; 当B=8时,A=5.
所以符合条件的七数为4199400、9199440或5199480。
例3. 求281
x+y=101 x=50
y-x=1
51× 51=2601(人)
课后作业
2001个连续的自然数之和为a× b× c× d,若a、b、c、d都 是质数,则a+b+c+d的最小值是多少?
解析
辗转相除法求最大公因数 2821÷ 1519=1……1302 1519÷ 1302=1……217 1302÷ 217=6 (2821,1519)=217
例4.有一个三位数,被4除余1, 被5除余4,被7除余2,这个 数最小是多少?
202X年小学奥数知识点梳理数论
千里之行,始于足下。
202X年小学奥数知识点梳理数论202X年小学奥数知识点梳理数论数论是数学中的一个重要分支,研究整数的性质与关系。
在小学奥数竞赛中,数论常常是一个重要的考点。
下面是202X年小学奥数的数论知识点梳理。
1. 基本概念- 整数:正整数、负整数和零的总称。
- 偶数与奇数:能被2整除的整数称为偶数,不能被2整除的整数称为奇数。
- 素数与合数:除了1和自身外,没有其他因数的整数称为素数,否则称为合数。
- 因数与倍数:如果a能够整除b,那么称a是b的因数,b是a的倍数。
2. 最大公约数与最小公倍数- 最大公约数(GCD):两个数公有的最大因数称为最大公约数。
- 最小公倍数(LCM):两个数公有的最小倍数称为最小公倍数。
3. 质因数分解- 质因数:一个整数如果除了1和它本身外没有其他因数,那么它是一个质数,否则它是合数。
将一个合数分解成质因数的乘积的形式,称为质因数分解。
- 质因数分解算法:从最小的质数2开始,依次判断是否为这个数的因数,如果是,则除以这个数,继续判断剩下的数是否能被这个质数整除,直到无法整除为止。
第1页/共3页锲而不舍,金石可镂。
4. 奇数数列与偶数数列- 一个数列中,从第一个数开始,每个数都比前一个数大2,这个数列称为奇数数列- 一个数列中,从第一个数开始,每个数都比前一个数大2,这个数列称为偶数数列5. 数组与数列- 数组是有序数的集合。
- 数列是数按一定顺序排列起来的表现形式。
6. 公式与规律- 两个偶数的和是偶数,两个奇数的和是偶数,一个偶数和一个奇数的和是奇数。
- 奇数个奇数的积是奇数,偶数个奇数的积是偶数。
- 一组数的和与这组数里所有的数的奇偶性有关。
- 奇数个奇数的和与这组奇数的个数的奇偶性有关,偶数个奇数的和与所有奇数的奇偶性有关。
- 相邻两个数之间的差是固定的。
7. 排列组合- 排列:从n个不同元素中取r个元素(r≤n)按一定的顺序排成一列,叫做从n个不同元素中取r个元素的一个排列。
六年级奥数竞赛班-第5讲方程、计数、最值、行程等问题中的数论综合(上)
六年级奥数竞赛班
1.不定方程(组)
2.数论计数
3.数论最值
4.数论行程
解方程9648015a b c a b c ++=⎧⎨++=⎩(其中a 、b 、c 均为自然数 )
两个四位数ACCC 和CCCB
满足,
25ACCC CCCB =请问A ×B ×C 之值是什么?
如图,三条圆形跑道,每条跑道的长都是1千米,A 、B 、C 三位运动员同时从交点O 出发,
分别沿三条跑道跑步,他们的速度分别是每小时
43千米,每小时65千米,每小时89
千米。
问:从出发到三人第一次相遇,他们共跑了多少千米?
方程、计数、最值、行程等
问题中的数论综合(上)
(★★)
(★★★)
(★★★)
2001个连续的自然数之和为a×b×c×d,若a、b、c、d都是质数,则a+b+c+d的最小值是多少?
有些数既能表示成3个连续自然数的和,又能表示成4个自然数的和,还能表示成5个连续自然数的和。
例如:30就能满足上面的要求,因为30=9+10+11;30=6+7+8+9;30=4+5+6+7+8。
请你在700至1000之间找出所有满足上述要求的数。
(★★★★) (★★★★★)。
小学六年级奥数 数论之最值、计数、行程综合(一)
不定方程的解法 1. 枚举法:从系数大的入手 2. 数论分析法:
(1)看尾数:系数为5的倍数 (2)看倍数 (3)看余数
第一单元:方程中的数论综合
【例1】(★) 已知1999×※+4×□=9991,其中※、 □是自然数。那么□是 多少?
【例2】 (★ ★) 将200拆成两个自然数之和,其中一个是17的倍数,另一个是23 的倍数,那么这两个自然数的积是多少?
3
在1,2,3,4,…,100这100个自然数中任取两个不同的数, 使得取出的两数之和是6的倍数,则有多少种不同的取法?
【例9】 (★★★★)
在1,2,3,……,7的任意排列中,使得相邻两数互质的排列方 式共有________种。
一、本讲重点知识回顾 1.不定方程解法: 枚举法,数论分析法
二、本讲经典例题 例3,例6,例8,例9
【例6】 (★★★★)
如果一个三位数正好等于各个数位上的数字之和的13倍,则这 样的三位数是多少?
第二单元:计数中的数论综合
【例7】(★★★)
16200有多少个因数?因数中有多少个奇因数?有多少个偶因数? 因数中有多少个是3的倍数?有多少个是6的倍数?有多少个不 是5的倍数?
2
【例8】 (★★★)
【例3】(★★★) 不定方程2x+3y+7z=23的非零自然数解是_________。
1
【例4】(★★★)
不定方程
ห้องสมุดไป่ตู้
6x 3 y 2z 22 9 x 4 y z 22
的非零自然数解是_________。
【例5】(★★★)
我们来看一个选自《张丘建算经》的问题,百鸡问题:“鸡翁一, 直钱五,鸡母一,直钱三,鸡雏三,直钱一。百钱买百鸡,问鸡 翁、母、雏各几何?” (每种类型的鸡都要有)
学而思想奥数全能版目录
第一专题:计算专题共34讲【强化篇17讲竞赛篇17讲】一、计算竞赛篇共17讲竞赛1-加减法巧算之凑整与组合思想之竞赛篇(第1讲)竞赛2-乘除法巧算之提取公因式与组合思想之竞赛篇(第2讲)竞赛3-四则混合巧算只综合技巧之竞赛篇(第3讲)竞赛4-定义新运算之速算与巧算之竞赛篇(第4讲)竞赛5-数列求和与公式技巧之竞赛篇(第5讲)竞赛6-多位计算与归纳思想之竞赛篇(第6讲)竞赛7-小数计算与换元思想之竞赛篇(第7讲)竞赛8-数表计算与代数公式应用之竞赛篇(第8讲)竞赛9-循环小数互化与错位相减技巧之竞赛篇(第9讲)竞赛10-分数(繁分数)计算综合与比例转化之竞赛篇(第10讲)竞赛11-比较与估算综合技巧之竞赛篇(第11讲)竞赛12-分数计算之拆分、裂项与通项归纳之竞赛篇(第12讲)竞赛13-分数计算之换元与缩放之竞赛篇(第13讲)竞赛14-定义新运算之复杂运算与抽象运算之竞赛篇(第14讲)竞赛15-四大杯赛中的计算综合思想之竞赛篇(第15讲)竞赛16-计算综合之复杂分数裂项计算综合之复杂整数裂项之竞赛篇(第16讲) 竞赛17-计算综合之复杂公式与复杂换元计算之竞赛篇(第17讲)二、计算强化篇共17讲第一讲加减法巧算之凑整与组合思想(第18讲)第二讲乘除法巧算之提取公因式与组合思想(第19讲)第三讲四则混合巧算只综合技巧(第20讲)第四讲定义新运算之速算与巧算(第21讲)第五讲数列求和与公式技巧(第22讲)第六讲多位计算与归纳思想(第23讲)第七讲小数计算与换元思想(第24讲)第八讲数表计算与代数公式应用(第25讲)第九讲循环小数互化与错位相减技巧(第26讲)第十讲分数(繁分数)计算综合与比例转化(第27讲)第十一讲比较与估算综合技巧(第28讲)第十二讲分数计算之拆分、裂项与通项归纳(第29讲)第十三讲分数计算之换元与缩放(第30讲)第十四讲定义新运算之复杂运算与抽象运算(第31讲)第十五讲四大杯赛中的计算综合思想(第32讲)第十六讲计算综合之复杂分数裂项与整数裂项(第33讲)第十七讲计算综合之复杂公式与复杂换元计算(第34讲)第二专题数论专题计算专题共38讲【强化篇19讲竞赛篇19讲】一、数论竞赛篇第一讲奇偶数的性质与应用之竞赛篇(第35讲)第二讲有趣余数之性质与周期之竞赛篇(第36讲)第三讲整数分拆之分类与计数之竞赛篇(第37讲)第四讲整数分拆之最值与应用之竞赛篇(第38讲)第五讲数的整除之性质与求法之竞赛篇(第39讲)第六讲数的整除之代数思想与运用之竞赛篇(第40讲)第七讲数的整除之四大判断法综合运用之竞赛篇(第41讲)第八讲质数、合数与两大约数定理之竞赛篇(第42讲)第九讲因数与倍数之最大公因数与最小公倍数之竞赛篇(第43讲)第十讲因数与倍数之综合应用之竞赛(第44讲)第十一讲完全平方数之竞赛篇(第45讲)第十二讲带余除法之竞赛篇(第46讲)第十三讲同余问题之竞赛篇(第47讲)第十四讲中国剩余定理之竞赛篇(第48讲)第十五讲进制与位值原理之竞赛篇(第49讲)第十六讲四大杯赛的数论综合思想之竞赛篇(第50讲)第十七讲数论综合之整除相关问题之竞赛篇(第51讲)第十八讲数论综合之余数相关问题之竞赛篇(第52讲)第十九讲数论在方程、计数、最值、行程等问题中的应用之竞赛篇(第53讲) 二、数论强化篇第一讲奇偶数的性质与应用(第54讲)第二讲有趣余数之性质与周期(第55讲)第三讲整数分拆之分类与计数(第56讲)第四讲整数分拆之最值与应用(第57讲)第五讲数的整除之性质与求法(第58讲)第六讲数的整除之代数思想与运用(第59讲)第七讲数的整除之四大判断法综合运用(第60讲)第八讲质数、合数与两大约数定理(第61讲)第九讲因数与倍数之最大公因数与最小公倍数(第62讲)第十讲因数与倍数之综合应用(第63讲)第十一讲完全平方数(第64讲)第十二讲带余除法(第65讲)第十三讲同余问题(第66讲)第十四讲中国剩余定理(第67讲)第十五讲进制与位值原理(第68讲)第十六讲四大杯赛中的数论综合思想(第69讲)第十七讲数论综合之整除相关问题(第70讲)第十八讲数论综合之余数相关问题(第71讲)第十九讲数论在方程、计数、最值、行程等问题中的应用之竞赛篇(第72讲) 第三专题行程专题计算专题共30讲【强化篇15讲竞赛篇15讲】一、行程竞赛篇第一讲基础行程之竞赛篇(第73讲)第二讲简单相遇、追及之竞赛篇(第74讲)第三讲复杂相遇、追及之竞赛篇(第75讲)第四讲猎狗追兔之竞赛篇(第76讲)第五讲火车过桥之竞赛篇(第77讲)第六讲多次相遇之竞赛篇(第78讲)第七讲多人行程之竞赛篇(第79讲)第八讲流水行船之竞赛篇(第80讲)第九讲简单环形之竞赛篇(第81讲) 第十讲复杂环形之竞赛篇(第82讲) 第十一讲接送问题之竞赛篇(第83讲) 第十二讲间隔发车之竞赛篇(第84讲) 第十三讲电梯问题之竞赛篇(第85讲) 第十四讲变速变道之竞赛篇(第86讲) 第十五讲综合行程之竞赛篇(第87讲) 二、行程强化篇第一讲基础行程(第88讲)第二讲简单相遇、追及(第89讲)第三讲复杂相遇、追及(第90讲)第四讲猎狗追兔(第91讲)第五讲火车过桥(第92讲)第六讲多次相遇(第93讲)第七讲多次行程(第94讲)第八讲流水行船(第95讲)第九讲简单环形(第96讲)第十讲复杂环形(第97讲)第十一讲接送问题(第98讲)第十二讲间隔发车(第99讲)第十三讲电梯问题(第100讲)第十四讲变速变道(第101讲)第十五讲综合行程(第102讲)第四专题应用题专题共16讲一应用题1和差倍问题(第103讲)盈亏问题(第104讲)二应用题2还原问题(第105讲)鸡兔同笼(第106讲)三应用题3年龄问题(第107讲)周期问题(第108讲)四应用题4平均数问题(第109讲)统筹与规划问题(第110讲)五应用题5分数百分数问题(第111讲)牛吃草(第112讲)六应用题6比和比例(第113讲)工程问题(第114讲)七应用题7经济问题(第115讲)浓度问题(第116讲)八应用题8方程解复杂应用题(第117讲)应用题综合(第118讲)第五专题:几何专题计算专题共4讲【5级2讲6级2讲】一、几何专题能力进阶五级:五大模型及常用思维与方法第一讲五大模型(第119讲)第二讲常用思维与方法(第120讲)二、几何专题能力进阶六级:曲线型与立体几何第一讲曲线型(第121讲)第二讲立体几何(第122讲)。
小学六年级奥数 数论之最值、计数、行程综合(二)_PDF压缩
大海点睛
一、本讲重点知识回顾 最值问题核心思想: 极端化思想
二、本讲经典例题 例3,例4,例5,例7
ቤተ መጻሕፍቲ ባይዱ
2
请从1、2、3、4、5、6、7这7个数字中选出5个组成一个五位数, 使它是99的倍数。这个五位数最大是多少?
【例4】(★★★) 自然数N有20个因数,N的最小值为_____。
1
【例5】(★★★)
2001个连续的自然数之和为a×b×c×d,若a、b、c、 d都是质数, 则a+b+c+d的最小值是多少?
数论之最值、计数、行程综合(二)
第三单元 数论最值
【例1】(★) 一个六位数各个数字都不相同,且这个数字能被17整除,则这个 数最小是多少?
【例2】 (★ ★ ★)
多位数A由数字1、3、5、7、9组成,每个数字都可以重复出现 但至少出现一次,而且A可以被A中任意一个数字整除,求这样 的A的最小值。
【例3】(★★★)
第四单元 数论行程
【例6】(★★★) 有甲、乙、丙三个人在操场跑道上步行,甲每分钟走80米,乙每 分钟走120米,丙每分钟走70米。已知操场跑道周长为400米,如 果三个人同时同向从同一地点出发,问几分钟后,三个人可以首 次在出发点相聚?
第五单元 综合拓展 【例7】(★★★★)
将4个不同的数字排在一起,可以组成24个不同的四位数.将这24 个四位数按从小到大的顺序排列的话,第二个是5的倍数;按从大 到小排列的话,第二个是不能被4整除的偶数;按从小到大排列的 第五个与第二十个的差在3000~4000之间。求这24个四位数中最 大的那个。
小学奥数可以分为计算、计数、数论、几何、应用题、行
小学奥数可以分为计算、计数、数论、几何、应用题、行程、组合七大板块,其中必须掌握的三十六个知识点,内容从和差倍问题、年龄问题到循环小数,包含了小学奥数七个模块的知识。
以下是小学奥数知识清单:2、年龄问题的三个基本特征:①两个人的年龄差是不变的;②两个人的年龄是同时增加或者同时减少的;③两个人的年龄的倍数是发生变化的;3、归一问题基本特点:问题中有一个不变的量,一般是那个“单一量”,题目一般用“照这样的速度”……等词语来表示。
关键问题:根据题目中的条件确定并求出单一量;5、鸡兔同笼问题基本概念:鸡兔同笼问题又称为置换问题、假设问题,就是把假设错的那部分置换出来;基本思路:①假设,即假设某种现象存在(甲和乙一样或者乙和甲一样):②假设后,发生了和题目条件不同的差,找出这个差是多少;③每个事物造成的差是固定的,从而找出出现这个差的原因;④再根据这两个差作适当的调整,消去出现的差。
基本公式:①把所有鸡假设成兔子:鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数)②把所有兔子假设成鸡:兔数=(总脚数一鸡脚数×总头数)÷(兔脚数一鸡脚数)关键问题:找出总量的差与单位量的差。
6、盈亏问题基本概念:一定量的对象,按照某种标准分组,产生一种结果:按照另一种标准分组,又产生一种结果,由于分组的标准不同,造成结果的差异,由它们的关系求对象分组的组数或对象的总量.基本思路:先将两种分配方案进行比较,分析由于标准的差异造成结果的变化,根据这个关系求出参加分配的总份数,然后根据题意求出对象的总量.基本题型:①一次有余数,另一次不足;基本公式:总份数=(余数+不足数)÷两次每份数的差②当两次都有余数;基本公式:总份数=(较大余数一较小余数)÷两次每份数的差③当两次都不足;基本公式:总份数=(较大不足数一较小不足数)÷两次每份数的差基本特点:对象总量和总的组数是不变的。
小学奥数七大模块详解(超详细结构图)
小学奥数七大模块详解(超详细结构图)重点小学内部奥数复习材料七大模块详解(七大模块:计算、数论、几何、行程、应用题、计数和杂题)小学奥数七大模块详解(超详细结构图)模块一:计算模块小学奥数七大模块详解(超详细结构图)小学奥数七大模块详解(超详细结构图)1、速算与巧算2、分数小数四则混合运算及繁分数运算3、循环小数化分数与混合运算4、等差及等比数列5、计算公式综合6、分数计算技巧之裂项、换元、通项归纳7、比较与估算8、定义新运算9、解方程小学奥数七大模块详解(超详细结构图)模块二:数论模块小学奥数七大模块详解(超详细结构图)1、质数与合数2、因数与倍数3、数的整除特征及整除性质4、位值原理5、余数的性质6、同余问题7、中国剩余定理(逐级满足法)8、完全平方数9、奇偶分析10、不定方程11、进制问题12、最值问题小学奥数七大模块详解(超详细布局图)模块三:几何模块小学奥数七大模块详解(超详细布局图)小学奥数七大模块详解(超详细布局图)(一)直线型1、长度与角度2、格点与割补3、三角形等积变换与一半模型4、勾股定理与弦图5、五大模型(二)曲线型1、圆与扇形的周长与面积2、图形旋转扫过的面积题目(三)立体几何1、立体图形的面积与体积2、平面图形旋转成的立体图形问题3、平面展开图4、液体浸物题目小学奥数七大模块详解(超详细布局图)模块四:行程模块小学奥数七大模块详解(超详细结构图)小学奥数七大模块详解(超详细结构图)1、简单相遇与追及题目2、环形跑道问题3、流水行船问题。
小学奥数 小学六年级奥数 寒假班 方程、计数、最值、行程等问题中的数论综合(下)
200以内除以3余1,除以4余2,除以5余3的自然数有多少个?分别是多少?
一个大于10的数,除以3余1,除以5余2,除以11余7,问满足条件的最小自然数是多少?
某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是______。
101个连续的非零自然数的和恰好是四个不同的质数的积,那么这个最小的和应该是______。
小明打算做一个两位数乘以三位数的乘法,但粗心的他在计算时遗留掉了乘号,从而将两位数直接放在三位数的左边,形成了一个五位数,该五位数恰好为应得的乘积的9倍,问:原来的两个数的乘积是多少?
方程、计数、最值、行程等
问题中的数论综合(下)
(★★)
(★★)
(★★★)(小学数学奥林匹克预赛)
(★★★)
(★★★★)
某单位的职工到郊外植树,其中有男职工也有女职工,并且有
1
3的职工各带一个孩子参加。
男职工每人种13棵树,女职工每人种10棵树,每个孩子种6棵树,他们一共种了216棵树,那么其中有多少名男职工?
A、B两地相距20.3千米,甲、乙、丙的速度分别是4米/秒,6米/秒,5米/秒。
如果甲、乙从A,丙从B地同时出发相向而行,那么,在多长时间之后,丙与乙的距离是丙与甲距离的2倍?
(★★★★)
(★★★★★)。
奥数知识点数论问题详解
奥数知识点数论问题详解奥数知识点数论问题详解奥数的知识点可以大体分为“数、行、形、算”四个问题。
这是数论,行程,图形、计算四个问题的简称,数论比较难的是抽象的问题,也是区分尖子生和普通生的关键,今天主要讲一下数论问题。
数论学习中容易出现的'几个错误:第一、读题障碍。
数论的题目叙述往往只有几句话,甚至只有一行,可就这短短的几句话,却表达了很多意思,学生如果读不出题中的意思,题目通常会解错。
第二、知识僵化。
由于数论问题非常抽象,大多数学生往往采用死记硬背的方法来“消化”所学的内容,导致各个知识点都似曾相识,但遇到实际题目却一筹莫展。
例如,说起奇偶性都知道怎么回事,马上就开始背:“奇数+奇数=偶数……”可是在做题的时候就想不到用。
第三、纸上谈兵。
对于数论定理的灵活运用很欠缺。
提起定理都能一字不差的背下来,但是对各个概念和性质缺乏整体上的认识和把握,更不用说理解各知识点之间的内部联系了。
数论问题的主要知识体系整除问题:(1)数的整除的特征和性质(常考内容)。
(2)位值原理的应用(用字母和数字混合表示多位数)。
质数合数:(1)质数、合数的概念和判断。
(2)分解质因数(重点)。
约数倍数:(1)最大公约最小公倍数。
(2)约数个数决定法则(常考内容)。
奇偶问题:(1)奇偶与四则运算;(2)奇偶性质在实际解题过程中的应用。
余数问题:(1)带余除式的理解和运用。
(2)同余的性质和运用。
(3)中国剩余定理。
完全平方数:(1)完全平方数的判断和性质。
(2)完全平方数的运用整数及分数的分解与分拆(重点、难点)。
关于小升初奥数数论综合常考内容讲义
关于小升初奥数数论综合常考内容讲义第1篇:关于小升初奥数数论综合常考内容讲义【内容概述】涉及知识点多、解题过程比较复杂的整数综合题,以及基本依靠数论手段求解的其他类型问题.1.如果把任意n个连续自然数相乘,其积的个位数字只有两种可能,那么n是多少?【分析与解】我们知道如果有5个连续的自然数,因为其内必有2的倍数,也有5的倍数,则它们乘积的个位数字只能是0。
所以n小于5.第一种情况:当n为4时,如果其内含有5的倍数(个位数字为o或5),显然其内含有2的倍数,那么它们乘积的个位数字为0;如果不含有5的倍数,则这4个连续的个位数字只能是1,2,3,4或6,7,8,9;它们的积的个位数字都是4;所以,当n为4时,任意4个连续自然数相乘,其积的个位数字只有两科可能.第二种情况:当n为3时,有1×2×3的个位数字为6,2×3×4的个位数字为4,3×4×5的个位数字为0,……,不满足.第三种情况:当n为2时,有1×2,2×3,3×4,4×5的个位数字分别为2,6,4,0,显然不满足.至于n取1显然不满足了.所以满足条件的n是4.2.如果四个两位质数a,b,c,d两两不同,并且满足,等式a+b=c+d.那么,(1)a+b的最小可能值是多少?(2)a+b的最大可能值是多少?【分析与解】两位的质数有11,13,17,19,23,29,3l,37,41,43,47,53,59,未完,继续阅读 >第2篇:关于六年级奥数数论综合讲座【分析与解】555555=5×111×1001数论综合进位制的概念、四则运算法则及整数在不同进位制之间的转化,利用恰当的进位制解数论问题.取整符号[]与取小数部分符号{}的定义与基本*质,包含这两种符号的算式与方程的求解.两次与分式不定方程,不便直接转化为不定方程的数论问题.各种数论*题.典型问题【分析与解】注意到尾数,在足够大的进位制中有乘积的个位数字为4×5=20,但是现在为4,说明进走20-4=16,所以进位制为16的约数:16、8、4、2.2.求方程19[x]-96{x}=0的解的个数.【分析与解】有{x}为一个数的小数部分,显然小于1,则96{x}小于96,而19[x]=96{x},所以19[x]小于96,即[x]小于,又[x]为整数,所以[x]可以取0,1,2,3,4,5,对应有6组解.4.将表示成两个自然数的倒数之和,请给出所有的*.【分析与解】记标有1为第1号,序号顺时针的依次增大.当超过一圈时,编号仍然依次增加,如1号也是2001号,4001号,……4.对于两个不同的整数,如果它们的积能被和整除,就称为一对“好数”,例如70与30.那么在1,2,…,16这16个整数中,有“好数”多少对?6.*、乙两人进行下面的游戏:两人先约定一个自然数n,然后由*开始,轮流把未完,继续阅读 >第3篇:关于小升初1—6年级奥数天天练的内容长沙奥数天天练每日1-6年级各精选一道题,每天坚持做天天练,轻松应对长沙。
六上奥数 第十九讲(师)
数论问题本身范围很广,我们考察小学奥数的内容,完全平方数等知识点跟基础课内容结合很紧密,但又是小奥的重难点,我们有必要加以重视.本讲需要学生掌握的知识点有:平方数性质、平方差公式、约数个数定理、约数和定理法等.本讲内容中,平方数部分是数论中最基本的部分,学生应当学会熟练运用平方差公式,对于约数和倍数部分,老师应当更注重其中的逻辑过程,可以适当用一些代数的方法将题目讲的更明白和透彻.模块一、分解质因数【例1】2001个连续的自然数之和为a b c d ⨯⨯⨯,若a 、b 、c 、d 都是质数,则a b c d +++的最小值是多少?【分析】 遇到等量关系的表述时,先将其转化为数学语言.设这2001个连续自然数中最小的一个是A ,则最大的一个是2000A +(遇到多个连续自然数问题,转化时一般均采用假设法,自己需要的量,题目中没有时,可以设未知数),则它们的和是:()()()20002001100020011000323292A A A A ++=+⨯=+⨯⨯⨯,则()1000A +是质数,所以A 的最小值是9.a b c d +++的最小值是:1009323291064+++=.【例2】101个连续的非零自然数的和恰好是四个不同的质数的积,那么这个最小的和应该是_______.【分析】设这101个自然数中最小的数为a ,则101个连续自然数的和为:a +(a +1)+(a +2)+……+(a +100)=(a +a +100)×101÷2=(a +50)×101因为101是质数,所以a +50必须是3个质数的乘积,要使和最小.经检验a +50=66=2×3×11最小,所以和最小为66×101=6666.模块二、约数、倍数【例3】已知,甲乙两数的最小公倍数是288,最大公约数是4,甲乙两数不是288和4中的数,那么甲乙两数的乘积为多少?和为多少?【分析】 设甲乙两个数为4x ,4y ,(x 和y 都不等于1或72),则x ,y 两数互质,于是4x ,4y的最小公倍数为4xy ,所以288724xy ==,327223=⨯,由于x ,y 互质,所以2或3不可能在x ,y 的因子中都出现,所以x ,y 一个是8一个是9,所以两数的乘积等于【知识点介绍】【例题精讲】第十九讲: 数论问题(一)44441152y x xy ⨯=⨯=,和为()4448968x y +=⨯+=.【例4】两数乘积为2800,而且己知其中一数的约数个数比另一数的约数个数多1,那么这两个数分别是___________、___________.【分析】422800257=⨯⨯,由于其中一数的约数个数比另一数的约数个数多1,所以这两个数中有一个数的约数为奇数个,这个数为完全平方数.故这个数只能为22、42、25、2225⨯或4225⨯.经检验,只有两数分别为42和257⨯时符合条件,所以这两个数分别是16和175.[铺垫] 在三位数中,恰好有9个约数的数有多少个?[分析] 91933=⨯=⨯,所以9个约数的数可以表示为一个质数的8次方,或者两个不同质数的平方的乘积,前者在三位数中只有256符合条件,后者中符合条件有100、196、484、676、225、441, 所以符合条件的有7个.【例5】数360的约数有多少个?这些约数的和是多少?【分析】 360分解质因数:360=2×2×2×3×3×5=23×32×5;360的约数可以且只能是2a ×3b ×5c ,(其中a,b,c 均是整数,且a 为0~3,6为0~2,c 为0~1).因为a 、b 、c 的取值是相互独立的,由计数问题的乘法原理知,约数的个数为(3+1)×(2+1)×(1+1)=24.我们先只改动关于质因数3的约数,可以是l,3,32,它们的和为(1+3+32),所以所有360约数的和为(1+3+32)×2y ×5w ;我们再来确定关于质因数2的约数,可以是l,2,22,23,它们的和为(1+2+22+23),所以所有360约数的和为(1+3+32)×(1+2+22+23)×5w ;最后确定关于质因数5的约数,可以是1,5,它们的和为(1+5),所以所有360的约数的和为(1+3+32)×(1+2+22+23)×(1+5).于是,我们计算出值:13×15×6=1170.所以,360所有约数的和为1170.【例6】一个数是5个2,3个3,6个5,1个7的连乘积.这个数有许多约数是两位数,那么在这些两位数的约数中,最大的是多少?【分析】 设这个数为A,有A=25×33×56×7,99=3×3×11,98=2×7×7,97均不是A 的约数,而96=25×3为A 的约数,所以96为其最大的两位数约数.约数个数定理:设自然数n 的质因子分解式如312123n a a a a n p p p p . 那么n 的约数个数为()()()()()1231111n d n a a a a =++++ 自然数n 的约数和为()()()11221121211111222211a a a a S n P P P P P P P P --=++++++++++()1211n n a a n n n n P P P P -+++++[铺垫]已知偶数A 不是4的整数倍,它的约数的个数为12,求4A 的约数的个数.[分析] 将A 分解,2A B =,其中B 是奇数,它的约数的个数为()1112N +=,(其中N 为B 的约数个数),则4A 的约数个数为()1324N +=.模块二、完全平方数【例7】从1到2008的所有自然数中,乘以72后是完全平方数的数共有多少个?【分析】 完全平方数,所有质因数必成对出现.327223266=⨯=⨯⨯,所以满足条件的数必为某个完全平方数的2倍,2313119222008232322048⨯⨯=<<⨯⨯=,共31个.[铺垫]有5个连续自然数,它们的和为一个平方数,中间三数的和为立方数,则这五个数中最小数的最小值为_____.[分析] 考查平方数和立方数的知识点,同时涉及到数量较少的连续自然数问题,设未知数的时候有技巧.设中间数是x ,则它们的和为5x , 中间三数的和为3x .5x 是平方数,设2255x a =⨯,则25x a =.2231535x a a ==⨯⨯是立方数,所以2a 至少含有3和5的质因数各2个, 2a 至少是225,中间的数至少是1125.最小数的最小值为1123.【例8】志诚小学三四年级的学生人数比一二年级的学生人数多100人,但比五六年级的学生人数少53人,已知五六年级的学生人数和一二年级的学生人数都是完全平方数,那么志诚中学总的学生人数有多少人?(请写出最现实的答案)【分析】 五六年级的人数和一二年级的学生人数都是完全平方数,所以可以设五六年级的学生人数为2A ,一二年级的学生人数为2B ,则()()153A B A B =+-,而1533317=⨯⨯,所以,()A B +与()A B -可能为153和1;17和9;51和3,由这三个答案得到的A 和B 的值分别为:77和76,13和4,27和24,显然由前两组答案得到的学校人数不符合现实,所以27A =,24B =为最佳结果.此时五六年级的学生人数为729人,一二年级的学生人数为576人,三四年级的学生人数为676,学校的总人数为7295766761981++=人.[铺垫]能否找到这么一个数,它加上24,和减去30所得的两个数都是完全平方数? [分析] 假设能找到,设这两个完全平方数分别为2A 、2B ,那么这两个完全平方数的差为()()54A B A B =+-,由于()A B +和()A B -的奇偶性质相同,所以()()A B A B +-不是4的倍数,就是奇数,所以54不可能等于两个平方数的差,所以这样的数找不到.【例9】一个正整数若能表示为两个正整数的平方差,则称这个数为“智慧数”,比如16=2253-,16就是一个“智慧数”,那么从1开始的自然数列中,第2003个“智慧数”是_______.【分析】22a b -=()()a b a b +-.因为()a b +与()a b -同奇同偶, 所以“智慧数”是奇数或是4的倍数.对于任何大于1的奇数21n +(1n ≥),当1a n =+,b n =时,都有22a b -=22(1)n n +-=21n +.即任何大于1的奇数都是“智慧数”.对于任何大于4的4的倍数4n (2n ≥),当1a n =+,1b n =-时,都有22a b -=22(1)(1)n n +--=4n .即任何大于4的4的倍数都是“智慧数”.除了1和4以外,非“智慧数”都是不能被4整除的偶数,“智慧数”约占全部正整数的34.3200326714÷≈,为26724668÷=,加上1和4这两个非“智慧数”,在1~2672中共有非“智慧数”668+2=670(个),有“智慧数”2672-670=2002(个).所以第2003个“智慧数”是2673.【例10】(清华附中入学考试题)有两个两位数,它们的差是14,将它们分别平方,得到的两个平方数的末两位数(个位数和十位数)相同,那么这两个两位数是 (请写出所有可能的答案).【分析】 (法一)设这两个数分别是a 和14a +,则2a 与()214a +两个数的末两位相同,即2a 与()228196a a ++的末两位相同,所以()28196a +是100的倍数,a 个位只能是3或8.先设103a k =+,则28196280280a k +=+,当4k =,9时满足条件,但9k =时较大的两位数大于100不合题意.再设108a k =+,可求得1k =,6时满足条件.所以一共有(43,57)、(18,32)、(68,82)三组答案.(法二)()()()()22141414287a a a a a a a +-=+++-=+,()287a +是100的倍数,所以()7a +是25的倍数,符合条件的a 只有18、43、68.1、已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?【分析】因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得10101371337=⨯⨯⨯,由此可知该数分解为3个两位数乘积的方法仅有211337⨯⨯.注意到两位数△□的十位数字和个位数字分别在另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.2、一个两位数有6个约数,且这个数最小的3个约数和为10,那么此数为几?[分析] 最小的三个约数中必然包括约数1,除去1以外另外两个约数和是9,由于9是1个奇数,所以这两个约数的奇偶性质一定是相反的,其中一定有一个是偶数,如果一个数包含偶约数,那么它一定是2的倍数,即2是它的约数.于是显然的,2是这个数第二小的约数,而第三小的约数是7,所以这个两位数是14的倍数,由于这个两位数的约数中不含3、4、5、6,所以这个数只能是14或98,其中有6个约数的是98.3、两个连续自然数的平方和等于365,又有三个连续自然数的平方和等于365,则这两个连续自然数为_______,这三个连续自然数为_______.【分析】221314365+=, 所以这两个连续自然数为13、14,222101112365++=,所以这三个连续自然数为10、11、12.4、有n 个自然数相加:123n aaa ++++=L (和恰好是三个相同数字组成的三位数),那么n =__________.a) (1)1232n n n aaa +++++==L ,(1)221112337n n aaa a a +==⨯⨯=⨯⨯⨯,由于a 是个一位数,n 与1n +是两个相邻的整数,只有当6a =,36n =时满足题意,所以所求的n 为36.5、已知A 有12个约数,9A 有24个约数,15A 有36个约数,5A 有多少个约数?【当堂练习】b) 设35a b A B =,有()()1112a b N ++=个约数,(N 为B 的约数个数),于是9A 有()()3124a b N ++=个约数,所以1a =,15A 有()3236b N +=个约数,由此求得0b =,6N =,所以5A 有()()12424a b N N ++==个约数.6、A 、B 两数都只含有质因数3和2,它们的最大公约数是18.已知A 有12个约数,B 有8个约数,那么A B +=______.c) 121823=⨯,A 、B 至少含有两个3和一个2.因为A 有12个约数,121122634=⨯=⨯=⨯,所以A 可能是1523⨯、3223⨯或2323⨯,B 有8个约数,81824=⨯=⨯,所以1323B =⨯,于是A 只能是3223⨯,故32132323126A B +=⨯+⨯=.1、一个5位数,它的各位数字和为43,且能被11整除,求所有满足条件的5位数.d) 现在我们有两个入手的选择,可以选择数字和,也可以选择被11整除,但我们发现被11整除性质的运用要有具体的数字,而现在没有,所以我们选择先从数字和入手.5位数数字和最大的为9×5=45,这样43的可能性只有9,9,9,9,7或9,9,9,8,8.这样我们接着用11的整除特征,发现符合条件的有99979,97999,98989.2、已知ABCA 是一个四位数,若两位数AB 是一个质数,BC 是一个完全平方数,CA 是一个质数与一个不为1的完全平方数之积,则满足条件的所有四位数是_____________.【分析】 本题综合利用数论知识,因为AB 是一个质数,所以B 不能为偶数,且同时BC 是一个完全平方数,则符合条件的数仅为16、36,当1B =时,满足AB 是一个质数的数有11,31,41,61,71,时,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有3163符合;当3B =,满足AB 是一个质数的数有13,23,43,53,73,83,此时同时保证CA 是一个质数与一个不为1的完全平方数之积,只有8368符合.3、把26、33、34、35、63、85、91、143分成若干组,要求每一组中任意两个数的最大公约数为1.那么最少要分几组?a) 本题是一道关于最大公约数的问题.我们知道两个数的最大公约数为1,即互质,相当于它们的质因数分解式中没有相同的质因数.这就提示我们将题目所给的数字质因数分解.将题目中的数字质因数分解如下:26213=⨯,33311=⨯,34217=⨯,3557=⨯,26337=⨯,85517=⨯,91713=⨯,1431113=⨯.由于题目要求将这些数字分组,满足每组中任意两个数的最大公约数为1,而26、91、143均含质因数13,因此它们两两不在同一组,于是这些数至少应分为3组.我们这里推出一种分法:将26、35分为一组,91、34、33分为一组,而143、63、85分为一组.【课后练习】。
小学奥数系统讲义完整版
小学奥数系统复习讲义(完整版)小学奥数大约80个知识点,可分成5大类,数论和行程是重点也是难点第一部分计算能力万丈高楼平地起,计算能力任何时候都是学好数学的根基,必须高度重视! 基本公式1 .运算顺序第一级:括号:()T T{ }第二级:X+:同一级别可以交换运算次序第三级:+ —: 同一级别可以交换运算次序2. 去括号①a+(b+ c)=a + b + c a+ (b —c)=a + b— c②a—(b+ c)=a — b — c a— (b —c)=a—b+ c③a>(b疋)=a花比a>(b -c)=a以弋④a—b >0)=a —a—b 弋)=a —xc3 .分配律/结合律乘法:a (b + c) = a b+ a>ca>b+ a>c = a (b + c)除法:(a+ b) —= a —+ b—ca—:+ b—c = (a + b)—4 .两个必须掌握的性质两个数的和一定,则两数越相近,积越大5 .几个计算公式__ 2 2 2完全平方和(差)公式:( a±b) = a ±ab+b2 2平方差公式: a -b = (a+b)(a-b)求和公式一:1+2+3+ ....... +n =两个数的积一定,则两数越分散,和越大求和公式二:1 +1 22 +3 2+……n =3 3 3 3求和公式三:1 +2 +3 +……n = __________________________6. 速算巧算基本方法凑整法、改变运算次序法、连续数求和、基准法、分组法、拆分法7. 等差数列,等比数列,【拆分与裂项】,【换元法】,【错位相消法】,【构造法】等较难的计算方法。
拆分裂项公式:等差数列公式:简单等比公式:例题分析1. 393+404+397+398+405+401+400+399+391+4022. 比较下面A,B 两数的大小:A=2009X 2009,B=2008X 20103. 99讣9创x 99 —99 4 199—99结果末尾有多少个零?訐胆,.p “站-1 ?4. 100 + 99+ 98 —97 —96 —95+ ……+ 10+ 9 + 8—7 —6—5+ 4 + 3+ 2 —1巩固练习5. 376 + 385 + 391 + 380 + 377 + 389 + 383 + 374 + 366 + 3786. 1 —50+2 —50+3 —50+50 - 50 2010二二呦10第二部分基础知识基础知识点列表7. 9999999 >2009 7777 >333 出1118. 99*.**.+ 9 乂gg.*・*.*9 + -99*—..* 9 =99Ti9. 比较下面A,B两数的大小:归一问题A =987654321 >23456789;B =987654322 >2345678810. 1996 + 1994 —1992 —1990 + 1988 + 1986 —1984 —1982 + 1980 + 1978—1976 —1974 + 1972 + 1970…… + 4 + 2【含义】在解题时,先求岀一份是多少(即单一量),然后以单一量为标准,求岀所要求的数量。
小学奥数数论讲义 第十九讲 数论在方程、计数、最值、行程等问题的应用竞赛篇
第十九讲数论在方程、计数、最值、行程等问题的应用竞赛篇
【例1】
一个正整数A,若满足:A,2×A,3×A,…,99×A这99个数除以100的余数各不相同,则称A 为“末尾好数”。
1,2,3,…,2010中有______个“末尾好数”。
【例2】(2008年实验中学考题)
在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有____种。
【例3】
甲,乙,丙同时从山脚开始爬山,到达山顶后立即下山,不断往返运动。
已知山坡长360米,甲、乙、丙的速度比为6:5:4,并且甲、乙、丙的下山速度都是各自上山速度的1.5倍。
经过一段时间后,甲到达山顶时,看见乙正在下山,此时乙距离山脚不到180米(乙不在山脚)。
求此时丙离山顶的距离。
1
2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十九讲数论在方程、计数、最值、行程等问题的应用竞赛篇
【例1】
一个正整数A,若满足:A,2×A,3×A,…,99×A这99个数除以100的余数各不相同,则称A为“末尾好数”。
1,2,3,…,2010中有______个“末尾好数”。
【例2】(2008年实验中学考题)
在1,2,3,…,7,8的任意排列中,使得相邻两数互质的排列方式共有____种。
【例3】
甲,乙,丙同时从山脚开始爬山,到达山顶后立即下山,不断往返运动。
已知山坡长360米,甲、乙、丙的速度比为6:5:4,并且甲、乙、丙的下山速度都是各自上山速度的1.5倍。
经过一段时间后,甲到达山顶时,看见乙正在下山,此时乙距离山脚不到180米(乙不在山脚)。
求此时丙离山顶的距离。