高一数学必修一第一次月考及答案
2023-2024学年河南省高一上册第一次月考数学试题(含解析)
2023-2024学年河南省高一上册第一次月考数学试题一、单选题1.已知集合{}220A x x x =-≤,{}1,0,3B =-,则()R A B ⋂=ð()A .∅B .{}0,1C .{}1,0,3-D .{}1,3-【正确答案】D【分析】先由一元二次不等式的解法求得集合A ,再由集合的补集和交集运算可求得答案.【详解】因为{}{}22002A x x x x x =-≤=≤≤,所以{R |0A x x =<ð或}2x >,又{}1,0,3B =-,所以(){}1,3R A B ⋂=-ð,故选:D .2.已知函数()f x =()()3y f x f x =+-的定义域是()A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]【正确答案】D【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥,解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤,所以函数的定义域为[1,4].故选:D 3.不等式3112x x-≥-的解集是()A .3{|2}4x x ≤≤B .3{|2}4x x ≤<C .{>2x x 或3}4x ≤D .3{|}4x x ≥【正确答案】B【分析】把原不等式的右边移项到左边,通分计算后,然后转化为()()432020x x x ⎧--⎨-≠⎩,求出不等式组的解集即为原不等式的解集.【详解】解:不等式3112x x --可转化为31102x x ---,即4302x x --,即4302x x --,所以不等式等价于()()432020x x x ⎧--⎨-≠⎩,解得:324x <,所以原不等式的解集是3{|2}4x x <.故选:B .4.命题“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式是()A .∀x ∈R ,∃n ∈N+,有n<2x+1B .∀x ∈R ,∀n ∈N+,有n<2x+1C .∃x ∈R ,∃n ∈N+,使n<2x+1D .∃x ∈R ,∀n ∈N+,使n<2x+1【正确答案】D【分析】根据全称命题、特称命题的否定表述:条件中的∀→∃、∃→∀,然后把结论否定,即可确定答案【详解】条件中的∀→∃、∃→∀,把结论否定∴“∀x ∈R ,∃n ∈N+,使n ≥2x+1”的否定形式为“∃x ∈R ,∀n ∈N+,使n<2x+1”故选:D本题考查了全称命题、特称命题的否定形式,其原则是将原命题条件中的∀→∃、∃→∀且否定原结论5.已知12a b ≤-≤,24a b ≤+≤,则32a b -的取值范围是()A .3,92⎡⎤⎢⎥⎣⎦B .5,82⎡⎤⎢⎥⎣⎦C .5,92⎡⎤⎢⎥⎣⎦D .7,72⎡⎤⎢⎥⎣⎦【正确答案】D【分析】令32()()a b m a b n a b -=-++求,m n ,再利用不等式的性质求32a b -的取值范围.【详解】令32()()()()a b m a b n a b m n a n m b -=-++=++-,∴32m n n m +=⎧⎨-=-⎩,即51,22m n ==,∴55()5,121()222a b a b ≤-≤≤+≤,故73272a b ≤-≤.故选:D6.如图,ABC 中,90ACB ∠=︒,30A ∠=︒,16AB =,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC (或边CB )于点Q ,设AP x =,APQ △的面积为y ,则y 与x 之间的函数图象大致是()A .B .C .D .【正确答案】D【分析】首先过点C 作CD AB ⊥于点D ,由ABC 中,90ACB ∠= ,30A ∠= ,可求得B ∠的度数与AD 的长度,再分别从当012AD ≤≤与当1216x <≤时,去分析求解即可求得y 与x 之间的函数关系式,进一步选出图象.【详解】过点C 作CD AB ⊥于点D ,因为90ACB ∠= ,30A ∠= ,16AB =,所以60B ∠= ,142BD BC ==,12AD AB BD =-=.如图1,当012AD ≤≤时,AP x =,tan 30PQ AP x =⋅ ,所以21236y x x x ==,如图2:当1216x <≤时,16BP AB AP x =-=-,所以)tan 6016PQ BP x =⋅=-,所以)211622y x x x =-=-+,故选:D此题考查了动点问题,注意掌握含30 直角三角形的性质与二次函数的性质;注意掌握分类讨论的思想.属于中档题.7.已知函数221111x xf x x --⎛⎫= ⎪++⎝⎭,则()f x 的解析式为()A .()()2211x f x x x =≠-+B .()()2211xf x x x =-≠-+C .()()211xf x x x =≠-+D .()()211xf x x x =-≠-+【正确答案】A 【分析】令11x t x -=+,则11tx t-=+,代入已知解析式可得()f t 的表达式,再将t 换成x 即可求解.【详解】令11x t x -=+,则11tx t-=+,所以()()222112111111t t t f t t t t t -⎛⎫- ⎪+⎝⎭==≠-+-⎛⎫+ ⎪+⎝⎭,所以()()2211xf x x x=≠-+,故选:A.8.已知0x >,0y >,且2121x y+=+,若2231x y m m +>--恒成立,则实数m 的取值范围是()A .1m ≤-或4m ≥B .4m ≤-或m 1≥C .14-<<mD .41m -<<【正确答案】C 由2121x y +=+得121y x=+,利用基本不等式求出2x y +的最小值,再将不等式恒成立转化为最值,解不等式可得结果.【详解】由2121x y +=+得212(1)y x x y ++=+,所以12x xy +=,所以121y x=+,所以121x y x x +=++13≥=,当且仅当1,1x y ==时,等号成立,所以()min 23x y +=,所以2231x y m m +>--恒成立,可化为2331m m >--,即2340m m --<,解得14-<<m .故选:C结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥;②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤;③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥;④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;二、多选题9.有以下判断,其中是正确判断的有().A .()xf x x =与()1,01,0x g x x ≥⎧=⎨-<⎩表示同一函数B .函数()22122x f x x =+++的最小值为2C .函数()y f x =的图象与直线1x =的交点最多有1个D .若()1f x x x =--,则112f f ⎛⎫⎛⎫= ⎪⎪⎝⎭⎝⎭【正确答案】CD【分析】根据函数的定义域可判断A 的正误,根据基本不等式可判断B 的正误,根据函数的定义可判断C 的正误,根据函数解析式计算对应的函数值可判断D 的正误.【详解】对于A ,()xf x x=的定义域为()(),00,∞-+∞U ,而()1,01,0x g x x ≥⎧=⎨-<⎩的定义域为R ,两个函数的定义域不同,故两者不是同一函数.对于B ,由基本不等式可得()221222f x x x =++≥+,但221x +=无解,故前者等号不成立,故()2f x >,故B 错误.对于C ,由函数定义可得函数()y f x =的图象与直线1x =的交点最多有1个,故C 正确.对于D ,()1012f f f ⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭,故D 正确.故选:CD.10.下面命题正确的是()A .“3x >”是“5x >"的必要不充分条件B .“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件C .“1x ≠”是“2430x x -+≠”的必要不充分条件D .设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的充分不必要条件【正确答案】ABC【分析】利用充分条件,必要条件的定义逐项判断作答.【详解】对于A ,3x >不能推出5x >,而5x >,必有3x >,“3x >”是“5x >"的必要不充分条件,A 正确;对于B ,若0ac <,一元二次方程20ax bx c ++=判别式240b ac ∆=->,方程有二根12,x x ,120cx x a=<,即12,x x 一正一负,反之,一元二次方程20ax bx c ++=有一正一负两个实根12,x x ,则120cx x a=<,有0ac <,所以“0ac <”是“一元二次方程20ax bx c ++=有一正一负两个实根”的充要条件,B 正确;对于C ,当1x ≠时,若3x =,有2430x x -+=,当2430x x -+≠时,1x ≠且3x ≠,因此“1x ≠”是“2430x x -+≠”的必要不充分条件,C 正确;对于D ,,R x y ∈,若4x y +≥,取1,4x y ==,显然“2x ≥且2y ≥”不成立,而2x ≥且2y ≥,必有4x y +≥,设,R x y ∈,则“4x y +≥”是“2x ≥且2y ≥”的必要不充分条件,D 不正确.故选:ABC11.函数()1,Q0,Qx D x x ∈⎧=⎨∉⎩被称为狄利克雷函数,则下列结论成立的是()A .函数()D x 的值域为[]0,1B .若()01D x =,则()011D x +=C .若()()120D x D x -=,则12x x -∈Q D .x ∃∈R ,(1D x =【正确答案】BD【分析】求得函数()D x 的值域判断选项A ;推理证明判断选项B ;举反例否定选项C ;举例证明x ∃∈R ,(1D x =.判断选项D.【详解】选项A :函数()D x 的值域为{}0,1.判断错误;选项B :若()01D x =,则0Q x ∈,01Q x +∈,则()011D x +=.判断正确;选项C :()()2ππ000D D -=-=,但2ππ=πQ -∉.判断错误;选项D :当x =时,((()01D x D D ===.则x ∃∈R ,(1D x =.判断正确.故选:BD12.已知集合{}20,0x x ax b a ++=>有且仅有两个子集,则下面正确的是()A .224a b -≤B .214a b+≥C .若不等式20x ax b +-<的解集为()12,x x ,则120x x >D .若不等式2x ax b c ++<的解集为()12,x x ,且124x x -=,则4c =【正确答案】ABD【分析】根据集合{}20,0x x ax b a ++=>子集的个数列方程,求得,a b 的关系式,对A ,利用二次函数性质可判断;对B ,利用基本不等式可判断;对CD ,利用不等式的解集及韦达定理可判断.【详解】由于集合{}20,0x x ax b a ++=>有且仅有两个子集,所以2240,4a b a b ∆=-==,由于0a >,所以0b >.A ,()22224244a b b b b -=-=--+≤,当2,b a ==时等号成立,故A 正确.B ,21144a b b b +=+≥=,当且仅当114,,2b b a b ===时等号成立,故B 正确.C ,不等式20x ax b +-<的解集为()12,x x ,120x x b =-<,故C 错误.D ,不等式2x ax b c ++<的解集为()12,x x ,即不等式20x ax b c ++-<的解集为()12,x x ,且124x x -=,则1212,x x a x x b c +=-=-,则()()22212121244416x x x x x x a b c c -=+-=--==,4c ∴=,故D 正确,故选:ABD三、填空题13.已知21,0()2,0x x f x x x ⎧+≥=⎨-<⎩,求()1f f -=⎡⎤⎣⎦________.【正确答案】5【分析】先求()1f -,再根据()1f -值代入对应解析式得()1.f f ⎡⎤-⎣⎦【详解】因为()()1212,f -=-⨯-=所以()[]1241 5.f f f ⎡⎤-==+=⎣⎦求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.14.已知正实数a 、b 满足131a b+=,则()()12a b ++的最小值是___________.【正确答案】13+13+【分析】由已知可得出3ba b =-且3b >,化简代数式()()12a b ++,利用基本不等式可求得结果.【详解】因为正实数a 、b 满足131a b +=,则03b a b =>-,由0b >可得3b >,所以,()()()()()()32312122222333b b a b b b b b b b +⎛⎫⎛⎫++=++=++=++⎪ ⎪---⎝⎭⎝⎭()()()33515222313131333b b b b b -+=++=-++≥+=+--当且仅当62b =时,等号成立.因此,()()12a b ++的最小值是13+.故答案为.13+15.对于[]1,1a ∈-,()2210x a x a +-+->恒成立的x 取值________.【正确答案】()(),02,-∞+∞ 【分析】设()()()2221121f a x a x a x a x x =+-+-=-+-+关于a 的一次函数,只需()()1010f f ⎧>⎪⎨->⎪⎩即可求解.【详解】令()()()2221121f a x a x a x a x x =+-+-=-+-+,因为对于[]11a ∈-,,不等式()2210x a x a +-+->恒成立,所以()()1010f f ⎧>⎪⎨->⎪⎩即220320x x x x ⎧->⎨-+>⎩解得:0x <或2x >.故答案为.()()02-∞⋃+∞,,方法点睛:求不等式恒成立问题的方法(1)分离参数法若不等式(),0f x λ≥()x D ∈(λ是实参数)恒成立,将(),0f x λ≥转化为()g x λ≥或()()g x x D λ≤∈恒成立,进而转化为()max g x λ≥或()()min g x x D λ≤∈,求()g x 的最值即可.(2)数形结合法结合函数图象将问题转化为函数图象的对称轴、区间端点的函数值或函数图象的位置关系(相对于x 轴)求解.此外,若涉及的不等式转化为一元二次不等式,可结合相应一元二次方程根的分布解决问题.(3)主参换位法把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围列式求解,一般情况下条件给出谁的范围,就看成关于谁的函数,利用函数的单调性求解.16.若函数2()2f x x x =+,()2(0)g x ax a =+>,对于1x ∀∈[]1,2-,[]21,2x ∃∈-,使12()()g x f x =,则a 的取值范围是_____________.【正确答案】(]0,3【分析】由题意可知函数()g x 在区间[]1,2-的值域是函数()f x 在区间[]1,2-的值域的子集,转化为子集问题求a 的取值范围.【详解】()()20g x ax a =+>在定义域上是单调递增函数,所以函数在区间[]1,2-的值域是[]2,22a a -+函数()22f x x x =+在区间[]1,2-是单调递增函数,所以函数()f x 的值域是[]1,8-,由题意可知[][]2,221,8a a -+⊆-,所以21228a a -≥-⎧⎨+≤⎩,解得.3a ≤故答案为.(]0,3本题考查双变量等式中任意,存在问题求参数的取值范围,重点考查函数的值域,转化与化归的思想,属于中档题型.四、解答题17.已知{|13}A x x =-<≤,{|13}B x m x m =≤<+(1)若1m =时,求A B ⋃;(2)若R B A ⊆ð,求实数m 的取值范围.【正确答案】(1)(1,4)A B =-U ;(2)()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ .(1)利用集合的并集定义代入计算即可;(2)求出集合R A ð,利用集合包含关系,分类讨论B =∅和B ≠∅两种情况,列出关于m 的不等式,求解可得答案.【详解】(1)当1m =时,{|14}B x x =≤<,则{|14}A B x x ⋃=-<<即(1,4)A B =-U .(2){|1R A x x =≤-ð或}(]()3,13,x >=-∞-⋃+∞,由R B A ⊆ð,可分以下两种情况:①当B =∅时,13m m ≥+,解得:12m ≤-②当B ≠∅时,利用数轴表示集合,如图由图可知13131m m m <+⎧⎨+≤-⎩或133m m m <+⎧⎨>⎩,解得3m >;综上所述,实数m 的取值范围是:12m ≤-或3m >,即()1,3,2m ⎛⎤∈-∞-+∞ ⎥⎝⎦ 易错点睛:本题考查利用集合子集关系确定参数问题,易错点是要注意:∅是任何集合的子集,所以要分集合B =∅和集合B ≠∅两种情况讨论,考查学生的逻辑推理能力,属于中档题.18.(1)已知a b c <<,且0a b c ++=,证明:a a a c b c<--.(2213a a a a ---(3)a ≥【正确答案】(1)证明见解析;(2)证明见解析【分析】(1)利用不等式的性质证明即可;(2)a 3a -<1a -2a -,对不等式两边同时平方后只需证明()3a a -<()()12a a --.【详解】证明:(1)由a b c <<,且0a b c ++=,所以0a <,且0,a cbc -<-<所以()()0a c b c -->,所以()()a c a c b c -<--()()b c a c b c ---,即1b c -<1a c -;所以a b c ->a a c -,即a a c -<a b c-.(2213a a a a ---,(3)a ≥a 3a -<1-a 2a -,即证(3)(3)(1)(2)2(1)(2)a a a a a a a a +-+--+-+--()3a a -<()()12a a --即证(3)(1)(2)a a a a -<--;即证02<,显然成立;213a a a a ---19.已知二次函数y =ax 2+bx ﹣a +2.(1)若关于x 的不等式ax 2+bx ﹣a +2>0的解集是{x |﹣1<x <3},求实数a ,b 的值;(2)若b =2,a >0,解关于x 的不等式ax 2+bx ﹣a +2>0.【正确答案】(1)a =﹣1,b =2(2)见解析【分析】(1)根据一元二次不等式的解集性质进行求解即可;(2)根据一元二次不等式的解法进行求解即可.【详解】(1)由题意知,﹣1和3是方程ax 2+bx ﹣a +2=0的两根,所以132(1)3b a a a ⎧-+=-⎪⎪⎨-+⎪-⨯=⎪⎩,解得a =﹣1,b =2;(2)当b =2时,不等式ax 2+bx ﹣a +2>0为ax 2+2x ﹣a +2>0,即(ax ﹣a +2)(x +1)>0,所以()210a x x a -⎛⎫-+> ⎪⎝⎭,当21a a-=-即1a =时,解集为{}1x x ≠-;当21a a -<-即01a <<时,解集为2a x x a -⎧<⎨⎩或}1x >-;当21a a ->-即1a >时,解集为2a x x a -⎧>⎨⎩或}1x <-.20.(1)求函数()3f x x 在区间[]2,4上的值域.(2)已知二次函数2()1(R)f x x mx m m =-+-∈.函数在区间[]1,1-上的最小值记为()g m ,求()g m 的值域;【正确答案】(1)12,4⎤-⎦;(2)(]0-∞,【分析】(1)t =,可得函数()22()36318g t t tt t =--=+-,讨论其值域即可求解;(2)分类讨论二次函数的对称轴与给定区间[]1,1-的关系,分别表示出函数的最小值,表示为分段函数形式,作出图象即可求解.【详解】(1)函数()3f x x =,t =,则26x t =-∵[]2,4x ∈2t ≤≤那么函数()f x 转化为()22()36318g t t t t t =--=+-其对称轴16t =-,2t ≤≤时()g t 单调递增,∴()(2)g g t g ≤≤,12()4g t -≤≤-,故得()f x的值域为12,4⎤--⎦.(2)2()1f x x mx m =-+-,二次函数对称轴为2m x =,开口向上①若12m <-,即2m <-,此时函数()f x 在区间[]1,1-上单调递增,所以最小值()(1)2g m f m =-=.②若112m -≤≤,即22m -≤≤,此时当2m x =时,函数()f x 最小,最小值2()124m m g m f m ⎛⎫==-+- ⎪⎝⎭.③若12m >,即m>2,此时函数()f x 在区间[]1,1-上单调递减,所以最小值()(1)0g m f ==.综上22,2()1,2240,2m m m g m m m m <-⎧⎪⎪=-+--≤≤⎨⎪>⎪⎩,作出分段函数的图像如下,所以当2m <-时,()(,4);g m ∈-∞-当22m -≤≤时,[]4,0;g(m)∈-当m>2时,()0g m =,综上知()g m 的值域为(]0.,-∞21.今年,我国某企业为了进一步增加市场竞争力,计划在2023年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x (千部)手机,需另投入成本()R x 万元,且()2101001000,040100007018450,40x x x R x x x x ⎧++<<⎪=⎨+-≥⎪⎩,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.(1)求2023年的利润()W x (万元)关于年产量x (千部)的函数关系式;(2)2023年产量为多少(千部)时,企业所获利润最大?最大利润是多少?【正确答案】(1)()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩(2)2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元【分析】(1)根据已知条件求得分段函数()W x 的解析式.(2)结合二次函数的性质、基本不等式求得()W x 的最大值以及此时的产量.【详解】(1)当040x <<时,()()22700101001000250106001250W x x x x x x =-++-=-+-;当40x ≥时,()100001000070070184502508200W x x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭;∴()2106001250,040100008200,40x x x W x x x x ⎧-+-<<⎪=⎨⎛⎫-++≥ ⎪⎪⎝⎭⎩;(2)若040x <<,()()210307750W x x =--+,当30x =时,()max 7750W x =万元;若40x ≥,()10000820082008000W x x x ⎛⎫=-++≤-= ⎪⎝⎭,当且仅当10000x x=即100x =时,()max 8000W x =万元.答:2023年产量为100(千部)时,企业所或利润最大,最大利润是8000万元.22.已知()11282,0,11f x f x x x x x ⎛⎫+=+-≠≠ ⎪-⎝⎭,(1)求()f x 的解析式;(2)已知()()()22,22g x mx mx g x x f x m =--<-+在()1,3上有解,求m 的取值范围.【正确答案】(1)1()2f x x=+,0,1x x ≠≠;(2)3m <.【分析】(1)根据给定条件,用11,1x x x--依次替换x ,再消元求解作答.(2)由(1)结合已知,变形不等式,分离参数构造函数,求出函数在()1,3的最大值作答.【详解】(1)0,1x x ≠≠,11()2()821f x f x x x +=+--,用11x-替换x 得:11()2912()1x f f x x x x -+=-+--,则有1114()4()8222(9)1011x f x f x x x x x x x --=+---+=-+---,用1x x-替换x 得:1112()2()82(1)711x f f x x x x x x x -+=+--=++--,于是得99()18f x x =+,则1()2f x x=+,所以()f x 的解析式为1()2f x x=+,0,1x x ≠≠.(2)(1,3)x ∈,2221()()22(2)22g x x f x m mx mx x m x-<-+⇔--+<-+,即22(2)22m x x x x -+<++,于是得22222x x m x x ++<-+,令2222(),132x x h x x x x ++=<<-+,依题意,(1,3)x ∈,()m h x <有解,当(1,3)x ∈时,222223()22323()22222222[()][()]23333x x x x h x x x x x x x -++-==+=+-+-+-+--++322316219(2333x x =+≤+-++-,当且仅当1629233x x -=-,即2x =时取等号,因此当2x =时,max ()(2)3h x h ==,则3m <,所以m 的取值范围是3m <.。
高一数学必修1第一次月考试卷(含答案解析)
高一数学必修1第一次月考试卷(含答案解析)高一数学必修1第一次月考试卷(含答案解析)一、选择题1. 若集合A={2,4,6,8},集合B={1,3,5,7},则A∪B=()A. {1, 2, 3, 4, 5, 6, 7, 8}B. {1, 2, 3, 4, 5, 6, 7}C. {2, 4, 6, 8}D. {1, 3, 5, 7}解析:集合的并就是包含所有元素的集合,所以A∪B={1, 2, 3, 4, 5, 6, 7, 8},选项A正确。
2. 已知二次函数y=ax²+bx+c的顶点坐标为(1,2),则a+b+c的值为()A. 3B. 4C. 5D. 6解析:二次函数的顶点坐标为(h,k),所以a+b+c=a(h²)+b(h)+c=a(1²)+b(1)+c=a+b+c=k=2,选项B正确。
3. 若点P(3,4)在直线5x-ky=3上,则k的值为()A. 1B. 2C. 3D. 4解析:点P(3,4)在直线5x-ky=3上,代入坐标得到5(3)-k(4)=3,化简得15-4k=3,解得k=3,选项C正确。
二、填空题4. 根据等差数列的通项公式an=a1+(n-1)d,已知a1=3,a4=9,求公差d为_____。
解析:代入已知条件,9=3+(4-1)d,化简得3=3d,解得d=1。
公差d为1。
5. 在△ABC中,∠A=60°,BC=8,AB=4,则∠B=_____。
解析:根据三角形内角和为180°,∠B+60°+∠C=180°,化简得∠B+∠C=120°。
由已知BC=8,AB=4,利用正弦定理sinB=BC/AB=8/4=2,所以∠B=30°。
三、解答题6. 已知集合A={x|2x+1<5},求A的解集。
解析:将不等式2x+1<5移项得到2x<4,再除以2得到x<2。
所以集合A的解集为{x|x<2}。
高一数学第一次月考试卷及答案
高一数学第一次月考试卷及答案上学期第一次考试高一数学试卷一、选择题(每小题5分;共60分)1.在下列四个关系中,错误的个数是()A。
1个 B。
2个 C。
3个 D。
4个2.已知全集U=R;集合A={x|y=-x};B={y|y=1-x^2};那么集合(C U A)B=()A。
(-∞,0] B。
(0,1) C。
(0,1] D。
[0,1)3.已知集合M={x|x=2kπ,k∈Z};N={x|x=2kπ+π,k∈Z};则(M ∩ N)'=()A。
M' ∪ N' B。
M' ∩ N' C。
(M ∪ N)' D。
(M ∩ N)'4.函数f(x)=x+(3a+1)x+2a在(-∞,4)上为减函数;则实数a 的取值范围是()A。
a≤-3 B。
a≤3 C。
a≤5 D。
a=-3/55.集合A,B各有两个元素;AB中有一个元素;若集合C 同时满足:(1) C∩(AB)={}。
(2) C⊊(AB);则满足条件C的个数为()A。
1 B。
2 C。
3 D。
46.函数y=-|x-5||x|的递减区间是()A。
(5,+∞) B。
(-∞,0) U (5,+∞) C。
(-∞,0) U (0,5) D。
(-∞,0) U (0,5)7.设M,P是两个非空集合;定义M与P的差集为M-P={x|x∈M且x∉P};则(M- (M-P))'=()A。
P' B。
M' C。
M ∩ P D。
M ∪ P8.若函数y=f(x)的定义域是[0,2];则函数g(x)=f((x-1)/2)的定义域是()A。
[0,1) U (1,2] B。
[0,1) U (1,4] C。
[0,1) D。
(1,4]9.不等式(a-4)x+(a+2)x-1≥0的解集是空集;则实数a的范围为()A。
(-∞,-2) U (2,+∞) B。
(-∞,-2] U [2,+∞) C。
[-2,+∞) D。
[-2,+∞) - {2}10.已知函数f(x)=begin{cases}2b-1)x+b-1.& x>\frac{b-1}{2b-1}\\x+(2-b)x。
高一上学期第一次月考数学试卷(含答案解析)
高一上学期第一次月考数学试卷(含答案解析)第I 卷(选择题)一、单选题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 若集合{0,1}A =,{|0}B x x =,则下列结论正确的是( ) A. {0}B ∈B. A B ⋂=∅C. A B ⊆D. A B R ⋃=2. 已知集合,{2,1,0,1,2,4}B =--,则A B ⋂=( ) A. {1,0,1,2}-B. {2,0,4}-C. {0,1,2}D. {0,1}3. 已知命题p :x R ∃∈,2 1.x x +则命题p 的否定是( ) A. x R ∃∈,21x x >+ B. x R ∃∈,21x x + C. x R ∀∈,21x x +D. x R ∀∈,21x x >+4. 已知a R ∈,则“2a >”是“4a >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件D. 既不充分也不必要条件5. “A B ⊆“是“A B B ⋂=“的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件D. 既不充分也不必要条件6. 如果0a <,0b >,那么下列不等式中正确的是( )A.11a b< B. <C. 22a b <D. ||||a b >7. 已知集合M 满足{1,2}{1,2,3}M ⋃=,则集合M 的个数是( ) A. 1B. 2C. 3D. 48. 对于任意实数x ,不等式2(2)2(2)40m x m x ---+>恒成立,则m 的取值范围是( ) A. {|22}m m -<< B. {|22}m m -< C. {|2m m <-或2}m >D. {|2m m <-或2}m9. 已知a ,b R ∈,且0ab ≠,则在下列四个不等式中,不恒成立的是( )A.222a b ab +B.2b a a b+ C. 2()2a b ab +D. 222()22a b a b ++10. 设S 为实数集R 上的非空子集.若对任意x ,y S ∈,都有x y +,x y -,xy S ∈,则称S 为封闭集.下面是关于封闭集的4个判断:(1)自然数集N 为封闭集; (2)整数集Z 为封闭集;(3)若S 为封闭集,则一定有0S ∈; (4)封闭集一定是无限集.则其中正确的判断是( )A. (2)(3)B. (2)(4)C. (3)(4)D. (1)(2)第II 卷(非选择题)二、填空题(本大题共5小题,共25.0分)11. 已知函数21()ln log f x a x b x =+,若(2017)1f =,则1()2017f =______ . 12. 若0x >,则12x x+的最小值为______,此时x 的取值为______. 13. 一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是__________.14. 设2{|340}A x x x =+-=,{|10}.B x ax =-=若B A ⊆,则a 的值为______.15. 某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润(y 万元)与机器运转时间(x 年数,*)x N ∈的关系为21825.y x x =-+-则当每台机器运转______ 年时,年平均利润最大,最大值是______ 万元.三、解答题(本大题共6小题,共85.0分。
高一上学期第一次月考数学试题(附答案解析)
高一上学期第一次月考数学试题(附答案解析)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、单选题(本大题共8小题,共32.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={−1,1},B={x|ax=1},若A∩B=B,则a的取值集合为( )A. {1}B. {−1}C. {−1,1}D. {−1,0,1}2. 下列存在量词命题是假命题的是( )A. 存在x∈Q,使2x−x3=0B. 存在x∈R,使x2+x+1=0C. 有的素数是偶数D. 有的有理数没有倒数3. 定义集合A,B的一种运算:A⊗B={x|x=a2−b,a∈A,b∈B},若A={−1,0},B={1,2},则A⊗B 中的元素个数为( )A. 1B. 2C. 3D. 44. 已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+xyz|xyz|的值所组成的集合是M,则下列判断正确的是( )A. 4∈MB. 2∈MC. 0∉MD. −4∉M5. 一批救灾物资随26辆汽车从某市以vkm/h的速度送达灾区,已知运送的路线长400km,为了安全起见,两辆汽车的间距不得小于(v20)2km,那么这批物资全部到达灾区最少需要时间( )A. 5 hB. 10 hC. 15 hD. 20 h6. 已知集合A={x|ax2−(a+1)x+1<0},B={x|x2−3x−4<0},且A∩B=A,则实数a的取值范围是( )A. a≤14B. 0<a≤14C. a≥14D. 14≤a<1或a>17. 如图,抛物线y=ax2+bx+c的对称轴是直线x=1,下列结论:①abc>0;②b2−4ac>0;③8a+ c<0;④5a+b+2c>0,正确的有( )A. 4个B. 3个C. 2个D. 1个8. 某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数的最大值是( )A. 6B. 5C. 7D. 8二、多选题(本大题共4小题,共16.0分。
高一数学必修(一)第一次月考试题
高一数学必修(一)第一次月考试题一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,有且只有一个是符合题目要求的)1.已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于 ( )A. NB.MC.RD.∅2.下列各组函数是同一函数的是 ( )①1)(-=x x f 与2()1x g x x=-;②x x f =)(与()g x ③0()f x x =与01()g x x=;④2()21f x x x =--与2()21g t t t =--. A.①② B.①③ C.③④ D.①④3.函数()f x 是定义在R 上的奇函数,当0>x 时,1)(+-=x x f ,则当0<x 时,()f x 等于( )A .1+-xB .1--xC .1+xD .1-x 4.定义集合运算:{},,A B z z xy x A y B *==∈∈.设{}1,2A =,{}0,2B =,则集合A B * 的所有元素之和为 ( )A .0B .2C .3D .65.已知集合{1,2,3,4},{,,,}A B a b c d ==,B A f →:为集合A 到集合B 的一个函数,那么该函数的值域C 的不同情况有 ( ) A .4种 B .8种 C .12种 D .15种 6.若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是 ( ) A .[0,1] B .[0,1) C . [0,1)(1,4] D .(0,1)7.已知集合{|},{|12},()R A x x a B x x A C B R =<=<<=,则实数a 的取值范围是( )A . 2a ≥B .2a >C . 1a ≤D .1a <8已知函数223y x x =-+在区间[]0,m 上的最大值为3,最小值为2,则m 的取值范围是( ) A .[)1,+∞ B .[]0,2 C .[]1,2 D .(],2-∞ 9.已知函数[]的取值范围上单调递减,则实数,在a ax x y 23822-+-=( )A .[)+∞,2B . [)+∞,1C .[)3,2D .[]3,210.已知偶函数)(x f 在区间),0[+∞上单调递增,则满足不等式)31()12(f x f <+的x 的取值范围是 ( )A .)31,32[--B .)31,32(--C .)21,32(--D .)21,32[-- 11.已知⎩⎨⎧≥<+-=)1(,)1(,1)2()(2x ax x x a x f 满足对任意21x x ≠,都有0)()(2121>--x x x f x f 成立,那么a 的取值范围是 ( )A .3[,2)2B .3(1,]2C .(1,2) D.),1(+∞12.对实数a b 和,定义运算“⊗”:,1,, 1.a a b a b b a b -≤⎧⊗=⎨->⎩设函数2()(2)(1),f x x x x R =-⊗-∈.若函数()y f x c =-的图象与x 轴恰有两个公共点,则实数c 的取值范围是( ) A .(1,1](2,)-⋃+∞B .(2,1](1,2]--⋃C .(,2)(1,2]-∞-⋃D .[-2,-1]二、填空题(本大题有4小题,每小题4分,共16分.请将答案填写在题中的横线上)13.若集合{}{}2|230,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为. 14. 函数12-+=x x y 的值域为 .15.已知函数=++++++=)41()31()21()4()3()2(,1)(22f f f f f f x x x f 则 .13. . 14. . 15. .16.定义在R 上的函数()f x ,如果存在函数()(,g x kx b k b =+为常数),使得()f x ≥()g x 对一切实数x 都成立,则称()g x 为()f x 的一个承托函数.现有如下命题:①对给定的函数()f x ,其承托函数可能不存在,也可能无数个;② 定义域和值域都是R 的函数()f x 不存在承托函数;③若函数()g x x a =-为函数2()f x ax =的承托函数,则a 的取值范围是12a ≥;其中正确命题的序号是 .三、解答题(本大题有4小题,共36分.解答应写出文字说明,证明过程或演算步骤)17.(本小题8分)设=A {x |x 2-ax +a 2-19=0},B ={x |x 2-5x +6=0},C ={x |x 2+2x-8=0}.(1)若B A =,求a 的值; (2)若∅A ∩B ,A ∩C =∅,求a 的值18.(本小题8分) 已知函数()122-+-=ax x x f ,若()x f 在[]1,1-上的最大值为()g a ,求()g a 的解析式.18.(本小题10分)函数()21x b ax x f ++=是定义在()1,1-上的奇函数,且5221=⎪⎭⎫ ⎝⎛f .(1)用定义证明()x f 在()1,1-上是增函数;(2)解不等式()()01<+-x f x f .20.(本小题10分)已知函数()f x 定义在()1,1-上,对于任意的,(1,1)x y ∈-,有()()()1x y f x f y f xy++=+,且当0x <时,()0f x >;(1)判断()f x 的奇偶性并说明理由;(2)若1()12f -=,试解关于x 的方程1()2f x =-.高一第一次月考试卷参考答案一、ACBDD BACDB AB二、13. 0或1或31-14.[)+∞,2, 15.3 16.①③ 三、解答题:17.解:由题知 {}2,3B =,{}4,2C =-.(1)若B A =,则2,3是方程01922=-+-a ax x 的两个实数根, 由根与系数的关系可知 ⎩⎨⎧⨯=-+=3219322a a ,解得5=a . (2)∵∅A ∩B ,∴A B φ≠,则2,3至少有一个元素在A 中,又∵AC φ=,∴2A ∉,3A ∈,即293190a a -+-=,得52a =-或而5a A B ==时,与AC φ=矛盾,∴2a =-18.解:()()122-+--=a a x x f1当1a ≤-时,()f x 在[]1,1- 上单调减,()()max 122f x f a ∴=-=--2当11a -<<时,()f x 在[]1,a - 上单调增,在(],1a 上单调()()2max 1f x f a a ∴==-3当1a ≥时,()f x 在[]1,1- 上单调增,()()max 122f x f a ∴==-()222,11,1122,1a a g a a a a a --≤-⎧⎪∴=--<<⎨⎪-≥⎩19.解:(1)由已知()21xbax x f ++=是定义在()1,1-上的奇函数, ()00=∴f ,即0,0010=∴=++b b .又5221=⎪⎭⎫ ⎝⎛f ,即52211212=⎪⎭⎫⎝⎛+a,1=∴a . ()21xxx f +=∴.证明:对于任意的()1,1,21-∈x x ,且21x x <,则()()()()()()()()()()()()()()22212121222112212122212122212222112111111111111x x x x x x x x x x x x x x x x x x x x x x x x x f x f ++--=++-+-=+++-+=+-+=-()()011,0222121>++<-∴x x x x ,01,12121>-∴<∴x x x x .()()021<-∴x f x f ,即()()21x f x f <.∴函数()21x xx f +=在()1,1-上是增函数.(2)由已知及(1)知,()x f 是奇函数且在()1,1-上递增,∴()()()()()()2102111201111111101<<⇔⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧<<<-<<⇔-<-<<-<-<-⇔-<-⇔-<-⇔<+-x x x x x x x x x f x f x f x f x f x f ∴不等式的解集为⎪⎭⎫ ⎝⎛21,0.20. 解:(1)令0==y x ,0)0(=∴f ,令x y -=,有0)0()()(==+-f x f x f ,)(x f ∴为奇函数(2)设1121<<<-x x ,则01,02121>-<-x x x x ,012121<--x x x x ,则0)1()()()()(21212121>--=-+=-x x x x f x f x f x f x f ,0)()(21>-x f x f ,∴()f x 在()1,1-上是减函数11()1()122f f -=∴=-原方程即为2212()1()()()()12x f x f x f x ff x =-⇔+==+, 2221410212x x xx x ∴=⇔-+=⇔=±+(1,1)2x x ∈-∴= 故原方程的解为2x =。
高一数学必修一第一次月考及答案(完整资料).doc
【最新整理,下载后即可编辑】兴义九中2011-2012学年度第一学期高一第一次月考考生注意:1.本卷分试卷部分和答题卷部分,考试结束只交答题卷; 2.所有答案必须写在答题卷指定位置上,写在其他地方一律无效。
一、选择题(每小题5分,共计50分)1. 下列命题正确的是( )A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.函数2()=f x 的定义域是( )A.1[,1]3- B.1(,1)3- C. 11(,)33- D.1(,)3-∞-3. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=-B .()21,()21f x x g x x =-=+C .2(),()f x x g x == D .0()1,()f x g x x ==5. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( )A. 13B.13-C.7D.7-6. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞)B .(-∞,-23] C .[23,+∞) D .(-∞,23] 7. 在函数22, 1, 122, 2x x y x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x =,则x的值是( )A .1B .312或 C .1± D8.已知函数()=f x 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤49.函数y=xx ++-1912是( )A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶数 10.下列四个命题(1)f(x)=x x -+-12有意义;(2)函数是其定义域到值域的映射; (3)函数y=2x(x N ∈)的图象是一直线; (4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是( )A .1B .2C .3D .411. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,B B AA U UU CB A 那么2|)1(|<+x f 的解集是 ( ) A .(1,4) B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞12. 若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2x f x g x -=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二、填空题(每小题4分,共计20分) 13. 用集合表示图中阴影部分:14. 若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为_________________15. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________16.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k的取值范围是 .三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分) 17、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃18.已知f(x)=x 2-ax +b(a 、b∈R ),A ={x∈R |f(x)-x =0},B ={x∈R |f(x)-ax =0},若A ={1,-3},试用列举法表示集合B.19. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立.(1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.20、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象;(2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.21.(本题满分12分) 是否存在实数a使2=-+的定义域为f x x ax a()2-?若存在,求出a的值;若不存在,说明理由。
高一数学必修一第一次月考及答案
1. 下列命题正确的是 ( )A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.函数2()=-f x ( )A. 1[,1]3-B. 1(,1)3-C. 11(,)33-D. 1(,)3-∞-3. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=- B .()21,()21f x x g x x =-=+ C.2(),()f x x g x ==.0()1,()f x g x x ==4. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( ) A. 13 B.13- C.7 D. 7-5. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞) B .(-∞,-23] C .[23,+∞) D .(-∞,23]6. 在函数22, 1, 122, 2x x y x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x =,则x 的值是 ( )A .1B .312或 C .1± D7.已知函数()=f x 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4D.0≤m ≤48.函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 9.下列四个命题(1)f(x)=x x -+-12有意义;BBAA U UU C B A (2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是 ( )A .1B .2C .3D .410. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,那么2|)1(|<+x f 的解集是 ( )A .(1,4)B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞ 11. 若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2xf xg x -=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<12. 用集合表示图中阴影部分:13. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________15.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .16、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃17. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立. (1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.18、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象; (2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.二、填空题(每小题4分,共计20分)13.(),(),U AB C C A B 14.12或13-或 0 15. x x x f 2)(2--= 16.{211≤≤-k k };三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分)17、(满分10分) 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------……………2分(1)又{}3B C ⋂=()A B C ∴⋃⋂={}6,5,4,3,2,1,0,1,2,3,4,5,6------……6分(2)又{}1,2,3,4,5,6B C ⋃= 得{}()6,5,4,3,2,1,0A C B C ⋃=------()A A C B C ∴⋂⋃{}6,5,4,3,2,1,0=------ ……………12分 18.(本题满分12分)解:f(x)-x =0,即x 2-(a +1)x +b =0.∵A={1,-3},∴由韦达定理,得⎩⎪⎨⎪⎧1+(-3)=a +1,1×(-3)=b.∴⎩⎪⎨⎪⎧a =-3,b =-3.∴f(x)=x 2+3x -3.f(x)-ax =0,亦即x 2+6x -3=0.∴B={x|x 2+6x -3=0}={-3-23,-3+23}.19. (本题满分12分) 解析:(1)由f (1+x )=f (1-x )得,(1+x )2+a (1+x )+b =(1-x )2+a (1-x )+b , 整理得:(a +2)x =0,由于对任意的x 都成立,∴ a =-2. ………………………6分(2)根据(1)可知 f ( x )=x 2-2x +b ,下面证明函数f (x )在区间[1,+∞)上是增函数.设121x x >≥,则12()()f x f x -=(2112x x b -+)-(2222x x b -+)=(2212x x -)-2(12x x -)=(12x x -)(12x x +-2)∵121x x >≥,则12x x ->0,且12x x +-2>2-2=0, ∴ 12()()f x f x ->0,即12()()f x f x >,故函数f (x )在区间[1,+∞)上是增函数. ………………………………… 12分20解(1)当 x <0时,-x >0,22()()2()2f x x x x x -=-+-=--又f (x )为奇函数,∴2()()2f x f x x x -=-=--,∴ f (x )=x 2+2x ,∴m =2 ……………4分 y =f (x )的图象如右所示……………6分(2)由(1)知f (x )=222(0)(0)2(0)x xx x x x x ⎧-+>⎪=⎨⎪+<⎩,…8分 由图象可知,()f x 在[-1,1]上单调递增,要使()f x 在[-1,|a |-2]上单调递增,只需||21||21a a ->-⎧⎨-≤⎩……………10分 解之得3113a a -≤<-<≤或……………12分21解:22()2()f x x ax a x a a a =-+=-+-,对称轴x a = (1)当1a >时,由题意得()f x 在[1,1]-上是减函数 ()f x ∴的值域为[1,13]a a -+则有12132a a -=-⎧⎨+=⎩满足条件的a 不存在。
高一(上)第一次月考数学试卷(附答案解析)
高一(上)第一次月考数学试卷(附答案解析)班级:___________姓名:___________考号:____________一、单选题(本大题共8小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. 已知集合A={2,3,4,5,6},B={x|x2−8x+12≥0},则A∩∁RB=()A. {2,3,4,5}B. {2,3,4,5,6}C. {3,4,5}D. {3,4,5,6}2. 命题“∀x>0,都有x2−x≤0”的否定是()A. ∃x>0,使得x2−x≤0B. ∃x>0,使得x2−x>0C. ∀x>0,都有x2−x>0D. ∀x≤0,都有x2−x>03. 已知a是实数,则“a<−1”是“a+1a<−2”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4. 下列各组函数中,表示同一个函数的是()A. y=1,y=xxB. y=x,y=3x3C. y=x−1×x+1,y=x2−1D. y=|x|,y=(x)25. 若集合A={1,2,3,4,5},集合B={x|(x+2)(x−3)<0},则图中阴影部分表示()A. {3,4,5}B. {1,2,3}C. {1,4,5}D. {1,2}6. 已知不等式ax2−5x+b>0的解集为{x|−3<x<2},则不等式bx2−5x+a>0的解集为()A. {x|−13<x<12}B. {x|x<−13或x>12}C. {x|−3<x<2}D. {x|x<−3或x>2}7. 函数f(x)=ex+ln(2x+1)的定义域为()A. (−∞,+∞)B. (0,+∞)C. (−12,+∞)D. (12,+∞)8. 设函数f(x)=x+2,g(x)=x2−x−1.用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)},则M(x)的最小值是()A. 1B. 3C. 0D. −54二、多选题(本大题共4小题,共20.0分。
高一第一次月考参考答案与考试试题解析
高一数学月考参考答案与试题解析一、选择题:1. D 2. C 3. D 4. B 5.A6.A 解答:解:∵f(x)=x2+2(a﹣1)x+2=(x+a﹣1)2+2﹣(a﹣1)2 其对称轴为:x=1﹣a∵函数f(x)=x2+2(a﹣1)x+2在(﹣∞,4]上是减函数∴1﹣a≥4∴a≤﹣3故选A7.C 解答:解:①f(x)==与y=的对应法则和值域不同,故不是同一函数.②=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2﹣2x﹣1与g(t)=t2﹣2t﹣1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.8.A9.C10.A 解答:解:令g(x)=x5+ax3+bx,由函数奇偶性的定义,易得其为奇函数;则f(x)=g(x)﹣8所以f(﹣2)=g(﹣2)﹣8=10得g(﹣2)=18又因为g(x)是奇函数,即g(2)=﹣g(﹣2)所以g(2)=﹣18则f(2)=g(2)﹣8=﹣18﹣8=﹣26故选A.11.D 解答:解:偶函数,f(x)在[0,5]上是单调函数,且f(﹣3)<f(﹣1),可知函数f(x)在[0,5]上是单调减函数,所以f(0)>f(1)故选D.12. C二、填空题13. {a|a ≤2} 14.﹣1 15.0 16. [4,5)∪(5,+∞)三、解答题:17. 解:A={﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5} …(2分)(1)由B ∩C={3}∴A ∪(B ∩C )=A={﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5} …(7分)(2)由B ∪C={1,2,3,4,5},C A (B ∪C )={﹣5,﹣4,﹣3,﹣2,﹣1,0} …(11分) ∴A ∩C A (B ∪C )={﹣5,﹣4,﹣3,﹣2,﹣1,0} …(14分)18.解:∵{}{}2|3201,2M x x x =-+==,且N ⊆M ∴N 可能为φ或{}1或{}2或{}1,2当N=φ时,有()2240a ∆=--<解得1a > 当N={}1时,有11211a⎧+=⎨⨯=⎩解得a=1 当N={}2时,有22222a⎧+=⎨⨯=⎩不成立,a 无解当N={}1,2时,有12212a ⎧+=⎨⨯=⎩不成立,a 无解 综上可知:1a ≥19. 解:(1)∵C={x|1﹣2a <x <2a}=∅,∴1﹣2a ≥2a , …3分 ∴,即实数a 的取值范围是. …6分(2)∵C={x|1﹣2a <x <2a}≠∅,∴1﹣2a <2a ,即…8分 ∵A={x|﹣1<x <4},,∴,∵C ⊆(A ∩B ) ∴…12分 解得即实数a 的取值范围是. …14分20.解答: 证明:(I )函数为奇函数函数的定义域为()(),00,-∞⋃+∞且关于原点对称…4分(II )设x 1,x 2是区间(0,1)上任意两个不相等的实数且x 1<x2=∵0<x 1<x 2<1,∴x 1x 2<1,x 1x 2﹣1<0,∵x 2>x 1∴x 2﹣x 1>0.∴f (x 2)﹣f (x 1)<0,f (x 2)<f (x 1)因此函数f (x )在(0,1)上是减函数 …10分 (III )f (x )在(﹣1,0)上是减函数. …14分21.解答:解:(1)因为函数为偶函数,故图象关于y轴对称,补出完整函数图象如有图:所以f(x)的递增区间是(﹣1,0),(1,+∞).…7分(2)设x>0,则﹣x<0,所以f(﹣x)=x2﹣2x,因为f(x)是定义在R 上的偶函数,所以f(﹣x)=f(x),所以x>0时,f(x)=x2﹣2x,故f(x)的解析式为值域为{y|y≥﹣1}…14分。
高一数学必修1第一次月考试卷
人教版普通高中课程标准实验教科书数学必修1 第一次月考试卷第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,每小题3分,共36分.)1.下列各组对象不能..构成一个集合的是()A.不超过20的非负实数B.方程290x-=在实数范围内的解C.某校2019年在校的所有身高超过170厘米的同学的近似值的全体2. 若集合{0,1,2,3},{1,2,4}A B==,则集合A B =()A. {0,1,2,3,4}B. {1,2,3,4}C. {1,2}D. {0}3. 已知集合{}{}5,37S x x T x x x=<=<>或,则S TI=( )A. {}75x x-<<- B. {}35x x<< C. {}53x x-<< D.{}75x x-<<4.下列各对函数表示同一函数的是()(1)()f x x=与2()g x=(2)()2f x x=-与()g x=(3)2()(0)f x x xπ=≥与2()(0)g r r rπ=≥(4)()f x x=与,0,(),0.x xg xx x≥⎧=⎨-<⎩A.(1)(2)(4)B.(2)(4)C.(3)(4)D.(1)(2)(3)(4)5.已知集合M={}4,2,1,1-,N={}1,2,4,给出下列四个对应关系:①2xy=,②1+=xy,③1y x=-,④y x=,其中能构成从M到N的函数是()A.①B.②C.③D.④6.已知2)1(xxf=-,则()f x的表达式为()A.2()21f x x x=++B.2()21f x x x=-+C.2()21f x x x=+-D.2()21f x x x=--7.设集合{}21<≤-=xxA,{}axxB<=,若φ≠BA ,则a的取值范围是()A.21≤<-a B.2>a C.1-≥a D.1->a8.已知1,0,()0,0,1,0.x xf x xx x->⎧⎪==⎨⎪+<⎩,则((1))f f的值是()A.0B.2C.3D.69. 已知函数f(x+1)=3x+2,则f(x)的解析式是().A.f(x)=3x+2 B.f(x)=3x+1 C.f(x)=3x-1D.f(x)=3x+410.已知函数)(xfy=在R上是增函数,且(21)(34)f m f m+>-,则m的取值范围是()A.(-)5,∞.(5,)B+∞3.(,)5C+∞3.(,)5D-∞11.函数()()26f x x x=--在(],a-∞上取得最小值4-,则实数a的集合是()A.(],4-∞B.4⎡⎤-⎣⎦C.4,4⎡+⎣D.[)4,+∞12.设函数()()1xf x x Rx=-∈+,区间[],()M a b a b=<,集合{}(),N y y f x x M==∈,则使M=N成立的实数对(,)a b有()A.0个B.1个C.2个D.无数多个第Ⅱ卷(非选择题共64分)二、填空题(本大题共5小题,每小题4分,共20分)13.“a>0”是“a2+a≥0”的____________条件.14.若{}{}{}33,213,4,32-=---mmm ,则m=________.15.设集合{1,2,3}A=,集合{2,2}B=-,则A B=.16.命题“20,320x x x∀>-+<”的否定是.17.命题“若实数a满足a≤2,则a2<4”的否命题是________命题(填“真”或“假”).三、解答题(本大题共4小题,共44分. 解答应写出文字说明、证明过程或演算步骤)18.(10分)设全集2{2,3,21},{|12|,2},{7}U a a A a A=+-=-=ð,求实数a的值,并写出U的所有子集.19.(10分)已知全集U=R ,A={x|﹣3<x ≤6,R x ∈},B={x|x 2﹣5x ﹣6<0,R x ∈}.求:(1)A ∪B ;(2)A B C U )(.20.(12分)已知集合{|121}A x a x a =-<<+,{|01}B x x =<<,(1)若21=a ,求B A ⋂; (2)若A B =∅,求实数a 的取值范围. 21.(满分12分)如图所示,已知底角为45°的等腰梯形ABCD ,底边BC 长为7 cm ,腰长为2 2 cm ,当垂直于底边BC(垂足为F)的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF =x ,试写出 左边部分的面积y 关于x 的函数解析式,并画出大致图象.人教高中数学 数学必修1第一次月考试卷参考答案1-12DACDD ADACA CA13.充分不必要 14.1 15.{2} 16.20,320x x x ∃>-+≥ 17.真18.{2}{3}{7}{23}{37}{27}{237}.∅,,,,,,,,,,,, 19.(1){}63|<<-x x ;(2){}13|-≤≤-x x .20.(1)()1,0;(2)2≥a 或21-≤a . 解:(1)当21=a 时,}10{},221{<<=<<-=x x B x x A ,}10{}221{<<<<-=∴x x x x B A }10{<<=x x . (2) 若A B =∅,则11≥-a 或012≤+a ,解得:21-≤a 或2≥a .21.【答案】解:过点A ,D 分别作AG ⊥BC ,DH ⊥BC ,垂足分别是G ,H .因为ABCD 是等腰梯形,底角为45°,,所以BG=AG=DH=HC=2cm ,又BC=7cm ,所以AD=GH=3cm .(2分) (1)当点F 在BG 上时,即x ∈(0,2]时,;(4分)(2)当点F 在GH 上时,即x ∈(2,5]时,y=2+(x-2)•2=2x -2;(8分)(3)当点F 在HC 上时,即x ∈(5,7]时,y=S 五边形ABFED =S 梯形ABCD -S Rt △CEF =.(10分)所以,函数解析式为(12分)。
高一数学第一次月考答案
高一数学第一次月考答案一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C C A B D A B A CD ACDBC AB 二、填空题14.15. 16.{m|m>2}三、解答题 17.解:依题意,得方程x 2+ax +b =0的解集为1,2.由根与系数的关系,得⎩⎨⎧ -a =1+2,b =1×2,即⎩⎨⎧ a =-3b =2,…………………………4分∴不等式bx 2+ax +1>0为2x 2-3x +1>0. …………………………………5分∵方程2x 2-3x +1=0的两根分别为x 1=12,x 2=1,……………………9分 ∴bx 2+ax +1>0的解集为{x|x<12或x>1…………………………… …10分 18. 【解析】:,方程的两根分别为 (Ⅰ)当时,解得:................4分 (Ⅱ)当时,原不等式即为,解得:................7分(Ⅲ)当时, 解得:................10分综上知:当时,解集为当时,解集为 当时,解集为................12分I9. 解:(1)集合A={x ∈R|2x ﹣3≥0}=[,+∞),B={x|1<x <2}=(1,2),……………………………4分∴A ∪B=(1,+∞),…………………………………6分(2)∵C={x ∈N|1≤x <a},A ∩C=∅,当C=∅时,即a <1时满足,…………8分 当C ≠∅,可得1≤a ≤2,…………………………………11分综上所述a 的范围为(﹣∞,2] ……………………12分20.解:(1)由已知,横断面为等腰梯形,下底为2 m ,上底为(2+2h) m ,高为h m ,∴水的面积A =[2+(2+2h)]h 2=h2+2h(m 2). (2)定义域为{h|0<h <}.值域由二次函数A =h2+2h(0<h <求得.由函数A =h2+2h =(h +1)2-1的图象可知,在区间(0,上函数值随自变量的增大而增大,∴0<A <.故值域为{A|0<A <}.21.解(1)当k 2-2k-3=0时,k=-1或k=3,当k=-1时,1>0恒成立,当k=3时,4x+1>0⇒x>-14 不恒成立,舍去, …………………………………2分当k 2-2k-3≠0时,{k 2-2k -3>0,(k +1)2-4(k 2-2k -3)<0, 解得k>133或k<-1.综上可知k≤-1或k>133.即k 的取值范围为(-∞,-1]∪(133,+∞). ………………………………6分(2)根据不等式解集的形式可知k 2-2k-3>0⇒k>3或k<-1,∵不等式解集的两个端点就是对应方程的实数根,即(k 2-2k-3)x 2+(k+1)x+1=0(k ∈R )有两个不相等的负根,即{ (k +1)2-4(k 2-2k -3)>0,x 1+x 2=-k+1k 2-2k -3<0,x 1x 2=1k 2-2k -3>0,…………………………………8分 解得3<k<133. …………………………………10分综上可知3<k<133.即k 的取值范围是(3,133). …………………………………9分22.解:A ={x |x 2+4x =0,x ∈R }={0,-4},因为B ⊆A ,所以B =A 或BA . 当B =A 时,B ={-4,0},即-4,0是方程x 2+2(a +1)x +a 2-1=0的两根,代入得a =1, 此时满足条件,即a =1符合题意.当B A 时,分两种情况: 若B =∅,则Δ=4(a +1)2-4(a 2-1)<0,解得a <-1.若B ≠∅,则方程x 2+2(a +1)x +a 2-1=0有两个相等的实数根, 所以Δ=4(a +1)2-4(a 2-1)=0,解得a =-1,此时B ={0},符合题意.综上所述,所求实数a 的取值范围是{a |a ≤-1,或a =1}.。
2024-2025学年高一上第一次月考数学试卷附答案解析(9月份)
2024-2025学年高一上第一次月考数学试卷(9月份)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x∈N|1<x<6},B={x|4﹣x>0},则A∩B=()A.{2,3,4}B.{2,3}C.{2}D.{3}2.(5分)下列说法正确的是()A.∅∈{0}B.0⊆N C.D.{﹣1}⊆Z3.(5分)命题“∀x∈(0,1),x3<x2”的否定是()A.∀x∈(0,1),x3>x2B.∀x∉(0,1),x3≥x2C.∃x0∈(0,1),D.∃x0∉(0,1),4.(5分)“a>b”是“a2>b2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.(5分)若集合A={x|2mx﹣3>0,m∈R},其中2∈A且1∉A,则实数m的取值范围是()A.B.C.D.6.(5分)满足集合{1,2}⫋M⊆{1,2,3,4,5}的集合M的个数是()A.6B.7C.8D.157.(5分)设集合A={x|1<x≤2},B={x|x<a},若A⊆B,则实数a的取值范围是()A.{a|a<1}B.{a|a≤1}C.{a|a>2}D.{a|a≥2}8.(5分)已知集合A={1,2},B={0,2},若定义集合运算:A*B={z|z=xy,x∈A,y∈B},则集合A*B 的所有元素之和为()A.6B.3C.2D.0二、选择题:本题共3小题,每小题6分,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,有选错的得0分,部分选对的得部分分。
(多选)9.(6分)已知命题p:x2﹣4x+3<0,那么命题p成立的一个充分不必要条件是()A.x≤1B.1<x<2C.x≥3D.2<x<3(多选)10.(6分)集合A={x|ax2﹣x+a=0}只有一个元素,则实数a的取值可以是()A.0B.C.1D.(多选)11.(6分)设S是实数集R的一个非空子集,如果对于任意的a,b∈S(a与b可以相等,也可以不相等),都有a+b∈S且a﹣b∈S,则称S是“和谐集”,则下列命题中为真命题的是()A.存在一个集合S,它既是“和谐集”,又是有限集B.集合{x|x=3k,k∈Z}是“和谐集”C.若S1,S2都是“和谐集”,则S1∩S2≠∅D.对任意两个不同的“和谐集”S1,S2,总有S1∪S2=R三、填空题:本题共3小题,每小题5分,共15分。
高一数学必修一月考试卷及答案
高一数学必修一月考试卷及答案一、选择题1.(20 13年高考四川卷)设集合a={1,2,3},集合b={ -2,2},则a∩b等于( b )(a) (b){2}(c){-2,2} (d){-2,1,2,3}解析:a∩b={2},故挑选b.(a){2} (b){0,2}(c){-1,2} (d){-1,0,2}解析:依题意得集合p={-1,0,1},(a)1个 (b)2个 (c)4个 (d)8个4.(年高考全国新课标卷ⅰ)已知集合a={x|x2-2x>0},b={x|-(a)a∩b= (b)a∪b=r解析:a={x|x>2或x<0},∴a∪b=r,故挑选b.5.已知集合m={x ≥0,x∈r},n={y|y=3x2+1,x∈r},则m∩n等于( c )(a) (b){x|x≥1}(c){x|x>1} (d){x|x≥1或x<0}解析:m={x|x≤0或x>1},n={y|y≥1}={x|x≥1}.∴m∩n={x|x>1},故选c.6.设子集a={x + =1},子集b={y - =1},则a∩b等同于( c )(a)[-2,- ] (b)[ ,2](c)[-2,- ]∪[ ,2] (d)[-2,2]解析:集合a表示椭圆上的点的横坐标的取值范围a=[-2,2],集合b表示双曲线上的点的纵坐标的取值范围b=(-∞,- ]∪[ ,+∞),所以a∩b=[-2,- ]∪[ ,2].故选c.二、填空题7.( 年高考上海卷)若集合a={x|2x+1>0},b={x||x-1|<2},则a∩b=.解析:a={x x>- },b={x|-1所以a∩b={x -答案:{x -解析:因为2∈a,所以 <0,即(2a-1)(a- 2)>0,Champsaura>2或a< .①若3∈a,则 <0,即为( 3a-1)(a-3)>0,解得a>3或a< ,①②挑关连得实数a的值域范围就是∪(2,3].答案: ∪(2,3]若a≠0,b=(- ),∴- =-1或- =1,∴a=1或a=-1.所以a=0或a=1或a=-1组成的集合为{-1,0,1}.答案:{-1,0,1}10.已知集合a={x|x2+ x+1=0},若a∩r= ,则实数m的取值范围是.解析:∵a∩r= ,∴a= ,∴δ=( )2-4<0,∴0≤m<4.答案:[0,4)11.已知集合a={x|x2-2x-3>0},b={x|x2+ax+b≤0},若a∪b=r,a∩b={x| 3解析:a={x|x<-1或x>3},∵a∪b=r,a∩b={x|3∴b={x|-1≤x≤4},即方程x2+ax+b=0的两根为x1=-1,x2=4.∴a=-3,b=-4,∴a+b=-7.答案:-7三、解答题12.未知子集a={-4,2a-1,a2},b={a-5,1-a,9},分别谋适宜以下条件的a的值.(1)9∈(a∩b);(2){9}=a∩b.解:(1) ∵9∈(a∩b),∴2a-1= 9或a2=9,∴a=5或a=3或a=-3.当a=5时,a={-4,9,25},b={0,-4,9};当a=3时,a-5=1-a=-2,不满足集合元素的互异性;当a=-3时,a={-4,-7,9},b={-8,4,9},所以a=5或a=-3.(2)由(1)所述,当a=5时,a∩b={-4,9},相左题意,当a=-3时,a∩b={9}.所以a=- 3.13.已知集合a={x|x2-2x-3≤0};b={x|x2-2mx+m2-4≤0,x∈r,m∈r}.(1)若a∩b=[0,3],谋实数m的值;解:由已知得a={x|-1≤x≤3},b={x|m-2≤x≤m+2}.(1)∵a∩b=[0,3],∴∴m=2.∴m-2>3或m+2<-1,即m>5或m<-3.14.设u=r,子集a={x |x2+3x+2=0},b={x|x2+(m+1)x+m=0},若解:a={x|x=-1或x=-2},方程x2+(m+1)x+m=0的根是x1=-1,x2=-m,当-m=-1,即m=1时,b={-1},当-m≠-1,即m≠1时,b={-1,-m},∴-m=-2,即m=2.所以m=1或m=2.集合的三个特性(1)无序性指集合中的元素排列没有顺序,如集合a={1,2},集合b={2,1},则集合a=b。
高一数学学期第一次月考试卷(附答案)
高一数学学期第一次月考试卷(附答案)选择题1. 下列哪一个选项不是数学中常用的数集?A. 自然数集B. 实数集C. 正整数集D. 有理数集答案:C2. 若集合A = {1, 2, 3},集合B = {2, 3, 4},则A ∩ B = ?A. {2, 3}B. {1, 2, 3}C. {2, 3, 4}D. {4}答案:A3. 简化:$3 \times a \times 5$答案:$15a$填空题1. 若 $\frac{5}{6} x - \frac{1}{4} = \frac{3}{5} x - \frac{1}{2}$,则x = ?答案:$\frac{9}{20}$2. 若函数 $f(x) = ax^2 + bx - c$ 的图像开口朝上,且在x = 2处有最小值-3,则a = ?, b = ?, c = ?答案:a = 1, b = -8, c = -13解答题1. 解方程 $\frac{3}{5} (2x - 1) = \frac{1}{3} (4 - x)$解答:首先两边同时乘以15消去分数,得到:$9(2x - 1) = 5(4 - x)$ 进行分配和合并:$18x - 9 = 20 - 5x$移项:$23x = 29$最后得到解答:$x = \frac{29}{23}$2. 若正方形ABCD的边长为3cm,点E为AB边的中点,连线DE与BC交于点F,求线段DF的长度。
解答:由于ABCD是正方形,所以AD平行于BC。
由于E是AB边上的中点,所以AE = EB = 1.5cm。
由三角形相似性质可知,$\frac{AE}{AD} = \frac{DF}{DC}$。
将已知值代入,得到:$\frac{1.5}{3} = \frac{DF}{3}$化简得到:$DF = 1.5$cm以上为高一数学学期第一次月考试卷及答案。
高一上学期第一次月考数学试卷(附带答案)
高一上学期第一次月考数学试卷(附带答案)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.单选题。
(本题共8小题,共40分,每小题只有一个正确选项。
)1.直线√3x -y +2=0的倾斜角是( )A.150°B.120°C.60°D.30°2.过点P (﹣2,m )和Q (m ,4)的直线斜率等于1,那么m 的值等于( )A.1或3B.1C.4D.1或43.直线l 经过直线x -2y+4=0和直线x + y -2=0的交点,且与直线x+3y+5=0垂直,则直线l 的方程为( )A.3x -y+2=0B.3x+y+2=0C.x -3y+2=0D.x+3y+2=04.已知直线l 1:mx+y -1=0,l 2:(4m -3)x+my -1=0,若l 1⊥l 2,则实数m 的值为( )A.0B.12C.2D.0或125.对于圆C :x 2+y 2-4x+1=0,下列说法正确的是( )A.点4(1,﹣1)在圆C 的内部B.圆C 的圆心为(﹣2,0)C.圆C 的半径为3D.圆C 与直线y=3相切6.在平面直角坐标系xOy 中,以点(0,1)为圆心且与直线x -y -1=0相切的圆的标准方程为( )A.(x -1)2+y 2=4B.(x -1)2+y 2=1C.x 2+(y -1)2=√2D.x 2+(y -1)2=27.已知直线l 1:x+2y+t 2=0,l 2:2x+4y+2t -3=0,则当l 1与l 2间的距离最短时,求实数t 的值为( )A.1B.12C.13D.28.已知点A(2,﹣3),B(﹣3,﹣2),若直线l:mx+y -m -1=0与线段AB 相交,则实数m 的取值范围是( )A.[﹣34,4]B.[15,+∞)C.(﹣∞,﹣34]∪[4,+∞)D.[﹣4,34]二.多选题.(每小题5分,共20分,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,错选的得0分。
高一上册数学第一次月考试卷及答案
高一上册数学第一次月考试卷及答案高一上册数学第一次月考试卷及答案一、选择题(每小题5分,共60分)1.在① ≠ ② ≠ ③ ≠ ④四个关系中,错误的个数是()A。
1个B。
2个C。
3个D。
4个2.已知全集 U,集合 A,B,C,那么集合A∩B∩C 的补集是()A.U-B-CB.A∪B∪CC.U-A∪B∪CD.A∩B∩C3.已知集合 A={x|x2},则A∩B 的元素个数是()A.0B.1C.∞D.不确定4.函数 f(x)在 R 上为减函数,则实数的取值范围是()A.(-∞,a]B.(-∞,a)C.[a,∞)D.(a,∞)5.集合 A、B 各有两个元素,A∩B 有一个元素 x,若集合A、B 同时满足:(1)x>0,(2)A∪B 的元素和小于 5,则满足条件的 A、B 的组数为()A。
0B。
1C。
2D。
36.函数 f(x)=x^2-4x+3 的递减区间是()A。
(-∞,1]B。
[1,2]C。
[2,+∞)D。
[1,+∞)7.设 A、B 是两个非空集合,定义 A 与 B 的差集为 A-B={x|x∈A且x∉B},则 A-(B-A) 等于()A。
A∩BB。
A∪BC。
A-BD。
B-A8.若函数f(x)=√(x-1) 的定义域是[1,∞),则函数 g(x)=f(3-x) 的定义域是()A.(-∞,2]B.(-∞,3)C.[0,∞)D.[1,∞)9.不等式 x^2-2x+1<0 的解集是空集,则实数 x 的范围为()A.x∈RB.x∈(0,1)C.x∈(1,2)D.x∈(2,3)10.若函数 f(x)在 [a,b] 上为增函数,则实数的取值范围为()A.[f(a),f(b)]B.(f(a),f(b))C.[f(b),f(a)]D.(f(b),f(a))11.设集合 A={1,2,3},B={4,5},且 A、B 都是集合C={1,2,3,4,5} 的子集合,如果把 A、B 叫做集合的“长度”,那么集合的“长度”的最小值是()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012-2013学年度第一学期高一第一次月考测试题考生注意:1.本卷分试卷部分和答题卷部分,考试结束只交答题卷; 2.所有答案必须写在答题卷指定位置上,写在其他地方一律无效。
一、选择题(每小题5分,共计50分) 1. 下列命题正确的是( )A .很小的实数可以构成集合。
B .集合{}1|2-=x y y 与集合(){}1|,2-=x y y x 是同一个集合。
C .自然数集N 中最小的数是1。
D .空集是任何集合的子集。
2.函数2()=f x ( ) A. 1[,1]3- B. 1(,1)3- C. 11(,)33- D. 1(,)3-∞- 3. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅4. 下列给出函数()f x 与()g x 的各组中,是同一个关于x 的函数的是 ( )A .2()1,()1x f x x g x x=-=- B .()21,()21f x x g x x =-=+ C.2(),()f x x g x ==.0()1,()f x g x x ==5. 已知函数()533f x ax bx cx =-+-,()37f -=,则()3f 的值为 ( ) A. 13 B.13- C.7 D. 7-6. 若函数2(21)1=+-+y x a x 在区间(-∞,2]上是减函数,则实数a 的取值范围是( )A .[-23,+∞) B .(-∞,-23] C .[23,+∞) D .(-∞,23]7. 在函数22, 1, 122, 2x x y x x x x +≤-⎧⎪=-<<⎨⎪≥⎩中,若()1f x =,则x 的值是 ( )A .1B .312或 C .1± D8.已知函数()=f x 的定义域是一切实数,则m 的取值范围是 ( )B BA A U UU C B A A.0<m ≤4 B.0≤m ≤1 C.m ≥4 D.0≤m ≤49.函数y=xx ++-1912是( ) A .奇函数 B .偶函数 C .既是奇函数又是偶函数 D .非奇非偶数 10.下列四个命题(1)f(x)=x x -+-12有意义; (2)函数是其定义域到值域的映射;(3)函数y=2x(x N ∈)的图象是一直线;(4)函数y=⎪⎩⎪⎨⎧<-≥0,0,22x x x x 的图象是抛物线,其中正确的命题个数是( )A .1B .2C .3D .411. 已知函数)(x f 是R 上的增函数,(0,2)-A ,(3,2)B 是其图象上的两点,那么2|)1(|<+x f 的解集是 ( )A .(1,4)B .(-1,2)C .),4[)1,(+∞-∞D .),2[)1,(+∞--∞ 12. 若函数(),()f x g x 分别是R 上的奇函数、偶函数,且满足()()2xf xg x -=,则有( )A .(2)(3)(0)f f g <<B .(0)(3)(2)g f f <<C .(2)(0)(3)f g f <<D .(0)(2)(3)g f f <<二、填空题(每小题4分,共计20分)13. 用集合表示图中阴影部分:14. 若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,则实数a 的值为_________________15. 已知y=f(x)是定义在R 上的奇函数,当0x ≥时,()2f x x -2x =, 则()x f 在0<x 时的解析式是 _______________16.设集合A={23≤≤-x x },B={x 1212+≤≤-k x k },且A ⊇B ,则实数k 的取值范围是 .三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分)17、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃18.已知f(x)=x 2-ax +b(a 、b ∈R ),A ={x ∈R |f(x)-x =0},B ={x ∈R |f(x)-ax =0},若A ={1,-3},试用列举法表示集合B.19. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立. (1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.20、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象; (2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.21. (本题满分12分) 是否存在实数a 使2()2f x x ax a =-+的定义域为[1,1]-,值域为[2,2]-?若存在,求出a 的值;若不存在,说明理由。
22、(满分12分)某民营企业生产A ,B 两种产品,根据市场调查和预测,A 产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A ,B 两种产品的利润表示为投资的函数,并写出它们的函数关系式。
(2)该企业已筹集到10万元资金,并全部投入A ,B 两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。
(精确到1万元)。
2012-2013学年度第一学期高一第一次月考测试题答题卡二、填空题(每小题4分,共计20分)13. 14. ________________15. _______________ 16. . 三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分)17、(满分10分)设A={x ∈Z| }66≤≤-x ,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ⋃⋂; (2)()A A C B C ⋂⋃18.已知f(x)=x 2-ax +b(a 、b ∈R ),A ={x ∈R |f(x)-x =0},B ={x ∈R |f(x)-ax =0},若A ={1,-3},试用列举法表示集合B.19. (本题满分12分)已知函数2()=++f x x ax b ,且对任意的实数x 都有(1)(1)+=-f x f x 成立. (1)求实数 a 的值; (2)利用单调性的定义证明函数()f x 在区间[1,)+∞上是增函数.20、(满分12分)已知奇函数222(0)()0(0)(0)x x x f x x x mx x ⎧-+>⎪==⎨⎪+<⎩(1)求实数m 的值,并在给出的直角坐标系中画出()y f x =的图象; (2)若函数f (x )在区间[-1,|a |-2]上单调递增,试确定a 的取值范围.21. (本题满分12分) 是否存在实数a 使2()2f x x ax a =-+的定义域为[1,1]-,值域为[2,2]-?若存在,求出a 的值;若不存在,说明理由。
22、(满分12分)某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。
(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。
(精确到1万元)。
2012-2013学年度第一学期第一次月考测试题参考答案:二、填空题(每小题4分,共计20分)13.(),(),U AB C C A B 14.12或13-或 0 15. x x x f 2)(2--= 16.{211≤≤-k k };三、解答题:解答题应写出文字说明.证明过程或演算步骤.(合计70分)17、(满分10分) 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------……………2分(1)又{}3B C ⋂=()A B C ∴⋃⋂={}6,5,4,3,2,1,0,1,2,3,4,5,6------……6分(2)又{}1,2,3,4,5,6B C ⋃= 得{}()6,5,4,3,2,1,0A C B C ⋃=------()A A C B C ∴⋂⋃{}6,5,4,3,2,1,0=------ ……………12分18.(本题满分12分)解:f(x)-x =0,即x 2-(a +1)x +b =0.∵A={1,-3},∴由韦达定理,得⎩⎪⎨⎪⎧1+(-3)=a +1,1×(-3)=b.∴⎩⎪⎨⎪⎧a =-3,b =-3.∴f(x)=x 2+3x -3.f(x)-ax =0,亦即x 2+6x -3=0.∴B={x|x 2+6x -3=0}={-3-23,-3+23}.19. (本题满分12分) 解析:(1)由f (1+x )=f (1-x )得,(1+x )2+a (1+x )+b =(1-x )2+a (1-x )+b ,整理得:(a +2)x =0,由于对任意的x 都成立,∴ a =-2. ………………………6分(2)根据(1)可知 f ( x )=x 2-2x +b ,下面证明函数f (x )在区间[1,+∞)上是增函数.设121x x >≥,则12()()f x f x -=(2112x x b -+)-(2222x x b -+)=(2212x x -)-2(12x x -)=(12x x -)(12x x +-2)∵121x x >≥,则12x x ->0,且12x x +-2>2-2=0, ∴ 12()()f x f x ->0,即12()()f x f x >,故函数f (x )在区间[1,+∞)上是增函数. ………………………………… 12分20解(1)当 x <0时,-x >0,22()()2()2f x x x x x -=-+-=--又f (x )为奇函数,∴2()()2f x f x x x -=-=--,∴ f (x )=x 2+2x ,∴m =2 ……………4分 y =f (x )的图象如右所示……………6分(2)由(1)知f (x )=222(0)(0)2(0)x x x x x x x ⎧-+>⎪=⎨⎪+<⎩,…8分 由图象可知,()f x 在[-1,1]上单调递增,要使()f x 在[-1,|a |-2]上单调递增,只需||21||21a a ->-⎧⎨-≤⎩……………10分 解之得3113a a -≤<-<≤或……………12分21解:22()2()f x x ax a x a a a =-+=-+-,对称轴x a = (1)当1a >时,由题意得()f x 在[1,1]-上是减函数 ()f x ∴的值域为[1,13]a a -+则有12132a a -=-⎧⎨+=⎩满足条件的a 不存在。