浙江省2014届理科数学复习试题选编26三视图及空间几何体的体积与

合集下载

2014年高考浙江理科数学试题及答案(精校版)

2014年高考浙江理科数学试题及答案(精校版)

2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一. 选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =( )A. ∅B. {2}C. {5}D. {2,5} 2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( )A. 902cm B. 1292cmC. 1322cm D. 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像( )A. 向右平移4π 个单位B. 向左平移4π个单位 C. 向右平移12π个单位 D. 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m nx y项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= ( )A. 45B. 60C. 120D. 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) A.3c ≤ B.36c <≤ C.69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)af x x x =≥,()log a g x x = 的图像可能是( )8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x y x y x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )A .min{||,||}min{||,||}a b a b a b +-≤B. min{||,||}min{||,||}a b a b a b +-≥C. 2222max{||,||}||||a b a b a b +-≤+ D. 2222max{||,||}||||a b a b a b +-≥+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则 ( )A.123I I I <<B. 213I I I <<C. 132I I I <<D. 321I I I <<二. 填空题:本大题共7小题,每小题4分,共28分.11. 若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ=________.13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线12222=-b y a x (0,0a b >>)两条渐近线分别交于点A ,B.若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m = ,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ 为直线AP 与平面ABC 所成角)19.(本题满分14分)已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈.若{}n a 为等比数列,且1322,6a b b ==+(Ⅰ) 求n a 与n b ; (Ⅱ) 设11(*)n n nc n N a b =-∈.记数列{}n c 的前n 项和为n S , (i )求n S ;(ii )求正整数k ,使得对任意*n N ∈均有k n S S ≥.如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =. (Ⅰ) 证明:DE ⊥平面ACD ;(Ⅱ) 求二面角B AD E --的大小.21(本题满分15分)如图,设椭圆C:)0(12222>>=+b a by a x 动直线l 与椭圆C 只有一个公共点P ,且点P在第一象限.(Ⅰ) 已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(Ⅱ) 若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -.已知函数()33().f x x x a a R =+-∈(Ⅰ) 若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (Ⅱ) 设,b R ∈若()24f x b +≤⎡⎤⎣⎦对[]1,1x ∈-恒成立,求3a b +的取值范围.2014年高考浙江理科数学试题参考答案一、选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解析】2{|5}A x N x =∈≥={|x N x ∈≥,{|2{2}U C A x N x =∈≤<=【答案】B2.【解析】当1a b ==时,22()(1)2a bi i i +=+=,反之,2()2a bi i +=即2222a b abi i -+= ,则22022a b ab ⎧-=⎨=⎩ 解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩【答案】A3.【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯= . 【答案】D4.【解析】sin 3cos 3)4y x x x π=+=+)]12x π+而)2y x x π==+)]6x π+由3()3()612x x ππ+→+,即12x x π→-故只需将3y x =的图象向右平移12π个单位. 故选C【答案】C5.【解析】令x y = ,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x + 展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C【答案】C6.【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b ca b c a b c-+-+=-+-+⎧⎨-+-+=-+-+⎩ 解得611a b =⎧⎨=⎩ ,所以32()611f x x x x c =+++ ,由0(1)3f <-≤得016113c <-+-+≤ ,即69c <≤,故选C【答案】C7.【解析】函数()(0)af x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)af x x x =≥中1a > ,()log a g x x =中01a << ,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合. 故选D【答案】D8.【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-与min{||,||}a b 的大小不确定,平行四边形法可知max{||,||}a b a b +-所对的角大于或等于90︒ ,由余弦定理知2222max{||,||}||||a b a b a b +-≥+,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+). 【答案】D 9.【解析1】11222()m n m np m n m n m n +=+⨯=+++ , 211222221233n mn m m n m n m nC C C C p C C C +++=++ =223323()(1)m m mn n n m n m n -++-++- ∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++- , 故12p p >又∵1(1)n P m n ξ==+ ,1(2)mP m n ξ==+∴12()12n m m nE m n m n m nξ+=⨯+⨯=+++ 又222(1)(1)()(1)n m n C n n P C m n m n ξ+-===++- 11222(2)()(1)n m m n C C mn P C m n m n ξ+===++- 222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mnm n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m n m n ++=(1)0()(1)m m mnm n m n -+>++- 所以21()()E E ξξ> ,故选A【答案】A 【解析2】:在解法1中取3m n == ,计算后再比较。

高考十(理科)分项版 专题10 立体几何(浙江专版)(解析版)

高考十(理科)分项版 专题10 立体几何(浙江专版)(解析版)

一.基础题组1. 【2014年.浙江卷.理3】某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm2. 【2013年.浙江卷.理12】若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于__________cm 3.【答案】:24【解析】:由三视图可知该几何体为如图所示的三棱柱割掉了一个三棱锥.11111111A EC ABC A B C ABC E A B C V V V ---=-=12×3×4×5-13×12×3×4×3=30-6=24.3. 【2012年.浙江卷.理10】已知矩形ABCD ,AB =1,2BC =.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( )A .存在某个位置,使得直线AC 与直线BD 垂直B .存在某个位置,使得直线AB 与直线CD 垂直C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直4. 【2012年.浙江卷.理11】已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于__________ cm 3.【答案】1【解析】由图可知三棱锥底面积131322S =⨯⨯=(cm 2),三棱锥的高h =2 cm ,根据三棱锥体积公式,11321332V Sh ==⨯⨯=(cm 3). 5. 【2011年.浙江卷.理3】若某几何体的三视图如图所示,则这个几何体的直观图可以是7. 【2009年.浙江卷.理5】在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( )A .30B .45C .60D .90答案:C【解析】取BC 的中点E ,则AE ⊥面11BB C C ,AE DE ∴⊥,因此AD 与平面11BB C C 所成角即为ADE ∠,设AB a =,则2AE a =,2a DE =,即有0tan 60ADE ADE ∠=∴∠=.8. 【2009年.浙江卷.理12】若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 3cm .答案:18【解析】该几何体是由二个长方体组成,下面体积为1339⨯⨯=,上面的长方体体积为3319⨯⨯=,因此其几何体的体积为189. 【2008年.浙江卷.理14】如图,已知球O 点面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 点体积等于【答案】9π210. 【2007年.浙江卷.理6】若P 是两条异面直线,l m 外的任意一点,则(A)过点P有且仅有一条直线与,l m都平行(B)过点P有且仅有一条直线与,l m都垂直(C)过点P有且仅有一条直线与,l m都相交(D)过点P有且仅有一条直线与,l m都异面【答案】B【解析】选项A不正确,因为若这条直线与,l m都平行,则有,l m互相平行;选项B正确,因为过P分别作直线,l m的平行线,这两条直线确定一个平面α,过P点作平面α的垂线只能作一条;选项C不正确,因为当其中一条直线平行于P点与另一条直线所确定的平面时,不存在过点P 且与,l m都相交的直线;选项D不正确,因为过点P与,l m都异面的直线有数条.故选B.11. 【2005年.浙江卷.理6】设α、β为两个不同的平面,l、m为两条不同的直线,且l⊂α,m⊂β,有如下的两个命题:①若α∥β,则l∥m;②若l⊥m,则α⊥β.那么(A) ①是真命题,②是假命题 (B) ①是假命题,②是真命题(C) ①②都是真命题 (D) ①②都是假命题12. 【2005年.浙江卷.理12】设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE沿DE 折起,使二面角A-DE-B 为 【答案】90° 【解析】:13. 【2015高考浙江,理2】某几何体的三视图如图所示(单位:cm ),则该几何体的体积是( )A.38cmB. 312cmC. 3323cmD. 3403cm【答案】C.【解析】 试题分析:由题意得,该几何体为一立方体与四棱锥的组合,如下图所示,∴体积3322231223=⨯⨯+=V , 故选C.【考点定位】1.三视图;2.空间几何体的体积计算.14. 【2015高考浙江,理13】如图,三棱锥A BCD -中,3,2AB AC BD CD AD BC ======,点,M N 分别是,AD BC 的中点,则异面直线AN ,CM 所成的角的余弦值是 .15. 【2015高考浙江,理17】如图,在三棱柱111ABC A B C --中,90BAC ∠=,2AB AC ==,14A A =,1A 在底面ABC 的射影为BC 的中点,D 为11B C 的中点.(1)证明:1A D ⊥平面1A B C ;(2)求二面角1A -BD-1B 的平面角的余弦值.1143A F B F ==,由余弦定理得,111cos 8A FB ∠=-.【考点定位】1.线面垂直的判定与性质;2.二面角的求解16. 【2016高考浙江理数】已知互相垂直的平面αβ,交于直线l .若直线m ,n 满足,m n αβ∥⊥,则( ) A .m ∥l B .m ∥n C .n ⊥l D .m ⊥n17.【2016高考浙江理数】某几何体的三视图如图所示(单位:cm ),则该几何体的表面积是 cm 2,体积是 cm 3.【答案】72 32【解析】试题分析:几何体为两个相同长方体组合,长方体的长宽高分别为4,2,2,所以体积为2(224)32⨯⨯⨯=,由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为2(222244)2(22)72⨯⨯+⨯⨯-⨯=考点:1、三视图;2、空间几何体的表面积与体积.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.二.能力题组1. 【2013年.浙江卷.理10】在空间中,过点A 作平面π的垂线,垂足为B ,记B =f π(A ).设α,β是两个不同的平面,对空间任意一点P ,Q 1=f βf α(P )],Q 2=f αf β(P )],恒有PQ 1=PQ 2,则( ).A .平面α与平面β垂直B .平面α与平面β所成的(锐)二面角为45°C .平面α与平面β平行D .平面α与平面β所成的(锐)二面角为60°2. 【2009年.浙江卷.理17】如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K 为垂足.设AK t =,则t 的取值范围是 .3. 【2007年.浙江卷.理16】已知点O 在二面角AB αβ--的棱上,点P 在α内,且45POB ∠=︒.若对于β内异于O 的任意一点Q ,都有45POQ ∠≥︒,则二面角AB αβ--的取值范围是_____________. 【答案】,2ππ⎡⎤⎢⎥⎣⎦【解析】若二面角AB αβ--的大小为锐角, 则过点P 向平面β 作垂线,设垂足为H . 过H 作AB 的垂线垂足为C ,连PC 、CH 、OH ,则∠PCH 就是所求二面角的平面角. 根据题意得∠POH≥450,由于对于β内异于O 的任意一点Q ,都有∠POQ≥45°, ∴∠POH≥45°,4. 【2006年.浙江卷.理14】正四面体ABCD 的棱长为1,棱AB ∥平面α,则正四面体上的所有点在平面α内的射影构成的图形面积的取值范围是 . 【答案】21[]42【解析】5. 【2015高考浙江,理8】如图,已知ABC ∆,D 是AB 的中点,沿直线CD 将ACD ∆折成A CD '∆,所成二面角A CD B '--的平面角为α,则( )A. A DB α'∠≤B. A DB α'∠≥C. A CB α'∠≤D. A CB α'∠≤222222222222cos 2cos 1cos cos 2sin 2sin sin sin sin t t A DB θθθθθθθθ+--'==+=∠+, ∵210sin θ>,22cos 0sin θθ≥,∴cos cos A DB α'≥∠(当2πθ=时取等号), ∵α,[0,]A DB π'∠∈,而cos y x =在[0,]π上为递减函数,∴A DB α'≤∠,故选B.【考点定位】立体几何中的动态问题6.【2016高考浙江理数】如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是 .【答案】12【解析】所以30BPD ∠=.EDCBAP(1)当0x ≤≤|x x =故x此时,16V t=21414()66t t t t -=⋅=-. 214()(1)6V t t '=--,因为12t ≤≤, 所以()0V t '<,函数()V t 在[1,2]上单调递减,故141()(1)(1)612V t V ≤=-=. (2x <≤|x x ==三.拔高题组1. 【2014年.浙江卷.理20】(本题满分15分)如图,在四棱锥BCDE A -中,平面⊥ABC 平面======∠=∠AC BE DE CD AB BED CDE BCDE ,1,2,90,02.(1)证明:⊥DE 平面ACD ; (2)求二面角E AD B --的大小4681012141618EA【答案】(Ⅰ)详见解析;(Ⅱ)二面角E AD B --的大小是6π. 【解析】试题分析:(Ⅰ)求证:⊥DE 平面ACD ,证明线面垂直,先证线线垂直,即证线和平面内两条相交直线垂直,由已知可得DE DC ⊥,只需证明AC DE ⊥,或AD DE ⊥,由已知平面⊥ABC 平面BCDE ,只需证明AC BC ⊥,就得AC ⊥平面BCDE ,即AC DE ⊥,而由已知2AC AB ==,在直角梯形BCDE 中,易求BC =222AB AC BC =+,即得AC BC ⊥,问题得证;(Ⅱ)求二面角46810121416EA在RtAED 中,1DE =,AD =,得AE =Rt ABD 中,BD =2AB =,AD =BF =23AF AD =,从而23GF =,在,ABE ABG 中,利用余弦定理分别可得2cos 143BAE BG ∠==,在BFG 中,2223cos 22GF BF BG BFG BF GF +-∠==⋅,所以6BFG π∠=,2. 【2013年.浙江卷.理20】(本题满分15分)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .(1)证明:PQ ∥平面BCD ;(2)若二面角C-BM-D的大小为60°,求∠BDC的大小.【答案】【解析】方法一:(1)证明:取BD的中点O,在线段CD上取点F,使得DF=3FC,连结OP,OF,FQ,因为AQ=3QC,所以QF∥AD,且QF=14 AD.BG=BC sin θ=2θ.在Rt△BDM中,23BG DMHGBMθ⋅==.在Rt△CHG中,tan∠CHG=3cossin CGHGθθ==所以tan θ.从而θ=60°.即∠BDC=60°.方法二:(1)证明:如图,取BD的中点O,以O为原点,OD,OP所在射线为y,z轴的正半轴,建立空间直角坐标系Oxyz.取y=-1,得m=01,yx⎛-⎝.3. 【2012年.浙江卷.理20】如图,在四棱锥P -ABCD 中,底面是边长为23的菱形,∠BAD =120°,且PA ⊥平面ABCD ,26PA ,M ,N 分别为PB ,PD 的中点.(1)证明:MN ∥平面ABCD ;(2)过点A 作AQ ⊥PC ,垂足为点Q ,求二面角A -MN -Q 的平面角的余弦值.【答案】(1)详见解析;(2)3333. 【解析】(1)证明:因为M ,N 分别是PB ,PD 的中点,所以MN 是△PBD 的中位线.所以MN ∥BD .又因为MN 平面ABCD ,所以MN ∥平面ABCD .(2)解:方法一:连结AC 交BD 于O ,以O 为原点,OC ,OD 所在直线为x ,y 轴,建立空间直角坐标系O -xyz ,如图所示.由33(22AM =-,33(22AN =,,知30230.2x y x y -=+=, 取z=-1,得m =(,0,-1).设n =(x ,y ,z )为平面QMN 的法向量.由3(2QM =-, 3(623QN=-,,知30,62330.2x y z x y z ⎧--+=⎪⎪⎨⎪+=⎪⎩ 取z =5,得n =(0,5).于是cos 〈m,n 〉=||||⋅=⋅m n m n .所以二面角A ­MN ­Q 的平面角的余弦值为33. 方法二:在菱形ABCD 中,∠BAD=120°,得AC=AB=BC=CD=DA ,BD= AB .2AE =.在直角△PAC 中,AQ ⊥PC ,得AQ =QC =2,PQ =4,在△PBC 中,2225cos 26PB PC BC BPC PB PC +-∠==⋅,得MQ ==在等腰△MQN 中,MQ =NQ ,MN =3,得2QE ==.在△AEQ 中,2AE =,2QE =,AQ =222cos 2AE QE AQ AEQ AE QE +-∠==⋅.所以二面角A -MN -Q . 4. 【2011年.浙江卷.理20】(本题满分15分)如图,在三棱锥P ABC -中,AB AC =,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC=8,PO=4,AO=3,OD=2(Ⅰ)证明:AP ⊥BC ;(Ⅱ)在线段AP 上是否存在点M ,使得二面角A-MC-β为直二面角?若存在,求出AM 的长;若不存在,请说明理由。

2014年高考理科数学浙江卷真题(word版)

2014年高考理科数学浙江卷真题(word版)

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出学科网的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,zxxk 则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的学科网表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数zxxk x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( ) A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记n m y x 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f )( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球学科网()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为zxxk ()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的学科网结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,zxxk 14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 学科网已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值三.解答题:本大题共5小题,共72分。

2014年高考数学浙江卷(理科)答案word版

2014年高考数学浙江卷(理科)答案word版

2014年普通高等学校招生全国统一考试(浙江卷)理科数学试题答案与解析1. 解析 因为{}{}5A x x x x =∈=∈N N 厖3,所以{}{}2232U a A x x =∈<=N …ð,故选B.2. 解析 当1a b ==时,有()21i 2i +=,即充分性成立.当()2i 2i a b +=时,有222i 2i a b ab -+=,得220,1,a b ab ⎧-=⎨=⎩解得1a b ==或1a b ==-,即必要性不成立,故选A.评注 本题考查复数的运算,复数相等的概念,充分条件与必要条件的判定,属于容易题. 3. 解析 由三视图可知该几何体由一个直三棱柱与一个长方体组合而成(如图),其表面积为()2135243433324324636138cm 2S =⨯+⨯⨯⨯+⨯+⨯+⨯⨯+⨯⨯+⨯=.评注 本题考查三视图的概念和性质,空间几何体的直观图和表面积的计算,考查运算求解能力和空间想象能力.由三视图得几何体的直观图是解题的关键.4. 解析因为πsin3cos334y x x x ⎛⎫=+=- ⎪⎝⎭,要得到函数π34y x ⎛⎫=- ⎪⎝⎭的图像,可以将函数y x =的图像向右平移π12个单位,故选C. 5. 解析 在的展开式中,的系数为,在的展开式中,的系数为,故.从而,,,,故选C.6. 解析 由得解得则有,由得.33434()61x +m x 6C m()41y +n y 4C n ()64,C C mnf m n =⋅()363,0C 20f ==()21642,1C C 60f =⋅=()12641,2C C 36f =⋅=()340,3C 4f ==()()()()12,13f f f f -=-⎧⎪⎨-=-⎪⎩37,413,a b a b -=⎧⎨-=⎩6,11.a b =⎧⎨=⎩()()12f f -=-=()3f -6c =-()013,f <-…69c <…7. 解析 因为0a >,所以()a f x x =在()0,+∞上为增函数,故A 错.在B 中,由()f x 的图像知1a >,由()g x 的图像知01a <<,矛盾,故B 错.在C 中,由()f x 的图像知01a <<,由()g x 的图像知1a >,矛盾,故C 错.在D 中,由()f x 的图像知01a <<,由()g x 的图像知01a <<,相符,故选D.评注 本题考查幂函数和对数函数的图像与单调性,考查分类讨论思想和逻辑推理能力. 8. 解析 在A 中,取()1,0=a ,0=b ,则{}min ,1+-=a b a b ,而{}min ,0=a b ,不符合,即A 错.在B 中,设0=≠a b ,则{}mi n ,0+-=a b a b ,而{}mi n ,0=>a b a 不符合,即B 错.因为2222+=++⋅a b a b a b ,2222-=+-⋅a b a b a b <,则当0⋅a b …,时{}222222max ,2+-=++⋅+a b a b a b a b a b ?;当0⋅<a b <时{}222222max ,2+-=+-⋅+a b a b a b a b a b ?即总有{}2222max ,+-+a b a ba b ….故选D.9. 解析 当1i =时,若从乙盒中抽取的1个球为红球,记从甲盒中取1个球是红球的事件为1A ,则()1mP A m n=+.若从乙盒中抽取的1个球为蓝球,记从甲盒中取1个球是红球的事件为2A ,则()()2122m n P A m n m n =⨯=++,而1A 与2A 互斥, 则()()()()1121222n m p P A A P A P A m n +=+=+=+.此时,1ξ的取值为1或2,()11nP m nξ==+,()12m P m n ξ==+,则()1212n m n mE m n m n m nξ+=⨯+⨯=+++.当2i =时,若从乙盒中抽取的2个球为红球,记从甲盒中取1个球是红球的事件为1B ,则()212C C m m nP B +=. 若从乙盒中抽取的2个球为1个红球和1个蓝球,记从甲盒中取1个球是红球的事件为2B ,则()1122C C 23C m nm nP B +=⨯. 若从乙盒中抽取的2个球都是蓝球,记从甲盒中取1个球是红球的事件为3B ,则()232C 13C n m nP B +=⨯.因为1B ,2B ,3B 互斥,则()()()()()221123212312322C 3C 2C C C 13C 3C n m m n nm n m nP B p P B B B P B P B P B ++++=⨯=++=++==()()()()()()()2231334331313n m m n m m mn n n n mm n m n m n m n m n ++--++-+==++-++-+.则()1206n p p m n -=>+, 即有12p p >.此时,2ξ的取值为1,2,3,则()222C 1C n m n P ξ+==,()1122C C 2C m nm nP ξ+==,()222C 3C mm nP ξ+==则()21122112222222C C C C C 2C C 3C 1233C C C C n m n m n m n mm n m n m n m nE p ξ++++++=⨯+⨯+⨯===3n mn m++,则有()()12E E ξξ<,综上,12p p >,()()12E E ξξ<,故选A.10. 解析 []0,1i a ∈ ,且0199a a a <<<,而()1f x 在[]0,1上为增函数,故有()()()1011199f a f a f a <<<,则()()()()111101211I f a f a f a f a =⎡-⎤+⎡-⎤++⎣⎦⎣⎦()()()()()()1991981991011101f a f a f a f a f f ⎡-⎤=-=-=⎣⎦. ()2f x 在10,2⎡⎤⎢⎥⎣⎦上为增函数,在1,12⎡⎤⎢⎥⎣⎦上为减函数,而495012a a <<,且49501a a +=,即有()()249250f a f a =,故()()()()()()22120250249250251I f a f a f a f a f a f a =⎡-⎤++⎡-⎤+⎡-⎤++⎣⎦⎣⎦⎣⎦()()()()()()29829925020250299f a f a f a f a f a f a ⎡-⎤=-+-=⎣⎦()()2225020199f f f ⎛⎫--= ⎪⎝⎭()224950*********,199999999⨯⨯⨯==-∈. ()3f x 在10,4⎡⎤⎢⎥⎣⎦上为增函数,在11,42⎡⎤⎢⎥⎣⎦上为减函数,在13,24⎡⎤⎢⎥⎣⎦上为增函数,在3,14⎡⎤⎢⎥⎣⎦上为减函数,即()3f x 在[]024,a a 上为增函数,在[]2549,a a 上为减函数. 在[]5074,a a 上为增函数,在[]7599,a a 上为减函数.又()324148148sin πsin π399399f a =⋅=,()325150149sin πsin π399399f a =⋅=,则()()()3253243491981πsin πsin 399399f a f a f a >=⋅=,()35011001πsinπsin 399399f a =⋅=,即有()()349350f a f a =. ()3741148149sin πsin π399399f a =⋅=,()()3753741150151148πsin πsin π=sin 399399399f a f a =⋅=<.故有()()()()3031324325f a f a f a f a <<<<,()()()()325326349350f a f a f a f a >>>=,()()()350351374f a f a f a <<<,()()()374375399f a f a f a >>>.从而3I =()()()(){}()()()(){}3130325324325326349350fa f a f a f a f afa fa fa ⎡-⎤++⎡-⎤+⎡-⎤++⎡-⎤+⎣⎦⎣⎦⎣⎦⎣⎦ ()()()(){}374375398399fa f a f a f a ⎡-⎤++⎡-⎤=⎣⎦⎣⎦()()()()()()()()32530325350374350374399f a f a f a f a f a f a f a f a ⎡-⎤+⎡-⎤+⎡-⎤+⎡-⎤=⎣⎦⎣⎦⎣⎦⎣⎦()()()()()3253503743039923f a f a f a f a f a -+--=250π2100π2148πsin sin sin 399399399-+= 2492π249249πsin πsin sin π2sin π-sin 39939939939999⎛⎫-+= ⎪⎝⎭.而495πsinπsin 9912>=,ππsin sin 9912<=,则3213I >>⎝⎭.所以213I I I <<. 11. 解析 第一次循环,1S =,2i =;第二次循环,224S =+=,3i =;第三次循环,8311S =+=,4i =;第四次循环,22426S =+=,5i =;第五次循环,52557S =+=,6i =,5750>,退出循环,故输出结果为6. 12. 解析 设()1P p ξ==,则()425P p ξ==-,从而由()14012155E p p ξ⎛⎫=⨯+⨯+⨯-= ⎪⎝⎭,得35p =.故()()()()22213120111215555D ξ=-⨯+-⨯+-⨯=. 13. 解析 不等式组构成以,,为顶点的三角形区域(包含边界). 又,所以转化为恒成立.而表示可行区域点与定点连接的斜率,其最大值为.同理,表示可行区()1,0A 31,2B ⎛⎫⎪⎝⎭()2,1C 12x剟14ax y+剟41y y a xx ---剟14y k x -=(),P x y ()0,432-21y k x-=域内点与定点连接的斜率,其最小值为,故有,即.14. 解析 不同的获奖情况可分为以下两类:(1)有一个人获得两张有奖奖券,另外还有一个人获得一张有奖奖券,有2234C A 36=种获奖情况.(2)有三个人各获得一张有奖奖券,有34A 24=种获奖情况.故不同的获奖情况有362460+=种.15. 解析 当0a …时,()20f a a =-…,又()00f =,故由()()()2422f f a f a a a =-=-…,得22a …,所以0a剟当10a -<<时,()()210f a a a a a =+=+<,则由()()()()()22222f f a f a a a a aa =+=+++…,得210a a +-…,得a ,则有10a -<<.当1a -…时,()()210f a a a a a =+=+…,则由,()()()()2222f f a f a a a a =+=-+…,得a ∈R ,故1a -….综上,a的取值范围为(-∞.16. 解析 由得,由 得,则线段的中点为.由题意 得,所以,得,故,所以17. 解析 过点P 作PN BC ⊥于N ,连接AN ,则PAN θ∠=,如图.(),Px y ()0,11-312a ---剟312a剟30,x y m b y x a -+=⎧⎪⎨=⎪⎩,33am bm A b a b a ⎛⎫ ⎪--⎝⎭30,x y m b y x a -+=⎧⎪⎨=-⎪⎩,33ambm B b a b a ⎛⎫- ⎪++⎝⎭AB 2222223,99a m b m M b a b a ⎛⎫ ⎪--⎝⎭PM AB ⊥3PM k =-2222444a b c a ==-254e =2e =设PN x =m ,由30BCM ∠=,得CN =m .在直角ABC △中,AB =15m , 25AC =m ,则20BC =m,故()20BN =-m .从而()222215203625AN x =+=-+,故2222tan PN AN θ=.当1x ==时,2tan θ取最大值2527,即当x =tan θ.18. 解析 (I)由题意得1cos 21cos 22222A B A B ++-=,112cos 22cos 222A A B B -=-,ππsin 2sin 266A B ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭. 由a b ≠,得A B ≠,又()0,πA B +∈,得ππ22π66A B -+-=,即2π3A B +=,所以π3C =. (II )由c =4sin 5A =,sin sin a c A C =,得85a =,由a c <,得A C <.从而3cos 5A =,故()sin sin sin cos cos sin B A C A C A C =+=+=,所以,ABC △的面积为1sin 2S ac B =.评注 本题主要考查诱导公式、两角和差公式、二倍角公式、正弦定理、三角形面积公式等基础知识,同时考查运算求解能力. 19. 解析 (I )由题意(1232nb n a a a a=,326b b -=,知3238b b a -==.又由12a =,得公比2q =(2q =-舍去),所以数列{}n a 的通项为()*2n n a n =∈N ,所以,123n a a a a =NMCB APθ()()1122n n n n ++=.故数列{}n b 的通项为()()*1n b n n n =+∈N .(II )(i )由(I )知1111121n n n n c a b n n ⎛⎫=-=-- ⎪+⎝⎭()*n ∈N ,所以1112n n S n =-+. (ii )因为10c =,20c >,30c >,40c >;当5n …时,()()115112n n n n c n n ⎡+⎤=-⎢⎥+⎣⎦, 而()()()1112022nn n n n n ++++->,得()()51551122nn n +⋅+<…,所以,当5n …时,0n c <.综上,对任意*n ∈N ,恒有4n S S >,故4k =.评注 本题主要考查等差数列与等比数列的概念、通项公式、求和公式、不等式性质等基础知识,同时考查运算求解能力.20. 解析 (I )在直角梯形BCDE 中,由1DE BE ==,2CD =,得BD BC ==,由AC =2AB =,得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE ,所以AC DE ⊥.又DE DC ⊥,从而DE ⊥平面ACD .(II )解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AE 交于点G ,连接BG ,由(I )知D E AD ⊥,则FG AD ⊥.所以BFG ∠是二面角B AD E --的平面角.在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥,又平面ABC ⊥平面BCDE ,得BD ⊥平面ABC ,从而BD AB ⊥.由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD △中,由DC =2,AC得AD 在Rt AED △中,由1ED =,AD =得AE 在Rt ABD △中,由BD 2AB =,AD =BF =,23AF AD =.从而23GF =.在ABE △,ABG △中,利用余弦定理分别可得cos BAE ∠=23BC =.在BFG △中,2222GF BF BG cos BFG BF GF +-∠==⋅.所以π6BFG ∠=,,即二面角的大小是π6.GFEDCBA解法二:以D 为原点,分别以射线DE ,DC 为x 轴,y 轴的正半轴,建立空间直角坐标系,D xyz -如图所示.由题意知各点坐标如下:()0,0,0D ,()1,0,0E ,()0,2,0C,(A ,()1,1,0B .设平面ADE 的法向量为()111,,=x y zm ,平面ABD 的法向量为()222,,=x y zn ,可算得(0,22AD =-,(1,2,AE =-,()1,1,0DB =,由0,0,AD AE ⎧⋅=⎪⎨⋅=⎪⎩m m即1111120,20,y x y ⎧--=⎪⎨--=⎪⎩可取(0,2=m . 由0,0,AD BD ⎧⋅=⎪⎨⋅=⎪⎩n n即222220,0,y x y ⎧-=⎪⎨+=⎪⎩可取(1,=-n .于是cos ,⋅===⋅m n m n m n 所求二面角是锐角,故二面角B AD E --的大小是π6. 评注 本题主要考查空间点、线、面位置关系,二面角等基础知识,空间向量的应用,同时考查空间想象能力、推理论证和运算求解能力.21. 解析 (I )设直线的方程为,由消去得.由于与只有一个公共点,故,即,解得点的坐标为.又点在第一象限,xl ()0y kx m k =+<2222,1y kx m x y a b=+⎧⎪⎨+=⎪⎩y ()22222222220b a k mx a kmx a m a b +++-=l C 0∆=22220b m a k -+=P 22222222,a km b m b a k b a k ⎛⎫- ⎪++⎝⎭P故点的坐标为. (II)由于直线过原点且与垂直,故直线的方程为,所以点到直线的距离,整理得因为,所以,当且仅当时等号成立.所以,点到直线的距离最大值为. 评注 本题主要考查椭圆的几何性质、点到直线的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式应用等综合解题能力.22. 解析 (I )因为()3333, ,33, ,x x a x a f x x x a x a ⎧+-⎪=⎨-+<⎪⎩…所以()2233, ,33, ,x x a f x x x a ⎧+⎪'=⎨-<⎪⎩…由于11x-剟,(i )当1a -…时,有x a …,故()333f x x x a =+-.此时()f x 在()1,1-上是增函数,因此,()()143M a f a ==-,()()143m a f a =-=--,故()()()()43438M a m a a a -=----=.(ii )当11a -<<时,若(),1x a ∈,则()333f x x x a =+-,在(),1a 上是增函数;若()1,a -,则()333f x x x a =-+在()1,a -上是减函数,所以,()()(){}max 1,1M a f f =-,()()3m a f a a ==,由于()()1162f f a --=-+,因此,当113a <…时,()()334M a m a a a -=--+;当113a <<时,()()332M a m a a a -=-++.(iii )当1a …时,有x a …,故()333f x x x a =-+,此时()f x ,在()1,1-上是减函数,因此,()()123M a f a =-=+,()()123m a f a ===-+,P 22P ⎛⎫1l O l 1l 0x ky +=P 1l d =22d =22222b a k ab k+ (22)22a b =-…2bk a=P 1l a b -故()()()()23234M a m a a a -=+--+=.综上,()()338, 1,134, 1, 3132, 1,34, 1,a a a a M a m a a a a a -⎧⎪⎪--+-<⎪-=⎨⎪-++<<⎪⎪⎩………(II )令()()h x f x b =+,则()3333, ,33, ,x x a b x a h x x x a b x a ⎧+-+⎪=⎨-++<⎪⎩…()2233,,33,.x x a h x x x a ⎧+⎪'=⎨-<⎪⎩卆因为()4f x b ⎡+⎤⎣⎦…对[]1,1x ∈-恒成立,即()22h x -剟对[]1,1x ∈-恒成立,所以由(I )知,(i )当1a -…时,()h x 在()1,1-上是增函数,()h x 在[]1,1-上的最大值是()143h a b =-+,最小值是()143h a b -=--+,则432a b -+-…且432a b -+…,矛盾.(ii )当113a -<…时,()h x 在[]1,1-上的最小值是()3h a a b =+,最大值是()143h a b =-+,所以32a b +-…且432a b -+…,从而323362a a a b a --++-剟且103a 剟.令()323t a a =--+,则()2330t a a '=->,()t a 在10,3⎛⎫⎪⎝⎭上是增函数,故()()02t a t =-…,因此230a b -+剟.(iii )当113a <<时,()h x 在[]1,1-上的最小值是()3h a a b =+,最大值是()132h a b -=++,所以32a b +-…且322a b ++…,解得283027a b -<+….(iv )当1a …时,()h x 在[]1,1-上的最大值是()123h a b -=++,最小值是()123h a b =-++,所以322a b ++…且322a b +--…,解得30a b +=.综上,得3a b +的取值范围是230a b -+剟.评注 本题主要考查函数最大(最小)值的概念,利用导数研究函数的单调性等基础知识,同时考查推理论证、分类讨论、分析问题和解决问题等综合解题能力.。

2014年浙江省高考理科数学真题试题及答案解析(完整版)

2014年浙江省高考理科数学真题试题及答案解析(完整版)

2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( ) A. ∅ B. }2{ C. }5{ D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤ B.min{||,||}min{||,||}a b a b a b +-≥ C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则 A.321I I I << B. 312I I I << C. 231I I I << D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-b y a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人 为了准确瞄准目标点,需计算由点观察点的仰角的大小. 若则的最大值三、解答题:本大题共5小题,共72分。

2014高考数学(浙江卷)

2014高考数学(浙江卷)

x 2 y 4 0, 13. 当实数 x, y 满足 x y 1 0, 时,1 ax y 4 恒成立,则实数 a 的取值范围是 x 1,
____________. 14. 在 8 张奖券中有一、二、三等奖各 1 张,其余 5 张无奖.将这 8 张奖券分配给 4 个人, 每人 2 张,不同的获奖情况有_______种(用数字作答). (第 11 题图)
3,
cos 2 A cos 2 B 3 sin A cos A 3 sin B cos B .
(Ⅰ)求角 C 的大小; (Ⅱ)若 sin A
4 ,求 △ ABC 的面积. 5
19. (本题满分 14 分)已知数列 an 和 bn 满足 a1a2 a3 an 数列,且 a1 2, b3 6 b2 . (Ⅰ)求 an 与 bn ; (Ⅱ)设 cn
2


A.
B. 2
C. 52Fra bibliotekD. 2,5
2. 已知 i 是虚数单位, a, b R ,则“ a b 1 ”是“ a bi 2i ”的 A. 充分不必要条件 C. 充分必要条件 B. 必要不充分条件 D. 既不充分也不必要条件
3. 某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是 A. 90cm 2 B. 129cm 2 C. 132cm 2 D. 138cm 2
2
Z 数学(理科)试题第 4 页(共 4 页)
点 P m,0 满足 PA PB ,则该双曲线的离心率是________. 17. 如图,某人在垂直于水平地面 ABC 的墙面前的点 A 处进行射击 训练. 已知点 A 到墙面的距离为 AB ,某目标点 P 沿墙面上的射 线 CM 移动,此人为了准确瞄准目标点 P ,需计算由点 A 观察 点 P 的仰角 的大小.若 AB 15m , AC 25m , BCM 30 ,

2014年高考浙江理科数学试题及标准答案(精校版)

2014年高考浙江理科数学试题及标准答案(精校版)

2014年普通高等学校招生全国统一考试(浙江卷)数 学(理科)一. 选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =( )A . ∅ B. {2} C. {5} D. {2,5}2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的( )A. 充分不必要条件 B. 必要不充分条件C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是( )A. 902cm B . 1292cmC. 1322cm D . 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像( )A. 向右平移4π 个单位 B. 向左平移4π个单位C. 向右平移12π个单位 D . 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= ( )A. 45B. 60C. 120D . 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( )A .3c ≤ B.36c <≤ C .69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x = 的图像可能是( )8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x y x y x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( ) A.min{||,||}min{||,||}a b a b a b +-≤B. min{||,||}min{||,||}a b a b a b +-≥C. 2222max{||,||}||||a b a b a b +-≤+D. 2222max{||,||}||||a b a b a b +-≥+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a)放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=;(b)放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则( )A.123I I I <<B. 213I I I <<C. 132I I I << D. 321I I I <<二. 填空题:本大题共7小题,每小题4分,共28分.11. 若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ=________. 13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线。

2014年高考浙江理科数学试题及答案(精校版)

2014年高考浙江理科数学试题及答案(精校版)

2014年普通高等学校招生全国统一考试〔浙江卷〕数 学〔理科〕一. 选择题:本大题共10小题,每题5分,共50分. 在每题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U C A =〔 〕A. ∅B. {2}C. {5}D. {2,5} 2. 已知i 是虚数单位,,a b R ∈,则“1a b ==”是“2()2a bi i +=”的〔 〕 A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件3. 某几何体的三视图〔单位:cm 〕如下图,则此几何体的外表积是( )A. 902cm B. 1292cmC. 1322cm D. 1382cm4. 为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos 3y x =的图像〔 〕A. 向右平移4π 个单位B. 向左平移4π个单位 C. 向右平移12π个单位 D. 向左平移12π个单位5.在64(1)(1)x y ++的展开式中,记m nx y项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++= 〔 〕A. 45B. 60C. 120D. 2106. 已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤〔 〕 A.3c ≤ B.36c <≤ C.69c <≤ D. 9c >7. 在同一直角坐标系中,函数()(0)af x x x =≥,()log a g x x = 的图像可能是〔 〕8. 记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y≥⎧=⎨<⎩,设,a b 为平面向量,则〔 〕A .min{||,||}min{||,||}a b a b a b +-≤ B. min{||,||}min{||,||}a b a b a b +-≥C. 2222max{||,||}||||a b a b a b +-≤+ D. 2222max{||,||}||||a b a b a b +-≥+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.〔a 〕放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; 〔b 〕放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =. 则 ( )A.1212,()()p p E E ξξ><B. 1212,()()p p E E ξξ<>C. 1212,()()p p E E ξξ>>D. 1212,()()p p E E ξξ<<10. 设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i a i =,,2,1,0=i 99, ,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k = 则 ( )A.123I I I <<B. 213I I I <<C. 132I I I <<D. 321I I I <<二. 填空题:本大题共7小题,每题4分,共28分.11. 假设某程序框图如下图,当输入50时,则该程序运算后输出的结果是________.12. 随机变量ξ的取值为0,1,2,假设1(0)5P ξ==,()1E ξ=,则()D ξ=________.13.当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种〔用数字作答〕.15.设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩假设(())2f f a ≤,则实数a 的取值范围是______16.设直线30x y m -+=(0m ≠) 与双曲线12222=-by a x 〔0,0a b >>〕两条渐近线分别交于点A ,B.假设点(,0)P m 满足||||PA PB =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.假设15AB m = ,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ 为直线AP 与平面ABC 所成角)三. 解答题:本大题共5小题,共72分。

2014年浙江省高考数学试卷(理科).doc

2014年浙江省高考数学试卷(理科).doc

2014年浙江省高考数学试卷(理科)一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm24.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.2106.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>97.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2 9.(5分)已知甲盒中仅有1个球且为红球,乙盒中有m个红球和n个蓝球(m ≥3,n≥3),从乙盒中随机抽取i(i=1,2)个球放入甲盒中.(a)放入i个球后,甲盒中含有红球的个数记为ξi(i=1,2);(b)放入i个球后,从甲盒中取1个球是红球的概率记为p i(i=1,2).则()A.p1>p2,E(ξ1)<E(ξ2)B.p1<p2,E(ξ1)>E(ξ2)C.p1>p2,E(ξ1)>E(ξ2)D.p1<p2,E(ξ1)<E(ξ2)10.(5分)设函数f1(x)=x2,f2(x)=2(x﹣x2),,,i=0,1,2,…,99.记I k=|f k(a1)﹣f k(a0)|+|f k(a2)﹣f k(a1)丨+…+|f k(a99)﹣f k(a98)|,k=1,2,3,则()A.I1<I2<I3B.I2<I1<I3C.I1<I3<I2D.I3<I2<I1二、填空题11.(4分)在某程序框图如图所示,当输入50时,则该程序运算后输出的结果是.12.(4分)随机变量ξ的取值为0,1,2,若P(ξ=0)=,E(ξ)=1,则D(ξ)=.13.(4分)当实数x,y满足时,1≤ax+y≤4恒成立,则实数a的取值范围是.14.(4分)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有种(用数字作答).15.(4分)设函数f(x)=,若f(f(a))≤2,则实数a的取值范围是.16.(4分)设直线x﹣3y+m=0(m≠0)与双曲线=1(a>0,b>0)的两条渐近线分别交于点A,B.若点P(m,0)满足|PA|=|PB|,则该双曲线的离心率是.17.(4分)如图,某人在垂直于水平地面ABC的墙面前的点A处进行射击训练.已知点A到墙面的距离为AB,某目标点P沿墙面上的射线CM移动,此人为了准确瞄准目标点P,需计算由点A观察点P的仰角θ的大小.若AB=15m,AC=25m,∠BCM=30°,则tanθ的最大值是.(仰角θ为直线AP与平面ABC所成角)三、解答题18.(14分)在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a≠b,c=,cos2A﹣cos2B=sinAcosA﹣sinBcosB(1)求角C的大小;(2)若sinA=,求△ABC的面积.19.(14分)已知数列{a n}和{b n}满足a1a2a3…a n=(n∈N*).若{a n}为等比数列,且a1=2,b3=6+b2.(Ⅰ)求a n和b n;(Ⅱ)设c n=(n∈N*).记数列{c n}的前n项和为S n.(i)求S n;(ii)求正整数k,使得对任意n∈N*均有S k≥S n.20.(15分)如图,在四棱锥A﹣BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED=90°,AB=CD=2,DE=BE=1,AC=.(Ⅰ)证明:DE⊥平面ACD;(Ⅱ)求二面角B﹣AD﹣E的大小.21.(15分)如图,设椭圆C:(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(Ⅰ)已知直线l的斜率为k,用a,b,k表示点P的坐标;(Ⅱ)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a ﹣b.22.(14分)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M (a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.2014年浙江省高考数学试卷(理科)参考答案与试题解析一、选择题(每小题5分,共50分)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁U A=()A.∅B.{2}C.{5}D.{2,5}【分析】先化简集合A,结合全集,求得∁U A.【解答】解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁U A={2},故选:B.【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】利用复数的运算性质,分别判断“a=b=1”⇒“(a+bi)2=2i”与“a=b=1”⇐“(a+bi)2=2i”的真假,进而根据充要条件的定义得到结论.【解答】解:当“a=b=1”时,“(a+bi)2=(1+i)2=2i”成立,故“a=b=1”是“(a+bi)2=2i”的充分条件;当“(a+bi)2=a2﹣b2+2abi=2i”时,“a=b=1”或“a=b=﹣1”,故“a=b=1”是“(a+bi)2=2i”的不必要条件;综上所述,“a=b=1”是“(a+bi)2=2i”的充分不必要条件;故选:A.【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题.3.(5分)某几何体的三视图(单位:cm)如图所示,则此几何体的表面积是()A.90cm2B.129cm2C.132cm2D.138cm2【分析】几何体是直三棱柱与直四棱柱的组合体,根据三视图判断直三棱柱的侧棱长与底面的形状及相关几何量的数据,判断四棱柱的高与底面矩形的边长,把数据代入表面积公式计算.【解答】解:由三视图知:几何体是直三棱柱与直四棱柱的组合体,其中直三棱柱的侧棱长为3,底面是直角边长分别为3、4的直角三角形,四棱柱的高为6,底面为矩形,矩形的两相邻边长为3和4,∴几何体的表面积S=2×4×6+3×6+3×3+2×3×4+2××3×4+(4+5)×3=48+18+9+24+12+27=138(cm2).故选:D.【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键.4.(5分)为了得到函数y=sin3x+cos3x的图象,可以将函数y=cos3x的图象()A.向右平移个单位B.向左平移个单位C.向右平移个单位D.向左平移个单位【分析】利用两角和与差的三角函数化简已知函数为一个角的一个三角函数的形式,然后利用平移原则判断选项即可.【解答】解:函数y=sin3x+cos3x=,故只需将函数y=cos3x的图象向右平移个单位,得到y==的图象.【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查.5.(5分)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f (3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210【分析】由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【解答】解:(1+x)6(1+y)4的展开式中,含x3y0的系数是:=20.f(3,0)=20;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=120.故选:C.【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.6.(5分)已知函数f(x)=x3+ax2+bx+c.且0<f(﹣1)=f(﹣2)=f(﹣3)≤3,则()A.c≤3 B.3<c≤6 C.6<c≤9 D.c>9【分析】由f(﹣1)=f(﹣2)=f(﹣3)列出方程组求出a,b,代入0<f(﹣1)≤3,即可求出c的范围.【解答】解:由f(﹣1)=f(﹣2)=f(﹣3)得,解得,则f(x)=x3+6x2+11x+c,由0<f(﹣1)≤3,得0<﹣1+6﹣11+c≤3,故选:C.【点评】本题考查方程组的解法及不等式的解法,属于基础题.7.(5分)在同一直角坐标系中,函数f(x)=x a(x>0),g(x)=log a x的图象可能是()A.B.C.D.【分析】结合对数函数和幂函数的图象和性质,分当0<a<1时和当a>1时两种情况,讨论函数f(x)=x a(x≥0),g(x)=log a x的图象,比照后可得答案.【解答】解:当0<a<1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:此时答案D满足要求,当a>1时,函数f(x)=x a(x≥0),g(x)=log a x的图象为:无满足要求的答案,综上:故选D,故选:D.【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.8.(5分)记max{x,y}=,min{x,y}=,设,为平面向量,则()A.min{|+|,|﹣|}≤min{||,||} B.min{|+|,|﹣|}≥min{||,||}C.max{|+|2,|﹣|2}≤||2+||2 D.max{|+|2,|﹣|2}≥||2+||2【分析】将,平移到同一起点,根据向量加减法的几何意义可知,+和﹣分别表示以,为邻边所做平行四边形的两条对角线,再根据选项内容逐一判断.【解答】解:对于选项A,取⊥,则由图形可知,根据勾股定理,结论不成立;对于选项B,取,是非零的相等向量,则不等式左边min{|+|,|﹣|}=0,显然,不等式不成立;对于选项C,取,是非零的相等向量,则不等式左边max{|+|2,|﹣。

2014年高考理科数学浙江卷-答案

2014年高考理科数学浙江卷-答案

6
6
3
3
(2)由 c 3 ,[ f (x) b]2 4 , a c 得 a 8 ,
sin A sin C
5
由 a c ,得 A C ,从而 cos A 3 ,故 sin B sin A C sin AcosC cos Asin C 4 3 3 ,
5
10
所以 △ABC 的面积为 S 1 acsin B 8 3 18 .
5
5
2. 5
5
【提示】给出 取值的部分概率和期望,求 的方差.
【考点】离散型随机变量的期望和方差
13.【答案】
1,
3 2
4 / 11
【解析】实数
x,y
满足的可行域如图中阴影部分所示,图中
A(1,0)

B(2,1)

C
1,
3 2
.
当 a 0 时, 0 y 3 ,1 x 2 ,所以1 ax+y 4 不可能恒成立; 2
2
25
【提示】给出未知函数运用诱导公式和两角和与差的公式、正弦定理等进行化简求三角形中的角.
【考点】两角和与差的公式,正弦定理
19.【答案】(1) an 2n (n N*)
bn n(n 1)(nN*)
(2)(i)
Sn
1 n 1
1 2n
(n N)
(ii) k 4
【解析】(1)由题意, a1a2 ak ( 2)bn (n N*) , b3 b2 6 ,知 a3 ( 2)b3 b2 8 ,
【提示】给出两式相乘的形式,利用二项式通项公式代入求值. 【考点】二项式定理的应用 6.【答案】C 【解析】 f (1) 1 2a b c , f (2) 8 4a 2b c , f (3) 27 9a 3b c , 由 f (1) f (2) ( 3)得,a 6,b 11,∴ f (x) x3 6x2 11x c ∵ 0 f (1) 3 ,把 f (1) 代入 f (x)

2014年全国高考理科数学试题及答案-浙江卷

2014年全国高考理科数学试题及答案-浙江卷

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A.∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件 (3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是A. 902cmB. 1292cmC. 1322cmD. 1382cm4. 为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位 5. 在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106. 已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c7.在同意直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9. 已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =.则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10. 设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14. 在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值二、解答题:本大题共5小题,共72分18.(本题满分14分)在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知a b ≠,c =,22cos cos cos cos A B A A B B -=(1)求角C 的大小 (2)若4sin 5A =,求ABC ∆的面积 19.(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b b a +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。

2014年高考浙江理科数学试题及答案(word解析版)

2014年高考浙江理科数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2014年浙江,理1,5分】设全集{|2}U x N x =∈≥,集合2{|5}A x N x =∈≥,则U A =( )(A)∅ (B){2} (C ){5} (D ){2,5} 【答案】B【解析】2{|5}{|5}A x N x x N x =∈≥=∈≥,{|25}{2}U C A x N x =∈≤<=,故选B . 【点评】本题主要考查全集、补集的定义,求集合的补集,属于基础题. (2)【2014年浙江,理2,5分】已知i 是虚数单位,,a b R ∈,则“1a b =="是“2(i)2i a b +=”的( )(A )充分不必要条件 (B )必要不充分条件 (C)充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】当1a b ==时,22(i)(1i)2i a b +=+=,反之,2(i)2i a b +=,即222i 2i a b ab -+=,则22022a b ab ⎧-=⎨=⎩,解得11a b =⎧⎨=⎩ 或11a b =-⎧⎨=-⎩,故选A .【点评】本题考查的知识点是充要条件的定义,复数的运算,难度不大,属于基础题. (3)【2014年浙江,理3,5分】某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是( ) (A)902cm (B )1292cm (C )1322cm (D )1382cm【答案】D【解析】由三视图可知直观图左边一个横放的三棱柱右侧一个长方体,故几何体的表面积为:1246234363334352341382S =⨯⨯+⨯⨯+⨯+⨯+⨯+⨯+⨯⨯⨯=,故选D .【点评】本题考查了由三视图求几何体的表面积,根据三视图判断几何体的形状及数据所对应的几何量是解题的关键. (4)【2014年浙江,理4,5分】为了得到函数sin 3cos3y x x =+的图像,可以将函数2cos3y x =的图像( )(A)向右平移4π个单位 (B )向左平移4π个单位 (C)向右平移12π个单位 (D)向左平移12π个单位 【答案】C【解析】sin3cos32sin(3)2sin[3()]412y x x x x ππ=+=+=+,而2cos32sin(3)2y x x π==+=2sin[3()]6x π+,由3()3()612x x ππ+→+,即12x x π→-,故只需将2cos3y x =的图象向右平移12π个单位,故选C .【点评】本题考查两角和与差的三角函数以及三角函数的平移变换的应用,基本知识的考查. (5)【2014年浙江,理5,5分】在64(1)(1)x y ++的展开式中,记m n x y 项的系数(,)f m n ,则(3,0)(2,1)(1,2)(0,3)f f f f +++=( ) (A )45 (B )60 (C)120 (D )210 【答案】C 【解析】令x y =,由题意知(3,0)(2,1)(1,2)(0,3)f f f f +++即为10(1)x +展开式中3x 的系数,故(3,0)(2,1)(1,2)(0,3)f f f f +++=710120C =,故选C .【点评】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力. (6)【2014年浙江,理6,5分】已知函数32()f x x ax bx c =+++ ,且0(1)(2)(3)3f f f <-=-=-≤( ) (A )3c ≤ (B)36c <≤ (C )69c <≤ (D)9c >【答案】C【解析】由(1)(2)(3)f f f -=-=-得184212793a b c a b c a b c a b c -+-+=-+-+⎧⎨-+-+=-+-+⎩,解得611a b =⎧⎨=⎩,所以32()611f x x x x c =+++,由0(1)3f <-≤,得016113c <-+-+≤,即69c <≤,故选C . 【点评】本题考查方程组的解法及不等式的解法,属于基础题. (7)【2014年浙江,理7,5分】在同一直角坐标系中,函数()(0)a f x x x =≥,()log a g x x =的图像可能是( )(A ) (B ) (C ) (D )【答案】D【解析】函数()(0)a f x x x =≥,()log a g x x =分别的幂函数与对数函数答案A 中没有幂函数的图像, 不符合;答案B 中,()(0)a f x x x =≥中1a >,()log a g x x =中01a <<,不符合;答案C 中,()(0)a f x x x =≥中01a <<,()log a g x x =中1a >,不符合;答案D 中,()(0)a f x x x =≥中01a <<,()log a g x x =中01a <<,符合,故选D .【点评】本题考查的知识点是函数的图象,熟练掌握对数函数和幂函数的图象和性质,是解答的关键.(8)【2014年浙江,理8,5分】记,max{,},x x y x y y x y ≥⎧=⎨<⎩,y,min{,}x,x yx y x y ≥⎧=⎨<⎩,设,a b 为平面向量,则( )(A )min{||,||}min{||,||}a b a b a b +-≤ (B )min{||,||}min{||,||}a b a b a b +-≥ (C)2222max{||,||}||||a b a b a b +-≤+ (D )2222max{||,||}||||a b a b a b +-≥+【答案】D【解析】由向量运算的平行四边形法可知min{||,||}a b a b +-与min{||,||}a b 的大小不确定,平行四边形法可知max{||,||}a b a b +-所对的角大于或等于90︒ ,由余弦定理知2222max{||,||}||||a b a b a b +-≥+,(或22222222||||2(||||)max{||,||}||||22a b a b a b a b a b a b ++-++-≥==+),故选D . 【点评】本题在处理时要结合着向量加减法的几何意义,将a ,b ,a b +,a b -放在同一个平行四边形中进行比较判断,在具体解题时,本题采用了排除法,对错误选项进行举反例说明,这是高考中做选择题的常用方法,也不失为一种快速有效的方法,在高考选择题的处理上,未必每一题都要写出具体解答步骤,针对选择题的特点,有时“排除法”,“确定法",“特殊值"代入法等也许是一种更快速,更有效的方法.(9)【2014年浙江,理9,5分】已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球(3,3)m n ≥≥,从乙盒中随机抽取(1,2)i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为(1,2)i i ξ=; (b )放入i 个球后,从甲盒中取1个球是红球的概率记为(1,2)i p i =.则( )(A )1212,()()p p E E ξξ><(B )1212,()()p p E E ξξ<>(C )1212,()()p p E E ξξ>>(D)1212,()()p p E E ξξ<< 【答案】A【解析】解法一:11222()m n m np m n m n m n +=+⨯=+++ ,211222221233n m n m m n m n m nC C C C p C C C +++=++=223323()(1)m m mn n n m n m n -++-++-,∴1222()m n p p m n +-=+-223323()(1)m m mn n n m n m n -++-++-=5(1)06()(1)mn n n m n m n +->++-,故12p p >. 又∵1(1)n P m n ξ==+,1(2)m P m n ξ==+,∴12()12n m m nE m n m n m nξ+=⨯+⨯=+++,又222(1)(1)()(1)n m n C n n P C m n m n ξ+-===++-,11222(2)()(1)n m m n C C mnP C m n m n ξ+===++-,222(m 1)(3)()(1)m m n C m P C m n m n ξ+-===++- ∴2(1)2(1)()123()(1)()(1)()(1)n n mn m m E m n m n m n m n m n m n ξ--=⨯+⨯+⨯++-++-++-=22334()(1)m n m n mn m n m n +--+++-21()()E E ξξ-=22334()(1)m n m n mn m n m n +--+++--2m nm n ++=(1)0()(1)m m mn m n m n -+>++-,所以21()()E E ξξ>,故选A . 解法二:在解法一中取3m n ==,计算后再比较,故选A .【点评】正确理解()1,2i i ξ=的含义是解决本题的关键.此题也可以采用特殊值法,不妨令3m n ==,也可以很快求解.(10)【2014年浙江,理10,5分】设函数21()f x x =,22()2()f x x x =-,31()|sin 2|3f x x π=,99i ia =,0,1,2i =,,99,记10219998|()()||()()||()()|k k k k k k k I f a f a f a f a f a f a =-+-++-,1,2,3k =,则( ) (A )123I I I << (B )213I I I << (C)132I I I << (D )321I I I << 【答案】B【解析】解法一:由22112199999999i i i --⎛⎫⎛⎫-=⎪ ⎪⎝⎭⎝⎭,故2111352991199()199999999999999I ⨯-=++++==,由2211199(21)22||999999999999i i i i i ----⎛⎫⎛⎫--+=⨯ ⎪ ⎪⎝⎭⎝⎭,故2150(980)98100221992999999I +=⨯⨯⨯=<⨯, 3110219998(|sin(2)||sin(2)||sin(2)||sin(2)||sin(2)||sin(2)|)3999999999999I ππππππ=-+-++-=12574[2sin(2)2sin(2)]139999ππ->,故213I I I <<,故选B . 解法二:估算法:k I 的几何意义为将区间[0,1]等分为99个小区间,每个小区间的端点的函数值之差的绝对值之和.如图为将函数21()f x x =的区间[0,1]等分为4个小区间的情形,因1()f x 在[0,1]上递增,此时110213243|()()||()()||()()||()()|I f a f a f a f a f a f a f a f a =-+-+-+-=11223344A H A H A H A H +++(1)(0)f f =-1=,同理对题中给出的1I ,同样有11I =;而2I 略小于1212⨯=,3I 略小于14433⨯=,所以估算得213I I I <<,故选B .【点评】本题主要考查了函数的性质,关键是求出这三个数与1的关系,属于难题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共7小题,每小题4分,共28分.(11)【2014年浙江,理11,5分】若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是 . 【答案】6【解析】第一次运行结果1,2S i ==;第二次运行结果4,3S i ==;第三次运行结果11,4S i ==;第四次运行结果26,5S i ==;第五次运行结果57,6S i ==;此时5750S =>,∴输出6i =.【点评】本题考查了直到型循环结构的程序框图,根据框图的流程模拟运行程序是解答此类问题的常用方法.(12)【2014年浙江,理12,5分】随机变量ξ的取值为0,1,2,若1(0)5P ξ==,()1E ξ=,则()D ξ= .【答案】25 【解析】设1ξ=时的概率为p ,ξ的分布列为: 由11()012(1)155E p p ξ=⨯+⨯+⨯--= ,解得35p =ξ的分布列为即为故2221312()(01)(11)(21)5555E ξ=-⨯+-⨯+-⨯=.【点评】本题综合考查了分布列的性质以及期望、方差的计算公式.(13)【2014年浙江,理13,5分】当实数,x y 满足240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是 __.【答案】3[1,]2【解析】解法一:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤恒成立,故3(1,0),(2,1),(1,)2A B C ,三点坐标代入14ax y ≤+≤,均成立得1412143142a a a ⎧⎪≤≤⎪≤+≤⎨⎪⎪≤+≤⎩ 解得312a ≤≤ ,∴实数a 的取值范围是3[1,]2.解法二:作出不等式组240101x y x y x +-≤⎧⎪--≤⎨⎪≥⎩所表示的区域如图,由14ax y ≤+≤得,由图分析可知,0a ≥且在(1,0)A 点取得最小值,在(2,1)B 取得最大值,故1214a a ≥⎧⎨+≤⎩,得312a ≤≤,故实数a 的取值范围是3[1,]2.【点评】本题考查线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,训练了不等式组得解法,是中档题.(14)【2014年浙江,理14,5分】在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有 种(用数字作答). 【答案】60【解析】解法一:不同的获奖分两种,一是有一人获两张奖券,一人获一张奖券,共有223436C A =,ξ 0 1 2 P 15p 115p -- ξ 0 1 2P 15 35 15二是有三人各获得一张奖券,共有3424A =,因此不同的获奖情况共有362460+=种. 解法二:将一、二、三等奖各1张分给4个人有3464=种分法,其中三张奖券都分给一个人的有4种分法, 因此不同的获奖情况共有64460-=种.【点评】本题考查排列、组合及简单计数问题,考查学生的计算能力,属于基础题.(15)【2014年浙江,理15,5分】设函数22,0(),0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩若(())2f f a ≤,则实数a 的取值范围是 .【答案】(,2]-∞.【解析】由题意2()0()()2f a f a f a <⎧⎨+≤⎩或2()0()2f a f a ≥⎧⎨-≤⎩,解得()2f a ≥-∴当202a a a <⎧⎨+≥-⎩或202a a ≥⎧⎨-≥-⎩,解得2a ≤.【点评】本题主要考查分段函数的应用,其它不等式的解法,体现了数形结合的数学思想,属于中档题.(16)【2014年浙江,理16,5分】设直线30x y m -+=(0m ≠) 与双曲线22221x y a b-=(0,0a b >>)两条渐近线分别交于点A ,B .若点(,0)P m 满足||||PA PB =,则该双曲线的离心率是 . 【答案】52【解析】解法一:由双曲线的方程可知,它的渐近线方程为b y x a =和by x a =-,分别与直线l : 30x y m -+= 联立方程组,解得,(,)33am bm A a b a b ----,(,)33am bmB a b a b -++,设AB 中点为Q ,由||||PA PB = 得,则3333(,)22am am bm bma b a b a b a b Q ---++-+-+,即2222223(,)99a m b m Q a b a b ----,PQ 与已知直线垂直,∴1PQ lk k =-,即222222319139b m a b a m m a b --=----, 即得2228a b =,即22228()a c a =-,即2254c a =,所以52c e a ==.解法二:不妨设1a =,渐近线方程为222201x y b -=即2220b x y -=,由222030b x y x y m ⎧-=⎨-+=⎩消去x ,得2222(91)60b y b my b m --+=,设AB 中点为00(,)Q x y ,由韦达定理得:202391b m y b =-……① ,又003x y m =-,由1PQ l k k =-得00113y x m =--,即得0011323y y m =--得035y m =代入①得2233915b m m b =-,得214b =,所以22215144c a b =+=+=,所以52c =,得52c e c a ===.【点评】本题考查双曲线的离心率,考查直线的位置关系,考查学生的计算能力,属于中档题. (17)【2014年浙江,理17,5分】如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练.已知点A 到墙面的距离为AB ,某目标点P 沿墙面上的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小.若15AB m =,25AC m =,30BCM ∠=︒,则tan θ的最大值是 (仰角θ为直线AP 与平面ABC 所成角).【答案】539【解析】解法一:∵15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,过P 作PP BC '⊥,交BC 于P ',1︒当P 在线段BC 上时,连接AP ',则'tan 'PP AP θ=,设BP x '=,则20CP x '=-, (020x ≤<)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=-. 在直角ABP ∆'中,2'225AP x =+ ∴2'320tan '3225PP xAP x θ-==+,令220225x y x-=+,则函数在 []0,20x ∈单调递减,∴0x =时,tan θ取得最大值为232002034334592250-==+ 2︒当P 在线段CB 的延长线上时,连接AP ',则'tan 'PP AP θ=,设BP x '=, 则20CP x '=+,(0x >)由30BCM ∠=︒,得3''tan 30(20)3PP CP x =︒=+, 在直角ABP ∆'中,2'225AP x =+,∴2'320tan '3225PP xAP x θ+==+, 令220225x y x +=+,则2222520'(225x )225xy x -=++,∴当225450204x <<=时'0y >;当454x >时'0y <, 所以当454x =时max 2452054345225()4y +==+,此时454x =时,tan θ取得最大值为3553339=, 综合1︒,2︒可知tan θ取得最大值为539. 解法二:如图以B 为原点,BA 、BC 所在的直线分别为x ,y 轴,建立如图所示的空间直角坐标系,∵15cm AB =,25cm AC =,90ABC ∠=︒,∴20cm BC =,由30BCM ∠=︒,可设3(0,,(20))3P x x -(其中20x ≤),'(0,,0)P x ,(15,0,0)A , 所以2223(20)'3203tan '315225x PP x AP x x θ--===++, 设2320(x)tan 3225x f x θ-==+(20x ≤),22322520'(x)3(225)225xf x x +=-++,所以,当22545204x <-=- 时'0y >;当45204x -<≤时'0y <,所以当454x =-时max 24520453534()()43945225()4f x f +=-==+,所以tan θ取得最大值为539. 解法三:分析知,当tan θ取得最大时,即θ最大,最大值即为平面ACM 与地面ABC 所成的锐二面角的度量值,如图,过B 在面BCM 内作BD BC ⊥交CM 于D ,过B 作BH AC ⊥于H ,连DH ,则BHD ∠即为平面ACM 与地面ABC 所成 的二面角的平面角,tan θ的最大值即为tan BHD ∠,在Rt ABC ∆中,由等面积法可得15201225AB BC BH AC ===,203tan 303DB BC =︒=,所以max 203533(tan )tan 129DB BHD BH θ=∠===.【点评】本题考查利用数学知识解决实际问题,考查函数的单调性,考查学生分析解决问题的能力,属于中档题. 三、解答题:本大题共5题,共72分.解答应写出文字说明,演算步骤或证明过程.(18)【2014年浙江,理18,14分】在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c .已知,3a b c ≠=,22cos cos 3sin cos 3sin cos A B A A B B -=-.(1)求角C 的大小;(2)若4sin 5A = ,求ABC ∆的面积.解:(1)由题得1cos 21cos 233sin 2sin 22222A B A B ++-=-,即3131sin 2cos 2sin 2cos 22222A A B B -=-, sin(2)sin(2B )66A ππ-=-,由a b ≠得A B ≠,又(0,)A B π+∈ ,得22B 66A πππ-+-=,即23A B π+=,所以3C π=.(2)3c =,4sin 5A =,sin sinC a c A =,得85a =,由a c < 得A C <,从而3cos 5A =, 故sin sin()B AC =+=433sinAcosC cosAsinC 10++=,所以,ABC ∆的面积为18318sin 225S ac B +==.【点评】本题主要考查二倍角公式、两角和差的三角公式、正弦定理的应用,属于中档题. (19)【2014年浙江,理19,14分】已知数列{}n a 和{}n b 满足123(2)(*)n b n a a a a n N =∈.若{}n a 为等比数列,且1322,6a b b ==+.(1)求n a 与n b ;(2)设11(*)n n n c n N a b =-∈.记数列{}n c 的前n 项和为n S .(ⅰ)求n S ;(ⅱ)求正整数k ,使得对任意*n N ∈均有k n S S ≥.解:(1)∵123(2)(*)n b n a a a a n N =∈ ①,当2n ≥,*n N ∈时,11231(2)n b n a a a a --=②,由①÷②知:当2n ≥时,1(2)n n b b n a --=,令3n =,则有323(2)b b a -=,∵326b b =+,∴38a =.∵{}n a 为等比数列,且12a =,∴{}n a 的公比为q ,则2324aq a ==,由题意知0n a >,∴0q >,∴2q =.∴*2nn a n N ∈=().又由123(2)(*)n b n a a a a n N =∈,得:1232222(2)n b n ⨯⨯⨯⨯=,即(1)22(2)n n n b +=,∴*1n b n n n N =+∈()(). (2)(ⅰ)∵1111111()2(1)21n n n n n c a b n n n n =-=-=--++, ∴123n n S c c c c =++++=2111111111()()()21222321n n n --+--++--+ =21111(1)2221n n +++--+ =111121n n --++=1112n n -+. (ⅱ)因为10c =,20c >,30c >,40c >;当5n ≥时,1(1)[1](1)2n nn n c n n +=-+, 而11(1)(1)(2)(n 1)(n 2)0222n n n n n n n ++++++--=>,得5(1)5(51)122n n n ++≤<, 所以,当5n ≥时,0n c <,综上,对任意*n N ∈恒有4n S S ≥,故4k =.【点评】本题考查了等比数列通项公式、求和公式,还考查了分组求和法、裂项求和法和猜想证明的思想,证明可以用二项式定理,还可以用数学归纳法.本题计算量较大,思维层次高,要求学生有较高的分析问题解决问题的能力.本题属于难题.(20)【2014年浙江,理20,15分】如图,在四棱锥A BCDE -中,平面ABC ⊥平面BCDE ,90CDE BED ∠=∠=︒,2AB CD ==,1DE BE ==,2AC =.(1)证明:DE ⊥平面ACD ; (2)求二面角B AD E --的大小.解:(1)在直角梯形BCDE 中,由1DE BE ==,2CD =,得2BD BC ==,由2AC =,2AB =得222AB AC BC =+,即AC BC ⊥,又平面ABC ⊥平面BCDE ,从而AC ⊥平面BCDE , 所以AC DE ⊥,又DE DC ⊥,从而DE ⊥平面ACD . (2)解法一:作BF AD ⊥,与AD 交于点F ,过点F 作//FG DE ,与AB 交于点G ,连接BG , 由(1)知DE AD ⊥,则FG AD ⊥,所以BFG ∠就是二面角B AD E --的平面角, 在直角梯形BCDE 中,由222CD BC BD =+,得BD BC ⊥,又平面ABC ⊥平面BCDE , 得BD ⊥平面ABC ,从而BD AB ⊥,由于AC ⊥平面BCDE ,得AC CD ⊥.在Rt ACD ∆中,由2DC =,2AC =,得6AD =;在Rt AED ∆中,由1ED =,6AD =得7AE =;在Rt ABD ∆中,由2BD =,2AB =,6AD =,得233BF =,23AF AD =,从而23GF =,在ABE ∆,ABG ∆中,利用余弦定理分别可得57cos 14BAE ∠=,23BC =.在BFG ∆中,2223cos 22GF BF BG BFG BF GF +-∠==,所以,6BFG π∠=,即二面角B AD E --的大小为6π.解法二:以D 的原点,分别以射线DE ,DC 为x ,y 轴的正半轴,建立空间直角坐标系D xyz -,如图 所示.由题意知各点坐标如下:(0,0,0)D ,(1,0,0)E ,(0,2,0)C ,(0,2,2)A ,(1,1,0)B . 设平面ADE 的法向量为111(,,)m x y z =,平面ABD 的法向量为222(,,)n x y z =, 可算得:(0,2,2)AD =--,(1,2,2)AE =--,(1,1,0)DB =,由00m AD m AE ⎧=⎪⎨=⎪⎩,即11111220220y z x y z ⎧--=⎪⎨--=⎪⎩,可取(0,1,2)m =-,由00n AD n BD ⎧⋅=⎪⎨⋅=⎪⎩即22222200y z x y ⎧--=⎪⎨+=⎪⎩可取(0,1,2)n =-,于是||33|cos ,|2||||32m n m n m n ⋅<>===⋅⋅.由题意可知,所求二面角是锐角,故二面角B AD E --的大小为6π. 【点评】本题主要考查空间点、线、面位置关系,二面角等基础知识,同时考查空间想象能力,推理论证能力和运算求解能力.(21)【2014年浙江,理21,15分】如图,设椭圆C:22221(0)x y a b a b+=>>动直线l 与椭圆C 只有一个公共点P ,且点P 在第一象限.(1)已知直线l 的斜率为k ,用,,a b k 表示点P 的坐标;(2)若过原点O 的直线1l 与l 垂直,证明:点P 到直线1l 的距离的最大值为a b -. 解:(1)解法一:设l 方程为(0)y kx m k =+<,22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,消去y 得:222222222()20b a k x a kmx a m a b +++-=,由于直线l 与椭圆C 只有一个公共点P ,故0∆=,即22220b m a k -+=,解得点P 的坐标为''1P l k =-,得222,b b a k (2几何的基本思想方法、基本不等式应用等综合解题能力.(22)【2014年浙江,理22,14分】已知函数()33()f x x x a a R =+-∈.(1)若()f x 在[]1,1-上的最大值和最小值分别记为(),()M a m a ,求()()M a m a -; (2)设,b R ∈若()24f x b +≤⎡⎤对[]1,1x ∈-恒成立,求3a b +的取值范围.解:(1(2。

2014年全国高考浙江省数学(理)试卷及答案【精校版】

2014年全国高考浙江省数学(理)试卷及答案【精校版】

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nm yx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( ) A.3≤c B.63≤<c C.96≤<c D. 9>c7.在同一直角坐标系中,函数x x g x x x f a alog )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设a,b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中. (a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<< 10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则( )A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I <<二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不 同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______15.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练.已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大EA值 。

2014高考真题—数学理(浙江卷)Word版无答案

2014高考真题—数学理(浙江卷)Word版无答案

2014年普通高等学校招生全国统一考试(浙江卷)数学(理科)一.选择题:本大题共10小题,每小题5分,共50分. 在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U ( )A. ∅B. }2{C. }5{D. }5,2{(2)已知i 是虚数单位,R b a ∈,,则“1==b a ”是“i bi a 2)(2=+”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件(3)某几何体的三视图(单位:cm )如图所示,则此几何体的表面积是 A. 902cm B. 1292cm C. 1322cm D. 1382cm4.为了得到函数x x y 3cos 3sin +=的图像,可以将函数x y 3sin 2=的图像( )A.向右平移4π个单位 B.向左平移4π个单位 C.向右平移12π个单位 D.向左平移12π个单位5.在46)1()1(y x ++的展开式中,记nmyx 项的系数为),(n m f ,则=+++)3,0(2,1()1,2()0,3(f f f f ) ( )A.45B.60C.120D. 2106.已知函数则且,3)3()2()1(0,)(23≤-=-=-≤+++=f f f c bx ax x x f ( )A.3≤cB.63≤<cC.96≤<cD. 9>c 7.在同意直角坐标系中,函数x x g x x x f a a log )(),0()(=≥=的图像可能是( )8.记,max{,},x x y x y y x y ≥⎧=⎨<⎩,,min{,},y x yx y x x y≥⎧=⎨<⎩,设,a b 为平面向量,则( )A.min{||,||}min{||,||}a b a b a b +-≤B.min{||,||}min{||,||}a b a b a b +-≥C.2222min{||,||}||||a b a b a b +-≥+ D.2222min{||,||}||||a b a b a b +-≤+9.已知甲盒中仅有1个球且为红球,乙盒中有m 个红球和n 个篮球()3,3m n ≥≥,从乙盒中随机抽取()1,2i i =个球放入甲盒中.(a )放入i 个球后,甲盒中含有红球的个数记为()1,2ii ξ=;(b )放入i 个球后,从甲盒中取1个球是红球的概率记为()1,2i p i =. 则A.()()1212,p p E E ξξ><B.()()1212,p p E E ξξ<>C.()()1212,p p E E ξξ>>D.()()1212,p p E E ξξ<<10.设函数21)(x x f =,),(2)(22x x x f -=|2sin |31)(3x x f π=,99,,2,1,0,99==i ia i ,记|)()(||)()(||)()(|98991201a f a f a f a f a f a f I k k k k k k k -++-+-= ,.3,2,1=k 则A.321I I I <<B. 312I I I <<C. 231I I I <<D. 123I I I << 二、填空题:本大题共7小题,每小题4分,共28分.11.若某程序框图如图所示,当输入50时,则该程序运算后输出的结果是________.12.随机变量ξ的取值为0,1,2,若()105P ξ==,()1E ξ=,则()D ξ=________. 13.当实数x ,y 满足240,10,1,x y x y x +-≤⎧⎪--≤⎨⎪≥⎩时,14ax y ≤+≤恒成立,则实数a 的取值范围是________.14.在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).15.设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______16.设直线)0(03≠=+-m m y x 与双曲线12222=-by a x (0a b >>)两条渐近线分别交于点B A ,,若点)0,(m P 满足PB PA =,则该双曲线的离心率是__________17、如图,某人在垂直于水平地面的墙面前的点处进行射击训练. 已知点到墙面的距离为,某目标点沿墙面的射击线移动,此人为了准确瞄准目标点,需计算由点观察点的仰角的大小.若则的最大值19(本题满分14分)已知数列{}n a 和{}n b 满足()()*∈=N n a a a nb n 221 .若{}na 为等比数列,且.6,2231b b a +==(1)求n a 与n b ; (2)设()*∈-=N n b a c nn n 11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省2014届理科数学复习试题选编26:三视图及空间几何体的体积与表面积一、选择题1 .(浙江省温岭中学2013届高三高考提优冲刺考试(五)数学(理)试题)某几何体的三视图如图所示,当xy 最大时,该几何体的体积为( )A .72B .73C .74D .762 .(浙江省温州市2013届高三第二次模拟考试数学(理)试题)若某几何体的二视图如图所示,则此几何体的体积是()3 .(浙江省2013年高考模拟冲刺(提优)测试一数学(理)试题)某几何体的三视图如图所示,则该几何体的体积为( )A .3B .6C .8D .12 4 .(浙江省杭州二中2013届高三6月适应性考试数学(理)试题)一个几何体的三视图如图所示,则这个几何体的体积为正视图侧视图 俯视图 5xy7俯视图( )ABCD5 .(浙江省绍兴市2013届高三教学质量调测数学(理)试题(word 版) )某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的体积等于俯视图侧视图正视图( )A .1B .2C .3D .46 .(浙江省嘉兴市2013届高三第二次模拟考试理科数学试卷)某几何体的三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体的体积为 ( )A .π334+ B .π33832+ C .π3332+ D .π3334+7.(浙江省宁波市2013届高三第二次模拟考试数学(理)试题)已知某几何体的三视图如图所示,则该几何体的体积是正视图 侧视图俯视图 (第6题)( )A .338 B .3316C .38 D .3168 .(【解析】浙江省镇海中学2013届高三5月模拟数学(理)试题)右图是某几何体的三视图,则该几何体的表面积等于( ) A.34+B.6+ C.6+D.17+9 .(浙江省温岭中学2013届高三高考提优冲刺考试(三)数学(理)试题 )某三棱锥的三视图如图所示,已知该三视图中正视图和俯视图均为边长为2的正三角形,侧视图为如图所示的直角三角形,则该三棱锥的体积为 ( )A .1B .3C .4D .510.(浙江省考试院2013届高三上学期测试数学(理)试题)已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图是( )A .B .C .D .11.(浙江省温州八校2013届高三9月期初联考数学(理)试题)如图是一个几何体的三视图,则这个几何体的体积是侧视图 正视图俯视图侧视图俯视图侧视图正视图 俯视图侧视图俯视图( )A .27B .30C .33D .3612.(2013届浙江省高考压轴卷数学理试题)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该几何体的体积是( )A .8B .203C .173D .14313.(浙江省宁波市2013届高三第一学期期末考试理科数学试卷)已知某四棱锥的三视图(单位:cm)如图所示,则该四棱锥的体积是( )A 3B 3C 3D 314.(浙江省金华十校2013届高三4月模拟考试数学(理)试题)某三棱锥的三视图如图所示,该三棱锥的体积是( )A .83B .4C .2D .4315.(浙江省建人高复2013届高三第五次月考数学(理)试题)若一个螺栓的底面是正六边形,它的正视图和俯视图如图所示,则它的体积是( )A3225πB.3225πC.3225πD.12825π 16.(浙江省宁波一中2013届高三12月月考数学(理)试题)若某多面体的三视图如图所示,则此多面体的体积是( )A .2B .4C .6D .12二、填空题17.(浙江省绍兴一中2013届高三下学期回头考理科数学试卷)如图为长方体木块堆成的几何体的三视图,则组成此几何体的长方体木块块数共有_____个.18.(浙江省温州市十校联合体2013届高三上学期期末联考理科数学试卷)已知一个三棱锥的三视图如右下图所示,其中俯视图是顶角为120的等腰三角形,则该三棱锥的体积为____.俯视图左视图主视图122319.(浙江省丽水市2013届高三上学期期末考试理科数学试卷)某几何体的三视图如图所示,则该几何体的体积为正视图 侧视图俯视图 (第12题图)正视图侧视图俯视图__________.20.(浙江省湖州市2013年高三第二次教学质量检测数学(理)试题(word版) )已知某几何体的三视图如图所示,则这个几何体的体积等于____.21.(浙江省考试院2013届高三上学期测试数学(理)试题)在长方体ABCD-A1B1C1D1中,AB=1,AD=2.若存在各棱长均相等的四面体P1P2P3P4,其中P1,P2,P3,P4分别在棱AB,A1B1,C1D1,CD所在的直线上,则此长方体的体积为________.22.(浙江省五校联盟2013届高三下学期第二次联考数学(理)试题)如图是某几何体的三视图,其中正视图和侧视图是全等的矩形,底边长为2,高为3,俯视图是半径为1的圆,则该几何体的体积是_______.A BCDA1B1C1D1(第17题图)正视图俯视图(第12题)侧视图23.(浙江省一级重点中学(六校)2013届高三第一次联考数学(理)试题)某几何体的三视图如图所示,根据图中标出的数据,则这个几何体的体积为_______.俯视图24.(浙江省嘉兴市第一中学2013届高三一模数学(理)试题)—个几何体的三视图如图所示,则该几何体的体积为____25.(浙江省“六市六校”联盟2013届高三下学期第一次联考数学(理)试题)一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形,则该几何体的体积为________.正视图俯视图(第11题图)侧(左)视图26.(浙江省五校联盟2013届高三下学期第一次联考数学(理)试题)一空间几何体三视图如图所示,则该几何体的体积为______________.27.(浙江省温岭中学2013届高三冲刺模拟考试数学(理)试题)某几何体的三视图及相应尺寸(单位:cm)如图所示,则该几何体的体积为___________.28.(浙江省温州中学2013届高三第三次模拟考试数学(理)试题)一个空间几何体的三视图如图所示,则这个空间几何体的体积是____.29.(浙江省杭州四中2013届高三第九次教学质检数学(理)试题)一个棱锥的三视图如图(尺寸的长度单位为m),则该棱锥的全面积是______(单位:m2).正视图侧视图俯视图30.(浙江省诸暨中学2013届高三上学期期中考试数学(理)试题)正三棱柱的三视图如图所示, 则这个三棱柱的体积为___________31.(浙江省重点中学协作体2013届高三摸底测试数学(理)试题)一个几何体的三视图如图所示,则这个几何体的表面积与其外接球面积之比为________.32.(浙江省嘉兴市2013届高三上学期基础测试数学(理)试题)若某空间几何体的三视图如下图所示,则该几何体的体积是_______________.33.(浙江省杭州二中2013届高三6月适应性考试数学(理)试题)在棱长为1的正方体1111ABCD A B C D 中,点1P ,2P 分别是线段AB ,1BD (不包括端点)上的动点,且线段12P P 平行于平面11A ADD ,则四面体121PP AB 的体积的最大值为_________________.34.(温州市2013年高三第一次适应性测试理科数学试题)已知正四面体的俯视图如图所示,其中四边形ABCD 是边长为2的正方形,则这个正四面体的体积为____.正视图侧视图俯视图35.(浙江省黄岩中学2013年高三5月适应性考试数学(理)试卷 )如图所示是一个几何体的三视图,则该几何体的体积为________.正视图侧视图俯视图36.(浙江省新梦想新教育新阵地联谊学校2013届高三回头考联考数学(理)试题 )如图所示,一个三棱锥的三视图是三个直角三角形,则该三棱锥的体积为_________37.(浙江省宁波市十校2013届高三下学期能力测试联考数学(理)试题)一个组合体的三视图如图,则其体积为______________38.(浙江省温州市2013届高三第三次适应性测试数学(理)试题(word 版) )已知某几何体的三视图如图所示,则该几何体的体积是______.243正视图侧视图俯视图第15题39.(浙江省六校联盟2013届高三回头联考理科数学试题)所图所示,一个三棱锥的三视图是三个直角形,则该三棱锥的体积为____________________40.(浙江省杭州市2013届高三第二次教学质检检测数学(理)试题)一个空间几何体的三视图如图所示,则该几何体的表面积为_______________________.41.(浙江省名校新高考研究联盟2013届高三第一次联考数学(理)试题)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如下图所示,则该几何体的体积是_______.42.(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))若某几何体的三视图(单位:cm)如图所示,cm.则此几何体的体积等于________243.(浙江省乐清市普通高中2013届高三上学期期末教学质量检测数学(理)试题)一个几何体的三视图如右图所示,则该几何体的体积为____.44.(浙江省海宁市2013届高三2月期初测试数学(理)试题)已知几何体的三视图如右图所示,则该几何体的体积为____.45.(浙江省金丽衢十二校2013届高三第二次联合考试理科数学试卷)如图是一个几何体的三视图,则该几何体的体积是______(第12题)正视图 侧视图 俯视图浙江省2014届理科数学复习试题选编26:三视图及空间几何体的体积与表面积参考答案一、选择题1. A 提示 如图所示,题设三视图所表示的立体图形是三棱锥A —BCD,从图中可得32752222=+=+y x ,16222=+≤y x xy ,当y x =时取“=”,此时y x ==4,723742131=⨯⨯⨯⨯=-BCD A V .2. A3. B4. A5. B6. A;7. A8. 【答案】A解析:这是一个底面为矩形有一个侧面垂直底面的四棱锥,左右两侧面积和为10,底面面积为12,前后两个面的面积为12+,故表面积为34+.9. A10. D11. B12. C 【解析】几何体是正方体截去一个三棱台, 311172(22323V=-⋅++⨯= 13. C14. B15. C16. A二、填空题17. 4 18. 332 19. π3108+21. 422. 2π24. 6π 25. 32 26. 2; 27. 38; 28. 76π 29. 624+30. 31. π3 32. 8 33.12434.83 35. 82+π36. 4V = 37. 20π38. 3 39. 4V = 40. )31(50+ 41. 317 42. 24 43. 3544. 644π+ 45.3。

相关文档
最新文档