三视图与体积计算
立体几何三视图及体积表面积的求解
立体几何三视图及体积表面积的求解一、空间几何体与三视图1. (吉林省实验中学2013—2014年度高三上学期第四次阶段检测)一个长方体截去两个三棱锥,得到的几何体如图1所示,则该几何体的三视图为( )A B C D【答案】C【解析】正视图是含有一条左下到右上实对角线的矩形;侧视图是含有一条从左上到右下的实对角线的矩形,故选C2. (广州2014届高三七校第二次联考)如图为几何体的三视图,根据三视图可以判断这个几何体为( ) A .圆锥B .三棱锥C .三棱柱D .三棱台【答案】C【解析】由三视图知,这是一个横放的三棱柱3.(黄冈中学2014届高三十月月考数学试卷)如图,一个棱柱的正视图和侧视图分别是矩形和正三角形,则这个三棱柱的俯视图为( )【答案】:D【解析】为。
4. (江西省稳派名校学术联盟2014届高三12月调研考试)如图所示是一个几何体的三视图,若该几何体的体积为,则主视图中三角形的高x 的值为( )212 2A32B32 C22 D2A. B. C. 1 D.【答案】C 【解析】5.(石家庄2014届高三第一次教学质量检测)用一个平面去截正方体,有可能截得的是以下平面图形中的 .(写出满足条件的图形序号)(1)正三角形 (2)梯形 (3)直角三角形 (4)矩形 【答案】(1)(2)(4) 【解析】6.(黄冈中学2014届高三十月月考数学试卷)一个底面是等腰直角三角形的直棱柱,侧棱长与底面三角形的腰长相等,其体积为4,它的三视图中俯视图如右图所示,侧视图是一个矩形,则这个矩形的对角线长为 .【答案】123432【解析】:设底面的等腰直角三角形的腰长为,则侧棱长也为,则,解得,则其,宽为。
二、空间几何体的体积和表面积1.(湖北省黄冈中学2014届高三数学(文)期末考试)某空间组合体的三视图如图所示,则该组合体的体积为()A .48 B .56 C .64 D .72【答案】C【解析】该组合体由两个棱柱组成,上面的棱柱体积为24540创=,下面的棱柱体积为46124创=,故组合体的体积为642.(四川省泸州市2014届高三数学第一次教学质量诊断性考试)一个几何体的三视图如图所示,其中俯视图是菱形,则该几何体的侧面积为( ) A .B .C .D .a a 3142V a ==2a =2=3. (2014年福建宁德市普通高中毕业班单科质量检查)一个几何体的三视图如图所示,则该几何体的侧面积为()A.8+B.10C.8+.123. (承德市联校2013-2014年第一学期期末联考)把边长为2的正方形ABCD沿对角线BD折起,连结AC,得到三棱锥C-ABD,其正视图、俯视图均为全等的等腰直角三角形(如图所示),则其侧视图的面积为()A.32B.12C.1 D.22【答案】B【解析】由两个视图可以得到三棱锥如图:其侧视图的面积即t R ACEV的面积,由正方形的边长为2得==1AE CE,故侧视图面积为125.(安徽省六校教育研究会2014届高三2月联考)某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的面积是()(A) (B)(C)(D)8【答案】D【解析】由三视图可得三棱锥如图所示:底面是边长为4的正三角形,AD BDC ^平面,故四个面的面积中,最大的面积是ABC V 的面积为142创4. (宁夏银川一中2014届高三年级月考)如图是一个几何体的三视图,正视图和侧视图均为矩形,俯视图中曲线部分为半圆,尺寸如图,则该几何体的全面积为( )A .2+3.2+2.8+5.6+3【答案】A【解析】由三视图可知,该几何体是半个圆柱和侧棱垂直于底面的三棱柱组成的组合体,该几何体的表面积.5. (湖南省2014届高三第五次联考数学)已知三棱锥的三视图如图所示,则它的外接球表面积为( ) A. 16pB. 4pC. 8pD. 2pπ+π+π+π+1212(1)2S ππ=⨯⨯++32π=+7.(西安铁一中2014届高三11月模拟考试试题)一个几何体的三视图如图所示,则其外接球的表面积是( )A. B.【答案】B【解析】由三视图知:该几何体为长方体,长方体的棱长分别为3、4、5,所以长方体的体对角线为,所以外接球的半径为,所以外接球的表面积为。
高中数学讲义:三视图——几何体的体积问题
三视图——⼏何体的体积问题一、基础知识:1、常见几何体的体积公式:(:S 底面积,:h 高)(1)柱体:V S h=×(2)锥体:13V S h =×(3)台体:(1213V S S h =++×,其中1S 为上底面面积,2S 为下底面面积(4)球:343V R p =2、求几何体体积要注意的几点(1)对于多面体和旋转体:一方面要判定几何体的类型(柱,锥,台),另一方面要看好该几何体摆放的位置是否是底面着地。
对于摆放“规矩”的几何体(底面着地),通常只需通过俯视图看底面面积,正视图(或侧视图)确定高,即可求出体积。
(2)对于组合体,首先要判断是由哪些简单几何体组成的,或是以哪个几何体为基础切掉了一部分。
然后再寻找相关要素(3)在三视图中,每个图各条线段的长度不会一一给出,但可通过三个图之间的联系进行推断,推断的口诀为“长对正,高平齐,宽相等”,即正视图的左右间距与俯视图的左右间距相等,正视图的上下间距与侧视图的上下间距相等, 侧视图的左右间距与俯视图的上下间距相等。
二、典型例题:例1:已知一个几何体的三视图如图所示,则该几何体的体积为_________思路:从正视图,侧视图可判断出几何体与锥体相关(带尖儿),从俯视图中可看出并非圆锥和棱锥,而是两者的一个组合体(一半圆锥+ 三棱锥),所以12V V V =+圆锥棱锥,锥体的高计算可得h =(利用正视图),底面积半圆的半径为6,三角形底边为12,高为6(俯视图看出),所以1126362S =××=三角形,2636S p p =×=圆,则13V S h =×=三角形棱锥,13V S h =××=圆圆锥,所以12V V =+=+圆锥棱锥答案:+例2:已知一棱锥的三视图如图所示,其中侧视图和俯视图都是等腰直角三角形,正视图为直角梯形,则该棱锥的体积为 .思路:观察可发现这个棱锥是将一个侧面摆在地面上,而棱锥的真正底面体现在正视图(梯形)中,所以()1424122S =×+×=底,而棱锥的高为侧视图的左右间距,即4h =,所以1163V S h =×=底答案:16例3:若某几何体的三视图如图所示,则此几何体的体积是________.思路:该几何体可拆为两个四棱柱,这两个四棱柱的高均为4(俯视图得到),其中一个四棱柱底面为正方形,边长为2(正视图得到),所以2112416V S h =×=×=,另一个四棱柱底面为梯形,上下底分别为2,6,所以()2126282S =+×=,228432V S h =×=×=。
几何体外接球表面积及体积的求法有答案
几何体外接球表面积及体积的求法答案1.D【考点】由三视图求面积、体积.【专题】数形结合;转化法;空间位置关系与距离.【分析】根据三视图得出该几何体是圆柱,求出圆柱体的表面积和它外接球的表面积即可得出结论.【解答】解:根据三视图得,该几何体是底面半径为3,高为4的圆柱体,所以该圆柱体的表面积为S1=2π×32+2π×3×8=66π;根据球与圆柱的对称性,得它外接球的半径R满足(2R)2=62+82=100,所以外接球的表面积为S2=4πR2=100π;所以剩余几何体的表面积是S=S1+S2=66π+100π=166π.故选:D.【点评】本题考查了三视图的应用问题,也考查了利用三视图研究直观图的性质,球与圆柱的接切关系,球的表面积计算问题,是基础题目.2.D【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】由长方体的对角线公式,算出正四棱柱体对角线的长,从而得到球直径长,得球半径R=1,最后根据球的体积公式,可算出此球的体积.【解答】解:∵正四棱柱的底面边长为1,侧棱长为,∴正四棱柱体对角线的长为=2又∵正四棱柱的顶点在同一球面上,∴正四棱柱体对角线恰好是球的一条直径,得球半径R=1根据球的体积公式,得此球的体积为V=πR3=π.故选:D.【点评】本题给出球内接正四棱柱的底面边长和侧棱长,求该球的体积,考查了正四棱柱的性质、长方体对角线公式和球的体积公式等知识,属于基础题.3.C【考点】球内接多面体;球的体积和表面积.【专题】空间位置关系与距离.【分析】先画出图形,正四棱锥外接球的球心在它的底面的中心,然后根据勾股定理列方程,解出球的半径即可.【解答】解:如图,设正四棱锥底面的中心为E,过点A,B,C,D,S的球的球心为O,半径为R,则在直角三角形AEO中,AO=R,AE=BD=4,OE=SE﹣AO=8﹣R由AO2=AE2+OE2得R2=42+(8﹣R)2,解得R=5球半径R=5,故选C.【点评】本题主要考查球,球的内接体问题,考查计算能力和空间想象能力,属于中档题.4.D考点:球的体积和表面积.专题:计算题.分析:由AB=BC=CA=2,求得△ABC的外接圆半径为r,再由R2﹣(R)2=,求得球的半径,再用面积求解.解答:解:因为AB=BC=CA=2,所以△ABC的外接圆半径为r=.设球半径为R,则R2﹣(R)2=,所以R2=S=4πR2=.故选D点评:本题主要考查球的球面面积,涉及到截面圆圆心与球心的连垂直于截面,这是求得相关量的关键.5.C【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1==,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V三棱锥S﹣ABC==.故选:C.【点评】本题考查棱锥的体积,考查球内接多面体,解题的关键是确定点S到面ABC的距离.6.C【考点】球的体积和表面积.【专题】空间位置关系与距离.【分析】将四面体补成长方体,通过求解长方体的对角线就是球的直径,然后求解外接球的表面积.【解答】解:由题意可采用割补法,考虑到四面体ABCD的四个面为全等的三角形,所以可在其每个面补上一个以,,为三边的三角形作为底面,且以分别x,y,z长、两两垂直的侧棱的三棱锥,从而可得到一个长、宽、高分别为x,y,z的长方体,并且x2+y2=29,x2+z2=34,y2+z2=37,则有(2R)2=x2+y2+z2=50(R为球的半径),得R2=,所以球的表面积为S=4πR2=50π.故选:C.【点评】本题考查几何体的外接球的表面积的求法,割补法的应用,判断外接球的直径是长方体的对角线的长是解题的关键之一.7.B【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.8.B【考点】球内接多面体.【专题】计算题;方程思想;综合法;空间位置关系与距离.【分析】三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,然后解答即可.【解答】解:三棱锥A﹣BCD的三条侧棱两两互相垂直,所以把它扩展为长方体,它也外接于球,对角线的长为球的直径,d==,它的外接球半径是,外接球的表面积是4π()2=14π故选:B.【点评】本题考查球的表面积,考查学生空间想象能力,是基础题.9.D【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】设该球的半径为R,则AB=2R,2AC=AB=,故AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,由此能求出球的体积.【解答】解:设该球的半径为R,则AB=2R,2AC=AB=,∴AC=R,由于AB是球的直径,所以△ABC在大圆所在平面内且有AC⊥BC,在Rt△ABC中,由勾股定理,得:BC2=AB2﹣AC2=R2,所以Rt△ABC面积S=×BC×AC=,又PO⊥平面ABC,且PO=R,四面体P﹣ABC的体积为,∴V P﹣ABC==,即R3=9,R3=3,所以:球的体积V球=×πR3=×π×3=4π.故选D.【点评】本题考查四面体的外接球的体积的求法,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.10.B【考点】球的体积和表面积;球内接多面体.【专题】计算题;空间位置关系与距离.【分析】以PA、PB、PC为过同一顶点的三条棱,作长方体如图,则长方体的外接球同时也是三棱锥P﹣ABC外接球.算出长方体的对角线即为球直径,结合球的表面积公式,可算出三棱锥P﹣ABC外接球的体积.【解答】解:以PA、PB、PC为过同一顶点的三条棱,作长方体如图则长方体的外接球同时也是三棱锥P﹣ABC外接球.∵长方体的对角线长为2,∴球直径为2,半径R=,因此,三棱锥P﹣ABC外接球的体积是πR3=π×()3=4π故选:B.【点评】本题给出三棱锥的三条侧棱两两垂直,求它的外接球的表面积,着重考查了长方体对角线公式和球的表面积计算等知识,属于基础题.11.D12.考点:球的体积和表面积;球内接多面体.专题:空间位置关系与距离.分析:求出BC,利用正弦定理可得△ABC外接圆的半径,从而可求该三棱锥的外接球的半径,即可求出三棱锥的外接球表面积.解答:解:∵AC=2,AB=1,∠BAC=120°,∴BC==,∴三角形ABC的外接圆半径为r,2r=,r=,∵SA⊥平面ABC,SA=2,由于三角形OSA为等腰三角形,则有该三棱锥的外接球的半径R═=,∴该三棱锥的外接球的表面积为S=4πR2=4π×()2=.故选:D.点评:本题考查三棱锥的外接球表面积,考查直线和平面的位置关系,确定三棱锥的外接球的半径是关键.12.A考点:球内接多面体;棱柱、棱锥、棱台的体积.专题:压轴题.分析:先确定点S到面ABC的距离,再求棱锥的体积即可.解答:解:∵△ABC是边长为1的正三角形,∴△ABC的外接圆的半径∵点O到面ABC的距离,SC为球O的直径∴点S到面ABC的距离为∴棱锥的体积为故选A.点评:本题考查棱锥的体积,考查球内角多面体,解题的关键是确定点S到面ABC的距离.13.【考点】棱柱、棱锥、棱台的体积.【专题】计算题;空间位置关系与距离.【分析】由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S 在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.【解答】解:由题意画出几何体的图形如图由于面SAB⊥面ABC,所以点S在平面ABC上的射影H落在AB上,根据球体的对称性可知,当S在“最高点”,也就是说H为AB中点时,SH最大,棱锥S﹣ABC的体积最大.∵△ABC是边长为2的正三角形,所以球的半径r=OC=CH=.在RT△SHO中,OH=OC=OS∴∠HSO=30°,求得SH=OScos30°=1,∴体积V=Sh=××22×1=.故答案是.【点评】本题考查锥体体积计算,根据几何体的结构特征确定出S位置是关键.考查空间想象能力、计算能力.14.12π【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】利用平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,求出球的半径,然后求解球O的表面积.【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为: =.所以球O的表面积为4π×3=12π.故答案为:12π.【点评】本题考查球的表面积的求法,考查空间想象能力、计算能力.15.【考点】球的体积和表面积.【专题】计算题.【分析】正方体的内切球的直径为正方体的棱长,外接球的直径为正方体的对角线长,设出正方体的棱长,即可求出两个半径,求出两个球的面积之比.【解答】解:正方体的内切球的直径为,正方体的棱长,外接球的直径为,正方体的对角线长,设正方体的棱长为:2a,所以内切球的半径为:a;外接球的直径为2a,半径为:a,正方体的内切球与外接球的面积之比:==.故答案为:.【点评】本题是基础题,考查正方体的外接球与内切球的面积之比,求出外接球的半径,是解决本题的关键.16.16π【考点】球的体积和表面积.【专题】计算题;方程思想;数形结合法;立体几何.【分析】正四棱锥P﹣ABCD的五个顶点在同一球面上,则其外接球的球心在它的高PO1上,记为O,如图.求出AO1,OO1,解出球的半径,求出球的表面积.【解答】解:正四棱锥P﹣ABCD的外接球的球心在它的高PO1上,记为O,PO=AO=R,PO1=3,OO1=3﹣R,在Rt△AO1O中,AO1=AC=,由勾股定理R2=3+(3﹣R)2得R=2,∴球的表面积S=16π故答案为:16π.【点评】本题考查球的表面积,球的内接体问题,解答关键是确定出球心的位置,利用直角三角形列方程式求解球的半径.需具有良好空间形象能力、计算能力.17.36π【考点】球的体积和表面积.【专题】计算题.【分析】由题意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,正方体的对角线就是球的直径,求出直径即可求出球的表面积.【解答】解:∵三棱锥S﹣ABC正棱锥,∴SB⊥AC(对棱互相垂直)∴MN⊥AC,又∵MN⊥AM而AM∩AC=A,∴MN⊥平面SAC即SB⊥平面SAC,∴∠ASB=∠BSC=∠ASC=90°,将此三棱锥补成正方体,则它们有相同的外接球,∴2R=2 ,∴R=3,∴S=4πR2=4π•(3)2=36π,故答案为:36π.【点评】本题是中档题,考查三棱锥的外接球的表面积,考查空间想象能力;三棱锥扩展为正方体,它的对角线长就是外接球的直径,是解决本题的关键.18.;。
三视图
3
主视图
俯视图
侧视图
三视图
1.画三视图要求:长对正(主俯),宽相等(俯侧),高平齐(主侧)。
2. 正三棱柱正四棱锥
3. 体积公式棱柱:S底·h,棱锥:
3
1S
底·
h,棱台:
3
1h(S
上底+S下底
+
下底
下底
S
S ) 球:
3
4
πR3 4.面积公式圆锥侧面积πrl 圆锥表面积:πr(l+r) 圆台:π(r1+r2)l+π(r21+r22) 球:4πR2
5画几何体步骤:第一步,画俯视图
第二步,从俯视图找点向上拉起,该点由正视图最高点决定
第三步,由侧视图来检验正误
题型1 求体积
方法:先判断是锥还是柱,三视图中有两个或两个以上三角形就是锥,再运用公式求解。
难点:底面积不一定是俯视图,可能为俯视图一部分(注意虚线),可能为侧视图(几何体放倒时)
例1 求上图中正三棱柱的体积
例2 如右图所示,主视图与俯视图都是一边长为3cm的矩形,左视
图是一个边长为2cm的等边三角形,则这个几何体的体积为()
题型2 求面积方法:准确画出原几何体,重点突出宽相等。
例3 求上图中正四棱锥的侧面积
题型3 补图方法:准确画出原几何体
例4 在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为()。
第8讲三视图
第8讲三视图,体积与表面积的计算[知识梳理]1.空间几何体的结构特征2.空间几何体的三视图1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的表面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.柱、锥、台和球的表面积和体积3.常见几何体的侧面展开图及侧面积题型一空间几何体的三视图(高频考点题,多角度突破)考向一已知几何体,识别三视图1.(东北四市联考)如图,在正方体ABCDA1B1C1C1中,P是线段CD的中点,则三棱锥PA1B1A的侧视图为()考向二已知三视图,判断几何体的形状2.一个几何体的三视图如图所示,则该几何体的直观图可以是()考向三已知三视图中的两个视图,判断第三个视图3.(石家庄质检)一个三棱锥的正视图和俯视图如图所示,则该棱锥的侧视图可能为()【针对补偿】1.(济南模拟)如图,多面体ABCDEFG的底面ABCD为正方形,FC=GD=2EA,其俯视图如图所示,则其正视图和侧视图正确的是()2.(北京)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为()A.32B.2 3 C.22D.23.(南昌一模)如图,在正四棱柱ABCDA1B1C1D1中,点P是平面A1B1C1D1内一点,则三棱锥PBCD的正视图与侧视图的面积之比为()A.1∶1 B.2∶1 C.2∶3 D.3∶2[知识自测]1.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是( )A .4πB .3πC .2πD .π2.(全国甲卷)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π3.正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A B 1DC 1的体积为______.题型一 空间几何体的表面积与侧面积(基础拿分题,自主练透)(1)(课标Ⅰ)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2)一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为______.【针对补偿】1.(全国Ⅰ卷)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( )A.17π B.18π C.20π D.28π2.(黑龙江省大庆中学期中)一个体积为123的正三棱柱的三视图如图所示,则这个三棱柱的侧视图的面积为()A.6 3 B.8 C.8 3 D.12题型二空间几何体的体积(高频考点题,多角突破)考向一求以三视图为背景的几何体的体积1.(课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()A.90π B.63π C.42π D.36π考向二不规则几何体的体积3.如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且△ADE,△BCF 均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A.23 B.33 C.43 D.32考向三 柱体与锥体的内接问题4.(2015·湖南卷)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为⎝ ⎛⎭⎪⎫材料利用率=新工件的体积原工件的体积( )A.89πB.827π C.24(2-1)3π D.8(2-1)3π【针对补偿】3.(新课标全国Ⅱ卷)如图,网格纸上正方形小格的边长为1(表示1 cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3 cm ,高为6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A.1727B.59C.1027D.134.(山东)由一个长方体和两个14圆柱体构成的几何体的三视图如下图,则该几何体的体积为______.题型三 球与几何体的切接问题 考向一 正方体(长方体)的外接球1.(天津)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为______.考向二 直三棱柱的外接球2.已知直三棱柱ABC A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310【针对补偿】5.(广州市综合测试)一个六棱柱的底面是正六边形,侧棱垂直于底面,所有棱的长都为1,顶点都在同一个球面上,则该球的体积为( )A .20π B.205π3C .5πD.55π6[A 基础巩固练]1.(浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A.π2+1B.π2+3C.3π2+1 D.3π2+3 2.(山西省高三考前质量检测)某几何体的三视图如图所示,若该几何体的体积为37,则侧视图中线段的长度x 的值是( )A.7 B .27 C .4D .53.(课标Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π45.某三棱锥的三视图如图所示,该三棱锥的表面积是( )A .28+6 5B .30+6 5C .56+12 5D .60+125。
人教版九年级数学下册第3课时 由三视图确定几何体的表面积或体积
2. 如图是一个几何体的三视图,则这个几何体
的A侧.18面cm积2 是( A )
B.20cm2
C. 18 6
3 4
10 2
2
cm
D. 18
75 2
3
解析:由三视图可得,几何体是三棱柱,几何体的侧面积 是三个矩形的面积和,矩形的长为3cm,宽为2cm,∴侧面 积为3×3×2=18cm2.
=
300
240
1 2
=36000(cm2
)
S侧面面积= 300 200=60000(cm2 )
S帐篷表面积=36000 +60000 =96000(cm2)
课堂小结
由三视图确定几何体的表面积或体积,一般步骤为: ① 想象:根据各视图想象从各个方向看到的几何体形状; ② 定形:综合确定几何体(或实物原型)的形状; ③ 展开图:画出展开图,求展开面积。
由三视图描述实物形状,画出物体表面展开图
由三视图确定几何体的表面积或是体积, 首先要确定该几何体的形状。
1.根据下列几何体的三视图,画出它们的展开图。
(1)
(2)
(3)
典例解析
例1 某工厂要加工一批密封罐,设计者给出了密封
罐的三视图,请你按照三视图确定制作每个密封罐所
需钢板的面积.
50
100 50
第3课时 由三视图确定几何体的 表面积或体积
R·九年级下册
复习导入
由三视图描述几何体(或实物原型),一般先根据各视图想象从 各个方向看到的几何体形状, 然后综合起来确定几何体(或实物原 型)的形状, 再根据三视图“长对正、高平齐、宽相等”的关系, 确定轮廓线的位置,以及各个方向的尺寸.
高中数学必修二 空间几何体的三视图如何求其表面积和体积
高中数学必修二空间几何体的三视图如何求其表面积和体积【教学目标】一、知识目标熟练掌握已知空间几何体的三视图如何求其表面积和体积。
二、能力目标先介绍由空间三视图求其表面积和体积,然后引导学生讨论和探讨问题。
三、德育目标1.通过空间几何体三视图的应用,培养学生的创新精神和探究能力。
2.通过研究性学习,培养学生的整体性思维。
【教学重点】观察、实践、猜想和归纳的探究过程。
【教学难点】如何引导学生进行合理的探究。
【教学方法】电教法、讲述法、分析推理法、讲练法【教学用具】多媒体、实物投影仪【教学过程】[投影]本节课的教学目标1.熟练掌握已知空间几何体的三视图如何求其表面积和体积。
【学习目标完成过程】一、复习提问1.如何求空间几何体的表面积和体积(例如:球、棱柱、棱台等)?2.三视图与其几何体如何转化?二、新课讲解[设置问题]例1:(如下图1),这是一个奖杯的三视图,试根据奖杯的三视图计算出它的表面积和体积(尺寸如图1,单位:cm,π取314,结果精确到1cm3)。
[提出问题]1.空间几何体的表面积和体积分别是什么?2.怎样运用柱体、锥体、台体、球体的表面积与体积的公式计算几何体的表面积和体积?[学生思考、总结板书]空间几何体的表面积是几何体表面的面积,它表示几何体表面的大小,体积是几何体所占空间的大小;先将直观图的各个要素弄清楚,然后再代公式进行计算。
[承转过渡]求空间几何体的表面积是将几何体的各个面的面积相加求得;求体积是将几何体各个部分的体积相加求得,那请同学们动脑筋想一想,假设没有给出几何体的直观图,只是给出一个几何体的三视图,我们怎样解决求该几何体的表面积和体积?在例1有没有给出几何体的直观图?[学生讨论、总结板书]例1没有直接给出几何体的直观图,只是给出实物几何体的三视图,要求该几何体的表面积和体积,应首先将该三视图转化为几何体的直观图,然后弄清给出直观图的各个要素,再代公式进行计算。
[设问]请问例1的三视图转化为实物几何体是由那几个部分构成?怎样求出该几何体的表面积和体积?[讨论、板书]该实物几何体是由一个球体、一个四棱柱和一个四棱台构成;应先分别求出一个球体、一个四棱柱和一个四棱台的表面积和体积。
专题 由三视图求表面积和体积
由三视图求表面积和体积一、方法与技巧二、常见几何体1.(2016•益阳模拟)若某空间几何体的三视图如图所示,则该几何体的表面积是()A.60 B.54 C.48 D.24【解答】解:由三视图知:几何体是一个侧面向下放置的直三棱柱,侧棱长为4,底面三角形为直角三角形,直角边长分别为3,4,斜边长为5.∴几何体的表面积S=S棱柱侧+S底面=(3+4+5)×4+2××3×4=48+12=60.故选:A.2.(2016•凉山州模拟)一个棱锥的三视图如图所示,则这个棱锥的体积是()A.6 B.12 C.24 D.36【解答】解:由已知的三视图可得该棱锥是以俯视图为底面的四棱锥其底面长和宽分别为3,4,棱锥的高是3故棱锥的体积V=Sh=×3×4×3=12故选B3.(2016•衡水校级一模)已知一个几何体的三视图如图所示,则该几何体的体积为()A.B.C.27﹣3πD.18﹣3π【解答】解:由三视图可知,该几何体为放到的直四棱柱,且中间挖去半个圆柱,由三视图中的数据可得:四棱柱的高为3,底面为等腰梯形,梯形的上、下底边分别为2、4,高为2,圆柱的高为3,圆柱底面的半径都是1,∴几何体的体积V==,故选:B.4.(2016•广元二模)一个多面体的三视图分别是正方形、等腰三角形和矩形,其尺寸如图,则该多面体的体积为()A.48cm3B.24cm3C.32cm3D.28cm3【解答】解:由三视图可知该几何体是平放的直三棱柱,高为4,底面三角形一边长为6,此边上的高为4 体积V=Sh==48cm3故选A5.(2016•江门模拟)一个几何体的三视图及其尺寸如下,则该几何体的表面积为()A.12πB.15πC.24πD.36π【解答】解:由三视图可知该几何体为一个圆锥,底面直径为6,母线长为5,底面圆的面积S1=π×()2=9π.侧面积S2=π×3×5=15π,表面积为S1+S2=24π.故选C.6.(2016•安康二模)一空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:三视图复原的几何体是三棱锥,底面是底边长为2,高为2的等腰三角形,三棱锥的一条侧棱垂直底面,高为2.三棱锥的体积为:==.故选D.7.(2016•杭州模拟)某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体为三棱柱与三棱锥的组合体,如右图,三棱柱的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V1=1×1=1;三棱锥的底面是等腰直角三角形,其面积S=×1×2=1,高为1;故其体积V2=×1×1=;故该几何体的体积V=V1+V2=;故选:A.8.(2016•呼伦贝尔一模)一个几何体的三视图如图所示,其中正视图和侧视图是腰长为4的两个全等的等腰直角三角形.若该几何体的体积为V,并且可以用n个这样的几何体拼成一个棱长为4的正方体,则V,n的值是()A.V=32,n=2 B.C.D.V=16,n=4【解答】解:由三视图可知,几何体为底面是正方形的四棱锥,所以V=,边长为4的正方体V=64,所以n=3.故选B9.(2016•广东模拟)一空间几何体的三视图如图所示,则该几何体的体积为()A.12 B.6 C.4 D.2【解答】解:由三视图知,几何体是一个四棱锥,四棱锥的底面是一个直角梯形,直角梯形的上底是1,下底是2,垂直于底边的腰是2,一条侧棱与底面垂直,这条侧棱长是2,∴四棱锥的体积是=2,故选D.10.(2016•延边州模拟)如图,水平放置的三棱柱的侧棱长和底边长均为2,且侧棱AA1⊥面A1B1C1,正视图是正方形,俯视图是正三角形,该三棱柱的侧视图面积为()A.B.C. D.4【解答】解:由题意知三棱柱的侧视图是一个矩形,矩形的长是三棱柱的侧棱长,宽是底面三角形的一条边上的高,在边长是2的等边三角形中,底边上的高是2×=,∴侧视图的面积是2.故选A.11.(2016•江西校级一模)如图是一个无盖器皿的三视图,正视图、侧视图和俯视图中的正方形边长为2,正视图、侧视图中的虚线都是半圆,则该器皿的表面积是()A.π+24 B.π+20 C.2π+24 D.2π+20【解答】解:该器皿的表面积可分为两部分:去掉一个圆的正方体的表面积s1和半球的表面积s2,s1=6×2×2﹣π×12=24﹣π,s2==2π,故s=s1+s2=π+24故选:A.12.(2016•太原二模)某几何体的三视图如图所示,图中的四边形都是边长为2的正方形,两条虚线互相垂直,则该几何体的体积是()A.B.C.D.【解答】解:由三视图知原几何体是一个棱长为2的正方体挖去一四棱锥得到的,该四棱锥的底为正方体的上底,高为1,如图所示:所以该几何体的体积为23﹣×22×1=.故选A.13.(2016•太原校级二模)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为()A.B.C.D.3【解答】解:由三视图可知,几何体的直观图如图所示,平面AED⊥平面BCDE,四棱锥A﹣BCDE的高为1,四边形BCDE是边长为1的正方形,则S△AED==,S△ABC=S△ADE==,S△ACD==,故选:B.14.(2016•河西区模拟)如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是()A.B. C.D.【解答】解:由三视图知几何体的直观图是半个圆锥,又∵正视图是腰长为2的等腰三角形∴r=1,h=∴故选:D.15.(2016•岳阳二模)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C. D.【解答】解:三视图复原的几何体是底面为边长5,6的矩形,一条侧棱垂直底面高为h,所以四棱锥的体积为:,所以h=.故选B.16.(2016•汉中二模)一个四棱锥的底面为正方形,其三视图如图所示,则这个四棱锥的体积是()A.1 B.2 C.3 D.4【解答】解:由题设及图知,此几何体为一个四棱锥,其底面为一个对角线长为2的正方形,故其底面积为=2由三视图知其中一个侧棱为棱锥的高,其相对的侧棱与高及底面正方形的对角线组成一个直角三角形由于此侧棱长为,对角线长为2,故棱锥的高为=3此棱锥的体积为=2故选B.17.(2016•榆林一模)某三棱锥的三视图如图所示,该三棱锥的体积为()A.80 B.40 C.D.【解答】解:由三视图可知该几何体是如图所示的三棱锥:PO⊥平面ABC,PO=4,AO=2,CO=3,BC⊥AC,BC=4.从图中可知,三棱锥的底是两直角边分别为4和5的直角三角形,高为4,体积为V=.故选D.18.(2016•揭阳一模)已知某空间几何体的三视图如图所示,则该几何体的体积是48.【解答】解:由三视图可知原几何体如图所示,可看作以直角梯形ABDE为底面,BC为高的四棱锥,由三棱锥的体积公式可得V=××(2+6)×6×6=48,故答案为:48.三、常见几何体的组合体19.(2016•佛山模拟)已知某几何体的三视图如图所示,其中,正(主)视图,侧(左)视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成,根据图中的数据可得此几何体的体积为()A.B.C. D.【解答】解:由三视图可得该几何体的上部分是一个三棱锥,下部分是半球,所以根据三视图中的数据可得:V=××=,故选C.20.(2016•乐山模拟)一个几何体的三视图如图所示,则此几何体的体积是()A.112 B.80 C.72 D.64【解答】解:由三视图可知,此几何体是由一个棱柱和一个棱锥构成的组合体,棱柱的体积为4×4×4=64;棱锥的体积为×4×4×3=16;则此几何体的体积为80;故选B.四、常见几何体的切割体21.(2016•茂名一模)若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3B.20cm3C.30cm3D.40cm3【解答】解:由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V=×3×4×5﹣××3×4×5=20(cm3).故选B.22.(2016•威海一模)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图示,则该几何体的体积为()A.7 B.C.D.【解答】解:依题意可知该几何体的直观图如图示,其体积为正方体的体积去掉两个三棱锥的体积.即:,故选D.23.(2016•张掖校级模拟)某几何体的三视图如图所示,则该几何体的体积为26【解答】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.24.(2016•商洛模拟)已知一个几何体的三视图是三个全等的边长为l的正方形,如图所示,则该几何体的体积为()A.B.C.D.【解答】解:该几何体是正方体削去一个角,体积为1﹣=1﹣=.故选:D.25.(2016•银川校级一模)如图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则被截去部分的几何体的表面积为54+18.【解答】解:由三视图可知正方体边长为6,截去部分为三棱锥,作出几何体的直观图如图所示:∴被截去的几何体的表面积S=+×(6)2=54+18.故答案为54+18.26.(2016•哈尔滨校级二模)一个空间几何体的三视图如图所示,则这个几何体的体积为.【解答】解:根据已知中的三视图,可得几何体的直观图如下图所示:该几何是由一个以俯视图为底面的四棱锥,切去两个棱锥所得的组合体,四棱柱的体积为:×(2+4)×4×4=48,四棱锥F﹣EHIJ的体积为:×(2+4)×4×2=8,中棱锥F﹣HGJ的体积为:=,故组合体的体积V=,故答案为:4.(2011•北京模拟)已知一个几何体的三视图如所示,则该几何体的体积为()A.6 B.5.5 C.5 D.4.5【考点】由三视图求面积、体积.【分析】由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积可以做出,高是3,做出截去得到三棱锥的体积,长方体的体积也可以做出.【解答】解:由三视图知几何体是一个长方体割去两个三棱锥,三棱锥的底面是一个底面面积是×1×1=,高是3,∴截去得到三棱锥的体积是2××=1,长方体的体积是3×2×1=6∴几何体的体积是6﹣1=5故选C.。
高中数学简单几何体的表面积与体积考点及例题讲解
简单几何体的表面积与体积考纲解读 1.结合三视图求几何体的表面积与体积;2.利用几何体的线面关系求表面积和体积;3.求常见组合体的表面积或体积.[基础梳理]1.多面体的表面积与侧面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.旋转体的表面积与侧面积名称侧面积 表面积 圆柱(底面半径r ,母线长l ) 2πrl 2πr (l +r ) 圆锥(底面半径r ,母线长l ) πrl πr (l +r ) 圆台(上、下底面半径r 1,r 2,母线长l )π(r 1+r 2)lπ(r 1+r 2)l +π(r 21+r 22) 球(半径为R )4πR 23.空间几何体的体积(h 为高,S 为下底面积,S ′为上底面积) (1)V 柱体=Sh .特别地,V 圆柱=πr 2h (r 为底面半径). (2)V 锥体=13Sh .特别地,V 圆锥=13πr 2h (r 为底面半径).(3)V 台体=13h (S +SS ′+S ′).特别地,V 圆台=13πh (r 2+rr ′+r ′2)(r ,r ′分别为上、下底面半径).(4)V 球=43πR 3(球半径是R ).[三基自测]1.正六棱柱的高为6,底面边长为4,则它的表面积为( ) A .48(3+3) B .48(3+23) C .24(6+2) D .144答案:A2.如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.答案:1∶473.一直角三角形的三边长分别为6 cm,8 cm,10 cm ,绕斜边旋转一周所得几何体的表面积为________.答案:3365π cm 24.(必修2·1.3A 组改编)球内接正方体的棱长为1,则球的表面积为________. 答案:3π5.(2017·高考全国卷Ⅰ改编)所有棱长都为2的三棱锥的体积为________. 答案:223考点一 几何体的表面积与侧面积|易错突破[例1] (1)(2018·九江模拟)如图,网格纸上小正方形边长为1,粗线是一个棱锥的三视图,则此棱锥的表面积为( )A .6+42+23B .8+42C .6+6 2D .6+22+43(2)某品牌香水瓶的三视图如图(单位:cm),则该几何体的表面积为( )A.⎝⎛⎭⎫95-π2cm 2 B.⎝⎛⎭⎫94-π2cm 2 C.⎝⎛⎭⎫94+π2cm 2 D.⎝⎛⎭⎫95+π2cm 2 (3)一个几何体的三视图如图所示,则该几何体的表面积为________.[解析] (1)直观图是四棱锥P ABCD ,如图所示,S △P AB =S △P AD =S △PDC =12×2×2=2,S △PBC =12×22×22×sin 60°=23,S 四边形ABCD =22×2=42,故此棱锥的表面积为6+42+23,故选A.(2)该几何体的上下为长方体,中间为圆柱. S 表面积=S 下长方体+S 上长方体+S 圆柱侧-2S 圆柱底=2×4×4+4×4×2+2×3×3+4×3×1+2π×12×1-2×π⎝⎛⎭⎫122=94+π2(cm 2). (3)由三视图可知,该几何体是一个长方体内挖去一个圆柱体,如图所示.长方体的长、宽、高分别为4,3,1,表面积为4×3×2+3×1×2+4×1×2=38, 圆柱的底面圆直径为2,母线长为1, 侧面积为2π×1=2π,圆柱的两个底面面积和为2×π×12=2π. 故该几何体的表面积为38+2π-2π=38. [答案] (1)A (2)C (3)38 [易错提醒]1.以三视图为载体的几何体的表面积或侧面积问题,要分清三视图中的量是否为各表面计算面积所用的量.2.几何体切、割后的图形的表面,不一定是减少,甚至可能增加.3.组合体的表面积,要注意衔接部分分散在哪个面中来计算.[纠错训练]1.已知某斜三棱柱的三视图如图所示,求该斜三棱柱的表面积.解析:由题意知,斜三棱柱的直观图如图中ABC A 1B 1C 1所示.易知正方体的棱长为2.斜三棱柱的两个底面积的和为2S △ABC =2×12×AB ×AC =2,侧面ABB 1A 1的面积S 侧面ABB 1A 1=2×1=2,侧面ACC 1A 1为矩形,S 侧面ACC 1A 1=AA 1·AC =25,侧面BCC 1B 1是边长为5的菱形,连接CB 1、BC 1,易得CB 1=23,BC 1=22,且CB 1⊥BC 1,所以S 侧面BCC 1B 1=12CB 1·BC 1=12×23×22=26,所以斜三棱柱ABC A 1B 1C 1的表面积为4+2(5+6).2.(2016·高考全国卷Ⅰ)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是28π3,求它的表面积.解析:该几何体是一个球体挖掉18剩下的部分,如图所示,依题意得78×43πR 3=28π3,解得R =2,所以该几何体的表面积为4π×22×78+34π×22=17π.考点二 空间几何体的体积|方法突破[例2] (1)(2017·高考全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2)正三棱柱ABC A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥C 1B 1DA 的体积为( )A .3 B.32 C .1D.32(3)(2017·高考山东卷)由一个长方体和两个14圆柱体构成的几何体的三视图如下,则该几何体的体积为________.[解析] (1)法一:由题意知,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,故其体积V =π×32×10-12×π×32×6=63π.法二:依题意,该几何体由底面半径为3,高为10的圆柱截去底面半径为3,高为6的圆柱的一半所得,其体积等价于底面半径为3,高为7的圆柱的体积,所以它的体积V =π×32×7=63π,选择B.(2) 在正△ABC 中,D 为BC 中点, 则有AD =32AB =3, S △DB 1C 1=12×2×3= 3.又∵平面BB 1C 1C ⊥平面ABC ,AD ⊥BC ,AD ⊂平面ABC ,∴AD ⊥平面BB 1C 1C ,即AD 为三棱锥A B 1DC 1底面上的高.∴VC 1B 1DA =VA C 1B 1D =13S △DB 1C 1·AD =13×3×3=1.(3)该几何体由一个长、宽、高分别为2,1,1的长方体和两个底面半径为1,高为1的四分之一圆柱体构成,∴V =2×1×1+2×14×π×12×1=2+π2.[答案] (1)B (2)C (3)2+π2[方法提升]求几何体的体积的方法 方法解读适合题型 直接法对于规则几何体,直接利用公式计算即可.若已知三视图求体积,应注意三视图中的垂直关系在几何体中的位置,确定几何体中的线面垂直等关系,进而利用公式求解 规则 几何体割补法当一个几何体的形状不规则时,常通过分割或者补形的手段将此几何体变为一个或几个规则的、体积易求的几何体,然后再计算.经常考虑将三棱锥还原为三棱柱或长方体,将三棱柱还原为平行六面体,将台体还原为锥体不规则 几何体 等积转换法 利用三棱锥的“等积性”可以把任一个面作为三棱锥的底面.求体积时,可选择“容易计算”的方式来计算三棱锥[跟踪训练]1.(2018·大连双基检测)如图,在边长为1的正方形网格中用粗线画出了某个多面体的三视图,则该多面体的体积为( )A .15B .13C .12D .9解析:几何体的直观图如图所示,其中底面ABCD 是一个矩形(其中AB =5,BC =2),棱EF ∥底面ABCD ,且EF =3,直线EF 到底面ABCD 的距离是3.连接EB ,EC ,则题中的多面体的体积等于四棱锥E ABCD 与三棱锥E FBC 的体积之和,而四棱锥E ABCD 的体积等于13×(5×2)×3=10,三棱锥E FBC 的体积等于13×⎝⎛⎭⎫12×3×3×2=3,因此题中的多面体的体积等于10+3=13,选B.答案:B2.如图所示(单位:cm),则图中的阴影部分绕AB 所在直线旋转一周所形成的几何体的体积为________.解析:由题图中数据,根据圆台和球的体积公式,得 V圆台=13×(π×AD 2+π×AD 2×π×BC 2+π×BC 2)×AB =13×π×(AD 2+AD ×BC +BC 2)×AB=13×π×(22+2×5+52)×4=52π(cm 3), V 半球=43π×AD 3×12=43π×23×12=163π(cm 3),所以旋转所形成几何体的体积V =V 圆台-V半球=52π-163π=1403π(cm 3).答案:1403π(cm 3)考点三 有关球的组合体及面积、体积最值问题|思维突破[例3] (1)已知正六棱柱的12个顶点都在一个半径为3的球面上,当正六棱柱的体积取最大值时,其高的值为( )A .33 B.3 C .2 6D .23(2)(2017·高考全国卷Ⅰ)已知三棱锥S ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ABC 的体积为9,则球O 的表面积为________.(3)正四棱柱ABCD A 1B 1C 1D 1的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最________值,为________.[解析] (1)设正六棱柱的底面边长为a ,高为h ,则可得a 2+h 24=9,即a 2=9-h 24,那么正六棱柱的体积V =⎝⎛⎭⎫6×34a 2×h =332(9-h 24)h =332(-h 34+9h ). 令y =h 34+9h ,∴y ′=-3h 24+9.令y ′=0,∴h =2 3.易知当h =23时,正六棱柱的体积最大,故选D.(2)设球O 的半径为R ,∵SC 为球O 的直径,∴点O 为SC 的中点,连接AO ,OB (图略),∵SA =AC ,SB =BC ,∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC ,∴AO ⊥平面SCB ,∴V SABC =V ASBC =13×S △SBC×AO =13×(12×SC ×OB )×AO ,即9=13×(12×2R ×R )×R ,解得R =3,∴球O 的表面积为S =4πR 2=4π×32=36π.(3)如图,截面图为长方形ACC 1A 1和其外接圆.球心为EE 1的中点O , 则R =OA .设正四棱柱的侧棱长为b ,底面边长为a ,则AC =2a ,AE =22a ,OE =b2,R 2=⎝⎛⎭⎫22a 2+⎝⎛⎭⎫b 22, ∴4R 2=2a 2+b 2,则正四棱柱的侧面积: S =4ab =2·2a ·2b ≤2(a 2+2b 2)=42R 2,故侧面积有最大值,为42R 2,当且仅当a =2b 时等号成立. [答案] (1)D (2)36π (3)大 42R 2 [思维升华]1.求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形问题,再利用平面几何知识寻找几何中元素间的关系求解.2.解决几何体最值问题的方法 方法解读适合题型基本不等式法根据条件建立两个变量的和或积为定值,然后利用基本不等式求体积的最值(1)求棱长或高为定值的几何体的体积或表面积的最值;(2)求表面积一定的空间几何体的体积最大值和求体积一定的空间几何体的表面积的最小值函数法通过建立相关函数式,将所求的组合体中的最值问题最值问题转化为函数的最值问题求解,此法应用最为广泛几何法 由图形的特殊位置确定最值,如垂直图形位置变化中的最值[跟踪训练](2015·高考全国卷Ⅱ)已知A ,B 是球O 的球面上两点,∠AOB =90°,C 为该球面上的动点.若三棱锥O ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π解析:△AOB 的面积为定值,当OC 垂直于平面AOB 时,三棱锥O ABC 的体积取得最大值.由16R 3=36得R =6.从而球O 的表面积S =4πR 2=144π.故选C.答案:C1.[考点二](2017·高考全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .π B.3π4 C.π2D.π4解析:球心到圆柱的底面的距离为圆柱高的12,球的半径为1,则圆柱底面圆的半径r=1-(12)2=32,故该圆柱的体积V =π×(32)2×1=3π4,故选B.答案:B2.[考点一](2016·高考全国卷Ⅱ)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:由三视图知圆锥的高为23,底面半径为2,则圆锥的母线长为4,所以圆锥的侧面积为12×4π×4=8π.圆柱的底面积为4π,圆柱的侧面积为4×4π=16π,从而该几何体的表面积为8π+16π+4π=28π,故选C.答案:C3.[考点二](2015·高考全国卷Ⅰ)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:设圆锥底面的半径为R 尺,由14×2πR =8得R =16π,从而米堆的体积V =14×13πR 2×5=16×203π(立方尺),因此堆放的米约有16×203×1.62×3≈22(斛).故选B.答案:B4.[考点一、三](2017·高考全国卷Ⅱ)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为________.解析:依题意得,长方体的体对角线长为32+22+12=14,记长方体的外接球的半径为R ,则有2R =14,R =142,因此球O 的表面积等于4πR 2=14π.答案:14π5.[考点一、三](2017·高考全国卷Ⅰ改编)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,求所得三棱锥体积(单位:cm 3)的最大值.解析:法一:由题意可知,折起后所得三棱锥为正三棱锥,当△ABC 的边长变化时,设△ABC 的边长为a (a >0)cm ,则△ABC 的面积为34a 2,△DBC 的高为5-36a ,则正三棱锥的高为⎝⎛⎭⎫5-36a 2-⎝⎛⎭⎫36a 2=25-533a , ∴25-533a >0,∴0<a <53,∴所得三棱锥的体积V =13×34a 2×25-533a =312×25a 4-533a 5.令t =25a 4-533a 5,则t ′=100a 3-2533a 4,由t ′=0,得a =43,此时所得三棱锥的体积最大,为415 cm 3.法二:如图,连接OD 交BC 于点G ,由题意知,OD ⊥BC .易得OG =36BC ,∴OG 的长度与BC 的长度成正比.设OG =x ,则BC =23x ,DG =5-x ,S △ABC =23x ·3x ·12=33x 2,则所得三棱锥的体积V =13×33x 2×(5-x )2-x 2=3x 2×25-10x =3×25x 4-10x 5.令f (x )=25x 4-10x 5,x ∈⎝⎛⎭⎫0,52,则f ′(x )=100x 3-50x 4,令f ′(x )>0,即x 4-2x 3<0,得0<x <2,则当x ∈⎝⎛⎭⎫0,52时,f (x )≤f (2)=80,∴V ≤3×80=415.∴所求三棱锥的体积的最大值为415.。
三视图体积面积计算教师版
..高一直观图三视图及体积面积计算学校:___________姓名:___________班级:___________考号:___________一、选择题1.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为【答案】D【解析】试题分析:左视图是指从几何体的左边看几何体的投影,如图A的投影为D,E的投影为G,B的投影为C,线段AF的投影为DF,故选D.考点:三视图2.如图为某几何体的三视图,根据三视图可以判断这个几何体为()A.圆锥 B.三棱锥C.三棱柱 D.三棱台【答案】C【解析】试题分析:该几何体的主视图和俯视图都为矩形,左视图为三角形,可以得到该几何体是一个横着放的三棱柱。
考点:三视图的还原图3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是()【答案】D【解析】试题分析:由正视图和侧视图知,几何体可能是两个圆柱的组合体时,俯视图为A,几何体是圆柱与正四棱柱的组合时,俯视图为B,几何体是圆柱与底面为等腰直角三角形的直三棱柱的组合时,俯视图为C,如果俯图是D,正视图和侧视图不可能相同.故选D.考点:三视图.4.如图所示,正方形O′A′B′C′的边长为1,它是水平放置的一个平面图形的直观图,则原图形的周长是()A.6 B.8 C.2+.2+【答案】B【解析】试题分析:根据题目给出的直观图的形状,画出对应的原平面图形的形状,求出相应的边长,则问题可求.作出该直观图的原图形,因为直观图中的线段C′B′∥x′轴,所以在原图形中对应的线段平行于x轴且长度不变,点C和B′在原图形中对应的点C和B的纵坐标是O′B′的2倍,则OB OC=3,则四边形OABC的长度为8.故选B.考点:平面图形的直观图5.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是()试卷第2页,总20页..【答案】A 【解析】试题分析:根据斜二测画法知, 平行于x 轴的线段长度不变,平行于y 的线段变为原来的12,∵O ′C ′=1,O ′A ′,∴OC=O ′C ′=1,OA=2O ′A ′= 由此得出原来的图形是A . 考点:斜二测画法6.一个四面体的三视图如图所示,则该四面体的表面积是A.1+.2+.1+.【答案】B 【解析】试题分析:由三视图可知,该几何体是如下图所示的三棱锥,其中平面PAC ⊥平面ABC,PA PC PD AC ==⊥,且1PD =,BA BA ==,所以112AB CAP S S ∆∆===,PAB ∆与PBC ∆,所以1sin 6022PAB PBC S S ∆∆==︒=,故该三棱锥的表面各为12222⨯+⨯=+B .试卷第4页,总20页AC考点:1.三视图;2.多面体的表面积与体积.7.一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .18B .17C .16D .15【答案】D 【解析】试题分析:设正方体棱长为1,由题意得,剩余几何体为一个正方体被一个平面截去一个角,其截去体积为211111326⨯⨯⨯=,因此剩余部分体积为15166-=,比值为15,选D .考点:三视图,三棱锥体积8.一个几何体的三视图如图所示,则该几何体的体积是( )A .64B .72C .80D .112 【答案】C 【解析】试题分析:根据三视图可该几何体为三棱锥与立方体的组合,如下图所示,故所求体积314443803V =+⨯⨯⨯=,故选C ...考点:1.三视图;2.空间几何体的体积计算.9.已知某几何体的三视图如右图所示,则该几何体的外接球表面积为( )A .83πB .32πC .8π D. 【答案】C 【解析】何体的外接球的表面积248S r ππ== ,故答案为:C .考点:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥,求出其外接球的半径,代入表面积公式,可得答案.10.一个几何体的三视图如图,则该几何体的体积为( )A .πB .2πC .3πD .6π 【答案】D试卷第6页,总20页【解析】试题分析:由三视图可知,该几何体是一个底面半径为1,高为1的圆锥的半个圆锥,故该几何体的体积为21111236ππ⨯⨯⨯⨯=,故选D . 考点:空间几何体的三视图.11. 三棱锥S ABC 及其三视图中的正视图和侧视图如图所示,则棱SB 的长为( )A .B .C .D .【答案】A 【解析】试题分析:由三视图知,在三棱锥S ABC 中,SC平面ABC ,AB=BC=4,SC=4,所以.故选A .考点:三视图的应用. 12.已知三棱锥的底面是边长为1的正三角形,其正视图与俯视图如图所示,则其侧视图的面积为 ( )ABD【答案】A 【解析】试题分析::∵边长为1=∴侧视图的底边长为故所求的面积为:12S ==考点:三视图13.已知一个空间几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体的体积是 ( )..A .2B .4C .6D .12 【答案】B 【解析】试题分析:由三视图可知此棱锥是底面为直角梯形,高为2的四棱锥.所以()112422432V ⎡⎤=⨯+⨯⨯=⎢⎥⎣⎦.故B 正确.考点:三视图. 14.一个棱锥的三视图如图所示,其中侧视图为正三角形,则该四棱锥的体积是( )A 、13BD【答案】D【解析】试题分析:由三视图可得四棱锥的底面是边长为1的正方形,四棱锥的高为h =,且底面积111S =⨯=,所以11133V Sh ==⨯=,故选D . 考点:三视图.15.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( )A .24-32π B .24-3π C .24-π D .24-2π 【答案】A试卷第8页,总20页【解析】试题分析:该几何体是棱柱,棱柱的高为3,底面为长4宽2的矩形去掉半径为1的半圆,因此底面积为21241822s ππ=⨯-⨯=-,所以体积为3242V sh π==-考点:三视图与棱柱体积16.一个体积为A .36B .8C .38D .12 【答案】A 【解析】试题分析:设棱柱的高为h,由左视图可知,底面的正三角形高为角形的边长为4,所以底面积为142⨯⨯=以有13h ⨯=3h =,可得左视图的面积为3=,故选择A考点:三视图17.已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积是( )A .31cm B .32cm C .33cm D .36cm 【答案】A 【解析】试题分析:该三棱锥的体积是313212131cm V =⨯⨯⨯⨯=. 考点:三视图18.已知几何体的三视图(如图),则该几何体的体积为 ( )..A .34B .4C .324D .334【答案】C【解析】=2的正方形,故体积为21233⨯=选C . 考点:三视图19.如图是一个四棱锥的三视图,则该几何体的体积为( )(A )403 (B )323 (C )163 (D )283【答案】A【解析】试题分析:由三视图得到其直观图(上图所示),则体积为1140[(14)4]4323⨯+⨯⨯=,故选A .考点:三视图.试卷第10页,总20页20.已知某几何体的三视图(单位:cm )如图所示,则该几何体的体积是( )A .108cm 3B .100 cm 3C .92cm 3D .84cm 3【答案】B 【解析】试题分析:由三视图可知原几何体如图所示:故几何体的体积1004)3421(31636=⨯⨯⨯⨯-⨯⨯=V ,答案选B . 考点:空间几何体的三视图与体积21.一个几何体的三视图如图所示,已知这个几何体的体积为h =( )AC..【答案】B 【解析】试题分析:根据题中所给的三视图,可知该几何体为底面为边长为5和6的长方形,顶点在底面上的摄影是左前方的顶点,所以有1563V h =⋅⋅⋅=,解得h =选B .考点:根据所给的几何体的三视图,还原几何体,求其体积及其他量. 22.某几何体的三视图如图所示,则它的体积是.A .283π-B .83π-C .82π-D .23π 【答案】A【解析】试题分析:此几何体是正方体挖了一个圆锥,所以体积ππ32821312222-=⨯⨯-⨯⨯=V .考点:1.三视图;2.几何体的体积.23.如图是正方体的平面展开图,则在这个正方体中N MFE DCB A①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成︒60角 ④DM 与BN 是异面直线以上四个结论中,正确结论的序号是( )A .①②③B .②④C .③④D .①③④ 【答案】C 【解析】试题分析:把展开图还原为正方体,由图可知:①BM 与ED 是异面直线,所以错误;②CN 与BE 是平行直线,所以错误; ③连接图中AN ,AC 知三角形ANC 是等边三角形,所以AN 与CN 夹角为︒60,所以CN 与BM 所成角也为︒60,正确;④因为CN 与AF 垂直,所以DM 与BN 是异面直线.考点:线面位置关系、空间想象能力、异面直线所成的角. 24.(2014•未央区二模)已知三棱锥的正视图与俯视图如图,俯视图是边长为2的正三角形,则该三棱锥的侧视图可能为( )A. B. C.D.【答案】B【解析】试题分析:利用俯视图与正视图,由三视图的画法可判断三棱锥的侧视图.解:由俯视图可知三棱锥的底面是个边长为2的正三角形,由正视图可知三棱锥的一条侧棱垂直于底面,且其长度为2故其侧视图为直角边长为2和的直角三角形,故选B.点评:本题主要考查空间几何体的直观图,以及学生的空间想象能力,是个基础题.二、填空题25.水平放置的某三角形的直观图是直角边为2的等腰直角三角形,如图,则原三角形的面积是.【答案】【解析】试题分析:根据斜二测画法的规则,分别判断原三角形对应的边长关系,即可求出三角形的面积.解:∵三角形的直观图是直角边为2的等腰直角三角形,∴根据斜二测画法的规则可知,原三角形为直角三角形,直角边分别为2,4,∴面积为=4,故答案为:..点评:本题主要考查斜二测画法的应用,熟练掌握斜二测画法的基本原则,灵活应用其中的数量关系..26.三棱柱的三视图如图所示,则该棱柱的体积等于.【答案】3【解析】试题分析:由三视图可知,此三棱柱是直三棱柱,其高为3,底面是底边长2,底边上的高为1的等腰三角形,所以该棱柱的体积等于12133创?.2考点:三视图27.已知某几何体的三视图如右,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是 cm3.1【答案】6【解析】试题分析:由三视图可知该几何体是三棱锥,底面三角形是等腰三角形,底边为1,高为1,棱锥的高为1,因此体积为61 考点:三视图及棱锥体积28.设某几何体的三视图如下(尺寸的长度单位为m )则该几何体的体积为________3m【答案】4 【解析】试题分析:由三视图可知几何体为三棱锥,底面积63421=⨯⨯=S ,高2=h ,因此体积431==Sh V ,故答案为4. 考点:几何体的体积.29.如图是某几何体的三视图(单位:cm ),则该几何体的表面积是__ ___cm 2,体积为_ __ cm 3.【答案】14+ 【解析】试题分析:解:根据三视图得出:该几何体是三棱锥,2354AB BC DB CD ====,,,,AB ⊥面BCD ,BC ⊥CD ,∴几何体的表面积是.34325124141112222⨯⨯+⨯⨯+⨯⨯+⨯=+其体积:1113424332S CBD AB ⨯⨯=⨯⨯⨯⨯=,故答案为:14+. 考点:空间几何体的三视图.30.如图,网格纸上正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为 .【解析】试题分析:该多面体为一个三棱锥ABCD,如图,其中12AB BC CD BD AD ===,,考点:三视图31.某三棱锥的主视图与俯视图如图所示,则其左视图的面积为___________.【答案】2 【解析】试题分析:三棱锥左视图为三角形,由三棱锥的主视图可知:三棱锥的高为2,所以左视图的高为2,三棱锥的俯视图宽为为2,所以左视图三角形的底面边长为2 所以左视图的面积22221=⨯⨯=s ,所以选A 考点: 三视图32.某几何体的三视图(单位:cm )如图所示,则该几何体最长棱的棱长为 cm .【答案】34【解析】由三视图还原成如图所示的几何体,该几何体为四棱锥,其中,底面是边长为3与4的矩形,且⊥1VC 平面1111D C B A ,31=VC ,由图形,可知1VA 最长,在11C VA Rt ∆中,344332221=++=VA .11B 1考点:三视图.33.一个几何体的三视图如图所示,其中正视图中ABC ∆是边长为2的正三角形,俯视图为正六边形,那么该几何体的表面积为________________ .正(主)视图俯视图侧(左)视图.【答案】()21533+ 【解析】试题分析:由条件知原几何体是正六棱锥,底面是边长为1的正六边形,侧棱长为2,h ==,一个侧面面积为1112S =⨯=,∴表面积01(11sin 60)662S =⨯⨯⨯⨯+=.考点:三视图.34.下图是一个几何体的三视图,根据图中数据可得 该几何体的表面积是_________;【答案】251π【解析】试题分析:从三视图可以看出该几何体是由一个球和一个圆柱组合而成的,<br />其表面为S=25142322)23()23(422ππππ=⨯⨯+⨯⨯+⨯ 故答案为:251π.考点:由三视图求面积、体积.三、解答题35.一个多面体的直观图及三视图如图所示,其中 M ,N 分别是 AF 、BC 的中点(1)求证:MN ∥平面CDEF ; (2)求多面体A-CDEF 的体积.【解析】试题分析:由三视图可知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且底面是一个直角三角形,由三视图中所标数据易计算出三棱柱中各棱长的值.(1)取BF 的中点G ,连接MG 、NG ,利用中位线的性质结合线面平行的充要条件,易证明结论(2)多面体A-CDEF 的体积是一个四棱锥,由三视图易求出棱锥的底面面积和高,进而得到棱锥的体积. 试题解析:解(1)证明:由三视图知,该多面体是底面为直角三角形的直三棱柱ADE-BCF ,且AB=BC=BF=4,DE=CF=,90CBF ∠=︒ ,连结BE ,M 在BE 上,连结CEEM=BM ,CN=BN ,所以MN ∥,CE CE CDEF ⊂面,所以//MN 平面CDEF (2)取DE 的中点H . ∵AD=AE ,∴AH ⊥DE , 在直三棱柱ADE-BCF 中, 平面ADE ⊥平面CDEF ,平面ADE∩平面CDEF=DE .∴AH ⊥平面CDEF .36.如图,某多面体的直观图及三视图如图所示: E,F 分别为PC,BD 的中点.(1)求证:PAD EF 平面// (2)求证:PAD PDC 平面平面⊥ (3)求此多面体的体积【答案】(1)四棱锥ABCD P -的底面是边长为2的正方形,侧面PAD 是等腰三角形,2==PD PA ,且ABCD PAD 平面平面⊥.连结AC ,则F 是AC 的中点。
三视图求解技巧
三视图求解技巧通过三视图求立体图形的表面积和体积1、主俯长对正、主左高平齐、俯左宽相等即:主视图和俯视图的长要相等主视图和左视图的高要相等左视图和俯视图的宽要相等。
2、三视图的一些性质主视图和左视图如果都是三角形的必然是椎体,要么是棱锥要么是圆锥。
还有两种特殊的情况:1、棱锥和半圆锥的组合体。
2、半圆锥。
到底如何如确定就是通过俯视图观察。
(1)若俯视图是三角形时,就是三棱锥。
(2)若俯视图是多边形时,就是多棱锥。
(3)若俯视图是半圆和三角形时,就是是棱锥和半圆锥的组合体。
(4)若俯视图是半圆时,就是半圆锥。
(5)注意虚线和实线的意义,虚线代表的是看不到的线,实线代表的是能看的见得都是一种平行投影所创造出来的。
3、三视图求体积时候,先观察主视图和侧视图,注意主视图和侧视图的高一定都是一样的,并且肯定是立体图形的高,先通过观察判定图形到底是什么立体图形,看看到底是棱锥,棱柱,还是组合体,通常的组合体都是较为简单的组合体,无需过多考虑。
(1)如果是棱锥的话,就看俯视图是什么图形,判定后算出俯视图的面积即可,应用体积公式。
(2)如果是棱柱的话,同样看俯视图的图形,求出面积,应用公式即可。
(3)如果是组合体,要分辨出是哪两种规则图形的组合,分别算出体积相加即可。
4、三视图求表面积的时候解题步骤先利用原先判定的方法来判定立体几何图形到底是什么形状的,注意:如果是组合体的时候一定不要你忘了组合体重合的部分是要去掉的。
关键就是考到棱锥时候怎么还原棱锥的图。
首先俯视图肯定是底面图形,关键是找到顶点在哪里,若底面图形内部有一条实线,则顶点投影一定在实线与底面图形边的交点上。
若底面图形内部有多条实线,则顶点投影一定是几个实线的交点,根据投影点找出顶点即可,图形完成。
若底面图形内部没有实线,则顶点的投影就在地面图形的边上面,具体在哪里结合主视图和左视图即可。
若底面图形内部没有实线,则顶点的投影就在地面图形的边上面,并且主视图和侧视图都是直角三角形时候,则顶点的投影一定在底面图形的端点位置。
空间几何体三视图、表面积及体积
面积,h为高);
4 3 (7)球的表面积和体积公式:S=4πR ,V= πR (R为球的半径). 3
2
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
知识 回扣
必记知识 重要结论
1.一个物体的三视图的排列规则 俯视图放在正视图的下面,长度与正视图的长度一样,侧(左)视图放在 正(主)视图的右面,高度与正(主)视图的高度一样,宽度与俯视图的宽 度一样,即“长对正、高平齐、宽相等”.
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
小题 速解
类型一
三视图与直观图的辨识和画法
[ 例1]
某几何体的正视图和侧视图均如图所示,则该几何体的俯视图 )
不可能是(
(基本法) 从正视图和侧视图想像直观图,再检验答案. 若下部分是圆柱,上部分可以是圆柱或者棱柱,A、B、C适合题意, 若是D答案,其正视图应为(如右图)中间有虚线.
2 1 3 到的,根据三视图可知其表面积为6 2 - ×1×1 +2× ×( 2 4
知识回扣 小题速解
解题绝招
限时速解训练
首页
上页 下页
尾页
知识 回扣
必记知识 重要结论
2.(1)设长方体的相邻的三条棱长为a、b、c则对角线长为 a2+b2+c2 (2)棱长为a的正方体的体对角线长等于外接球的直径,即 3a=2R. (3)若球面上四点P、A、B、C构成的线段PA、PB、PC两两垂直,且PA =a,PB=b,PC=c,则4R2=a2+b2+c2,把有关元素“补形”成为 一个球内接长方体(或其他图).
知识回扣 小题速解
解题绝招
高考数学立体几何专题1空间立体几何的三视图、表面积和体积
专题1空间立体几何的三视图、表面积和体积【考点点击】1.以选择、填空题形式考查空间位置关系的判断,及文字语言、图形语言、符号语言的转换,难度适中;2.以熟悉的几何体为背景,考查多面体或旋转体的侧面积、表面积和体积计算,间接考查空间位置关系的判断及转化思想等,常以三视图形式给出几何体,辅以考查识图、用图能力及空间想象能力,难度中等.3.几何体的三视图与表(侧)面积、体积计算结合;【重点知识】一、空间几何体1.柱体、锥体、台体、球的结构特征名称几何特征棱柱①有两个面互相平行(底面可以是任意多边形);②其余各面都是平行四边形,并且每相邻两个四边形的公共边互相平行棱锥①有一个面是多边形(底面);②其余各面是有公共顶点的三角形.棱台①底面互相平行;②所有侧棱延长后交于一点(即原棱锥的顶点)圆柱①有两个互相平行的圆面(底面);②有一个侧面是曲面(母线绕轴旋转一周形成的),且母线与底面垂直圆台①底面互相平行;②有一个侧面是曲面,可以看成母线绕轴旋转一周形成的球①有一个曲面是球面;②有一个球心和一条半径长R,球是一个几何体(包括内部),可以看成半圆以它的直径所在直线为旋转轴旋转一周形成的2.柱体、锥体、台体、球的表面积与体积名称体积表面积棱柱V棱柱=Sh(S为底面积,h为高)S棱柱=2S底面+S侧面棱锥V棱锥=13Sh(S为底面积,h为高)S棱锥=S底面+S侧面棱台V棱台=13h(S+SS′+S′)S棱台=S上底+S下底+S侧面圆柱V圆柱=πr2h(r为底面半径,h为高)S圆柱=2πrl+2πr2(r为底面半径,l为母线长)圆锥V圆锥=13πr2h(r为底面半径,h为高)S圆锥=πrl+πr2(r为底面半径,l为母线长)圆台V圆台=13πh(r2+rr′+r′2)S圆台=π(r+r′)l+πr2+πr′2球V球=43πR3(R为球的半径)S球=4πR2(R为球的半径)3.空间几何体的三视图和直观图(1)空间几何体的三视图三视图的正视图、侧视图、俯视图分别是从物体的正前方、正左方、正上方看到的物体轮廓线的正投影围成的平面图形,三视图的画法规则为“长对正、高平齐、宽相等”.(2)空间几何体的直观图空间几何体直观图的画法常采用斜二测画法.用斜二测画法画平面图形的直观图规则为“轴夹角45°(或135°),平行长不变,垂直长减半”.4.几何体沿表面某两点的最短距离问题一般用展开图解决;不规则几何体求体积一般用割补法和等积法求解;三视图问题要特别留意各种视图与观察者的相对位置关系.【考点分析】考点一空间几何体的结构【例1】已知正三棱锥PABC ,点P ,A ,B ,C 都在半径为3的球面上,若PA ,PB ,PC 两两相互垂直,则球心到截面ABC 的距离为________.【答案】33【解析】正三棱锥PABC 可看作由正方体PADCBEFG 截得,如图所示,PF 为三棱锥PABC 的外接球的直径,且PF ⊥平面ABC.设正方体棱长为a ,则22,2,1232=====BC AC AB a a ,3223222221=⨯⨯⨯=∆ABC S ,由,PAC B ABC P V V --=得222213131⨯⨯⨯⨯=⋅∆ABC S h ,所以332=h 因此球心到平面ABC 得距离为33考点二三视图、直观图【例2】下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为()(A )20π(B )24π(C )28π(D )32π【答案】C【解析】由题意可知,圆柱的侧面积为12π2416πS =⋅⋅=,圆锥的侧面积为2π248πS =⋅⋅=,圆柱的底面面积为23π24πS =⋅=,故该几何体的表面积为12328πS S S S =++=,故选C.【例3】某三棱锥的三视图如图所示,则该三棱锥的表面积是()A .2+5B .4+5C .2+25D .5【答案】C【解析】该三棱锥的直观图如图所示:过D 作DE ⊥BC ,交BC 于E ,连接AE ,则BC =2,EC =1,AD =1,ED =2,ABCABD ACD BCD S S S S S ∆∆∆∆+++=表5225221152115212221+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=考点三几何体的表面积【例4】长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为【答案】14π.【解析】球的直径是长方体的体对角线,所以222232114,4π14π.R S R =++===【例5】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是328π,则它的表面积是()(A )17π(B )18π(C )20π(D )28π【答案】A【解析】该几何体直观图如图所示:是一个球被切掉左上角的81,设球的半径为R ,则32834873ππ=⨯=R V ,解得R 2=,所以它的表面积是87的球面面积和三个扇形面积之和πππ172413248722=⨯⨯+⨯⨯=S 故选A .考点四几何体的体积【例6.】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A .πB .3π4C .π2D .π4【答案】B【解析】绘制圆柱的轴截面如图所示,由题意可得:11,2AC AB ==,结合勾股定理,底面半径2213122r ⎛⎫=-= ⎪⎝⎭,由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h ⎛==⨯⨯= ⎝⎭,故选B.考点五与球的组合体问题纵观近几年高考对于组合体的考查,重点放在与球相关的外接与内切问题上.要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识是学生掌握最为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理.本文就高中阶段出现这类问题加以类型的总结和方法的探讨.【例7】棱长为1的正方体1111ABCD A B C D -的8个顶点都在球O 的表面上,E F ,分别是棱1AA ,1DD 的中点,则直线EF 被球O 截得的线段长为()A .22B .1C .212+D .2解:由题意可知,球为正方体的外接球.平面11AA DD 截面所得圆面的半径12,22AD R ==11EF AA DD ⊂ 面,∴直线EF 被球O 截得的线段为球的截面圆的直径22R =.【例8】正四棱柱1111ABCD A B C D -的各顶点都在半径为R 的球面上,则正四棱柱的侧面积有最值,为.【例9】在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且AM MN ⊥,若侧棱23SA =,则正三棱锥S ABC -外接球的表面积是.解:如图,正三棱锥对棱相互垂直,即,AC SB ⊥又,,,.SB MN MN AC MN AM MN SAC ∴⊥⊥∴⊥∥又平面于是,,,SB SAC SB SA SB SC ⊥∴⊥⊥平面从而.SA SC ⊥此时正三棱锥S ABC -的三条侧棱互相垂直并且相等,故将正三棱锥补形为正方体.球的半径23,3,436.2R SA R S R ππ=∴=∴==【例10】一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为()A .12πB .C .3πD .【答案】C【解析】把原来的几何体补成以DA DC DP 、、为长、宽、高的长方体,原几何体四棱锥与长方体是同一个外接球,2=R l ,=2R ,234434S R πππ==⨯=球.【例11】在三棱锥P -ABC 中,PA =,侧棱PA 与底面ABC 所成的角为60°,则该三棱锥外接球的体积为()A .πB.3π C.4πD.43π解:如图所示,过P 点作底面ABC 的垂线,垂足为O ,设H 为外接球的球心,连接,,AH AO 因60,PAO PA ∠== 故2AO =,32PO =又△AHO 为直角三角形,222,,AH PH r AH AO OH ==∴=+22233344(),1,1.2233r r r V ππ∴=+-∴=∴=⨯=【例12】矩形ABCD 中,4,3,AB BC ==沿AC 将矩形ABCD 折成一个直二面角B ACD --,则四面体ABCD 的外接球的体积是()A.π12125 B.π9125C.π6125D.π3125解:由题意分析可知,四面体ABCD 的外接球的球心落在AC 的中点,此时满足,OA OD OB OC ===522AC R ∴==,343V R π=1256π=.【总结归纳】1个特征——三视图的长度特征“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽。
人教版九年级数学全册教案附教学反思:29.2 第3课时 由三视图确定几何体的面积或体积
29.2 三视图第3课时 由三视图确定几何体的面积或体积1.能根据三视图求几何体的侧面积、表面积和体积等;(重点)2.解决实际生活中与面积、体积等方面有关的实际问题.(难点)一、情境导入已知某混凝土管道的三视图,你能根据三视图确定浇灌每段这种管道所需混凝土的体积吗(π=3.14)?二、合作探究探究点:由三视图确定几何体的面积或体积【类型一】 由三视图求几何体的侧面积已知如图为一几何体的三视图:(1)写出这个几何体的名称;(2)若从正面看的长为10cm ,从上面看的圆的直径为4cm ,求这个几何体的侧面积(结果保留π).解析:(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的侧面积即可.解:(1)该几何体是圆柱;(2)∵从正面看的长为10cm ,从上面看的圆的直径为4cm ,∴该圆柱的底面直径为4cm ,高为10cm ,∴该几何体的侧面积为2πrh =2π×2×10=40π(cm 2).方法总结:解题时要明确侧面积的计算方法,即圆柱侧面积=底面周长×圆柱高. 变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】 由三视图求几何体的表面积如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.解析:先由三视图得到两个长方体的长,宽,高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.解:根据三视图可得:上面的长方体长6mm,高6mm,宽3mm,下面的长方体长10mm,宽8mm,高3mm,这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=268+108=376(mm2).答:这个几何体的表面积是376mm2.方法总结:由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律—“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.注意:求解组合体的表面积时重叠部分不应计算在内.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】由三视图求几何体的体积某一空间图形的三视图如图所示,其中主视图是半径为1的半圆以及高为1的矩形;左视图是半径为1的四分之一圆以及高为1的矩形;俯视图是半径为1的圆,求此图形的体积(参考公式:V球=43πR3).解析:由已知中的三视图,我们可以判断出该几何体的形状为下部是底面半径为1,高为1的圆柱,上部是半径为1的14球组成的组成体,代入圆柱体积公式和球的体积公式,即可得到答案.解:由已知可得该几何体是一个下部为圆柱,上部为14球的组合体.由三视图可得,下部圆柱的底面半径为1,高为1,则V圆柱=π,上部14球的半径为1,则V14球=13π,故此几何体的体积为错误!.方法总结:由三视图求几何体的体积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律“长对正,高平齐,宽相等”确定几何体的长、宽、高等相关数据值.再根据相关公式计算几何体各部分的体积并求和.变式训练:见《学练优》本课时练习“课堂达标训练”第6题【类型四】由三视图确定几何体面积或体积的实际应用杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8g/cm3,1kg防锈漆可以涂4m2的铁器面,三视图单位为cm)?解析:从主视图和左视图可以看出这个几何体是由前后两部分组成的,呈一个T字形状.故可以把该几何体看成两个长方体来计算.解:∵工件的体积为(30×10+10×10)×20=8000cm3,∴重量为8000×7.8=62400(g)=62.4(kg),∴铸造5000件工件需生铁5000×62.4=312000(kg)=312(t).∵一件工件的表面积为2×(30×20+20×20+10×30+10×10)=2800cm2=0.28m2.∴涂完全部工件需防锈漆5000×0.28÷4=350(kg).方法总结:本题主要考查了由三视图确定几何体和求几何体的面积;关键是得到几何体的形状,得到所求的等量关系的相对应的值.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.由三视图求几何体的侧面积;2.由三视图求几何体的表面积;3.由三视图求几何体的体积.题的根本,通过具体的例题,让学生进行练习,巩固学习效果.。
三视图与体积面积计算
如图,直三棱柱的侧棱长和底面边长均为2,正视 图和俯视图如图所示,则其侧视图的面积为 ()
.
答案:C
3.若一个底面是正三角形的三棱柱的正视图如 图所示,则其侧面积等于( )
A. C.2 3
答案:D
B.2 D.6 3
4.一个几何体的三视图如图所示,则这个几何 体的体积等于( )
A.12
切 入 点 : 利 用 直 截 面 面 积 与 侧 棱 的 积 求 侧 面 积 ; 或 用 “ 分 解 法 ” 求 出 各 侧 面 面 积 , 从 而 得 全 面 积 . 运 用 此 法 的 关 键 在 于 证 明 侧 面 BC C 1B 1是 矩 形 .
解析:如图,作BD AA1于D,连接CD. 可证BAD≌CAD. CDA BDA 90,即AA1 CD. 而BD CD D, AA1 平面BCD,即平面BCD为直截面.
变 式 1(2 0 10 广 东 卷 )如 右 图 , ABC为 正 三 角 形 , AA / /BB / / C C , C C 平 面 A B C , 且 3A A B B C C A B, 则 多 面 体 A B C A B C 的 正 视 图 ( 也
称 主 视 图 )是
易知BD CD 4 sin60 2 3.
1 S侧 c直截面 l (2 3 2 3 4) 8
32 32 3,
S全 2S底 S侧 40 3 32.
2
S BCD
1 2
4
(2
3)2 22 4
2,
V S BCD AA1 4 2 8 32.
例 3 半 径 为 R 的 球 有 一 个 内 接 圆 柱 , 这 个 圆 柱 的 底 面 半 径 为 何 值 时 , 它 的 侧 面 积 最 大 ? 最 大 值 是 多 少 ?
利用三视图求几何体的表面积和体积
6
5
由三视图求几何体的体积和表面积的思路
1、由三视图确定几何体的形状 (1)由俯视图确定几何体的底面 (2)根据正视图或侧视图确定几何体侧棱与侧面特征,调整 实线和虚线所对应的棱、面的位置 (3)确定几何体直观图形状 2、由题目中的数据进行代入公式求解
布置作业:
《优化设计》p22-基础巩固3,4,6,7 P24例2,变式训练2, P25-基础巩固7,9
积等于
.
解析:该几何体如图所示,挖去的圆锥的母线长为
62 22 2 10
则圆锥的侧面积等于 4 10 圆柱的侧面积为2π×2×6=24π,圆柱的一个底面面 积为 22 4 ,所以组合体的表面积
为 4 10 24 4 4 10 28 .
答案: 4 10 28
题型二:三视图有关的体积计算
1 3Байду номын сангаас
(S
SS' S')h
题型一:三视图有关面积计算
例1.已知一个几何体的三视图如图所示,则这个几何体的表面积为( )
A.72 B.66 C.60 D.30
解析:由所给三视图可知该几何体为一个三棱柱,且底面为
直角三角形,直角边长分别为3和4,斜边长为5,三棱柱的高为5,
如图所示,所以表面积为
2
温故知新
1、三视图
画三视图的三大原则
正俯一样长,正侧一样高,侧俯一样宽
温故知新
面积
圆柱的表面积:S圆柱 2r(r l) 圆锥的表面积:S圆锥 r(r l) 圆台的表面积:S圆台 (r 2 r'2 rl r'l)
体积
柱体的体积:V柱 Sh
锥体的体积:V锥
1 Sh 3
台体的体积:V台
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三视图与体积表面积的计算
1、一个几何体的三视图如图所示,则这个几何体的体积等于( )
A .
B .
C .
D .
2、用单位立方块搭一个几何体,使它的主视图和俯视图如右
图所示,则它的体积的最小值与最大值分别为( ) A .与 B .与 C .与 D .与
3、若某空间几何体的三视图如图所示,则该几何体的体积是( )
(A )2 (B )1
(C )
(D )
4、将正三棱柱截去三个角(如图1所示分别是三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )
5、某圆柱被一平面所截得到的几何体如图(1)所示,若该几何体的正视图是等腰直角三角
形,俯视图是圆(如右图),则它的侧视图是( )
6、如图,正方体ABCD-的棱长为2,动点E 、F 在棱上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,E=x ,DQ=y ,D P=z(x,y,z大于零),则四面体PE FQ的体积( )
361a 321
a 332a 36
5a 913710101610152
313
A B C ,,GHI △1111A B C D 11A B 1A E F D
I
A H G B
C E
F D A
B
C
侧视 图1
图2 B
E
A .
B
E
B .
B
E
C .
B
E
D .
主视图
(A)与x,y,z都有关 (B)与x有关,与y,z无关 (C)与y有关,与x,z无关 (D)与z有关,与x,y无关
7、.如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )
A .
B .
C .
D .8、在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图( )
9、某几何体的三视图如图所示,则它的体积是( )
A .
B .
C .
D .
10、已知中,AB=2,BC =1,,平面ABC 外一点P 满足P A=PB=PC=2,则三棱锥P —ABC 的体积是( ) A B C D 11、右图是一个多面体的三视图,则其全面积为( ) A B C D 12、设正方体的棱长为23
3,则它的外接球的表面积为( )
A .
B .2π
C .4π
D .
283π-
83π
-
82π-23π
ABC ∆120ABC ∠=664π3
8π3
4
13、一个几何体的三视图都是如图所示得正方形及其对角线,则该几何体的体积等于( )
(A) 8/3 (B) 4/3 (C)2/3 (D)2
14、如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且均为正三角形,EF ∥AB ,EF=2,则该多面体的体积为 ( ) A. B . C .
D .
15、如图,四棱柱ABCD -A ’B ’C ’D ’中,底面ABCD 是为正方形,侧棱AA ’⊥底面 ABCD ,AB =23,AA ’=6.以D 为圆心,DC ’为半径在侧面BCC ’B ’上画弧,当半径的端点完整地划过C E '时,半径扫过的轨迹形成的曲面面积为 A .π469 B .π439 C .π269 D .π2
3
9
16、如图,半径为2的半球内有一内接正六棱锥,则此正六棱锥的侧面积是____ ____.
17、若某几何体的三视图(单位:)如图所示,
则此几何体的体积是 12 .
18、某几何体的三视图,其中正视图是腰长为的等腰三角形, 侧视图是半径为1的半圆,则该几何体的表面积 是 . 答案 答案
DCBAD DBDAD CCBAA
BCF ADE ∆∆、32
333
42
3P ABCDEF
-cm 3
cm 2)3(2+=π
S E D
A
C
D ’
C ’
B
A ’
B
F。