过程工程原理实验指导书
《环境工程原理实验指导书》-环境工程专业
环境工程原理实验指导书目录前言----------------------------------------------------------------------------------------------------2实验守则-------------------------------------------------------------------------------------------------3对学生基本要求----------------------------------------------------------------------------------------3实验一化工流体过程综合实验-------------------------------------------------------------------4实验二恒压过滤常数测定实验-------------------------------------------------------------------12实验三传热综合实验-------------------------------------------------------------------------------16实验四填料吸收塔实验----------------------------------------------------------------------------23、前言21世纪人类将进入知识经济的时代,人们正将其视为继农业经济、工业经济之后人类社会所面临的又一次生产方式、生活方式乃至思维方式的历史性变革。
面对知识经济的到来,我国高等教育改革势在必行,以培养出知识面宽广且具有较强创新能力的人才。
化工原理实验作为化工类创新人才培养过程中重要的实践环节,在化工教育中起着重要的作用,它具有直观性、实践性、综合性和创新性,而且还能培养学生具有一丝不苟、严谨的工作作风和实事求是的工作态度。
药物制剂工程作业指导书
药物制剂工程作业指导书一、引言药物制剂工程是制造药物的过程中的关键环节之一。
本指导书旨在帮助学生了解药物制剂工程的基本原理和操作方法,并提供相关实验指导和注意事项。
二、实验目的本实验旨在:1. 熟悉药物制剂工程的基本流程和设备;2. 掌握制剂工程中常用的操作技巧;3. 培养学生的团队合作能力和实验室安全意识。
三、实验器材和药品1. 实验器材:- 容器:烧杯、量筒、漏斗等;- 设备:球磨机、搅拌机、离心机等;- 检测仪器:高效液相色谱仪、紫外可见分光光度计等。
2. 药品:- 药物原料:根据实验要求配备;- 辅助药剂:乳化剂、分散剂等。
四、实验步骤1. 准备工作:a. 检查所需的实验器材和药品,并按照要求准备好;b. 穿戴实验室安全防护用品,包括实验服、手套和护目镜等。
2. 药物制剂的配制:a. 按照配方计算所需的药物原料和辅助药剂的用量;b. 将药物原料精确称量,并按照工艺要求进行混合;c. 通过球磨机或搅拌机等设备进行溶解或乳化处理。
3. 工艺参数的调整:a. 根据实验要求,确定工艺参数,如温度、pH值等;b. 调整设备操作参数,如转速、加热时间等。
4. 药物制剂的检测:a. 取制剂样品进行理化性质检测,如浓度、溶解度等;b. 利用高效液相色谱仪或紫外可见分光光度计等仪器进行药物含量和质量的检测。
五、实验注意事项1. 实验操作时要穿戴实验服并佩戴手套和护目镜,确保安全;2. 制剂配制过程中要注意药品的准确称量和混合均匀;3. 调整工艺参数时,要根据实验要求和设备特性合理选择;4. 制剂样品检测时要按照检测方法和流程操作,并记录结果。
六、实验结果分析根据实验所得的数据和检测结果进行分析,评估制剂工程的效果,并提出改进建议。
七、实验总结通过本次实验,学生们对药物制剂工程有了更深入的了解,掌握了药物制剂的基本原理和操作技巧。
实验过程中要注意安全,并合理调整工艺参数以获得理想的制剂效果。
八、扩展延伸学生可以进一步学习药物制剂工程中其他技术和方法,并拓展相关领域的知识。
过程控制实验指导书
过程控制实验指导书THKGK-1过程控制实验装置的组成和各部分使用说明THKGK-1型过程控制实验装置是根据自动化专业及相关专业教学的特点,吸收了国内外同类实验装置的特点和长处,经过精心设计,多次实验和反复论证,向广大师生推出一套全新的实验设备。
该设备可以满足《过程控制》、《自动化仪表》、《工程检测》、《计算机控制系统》等课程的教学实验、课程设计等。
整个系统结构紧凑、功能多样、使用方便,既能进行验证性、研究性实验,又能提供综合性实验。
本实验装置可满足本科、大专及中专等不同层次的教学实验要求,还可为科学研究的开发提供实验手段。
本实验装置的控制信号及被控信号均采用IEC标准,即电压0~5V或1~5V,电流0~10mA或4~20mA。
实验系统供电要求为单相交流220V±10%,10A;外型尺寸为:182×160×70,重量:380Kg。
装置特点本实验装置具有以下特点:1、多种被控参数:液位、压力、流量、温度。
2、多种控制方式:位式控制、PID控制、智能仪表控制、单片机控制、PLC控制、计算机控制等。
3、多种计算机控制软件:西门子PROTOOL-CS组态软件、北京昆仑公司的MCGS组态软件以及本公司开发的上位机监控软件,另外还可以用台湾HITECH公司的ADP6.0软件与PLC 相连进行控制。
4、丰富的计算机控制算法:P、PI、PID、死区PID、积分分离、不完全积分、模糊控制、神精元控制、基于SIMULINK的动态参数自适应补偿控制等。
5、开放的软件平台:在我们提供的软件平台上,学生既可以利用我们所提供的算法程序进行实验,又可以用自己编写的PLC程序、MATLAB`程序等进行实验,还可以利用人机界面(触摸屏)的组态再结合PLC的编程来进行控制实验。
6、灵活多样的实验组合:可以很方便地对控制方式与被控参数进行不同组合,得到自己需要的单回路、多回路等多种控制系统。
系统组成被控对象包括上水箱、下水箱、复合加热水箱以及管道。
化工原理实验指导书
化工原理实验指导书化学与化学工程系化学工程教研室2012.09目录实验一雷诺实验.................................................. 错误!未定义书签。
实验二柏努利实验 ............................................. 错误!未定义书签。
实验三流体流动阻力测定 ................................. 错误!未定义书签。
实验四离心泵特性曲线测定 ............................. 错误!未定义书签。
实验五对流给热系数测定 ................................. 错误!未定义书签。
实验六填料吸收塔传质系数测定实验 ............. 错误!未定义书签。
实验七筛板精馏塔系统实验 ............................. 错误!未定义书签。
实验八干燥速率曲线的测定实验 ..................... 错误!未定义书签。
实验九转盘萃取塔实验 ..................................... 错误!未定义书签。
实验十膜分离实验装置 ..................................... 错误!未定义书签。
实验一 雷诺实验一、实验目的1.观察流体在管内流动的两种不同流型。
2.测定临界雷诺数。
二、基本原理流体流动有两种不同型态,即层流(滞流)和湍流(紊流)。
流体作层流流动时,其流体质点作直线运动,且互相干行;湍流时质点紊乱地向各个方向作不规则的运动,但流体的主体向某一方向流动。
雷诺准数是判断流动型态的准数,若流体在圆管内流动,则雷诺准数可用下式表示:μρdu =Re式中,Re ——雷诺准数,无因次; d ——管子内径,mm ; u ——流体流速,m /s ; ρ——流体密度,kg /m3; μ——流体粘度;Pa·s 。
过程装备与控制工程专业实验指导书
ห้องสมุดไป่ตู้
大连大学 过控教研室
2013.9
目
录
1 内压容器应力测试 ................................................................................. 1 2 爆破片爆破压力测定 ............................................................................. 6 3 化工设备综合性能测试 ....................................................................... 10 4 精馏塔性能测试与控制 ....................................................................... 23 5 换热器性能综合测试 ........................................................................... 32 6 容积式压缩机性能测试 ....................................................................... 44 7 中空纤维超滤膜分离 ........................................................................... 51 8 超临界流体萃取 ..................................................................................... 3 9 流体机械拆装实验 ................................................................................. 2 附录 1 BZ2205C 静态电阻应变仪及使用方法 .......................................... 5 附录 2 过控专业实验综合装置简介-外压失稳 ...................................... 8
化工原理实验指导书
化工原理实验指导书目录实验一流体流动阻力的测定 (1)实验二离心泵特性曲线的测定................................................5实验三传热系数测定实验 (7)实验四筛板式精馏塔的操作及塔板效率测定 (9)实验五填料塔吸收实验............................................................12演示实验柏努利方程实验 (14)雷诺实验 (16)实验一 流体流动阻力的测定一、实验目的1、了解流体在管道内摩擦阻力的测定方法;2、确定摩擦系数λ与雷诺数R e的关系。
二、基本原理由于流体具有粘性,在管内流动时必须克服内摩擦力。
当流体呈湍流流动时,质点间不断相互碰撞,引起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。
流体的粘性和流体的涡流产生了流体流动的阻力。
在被侧直管段的两取压口之间列出柏努力方程式,可得:ΔP f =ΔPL —两侧压点间直管长度(m)d —直管内径(m) λ—摩擦阻力系数 u —流体流速(m /s)ΔP f —直管阻力引起的压降(N/m2) µ—流体粘度(Pa.s)ρ—流体密度(kg/m3)本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系列流量下的ΔP f 值,将已知尺寸和所测数据代入各式,分别求出λ和Re,在双对数坐标纸上绘出λ~R e曲线 。
三、实验装置简要说明水泵将储水糟中的水抽出,送入实验系统,首先经玻璃转子流量计测量流量,然后送入被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。
被测直管段流体流动阻力△P 可根据其数值大小分别采用变压器或空气—水倒置U 型管来测量。
四、实验步骤:1、向储水槽内注蒸馏水,直到水满为止。
2、大流量状态下的压差测量系统,应先接电预热10-15分钟,观擦数字仪表的初始值并记录后方可启动泵做实验。
过程控制实验指导书
实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应测试方法,并记录相应液位的响应曲线;2.根据实验得到的液位阶跃响应曲线,用相应的方法确定被测对象的特征参数K、T和传递函数;3.掌握同一控制系统采用不同控制方案的实现过程。
二、实验设备1.实验对象及控制屏、SA-11挂件一个、SA-13挂件一个、SA-14挂件一个、计算机一台(DCS需两台计算机)、万用表一个;2.SA-12挂件一个、RS485/232转换器一个、通讯线一根;3.SA-21挂件一个、SA-22挂件一个、SA-23挂件一个;4.SA-31挂件一个、SA-32挂件一个、SA-33挂件一个、主控单元一个、数据交换器两个,网线四根;5.SA-41挂件一个、CP5611专用网卡及网线;6.SA-42挂件一个、PC/PPI通讯电缆一根。
三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图2-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h为其输出变量,则该被控过程的数学模型就是h与Q1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q2=Adtdh(2-1)将式(2-1)表示为增量形式ΔQ1-ΔQ2=Adthd(2-2)式中:ΔQ1,ΔQ2,Δh——分别为偏离某一平衡状态的增量;A——水箱截面积。
在平衡时,Q1=Q2,dtdh=0;当Q1发生变化时,液位h随之变化,水箱出图2-1 单容自衡水箱特性测试系统口处的静压也随之变化,Q2也发生变化(a)结构图(b)方框图。
由流体力学可知,流体在紊流情况下,液位h与流量之间为非线性关系。
工程流体力学实验指导书
(三)伯努利能量方程实验测定一、实验目的1、观察流体流经能量方程试验管的能量转化情况,对实验中出现的现象进行分析,加深对能量方程的理解;2、掌握流速、流量、压强等动水力学水力要素的实验量测技能:3、验证静压原理。
4、进一步掌握有压管流中,动能、压能和位置能三者之间的转换关系。
5、测定管道的测压管水头和总水头值,并绘制管道的测压管水头线及总水头线。
二、实验设备本实验台由压差板、实验管道、水泵、实验桌和计量水箱等组成。
图3.1 能量方程实验台示意图每一组测压管都有两种不同的测点位置:一种是测点处于管道中心位置,称为毕托管测压管(后续课堂内容会讲到),测量对应截面的总水头g u g p Z H 22++=ρ(全压)。
注意这里的速度u 为管道中心处的点流速,与截面平均速度v 有所差异。
但在紊流状态下两者之间差异有限。
另一种是测点处于管道壁面,称为普通测压管,测量对应截面的静压头,即只包含Z 和gp ρ两项。
全压与静压之差,称为动压,即gu 22。
三、实验准备工作1、熟悉实验设备,分清毕托管测压管和普通测压管的区别以及各自表征的物理量。
2、接上各导压胶管;3、检验测压板是否与水平线垂直;4、启动电泵使水工作循环,检查各处是否有漏水的现象。
5、用手堵住出水口突然放水,重复几次,直至使实验管中的气泡排除。
关闭尾阀,检查各个测压管水位高度是否在同一水平线上,如果不在同一水平线上,说明有气泡存在,必须全部排除。
否则测量数据无效。
四、实验步骤1、验证静压原理:启动电泵,关闭给水阀,此时能量方程试验管上各个测压管的液柱高度相同,因管内的水不流动没有流动损失,因此静水头的连线为一平行基准线的水平线,即在静止不可压缩均匀重力流体中,任意点单位重量的位势能和压力势能之和(总势能)保持不变,测点的高度和测点位置的前后无关,记下四组数据于表二的最下方格中。
2、测速:能量方程试验管上的四组测压管的任一组都相当于一个毕托管,可测得管内任一点的流体点速度,本试验已将测压管开口位置在能量方程试验管的轴心,故所测得的动压为轴心处的,即最大速度。
软件工程实验指导书 2021
软件工程实验指导书 2021一、实验目的软件工程是一门将理论与实践紧密结合的学科。
通过本实验课程,旨在帮助学生深入理解和掌握软件工程的基本原理、方法和技术,培养学生的软件开发能力、团队协作能力和问题解决能力,为今后从事软件开发及相关工作打下坚实的基础。
二、实验环境1、操作系统:Windows 10 或 Linux(如 Ubuntu)。
2、开发工具:Eclipse、IntelliJ IDEA 等集成开发环境(IDE)。
3、数据库管理系统:MySQL、Oracle 等。
4、版本控制系统:Git。
三、实验要求1、学生应在实验前认真预习实验内容,熟悉相关的理论知识和技术。
2、实验过程中,学生应严格遵守实验室的规章制度,爱护实验设备。
3、学生应独立完成实验任务,不得抄袭他人的实验成果。
4、实验结束后,学生应及时整理实验数据和结果,撰写实验报告。
四、实验内容实验一:软件需求分析1、实验目的掌握软件需求分析的方法和过程。
学会使用需求分析工具,如 UML 用例图、活动图等。
2、实验内容确定软件项目的目标和范围。
对用户的需求进行调研和分析,收集相关的信息和资料。
绘制用例图和活动图,描述系统的功能和业务流程。
编写需求规格说明书。
3、实验步骤第一步:明确软件项目的背景和目标,与相关人员进行沟通和交流,了解项目的需求和期望。
第二步:通过问卷调查、用户访谈等方式收集用户的需求,对需求进行整理和分类。
第三步:使用 UML 工具绘制用例图和活动图,对系统的功能和业务流程进行建模。
第四步:根据需求分析的结果,编写需求规格说明书,详细描述系统的功能、性能、数据、安全等方面的需求。
实验二:软件设计1、实验目的掌握软件设计的原则和方法。
学会使用设计模式,提高软件的可维护性和可扩展性。
2、实验内容进行软件体系结构设计,选择合适的架构模式。
设计软件的模块结构和接口。
运用设计模式对软件进行优化。
3、实验步骤第一步:根据需求规格说明书,确定软件的体系结构,如分层架构、微服务架构等。
《工程热力学》实验指导书
喷管压力流量变化规律实验一、实验目的1、巩固和验证气流在喷管中流动的基本原理,熟悉不同形式喷管的机理。
2、了解气流在喷管中流速、压力、流量的变化规律及测试方法。
3、加深对临界状态基本概念的理解。
二、实验原理1、喷管中气体流动的基本规律在亚音速等熵流动中,气体在渐缩管里,速度增加,而压力、密度降低;在渐扩管里,速度减小而压力、密度增大。
在超音速等熵流动中,情况正好与亚音速流动的特点相反,气体在渐缩管中速度减小而压力、密度增大,在渐扩管中速度增加,压力、密度减小。
因此要想获得超音速气流,就必要使亚音速气流首先在渐缩管中加速,当气流被加速到音速,即达到临界状态时,就要改用渐扩管,以使气流继续加速到超音速。
2、喷管中流量的计算根据气体一元稳定等熵流动的连续方程、能量方程、绝热气体状态方程、等熵过程方程,得到气流在喷管中流量m 的表达式为:由式(1)可以看出:当P 2=P 0时,m=0;因此,只有在0<P 2≤P c ,渐缩喷管的出口压力或缩放喷管的喉部压力达到临界压力时,喷管中的流量m 将存在最大值m max ,计算如下:很显然,满足式(2)的P 2即为临界值P c 。
对应于该截面上的气流速度W 2将达到音速a 。
将k=1.4代入(2)式得:P 2=P c =0.528P 0 (3) 将式(2)代入(1)式得m max 的表达式为:)(1/12102202002222s kg p p p p v p k k f v w f m k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⋅-==+)(,得令21201022-⎪⎭⎫⎝⎛+==k kk p p dp dm喷管中的实际流量前面(1)(4)式给出理想流动的流量表达式,实际上,由于气流与管壁的摩擦所产生的边界层,减少了流动截面积。
因此,实际流量是小于理论流量的。
二者之比称为流量系数。
本实验台是采用锥形入口孔板流量计来测量喷管的实际流量。
根据孔板流量计上所测量的压差△P (在U 形管压差计上读出),求得流量m 与压差△P 的关系表达式:)(510373.14εβγ⨯∆⨯=-P m 式中:γ几何修正系数(标定值,本实验条件下可取为1)△P 为U 形压差计读数(mmH 2O ),Pa 为大气压,ta 为大气温度。
工程设计实验指导书-Read
工程设计实验指导书成都信息工程学院电子工程系陆继庆第一章:工程设计概述一、课程目的本课程重在培养学生的综合应用与实践能力。
培养和提高学生的科研素质、工程意识和创新精神。
是对前面所学内容作综合的应用与总结。
在结合多门理论课程与设计课程之后,根据专业特点与就业方向,通过设计符合专业特色的工程内容或直接参与到与专业相关的具体的工程实践之中,给学生一个能够将所学知识应用到工程实践的机会。
从而全面提高学生的动手能力,实践应用能力与工程实践能力。
对参加过电子设计竞赛的同学是个巩固和提高的机会,对没有参加竞赛培训的同学是个锻炼的机会。
通过该课程的学习使本专业学生对电子电路、信号采集与处理、电路与系统、现代电子设计技术、工程的步骤与组织实施、专业实践等环节的教学在实践的基础上有进一步的提高与理解。
使学生初步认识、掌握如何从实际问题出发,通过具体的分析和处理,求得具体问题的解决,这样做到书本知识和实际相结合,并培养和强化创新意识。
使学生在脱离教师指导的情况下,能对已有的或专门设计的工程任务进行分析,并通过资料文献和学生自己的实践活动提出解决问题的可行性与方法。
在经过确认方案之后,执行实践该工程。
通过实验掌握以下知识点:●产品开发工程的过程和内容。
●用PROTEL软件设计硬件电路的方法。
●熟悉C51编程和电路调试方法。
●产品维修中故障的分析、判断与解决。
●按国家标准编写各种产品文档。
二、课程说明及开题:1.工程的概念:综合多种学科知识,有计划、分步骤地实现某种社会需要的过程。
2.课程内容及课程安排:老师出题目,由学生自己参与完成一种小产品的开发过程。
模仿达到现有产品的全部功能。
了解产品从调研、方案、设计、试产、调试、量产、验收、销售、安装和售后服务的整个过程。
做文字记录。
编写工程报告。
3.项目要求及实现方法:举例1:集中空调客房控制终端。
现在很多酒店使用的是集中空调,而客房里的空调开关只有几个风量档位,没有温度显示和温度控制功能。
过程控制系统实验指导书第二版
过程控制系统实验指导书
引言
浙江求是科教设备有限公司生产的 PCT 系列过程控制实验系统装置,可以非常好地满足过程控制 课程实验的要求。在这套设备由被控对象和控制台组成,通过手动或计算机控制,可以将被控对象 转变成不同特性的过控对象,因此,在此基础上可以进行简单的温度、压力、流量、液位的单回路 控制,而且也可以进行一系例复杂控制系统实验如:变比值控制、Simth 预估控制、解耦控制、三容 液位控制、换热器温度控制等。 一、PCT 系列过程控制实验装置特点:
过程装备专业实验实验指导书
过程装备专业实验实验指导书武汉工程大学二零一五年三月目录实验一内压容器应力测试实验实验二外压容器失稳测试实验实验三高压爆破综合实验实验一内压容器应力测试实验一、实验目的1、掌握对各种压力容器的应力分析研究,要求做到:1) 正确合理的选择测点位置。
2)测点处布片方案的合理拟定。
3)测试对象加载的步骤等。
2、掌握静态应变20点以上的测量技能。
3、学会使用计算机和数据采集仪对测点应变进行自动数据采集。
4、初步学会测量数据的处理和测量结果的误差分析。
二、实验仪器及设备1、实验对象:实验对象为六组带不同封头的内压容器,参数如下:标准椭圆封头:D i=300mm,S=4mm标准碟形封头:D i=300mm,S=4mm600锥型封头:Di=300mm ,S=4mm,半顶角300900锥型封头:Di=300mm ,S=4mm,半顶角450半球型封头:Di=300mm,S=4mm平盖型封头:S=25mm容器圆柱形筒体:Di=300mm ,S=4mm容器材料304不锈钢,μ=0.3 E=1.96×105kg/cm2,最大实验压力2.5Mp2、静态数字应变仪(SDY—2203型3台,预调平衡箱3台)、应变数据采集仪(1台)及计算机(1台),3、实验装置(图1)三、实验原理1 准备工作1)测点选择由容器受内压作用时应力分布状况分析,知各个封头曲率比较大的部位,以及封头和筒体连接的部位,应力变化较大。
故上述两区间相应地增加测点数量(具体分布尺寸见现场实验装置)。
补偿块 压力表 排气阀工作片压力表 实验容器电动油泵 加压阀卸压阀图1 实验装置示意图2) 布片方案实验对象为内压薄壁容器,筒壁应力状态可简化为二向平面应力状态,且主应力方向为相互垂直的经向和环向。
因此在测点布片时应沿两向主应力方向垂直粘贴应变片。
3) 加载步骤从0开始加载至2.5Mpa 测一次各点应变,再卸载至1.6Mpa 测一次各点应变,最后卸载回零,即0—2.5Mpa —1.6Mpa —0。
全塔效率测定试验实验指导书
过程原理与设备实验指导书辽宁石油化工大学机械工程学院实验中心全塔效率测定实验一.实验目的1. 了解筛板精馏塔及其附属设备的基本结构,掌握精馏过程的基本操作方法。
2. 学会判断系统达到稳定的方法,掌握测定塔顶、塔釜溶液浓度的实验方法。
3. 学习测定精馏塔全塔效率的实验方法,研究回流比对精馏塔分离效率的影响。
二.基本原理.全塔效率T E全塔效率又称总板效率,是指达到指定分离效果所需理论板数与实际板数的比值,即1T T PN E N -= (8-1) 式中,T N -完成一定分离任务所需的理论塔板数,包括蒸馏釜;P N -完成一定分离任务所需的实际塔板数,全塔效率简单地反映了整个塔内塔板的平均效率,说明了塔板结构、物性系数、操作状况对塔分离能力的影响。
对于塔内所需理论塔板数T N ,可由已知的双组分物系平衡关系,以及实验中测得的塔顶、塔釜出液的组成,回流比R 和热状况q 等,用图解法求得。
(1) 全回流操作在精馏全回流操作时,操作线在y -x 图上为对角线,如图1所示,根据塔顶、塔釜的组成在操作线和平衡线间作梯级,即可得到理论塔板数。
图1全回流时理论板数的确定(2) 部分回流操作部分回流操作时,如图1,图解法的主要步骤为:A.根据物系和操作压力在y-x图上作出相平衡曲线,并画出对角线作为辅助线;B.在x轴上定出x=x D、x F、x W三点,依次通过这三点作垂线分别交对角线于点a、f、b;C.在y轴上定出y C=x D/(R+1)的点c,连接a、c作出精馏段操作线;D.由进料热状况求出q线的斜率q/(q-1),过点f作出q线交精馏段操作线于点d;E.连接点d、b作出提馏段操作线;F.从点a开始在平衡线和精馏段操作线之间画阶梯,当梯级跨过点d时,就改在平衡线和提馏段操作线之间画阶梯,直至梯级跨过点b为止;G.所画的总阶梯数就是全塔所需的理论板数(包含再沸器),跨过点d的那块板就是加料板,其上的阶梯数为精馏段的理论塔板数。
化工原理实验指导书
化工原理实验指导书实验目的本实验旨在通过实验操作,加深对化工原理的理解,掌握化工实验的基本操作技能,培养实验分析和数据处理能力。
实验原理化工原理实验主要涉及到以下几个方面的内容: 1. 反应平衡和化学动力学 2. 热力学计算 3. 流体力学和传质过程 4. 反应器与过程控制 5. 传热过程实验器材和试剂1.实验器材:反应器、加热器、冷却器、分离仪器、计量仪器等。
2.试剂:根据实验要求使用不同的化学试剂。
实验步骤实验一:反应平衡和化学动力学1.准备反应器和试剂。
2.将试剂按照给定的比例加入反应器中。
3.根据实验要求设置反应温度。
4.开始反应,并记录实验过程中的温度、压力等数据。
5.根据实验结果分析反应平衡和化学动力学。
实验二:热力学计算1.准备热力学计算所需的实验数据。
2.计算化学反应的焓变、熵变和自由能变化。
3.根据计算结果分析反应的热力学性质。
实验三:流体力学和传质过程1.准备流体力学和传质实验所需的设备和试剂。
2.将试剂按照给定的比例注入传质设备中。
3.通过设备控制流体的流速和压力,并记录实验过程中的数据。
4.根据实验结果分析流体力学和传质过程的特性。
实验四:反应器与过程控制1.准备反应器与过程控制实验所需的设备和试剂。
2.将试剂按照给定的比例加入反应器中。
3.通过过程控制设备调节反应的温度、压力、流速等参数。
4.记录实验过程中的数据,并根据数据分析反应过程的控制效果。
实验五:传热过程1.准备传热实验所需的设备和试剂。
2.将试剂加热并通过设备控制传热过程的温度和压力。
3.记录实验过程中的数据,并根据数据分析传热过程的特性。
数据处理和实验分析在实验过程中,要认真记录实验数据,并根据数据进行分析和处理。
对于实验中的问题,要及时进行实验探讨和解决,并得出实验结论。
安全注意事项1.在实验操作过程中,要注意个人安全,避免直接接触危险试剂。
2.注意实验室卫生,保持实验环境整洁。
3.遵守实验室的操作规程,正确使用实验器材和试剂。
《工程测量》实验指导书:全站仪坐标放样
全站仪坐标放样(一)实验学时:2学时实验类型:验证实验要求:必做一、实验目的(一)掌握坐标反算。
(二)掌握极坐标法测设点位。
二、实验内容(一)全站仪对中、整平、建站。
(二)使用全站仪采用极坐标法测设点位。
三、实验原理、方法和手段(一)原理A,B为平面控制点,P为待测的点位,其坐标均为已知,用极坐标法测设P点。
以A 点位测站,用极坐标反算AB和AP的方位角αAB和αAP、水平角以及AP的水平距离D AP。
(二)方法、手段1.方法极坐标放样法。
2.手段利用全站仪根据坐标反算计算出两点坐标的放样数据—角度、距离进行放样。
教师现场指导、学生动手练习。
四、实验组织运行要求(一)实验要求1、以学生自主训练为主的开放模式组织教学。
以专业为对象,班级为单位分小组进行实验,由学院统一安排。
2、实验开始前,以小组为单位到测量实验室领取仪器和工具,并做好仪器使用登记工作。
领到仪器后,到指定实验地点集中,待实验指导教师作全面讲解后,方可开始实验。
3、对实验规定的各项内容,小组内每人均应轮流操作。
实验结束后,实验报告应独立完成。
4、实验应在规定时间内进行,不得无故缺席、迟到或早退;实验应在指定地点进行,不得擅自变更地点。
5、必须遵守本实验指导书所列的“测量仪器工具的借用规则”或“测量记录与计算的规则”。
6、应认真听取教师的指导,实验的具体操作应按实验指导书的要求、步骤进行。
7、实验中出现仪器故障、工具损坏和丢失等情况时,必须及时向指导教师报告,不可随意自行处理。
8、实验结束时,应把观测记录交实验指导教师审阅,经教师认可后方可收拾和清理仪器、工具。
最后,将仪器、工具归还实验室。
(二)测量仪器借用规则测量仪器精密、贵重,对测量仪器的正确使用、精心爱护和科学保养,是测量工作人员必须具备的素质和应该掌握的技能,也是保证测量成果质量、提高工作效率和延长仪器使用寿命的必要条件。
测量仪器、工具的借用必须遵守以下规则:1、每次实验前,以小组为单位。
《工程热力学》实验指导书
《工程热力学》实验指导书汕头大学机电系前言二、实验要求(1)实验前应预习实验指导书,了解本次实验的目的、原理和方法。
(2)进入实验室后,应注意听取指导教师对实验方法的讲授,待完全弄清楚实验方法与步骤后,方能动手实验。
(3)实验时,应注意观察实验现象,细心读取实验数据。
若对实验结果有疑问,应重做实验。
(4)实验过程中,须保持实验场所整洁安静,做到文明实验。
应爱护仪器设备及实验室其他公物,末经允许不得随便打开或关闭实验室的电路开关,如有设备损坏应立即报告指导教师。
总之,应以严肃的态度,严格的要求,严密的方法,一丝不苟的操作来对待实验,完成实验技能的训练任务。
三、实验报告要求实验报告一般包括以下几项内容:(1)班级、姓名、学号及实验日期;(2)实验名称、实验目的、实验原理、实验装置简图及仪器设备简介;(3)实验现象的描述、原始数据记录、实验数据的处理及实验结果;实验一(1) 工程热力学实验1 实验目的1. 了解气体比热测定装置的基本原理和构思。
2. 熟悉本实验中测温、测压、测热、测流量的方法。
3. 掌握由基本数据计算出比热值和比热公式的方法。
4. 分析本实验产生误差的原因及减小误差的可能途径。
2实验原理所谓比热容是指单位物理量的物体温度升高1度所需的热量,简称比热。
根据选用计量物量的单位不同,有质量比热、容积比热和摩尔比热之分。
通常用质量千克作为计量物量的单位,得到的是质量比热,它的单位是千焦/千克•开(k J /k g •K )。
用符号c 表示,则dT dq c =或 dtdqc = k J /k g •K (2-1) 气体的定压比热容是计算在定压变化过程中气体吸入(或放出)的热量的一个重要参数,所以气体定压比热容的测定实验是工程热力学基本实验之一,实验中涉及温度、压力、热量(电工)、流量等基本量的测量,计算中用到比热及混合气体(湿空气)方面的基本知识。
引用热力学第一定律解析式,对可逆过程有:pdv du dq += 和 vdp dh dq -= (2-2)定压时0=dppp T h dT vdp dh dT dq c ⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛= (2-3)此式直接由p c 的定义导出,故适用于一切工作介质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过程工程原理实验讲义南昌大学化工原理实验室2011年3月前言《过程工程原理》是化工、制药、高分子、食品、应化等相近专业学科的核心课程,其主要研究内容是以工业生产中的物理加工过程为背景,按其操作原理的共性归纳成若干“单元操作”。
《过程工程原理》用自然科学的原理考察、解释和处理工程实际问题,研究方法主要是理论解析和在理论指导下的实验研究,强调工程观点、定量运算、实验技能和设计能力的训练,强调理论与实际的结合,提高学生分析问题、解决问题的能力。
全国高校化工原理课程教学指导委员会第五次会议对工科本科《化工原理》课程实验教学提出了以下指导意见:1、实验内容在下列实验中至少选做6~7个(流体力学2个,传热1~2个,传质3个),即:直管摩擦系数和局部阻力系数测定;离心泵的操作与性能测定;过滤常数测定;导热系数测定;传热实验;蒸发实验;精馏塔性能实验;吸收系数测定;干燥速率曲线测定;萃取实验及板式塔流体力学性能实验等。
2、每个实验应包含实验预习、实验操作、数据处理和实验报告四个环节。
3、实验教学还包括理论教学、演示教学和实物教学等。
4、实验应单独考核。
本实验指导书系根据上述精神和教育部发布的《普通高等学校本科教学工作水平评估方案(试行)》中有关开设综合性、设计性实验的要求编写的。
实验内容包括流体力学实验6个,传热实验3个,传质实验4个,其中综合性实验10。
此外,为了加强对学生动手能力和实验技能的训练编写了计算机仿真实验7个。
各专业可根据教学计划及教学大纲要求选择实验内容。
限于编者水平和经验,本实验指导书难免有错误和不足之处,恳请批评指正。
编者2011年3月目录第一部分演示实验 0实验一雷诺实验 0实验二流体流动过程机械能的转换 (3)实验三喷雾干燥实验 (7)第二部分综合性设计性实验 (10)实验四流体管内流动阻力测定 (10)实验五离心泵特性曲线测定 (17)实验六流量计校核 (23)实验七恒压过滤常数测定 (26)实验八干燥速率曲线测定 (33)实验九转盘塔液-液萃取 (40)实验十膜分离实验 (46)实验十一筛板塔精馏操作及效率的测定 (55)实验十二传热综合实验 (63)实验十三填料塔吸收实验 (72)第三部分计算机仿真实验 (83)实验十四管路阻力 (83)实验十五离心泵操作 (85)实验十六流体流动型态的观察 (86)实验十七柏努利方程演示 (87)实验十八传热 (88)实验十九吸收 (89)实验二十精馏 (91)实验二十一干燥 (92)附录过程工程原理实验中常用数据表 (94)参考资料 (96)第一部分 演示实验实验一 雷诺实验一、实验目的1、了解管内流体质点的运动方式,认识不同流动形态的特点,掌握判别流型的准则。
2、观察圆直管内流体作层流、过渡流、湍流的流动形态。
二、实验内容1、以红墨水为示踪剂,观察圆直玻璃管内的水介质,作层流、过渡流、湍流时的不同流动形态。
2、观察流体水在圆直玻璃管内作层流流动时的速度分布。
三、基本原理流体流动有两种不同型态,即层流(或称滞流,Laminar flow )和湍流(或称紊流,Turbulent flow ),这一现象最早是由雷诺(Reynolds )于1883年首先发现的。
流体作层流流动时,流体质点作平行于管轴的直线运动,且在径向无脉动;流体作湍流流动时,其流体质点除沿管轴方向向前运动外,还作径向脉动,从而在宏观上显示出紊乱地向各个方向作不规则的运动。
流体流动型态可用雷诺准数(Re )来判断,这是一个由各影响变量组合而成的无因次数群,故其值不会因采用不同的单位制而不同。
但应当注意,数群中各物理量必须采用同一单位制。
若流体在圆管内流动,则雷诺准数可用下式表示:μρdu =Re (1-1)式中:Re —雷诺准数,无因次;d —管子内径,m ;u —流体在管内的平均流速,m /s ;ρ—流体密度,kg /m 3;μ—动力粘度;Pa·s 。
工程上一般认为,流体在直圆管内流动,Re≤2000时为层流;Re>4000时,圆管内形成湍流;当Re 在2000至4000范围时,流体流动处于一种过渡状态,可能是层流,也可能是湍流,或者二者交替出现,这要视外界干扰而定,一般称这一Re 数范围为过渡区。
层流转变为湍流时的雷诺数称为临界雷诺数,用Re c 表示。
式(1-1)表明,对于一定温度下的流体,流体性质(ρ和μ)一定,在特定的圆管内流动,雷诺准数仅与流体流速有关。
本实验即是通过改变流体在管内的速度,观察在不同雷诺准数下流体的流动型态。
四、实验装置及流程实验装置如图1-1所示。
主要由玻璃实验导管、流量计、流量调节阀、低位贮水槽、循环水泵、稳压溢流水槽等部分组成,实验主管路为220⨯φmm 硬质玻璃管。
图1-1 流体流型装置及流程1-红墨水储槽; 2-溢流稳压槽; 3-实验导管; 4-转子流量计; 5-循环泵; 6-上水管; 7-溢流回水管; 8-调节阀; 9-储水槽实验前,先将水充满低位贮水槽,关闭流量计后的调节阀,然后启动循环水泵。
待水充满稳压溢流水槽后,开启流量计后的调节阀。
水由稳压溢流水槽流经缓冲槽、试验导管和流量计,最后流回低位贮水槽。
水流量的大小,可由流量计和调节阀调节。
示踪剂采用红色墨水,它由红墨水贮槽经连接管和细孔喷嘴,注入试验导管。
细孔玻璃注射管(或注射针头)位于试验导管人口的轴线部位。
注意:实验用的水应清洁,红墨水的密度应与水相当,装置要放置平稳,避免震动。
五、演示操作(1)层流流动型态实验时,先少许开启调节阀,将流速调至所需要的值。
再调节红墨水贮瓶的下口旋塞,并作精细调节,使红墨水的注人流速与实验导管中主体流体的流速相适应,一般略低于主体流体的流速为宜。
待流动稳定后.记录主体流体的流量。
此时,在实验导管的轴线上,就可观察到一条平直的红色细流,好像一根拉直的红线一样。
(2)湍流流动型态缓慢地加大调节阀的开度,使水流量平稳地增大,玻璃导管内的流速也随之平稳地增大。
此时可观察到,玻璃导管轴线上呈直线流动的红色细流,开始发生波动。
随着流速的增大,红色细流的波动程度也随之增大,最后断裂成一段段的红色细流。
当流速继续增大时,红墨水进入试验导管后立即呈烟雾状分散在整个导管内,进而迅速与主体水流混为—体,使整个管内流体染为红色,以致无法辨别红墨水的流线。
六、注意事项作层流流动时,为了使层流状况能较快地形成,而且能够保持稳定。
第一,水槽的溢流应尽可能小。
因为溢流大时,上水的流量也大,上水和溢流两者造成的震动都比较大,影响试验结果。
第二,应尽量不要人为地使实验装置产生任何震动。
七、思考题1、如果红墨水注入管不设在实验管中心,能得到实验预期的结果吗?2、如何计算某一流量下的雷诺数?用雷诺数判别流型的标准是什么?实验二 流体流动过程机械能的转换一、实验目的1.了解流体在管道中流动情况下,静压能、动能和位能之间相互转换的关系,加深对柏努利方程的理解。
2、了解流体在管道中流动时,流体阻力的表现形式。
二、实验内容观察流体流动过程中,随着测试管路结构、水平位置及流量的变化,流体的势能和动能之间的转换变化情况,并找出其规律,以验证柏努利方程。
三、基本原理工业生产中,流体的输送多在密闭的管道中进行,因此研究流体在管道中的流动是过程工程的重要内容之一。
任何运动的流体,都遵守质量守恒定律和能量守恒定律,这是研究流体力学性质的基本出发点。
1.连续性方程流体在管内稳定流动时的质量守恒形式可用连续性方程表现如下: 1212udA udA ρρ=⎰⎰⎰⎰ (2-1)根据平均流速的定义,有111222u A u A ρρ= (2-2)式中:u — 流速,m/s;1ρ、2ρ— 管道端面1、2处流体的密度,kg/m 3; 1u 、2u — 管道端面1、2处流体的流速,m/s ; 1A 、2A — 管道端面1、2处的截面积,m 2。
即 21m m = (2-3) 而对均质、不可压缩流体,常数==21ρρ,则式(2-2)变为1122u A u A = (2-4)可见,对均质、不可压缩流体,平均流速与流通截面积成反比,即面积越大,流速越小;反之,面积越小,流速越大。
对圆管,4/2d A π=,d 为直径,式(2-4)可转化为221212u d u d = (2-5)2.机械能衡算方程运动的流体除了遵循质量守恒定律以外,还应满足能量守恒定律。
依此,在工程上可进一步得到十分重要的机械能衡算方程(柏努利方程)。
对于均质、不可压缩流体,在管路内作稳定流动时,其机械能衡算方程(以单位质量流体为基准)可表示为:f e h gg u z h g g u z +++=+++ρρ22221211p2p 2 (2-6)显然,上式中各项均具有高度的量纲,z 称为位头,g u 2/2称为动压头(速度头),g ρ/p 称为静压头(压力头),e h 称为外加压头,f h 称为压头损失。
关于上述机械能衡算方程的讨论: (1)理想流体的柏努利方程无粘性的即没有粘性摩擦损失的流体称为理想流体,理想流体的0=f h ,若此时又无外加功加入,则机械能衡算方程式(2-6)变为:gg u z g g u z ρρ22221211p2p 2++=++ (2-7)式(2-7)为理想流体的柏努利方程。
该式表明,理想流体在流动过程中,总机械能保持不变。
(2)若流体静止,则0=u ,0=e h ,0=f h ,于是机械能衡算方程变为gz g z ρρ2211pp +=+(2-8) 式(2-8)即为流体静力学方程,可见流体静止状态是流体流动的一种特殊形式。
四、实验装置及流程图2-1 流体流动过程的机械能转换装置及流程h1、h2、h3、h4、h5、h6—单管压力计该装置为有机玻璃材料制作的管路系统,通过泵使流体循环流动。
管路内径为30mm,节流件变截面处管内径为15mm。
单管压力计h1和h2可用于验证变截面连续性方程,单管压力计h1和h3可用于比较流体经节流件后的压头损失,单管压力计h3和h4可用于比较流体经弯头和流量计后的压头损失及位能变化情况,单管压力计h4和h5可用于验证直管段雷诺数与流体阻力系数关系,单管压力计h6与h5配合使用,用于测定单管压力计h5处的中心点速度。
五、实验操作1.先在贮水槽中加满清水,保持管路排水阀、出口阀关闭状态,通过循环泵将水打入高位水槽中,使整个管路中充满水,并保持高位水槽液位一定高度,并观察流体在静止状态时各单管压力计的高度。
2.实验开始前,需先清洗整个管路系统,即先使管内流体流动数分钟,检查阀门、管段有无堵塞或漏水情况,并排除管路中的空气。
3.通过出口阀调节管内流量,注意保持上水槽液位高度稳定(即保证整个系统处于稳定流动状态),并尽可能使转子流量计读数在刻度线上。