外文文献液压系统设计

合集下载

液压动力系统中英文对照外文翻译文献

液压动力系统中英文对照外文翻译文献

中英文对照外文翻译文献(文档含英文原文和中文翻译)原文:FEATURE-BASED COMPONENT MODELS FOR VIRTUALPROTOTYPING OF HYDRAULIC SYSTERMAbstract:This paper proposes a feature-based approach for the virtual prototyping of hydraulic systems. It presents a framework which allows the designer to develop a virtual hydraulic system prototype in a more intuitive manner, i.e. through assembly of virtual components with engineering data. The approach is based on identifying the data required for the development of the virtual prototypes, and separating the information into behaviour, structural, and product attributes. Suitable representations of these attributes are presented, and the framework for the feature-based virtual prototyping approach is established,based on the hierarchical structure of components in a hydraulic system. The proposed framework not only provides a precise model of the hydraulic prototype but also offers the possibility of designing variation classes of prototypes whose members are derived by changing certain virtual components with different features.Key words: Computer-aided engineering; Fluid power systems;Virtualprototyping1.IntroductionHydraulic system design can be viewed as a function-to-form transformation process that maps an explicit set of requirements into a physical realisable fluid power system. The process involves three main stages: the functional specification stage,the configuration design stage, and the prototyping stage.The format for the description of the design in each stage is different.The functional specification stage constitutes the initial design work. The objective is to map the design requirements. To achieve this, the design problems are specified Correspondence and offprint requests to: Dr S. C. Fok, Schoool of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798. The designer must identify the performance attributes, which can include pressure, force, speed, and flowrate, with the required properties such as size, cost, safety and operating sequence. performance requirements for each attribute. In this stage, the design is abstracted in terms of the performance attributes with associated values.The objective of the configuration design stage is to synthesise a hydraulic circuit that performs the required functions conforming to the performance standards within defined constraints. A typical hydraulic system is made up of many subsystems. The smallest building block in a subsystem is the standard hydraulic component (such as valves, cylinders,pumps, etc.). Each type of standard component serves a specific elemental function. The design effort in the configuration design stage is fundamentally a search for a set of optimal arrangements of standard components (i.e. hydraulic circuit) to fulfil the functional requirements of the system. Based on this framework, the designers would normally decompose the overall system functions in terms of subfunctions. This will partition the search space and confine the search for smaller hydraulic subcircuits to perform the subfunctions.Computers are often used to support the configuration design process. For example, Kota and Lee devised a graph-based strategy to automate the configuration of hydraulic circuits. After the development of the hydraulic circuits, digital simulation tools are often used to study and evaluate these configurations. With these tools, designers can compare the behaviour of different circuits and also analyse the effects when subcircuits are combined. In the configuration design stage, the design is traditionally represented as a circuit drawing using standard icons to symbolise the type of standard component. This is a form of directed graph S(C,E) where the circuit S contains components C in the form of nodes with relations between components denoted by edges E.The prototyping stage is the verification phase of the system design process where the proposed hydraulic circuit from the configuration design stage isdeveloped and evaluated. Physical prototyping aims to build a physical prototype of the hydraulic system 666 S. C. Fok et al. using industrial available components. The process of physical prototyping involves the following: Search for appropriate standard components from different manufacturers. Pre-evaluation and selection of components based on individual component cost, size, and specification, and compatibility factors between components. Procurement and assembly of the selected components.Test and evaluate the physical prototype based on the overall system requirements. Use other components or redesign the circuit (or subcircuits)if necessary.Besides dynamics, the development of the physical prototype must take into consideration other factors including structure,cost, and weight. The dynamics data are used to confirm the fluid power system behaviour whereas the geometric information is used to examine the assembly properties. The development of the physical prototype will provide the actual performance,structure, and cost of the design.The main disadvantage of physical prototyping is that it is very tedious and time consuming to look for a set of suitable combinations of standard components from among so many manufacturers. Although the basic functions of the same types of standard component from different manufacturers do not differ, their dynamics, structural and cost characteristics may not be similar, because of design variation. Hence, for a given hydraulic circuit, different combinations of parts from differentmanufacturers can have implications on the resulting system,in terms of dynamics, structure, and cost. Value engineering can be used at this stage to improve the system design by improving the attributes at the component level. This includes maximizing the performance-to-cost ratio and minimising the size-to-performance ratio. Virtual prototyping can be viewed as a computer-aided design process, which employs modelling and simulating tools to address the broad issues of physical layout, operationalconcept, functional specifications, and dynamics analysis under various operating environments. The main advantage of virtual prototyping is that a hydraulic system prototype can be assembled, analysed, and modified using digital computers without the need for physical components, thus saving lead time and cost.The main requirement of a virtual hydraulic system prototype is to provide the same information as a physical prototype for the designer to make decisions.To achieve this, the virtual prototype must provide suitable and comprehensive representations of different data. Furthermore, transformation from one representation to another should proceed formally. Xiang et al. have reviewed the past and current computer-aided design and prototyping tools for fluid power systems. The work revealed that the current tools could not provide a completerepresentation of the design abstractions at the prototyping stage for design judgement. Most of the tools concentrate on the dynamics behaviour. Vital geometrical and product information that relates to the system prototype consideration and evaluation is frequently missing.To advance the development of computer-aided virtual prototyping tools for fluid power systems, there is a need to address the formal representations of different abstractions of behaviour,structural, and product data along with their integration. This paper focuses on these issues and proposes the formalism of a unified component model and the taxonomy based on the feature-based approach. In Section 2, we discuss the feature- based approach focusing on the key information and their representations required for hydraulic system prototyping. Section 3 presents a formalism of the feature-based model and structure for the development of virtual hydraulic system prototypes.The structure is illustrated with an example. Future work and conclusions are given in Section 4.2. Feature-Based ApproachFeatures can be defined as information sets that refer to aspects of attributes that can be used in reasoning about the design, engineering or manufacturing processes. The concept of using features to integrate CAD/CAPP/CAM is not new and there are many papers on the application of this approach in CIM. In all these applications, the feature model is regarded as the basis whereas design by features is the key for the integration. To develop a feature model, the relevant information concerning the design must be identified and grouped into sets based on the nature of the information. The relevant information should contain sufficient knowledge for activities such as design, analysis, test, documentation, inspection, and assembly, as well as support various administrative and logistic functions. Design by features is the process of building a model of the design using features as primitive entities. The feature model provides the standardisation of relevant data. Through the design by features approach, vital knowledge of the design will be generated and stored. Together, the feature model and the design by features approach will provide the essential information, which can be used, not only for the simultaneous consideration of many different concerns with the design, but also to interface the many activities in the design realisation process, including the life cycle support operations. The main drawback of the feature-based design approach is that the feature model should be properly defined . This can be difficult, as features are sets of knowledge that are application dependent. The organisation of the features can also be application specific. Non-trivial data-management problems could arise if the feature model is not properly defined. To avoid these problems, the type,representation and structure of the features should be resolved prior to using the feature-based design methodology. The main concern when developing afeature model is that it is application-specific. In the domain of virtual prototyping of hydraulic systems, the details of the constituent standard components must be able to be used to describe the overall system. The component features are bearers of knowledge about that part. To create a suitable feature model for hydraulic system design based on the assembly of standard components, the relevant information associated with various standard components must be identified and classified. This definition Feature-Based Component Models 667 of the component feature set can then be extended to encompass the subsystem feature set based on the hierarchical structure between the components in the subsystem. In the same manner, a hierarchical structure for the hydraulic system feature representation would evolve by considering the system as a hierarchy of subsystems.The necessary information required for a proper description of the virtual prototype must be no less than that derived by the designer from a physical prototype for decision making. These data should generally include the shape, weight, performance properties, cost, dimensions, functionality data, etc. Comparison with the physical prototyping process, the information required for each standard component could be separated into three distinct groups: behaviour attributes, structural attributes, and product attributes.2.1 Behaviour AttributesThe behaviour of a hydraulic component can be defined in terms of the dynamics characteristics used to satisfy the functional requirements. Consider a hydraulic cylinder connected to a load. Its function is to transmit a force from the stroke of the piston to the load. The maximum force it can transmit can be used to define the functionality and the behaviour requirements can be specified in terms of the desired load acceleration characteristics. Hence for a hydraulic component, behaviour attributes express functionality and can be reflected in the dynamics characteristics. The designer is responsible for the proper definition of the overall system behaviour characteristics in terms of the desired dynamics. A standard component will have its own behaviour and provide a specific plex functions that cannot be achieved by a single standard component are derived using a combination of components. Hence, the behaviour of the standard component will play an important role as the individual behaviours of components together with their arrangement can alter the overall system function .The behaviour of a standard component can be nonlinear and can be dependent on the operating conditions. When two components are combined, it is possible that their behaviours can interact and produce undesired or unintended characteristics. These unwanted behaviours are assumed to have been resolved during the configuration design stage. The hydraulic circuit used in theprototyping stage is assumed to be realisable and without any undesirable interacting behaviours. This means that the output behaviour of a component will provide the input to the subsequent component.The representation of behaviours for hydraulic systems has been widely investigated. These representations include transfer functions, state-space and bond graphs. Transfer functions (for single-input–single-output systems) and state-space equations (for multiple-input–multiple-output systems) are based on the approximation of the dynamics about a nominal operating condition. The power bond graph model is based on the causal effects that describe the energy transformations in the hydraulic system. This approach is appealing for hydraulic system analysis. The main disadvantage is that the derivation of the dynamics equation in a bond graph of a complicated fluid power system can become very tedious. As a result, recent work has concentrated on the used of artificial intelligence to represent the nonlinear mapping between the input and output data, which can be obtained via experimental work. These nonlinear mappings can be accomplished using artificial neural networks .It is quite natural for a hydraulic system designer to use input–output data to describe the behaviour of a hydraulic component. The configuration design of a hydraulic system is often achieved through steps of function decomposition. To design a hydraulic system, the designer often tries to decompose the functions and their requirements down to the component level.译文:基于原型液压系统特征的机构模型摘要:本文为原型液压系统的设计提出了一种基于特征的方法。

液压传动系统外文文献翻译、中英文翻译、外文翻译

液压传动系统外文文献翻译、中英文翻译、外文翻译

中国地质大学长城学院本科毕业设计外文资料翻译系别工程技术系专业机械设计制造及其自动化学生姓名彭江鹤学号 05211534指导教师王泽河职称教授2015 年 5 月 4 日液压传动系统作者:Hopmans, ArthurH.摘要液压传动是由液压泵、液压控制阀、液压执行元件和液压辅件组成的液压系统。

液压泵把机械能转换成液体的压力能,液压控制阀和液压辅件控制液压介质的压力、流量和流动方向,将液压泵输出的压力能传给执行元件,执行元件将液体压力能转换为机械能,以完成要求的动作。

关键词:液压传动;气压传动;传动系统;许多液压传动先前已经设计出允许操作者无限变化输出的变速器,或甚至逆转的传动装置的输出作为相对于输入。

通常情况下,这已经通过使用一个旋转斜盘是要么由操作者手动或操作液压动机来改变通过旋转泵头部具有轴向移动的活塞流动的液压流体的。

液压流体从泵头活塞的流动,依次转动的马达头通过激励相应的一组活塞在其中违背一固定凸轮的,因此,旋转安装在电动机头的输出轴。

通常情况下,在现有技术的变速器已被被设置有各种功能,例如齿轮减速,刹车设定装置等。

不幸的是,这些功能通常是提供外部发送的和显著增加整个装置的体积和质量。

申请人确定,这是很期望具有其中基本上所有的这些需要或希望的功能,可以在内部提供的发送,同时还产生一个非常有效的和非常有效的传输的综合传输。

特别是,这种类型的变速器上经常使用的设备,如“零转动半径”剪草机之类的其中一个潜在的危险情况面对操作者,旁观者和设备本身,如果设备我们允许继续被推进应的操作者释放控制,由于当操作者无意中从装置抛出或变得受伤。

因此,“故障自动刹车”机制经常被设置为传输自动地返回到中立配置在这种情况下,使得该装置不会继续供电,如果控制被释放。

先前传输这种类型的一般依靠某种外部设备,比如其目的是为了在操作者控制轴返回到中立位置应操作者释放所述轴的反操作偏压弹簧。

这种类型的外部设备,可以容易地由用户或篡改损坏。

【机械类文献翻译】液压系统设计

【机械类文献翻译】液压系统设计

液压系统液压传动和气压传动称为流体传动,是根据17世纪帕斯卡提出的液体静压力传动原理而发展起来的一门新兴技术,1795年英国约瑟夫•布拉曼(Joseph Braman,1749-1814),在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。

1905年将工作介质水改为油,又进一步得到改善。

第一次世界大战(1914-1918)后液压传动广泛应用,特别是1920年以后,发展更为迅速。

液压元件大约在19世纪末20世纪初的20年间,才开始进入正规的工业生产阶段。

1925年维克斯(F.Vikers)发明了压力平衡式叶片泵,为近代液压元件工业或液压传动的逐步建立奠定了基础。

20世纪初康斯坦丁•尼斯克(G •Constantimsco)对能量波动传递所进行的理论及实际研究;1910年对液力传动(液力联轴节、液力变矩器等)方面的贡献,使这两方面领域得到了发展。

第二次世界大战(1941-1945)期间,在美国机床中有30%应用了液压传动。

应该指出,日本液压传动的发展较欧美等国家晚了近20多年。

在1955年前后,日本迅速发展液压传动,1956年成立了“液压工业会”。

近20~30年间,日本液压传动发展之快,居世界领先地位。

液压传动有许多突出的优点,因此它的应用非常广泛,如一般工业用的塑料加工机械、压力机械、机床等;行走机械中的工程机械、建筑机械、农业机械、汽车等;钢铁工业用的冶金机械、提升装置、轧辊调整装置等;土木水利工程用的防洪闸门及堤坝装置、河床升降装置、桥梁操纵机构等;发电厂涡轮机调速装置、核发电厂等等;船舶用的甲板起重机械(绞车)、船头门、舱壁阀、船尾推进器等;特殊技术用的巨型天线控制装置、测量浮标、升降旋转舞台等;军事工业用的火炮操纵装置、船舶减摇装置、飞行器仿真、飞机起落架的收放装置和方向舵控制装置等。

一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。

液压系统的绿色设计外文文献翻译、中英文翻译、外文翻译

液压系统的绿色设计外文文献翻译、中英文翻译、外文翻译

附录A液压系统的绿色设计前言绿色设计思想的前奏与认识基础与“可持续发展” 的经济思想和社会发展理论有着密切的关联。

近几十年来,随着科学技术的发展,工业设计为人类创造了前所未有的现代生活方式和舒适的生活环境。

与此同时,人类凭借着自身的智慧和先进的技术,肆意开采资源,加速了能源的消耗,对地球的生态平衡造成了巨大的破坏,能源危机、环境污染、物种灭绝、人口剧增等种种问题闯入人们的视野。

1987年,挪威首相布伦特兰夫人在《我们共同的未来》报告中第一次提出了地球“可持续发展” 的概念,尤其是1992年在巴西里约热内卢举行“世界环境与发展大会” 以来,“可持续发展”观念受到各国政府、企业与知识界的高度重视。

各国政府先后制定了自己国家的可持续发展战略,绿色设计的思想也迅速传播开来。

绿色设计的基本思想是将防止污染,保护环境的战略自觉集成到产品开发中,使产品在生产与流通过程中能够同时实现其宜人价值、生态价值与经济价值。

“少量化、再利用、资源再生” 的三“RE” (Reduce,Reuse,Recycling)原则是绿色设计的基本原则。

如果把绿色设计运用到液压系统的设计中,那么Reduce是指降低系统的能耗,减少对环境的污染,提高液压元件的可靠性。

Reuse、Recycle指液压介质的循环利用,元部件的可装拆性、易修理性等。

1 降低消耗1.1 资源的最佳利用1.1.1 优化液压元件的连接与拆卸性液压系统是由动力、执行、控制与辅助元件连接件组成的。

设计时要尽量提高液压系统的集成度,以优化装配、节省材料为目标来简化设计方案,减少用于装配的零件数目。

采用的原则是对多个元件的功能进行优化组合,实现系统的模块化,并考虑工艺性来实现基本液压回路的紧凑。

如减小液压元件的体积,简化液压元件间的连接,设计易于拆卸的元件等。

在满足功能、性能的基础上,重点放在元件的连接、嵌入咬合式等。

焊接连接的装配和拆卸的复杂程度最高,导致零部件破坏性拆卸;螺钉连接的装配容易而可拆卸程度要受环境的影响,如果生锈则会导致拆卸复杂;铆钉连接的机械装配性较好但拆卸复杂;嵌入咬合是装配性和拆卸性均较好的一种连接方式,但在连接强度要求高的情况下,连接的安全性可能出现问题。

液压系统外文文献翻译中英文

液压系统外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)英文原文Hydraulic systemW Arnold1 IntroductionThe hydraulic station is called a hydraulic pump station and is an independent hydraulic device. It is step by step to supply oil. And control the direction of hydraulic oil flow, pressure and flow, suitable for the host and hydraulic equipment can be separated on the various hydraulic machinery.After the purchase, the user only needs to connect the hydraulic station and the actuator (hydraulic or oil motor) on the mainframe with different tubings. The hydraulic machine can realize various specified actions and working cycles.The hydraulic station is a combination of manifolds, pump units or valve assemblies, electrical boxes, and tank electrical boxes. Each part function is:The pump unit is equipped with a motor and an oil pump, which is the power source of the hydraulic station and can convert mechanical energy into hydraulic oil pressure energy.V alve combination - its plate valve is mounted on the vertical plate, and the rear plate is connected with the same function as the manifold.Oil manifolds - assembled from hydraulic valves and channel bodies. It regulates hydraulic oil pressure, direction and flow.Box--a semi-closed container for plate welding. It is also equipped with an oil screen, an air filter, etc., which is used for cooling and filtering of oil and oil.Electrical box - divided into two types: one is to set the external lead terminal board; one is equipped with a full set of control appliances.The working principle of the hydraulic station: The motor drives the oil pump to rotate, then the pump sucks oil from the oil tank and supplies oil, converts the mechanical energy into hydraulic pressure energy, and the hydraulic oil passes through the manifold (or valve assembly) to adjust the direction, pressure and flow and then passes through the external tube. The way to the hydraulic cylinder or oil motor in the hydraulic machinery, so as to control the direction of the hydraulic motor, the strength of the speed and speed, to promote all kinds of hydraulic machinery to do work.(1) Development history of hydraulic pressureThe development history of hydraulics (including hydraulic power, the same below), pneumatics, and seals industry in China can be roughly divided into three stages, namely: the starting stage in the early 1950s to the early 60s; and the professional in the 60s and 70s. The growth stage of the production system; the 80-90's is a stage of rapid development. Among them, the hydraulic industry began in the early 1950s with thedevelopment of hydraulic machines such as Grinding Machines, broaching machines, and profiling lathes, which were produced by the machine tool industry. The hydraulic components were produced by the hydraulic workshop in the machine tool factory, and were produced for self use. After entering the 1960s, the application of hydraulic technology was gradually promoted from the machine tool to the agricultural machinery and engineering machinery. The original hydraulic workshop attached to the main engine plant was independent and became a professional manufacturer of hydraulic components. In the late 1960s and early 1970s, with the continuous development of mechanization of production, particularly in the provision of highly efficient and automated equipment for the second automobile manufacturing plant, the hydraulic component manufacturing industry witnessed rapid development. The batch of small and medium-sized enterprises also began to become specialized manufacturers of hydraulic parts. In 1968, the annual output of hydraulic components in China was close to 200,000 pieces. In 1973, in the fields of machine tools, agricultural machinery, construction machinery and other industries, the professional factory for the production of hydraulic parts has grown to over 100, and its annual output exceeds 1 million pieces. Such an independent hydraulic component manufacturing industry has taken shape. At this time, the hydraulic product has evolved from the original imitation Su product intoa combination of imported technology and self-designed products. The pressure has been developed towards medium and high pressures, and electro-hydraulic servo valves and systems have been developed. The application of hydraulics has been further expanded. The pneumatic industry started a few years later than hydraulics, and it was only in 1967 that it began to establish a professional pneumatic components factory. Pneumatic components began to be manufactured and sold as commodities. Its sealing industry including rubber seals, flexible graphite seals, and mechanical seals started from the production of common O-rings, oil seals, and other extruded rubber seals and asbestos seal products in the early 1950s. In the early 1960s, it began to develop and produce flexible products. Graphite seals and mechanical seals and other products. In the 1970s, a batch of batches of professional production plants began to be established one after another in the systems of the former Ministry of Combustion, the Ministry of Agriculture, and the Ministry of Agricultural Machinery, formally forming the industry, which laid the foundation for the development of the seal industry.In the 1980s, under the guidance of the national policy of reform and opening up, with the continuous development of the machinery industry, the contradiction between the basic components lags behind the host computer has become increasingly prominent and caused the attention of all relevant departments. To this end, the former Ministry of Machinesestablished the General Infrastructure Industry Bureau in 1982, and unified the original pneumatic, hydraulic, and seal specialties that were scattered in the industries of machine tools, agricultural machinery, and construction machinery, etc. The management of a piece of office, so that the industry in the planning, investment, the introduction of technology and scientific research and development and other aspects of the basic parts of the bureau's guidance and support. This has entered a period of rapid development, it has introduced more than 60 foreign advanced technology, of which more than 40 hydraulic, pneumatic 7, after digestion and absorption and technological transformation, are now mass production, and has become the industry's leading products . In recent years, the industry has intensified its technological transformation. From 1991 to 1998, the total investment of national, local, and corporate self-raised funds totaled about 2 billion yuan, of which more than 1.6 billion were hydraulic. After continuous technological transformation and technological breakthroughs, the technical level of a group of major enterprises has been further improved, and technological equipment has also been greatly improved, laying a good foundation for forming a high starting point, specialization, and mass production. In recent years, under the guidance of the principle of common development of multiple ownership systems in the country, various small and medium-sized enterprises with different ownership have rapidly emerged and haveshown great vitality. With the further opening up of the country, foreign-funded enterprises have developed rapidly, which plays an important role in raising industry standards and expanding exports. So far China has established joint ventures with famous manufacturers in the United States, Germany, Japan and other countries or directly established piston pumps/motors, planetary speed reducers, hydraulic control valves, steering gears, hydraulic systems, hydrostatic transmissions, and hydraulic components. The company has more than 50 manufacturing enterprises such as castings, pneumatic control valves, cylinders, gas processing triplets, rubber seals, and mechanical seals, and has attracted more than 200 million U.S. dollars in foreign capital.(2) Current statusBasic profileAfter more than 40 years of hard work, China's hydraulics, pneumatics and seals industry has formed a complete industrial system with a certain level of production capacity and technical level. According to the statistics of the third n ational industrial census in 1995, China’s state-owned, privately-owned, cooperative, village-run, individual, and “funded enterprises” have annual sales income of more than 1 million yuan in hydraulic, pneumatic, and seal industrial townships and above. There are a total of more than 1,300 companies, including about 700 hydraulics, and about 300 pneumatic and sealing parts. According to thestatistics of the international industry in 1996, the total output value of the hydraulic industry in China was about 2.448 billion yuan, accounting for the 6th in the world; the total output value of the pneumatic industry was about 419 million yuan, accounting for the world’s10 people.2. Current supply and demand profileWith the introduction of technology, independent development and technological transformation, the technical level of the first batch of high-pressure plunger pumps, vane pumps, gear pumps, general hydraulic valves, oil cylinders, oil-free pneumatic components and various types of seals has become remarkable. Improve, and can be stable mass production, provide guarantees for all types of host to improve product quality. In addition, certain achievements have also been made in the aspects of CAD, pollution control, and proportional servo technology for hydraulic pneumatic components and systems, and have been used for production. So far, the hydraulic, pneumatic and seal products have a total of about 3,000 varieties and more than 23,000 specifications. Among them, there are about 1,200 types of hydraulic pressure, more than 10,000 specifications (including 60 types of hydrodynamic products, 500 specifications); about 1350 types of pneumatic, more than 8,000 specifications; there are also 350 types of rubber seals, more than 5000 The specifications are now basically able to adapt to the general needs ofvarious types of mainframe products. The matching rate for major equipment sets can reach more than 60%, and a small amount of exports has started.In 1998, the domestic production of hydraulic components was 4.8 million pieces, with sales of about 2.8 billion yuan (of which mechanical systems accounted for 70%); output of pneumatic components was 3.6 million pieces, and sales were about 550 million yuan (including mechanical systems accounting for about 60%) The production of seals is about 800 million pieces, and the sales volume is about 1 billion yuan (including about 50% of mechanical systems). According to the statistics of the annual report of the China Hydraulic and Pneumatic Sealing Industry Association in 1998, the production and sales rate of hydraulic products was 97.5% (101% of hydraulic power), 95.9% of air pressure, and 98.7% of seal. This fully reflects the basic convergence of production and sales.Although China's hydraulic, pneumatic and sealing industries have made great progress, there are still many gaps compared with the development needs of the mainframe and the world's advanced level, which are mainly reflected in the variety, performance and reliability of products. . Take hydraulic products as an example, the product varieties are only 1/3 of the foreign country, and the life expectancy is 1/2 of that of foreign countries. In order to meet the needs of key hosts, imported hosts, and majortechnical equipment, China has a large number of imported hydraulic, pneumatic, and sealing products every year. According to customs statistics and relevant data analysis, in 1998, the import volume of hydraulic, pneumatic and seal products was about 200 million U.S. dollars, of which the hydraulic pressure was about 140 million U.S. dollars, the pneumatics were 30 million U.S. dollars, and the seal was about 0.3 billion U.S. dollars. The year is slightly lower. In terms of amount, the current domestic market share of imported products is about 30%. In 1998, the total demand for hydraulic parts in the domestic market was about 6 million pieces, and the total sales volume was 4 billion yuan; the total demand for pneumatic parts was about 5 million pieces, and the total sales volume was over 700 million yuan; the total demand for seals was about 1.1 billion yuan. Pieces, total sales of about 1.3 billion yuan. (3) Future developments1. The main factors affecting development(1) The company's product development capability is not strong, and the level and speed of technology development can not fully meet the current needs for advanced mainframe products, major technical equipment and imported equipment and maintenance;(2) Many companies have lagged behind in manufacturing process, equipment level and management level, and their sense of quality is not strong, resulting in low level of product performance, unstable quality,poor reliability, and insufficiency of service, and lack of user satisfaction. And trusted branded products;(3) The degree of professional specialization in the industry is low, the power is scattered, the duplication of the low level is serious, the product convergence between the region and the enterprise leads to blind competition, and the prices are reduced each other, thus the efficiency of the enterprise is reduced, the funds are lacking, and the turnover is difficult. Insufficient investment in development and technological transformation has severely restricted the overall level of the industry and its competitive strength.(4) When the degree of internationalization of the domestic market is increasing, foreign companies have gradually entered the Chinese market to participate in competition, coupled with the rise of domestic private, cooperative, foreign-funded, and individual enterprises, resulting in increasing impact on state-owned enterprises. .2. Development trendWith the continuous deepening of the socialist market economy, the relationship between supply and demand in the hydraulic, pneumatic and sealed products has undergone major changes. The seller market characterized by “shortage” has basically become a buyer’s market characterized by “structured surplus”. Replaced by. From the perspective of overall capacity, it is already in a trend of oversupply, and in particular,general low-grade hydraulic, pneumatic and seals are generally oversupply; and like high-tech products with high technological content and high value and high value-added products that are urgently needed by the host, Can not meet the needs of the market, can only rely on imports. After China's entry into the WTO, its impact may be greater. Therefore, during the “10th Five-Y ear Plan” period, the growth of the industry’s output value must not only rely on the growth of quantity. Instead, it should focus on the structural contradiction of the industry and intensify efforts to adjust the industrial structure and product structure. It should be based on the improvement of quality. Product technology upgrades in order to adapt to and stimulate market demand, and seek greater development.2. Hydraulic application on power slide(1) Introduction of Power Sliding TableUsing the binding force curve diagram and the state space analysis method to analyze and study the sliding effect and the smoothness of the sliding table of the combined machine tool, the dynamics of the hydraulic drive system of the sliding table—the self-regulating back pressure regulating system are established. mathematical model. Through the digital simulation system of the computer, the causes and main influencing factors of the slide impact and the motion instability are analyzed. What kind of conclusions can be drawn from those, if we canreasonably design the structural dimensions of hydraulic cylinders and self-regulating back pressure regulators ——The symbols used in the text are as follows:s 1 - flow source, that is, the flow rate of the governor valve outlet;S el —— sliding friction of the sliding table;R - the equivalent viscous friction coefficient of the slide;I 1 - quality of slides and cylinders;12 - self-adjusting back pressure valve core quality;C 1, c 2 - liquid volume without cylinder chamber and rod chamber;C 2 - Self-adjusting back pressure valve spring compliance;R 1, R2 - Self-adjusting back pressure valve damping orifice fluid resistance;R 9 - Self-adjusting back pressure valve valve fluid resistance;S e2——initial pre-tightening force of self-adjusting back pressure valve spring;I 4, I5 - Equivalent liquid sense of the pipeline;C 5, C 6 - equivalent liquid capacity of the pipeline;R 5, R7 - Equivalent liquid resistance of the pipeline;V 3, V4 - cylinder rodless cavity and rod cavity volume;P 3, P4—pressure of the rodless cavity and rod cavity of the cylinder;F - the slide bears the load;V - speed of slide motion;In this paper, the power bond diagram and the state space splitting method are used to establish the system's motion mathematical model, and the dynamic characteristics of the slide table can be significantly improved.In the normal operation of the combined machine tool, the magnitude of the speed of the slide, its direction and the load changes it undergoes will affect its performance in varying degrees. Especially in the process of work-in-process, the unsteady movement caused by the advancing of the load on the slide table and the cyclical change of the load will affect the surface quality of the workpiece to be machined. In severe cases, the tool will break. According to the requirements of the Dalian Machine Tool Plant, the author used the binding force curve diagram and the state space analysis method to establish a dynamic mathematical model of a self-adjusting back pressure and speed adjustment system for the new hydraulic drive system of the combined machine tool slide. In order to improve the dynamic characteristics of the sliding table, it is necessary to analyze the causes and main influencing factors of the impetus and movement of the sliding table. However, it must pass the computer's digital simulation and the final results obtained from the research.(2) Dynamic Mathematical ModelThe working principle diagram of the self-adjusting back pressure speedregulation system of the combined machine tool slide hydraulic drive system is shown in the figure. This system is used to complete the work-cycle-stop-rewind. When the sliding table is working, the three-position four-way reversing valve is in the illustrated position. The oil supply pressure of the oil pump will remain approximately constant under the effective action of the overflow valve, and the oil flow passes through the reversing valve and adjusts the speed. The valve enters the rodless chamber of the cylinder to push the slide forward. At the same time, the pressurized oil discharged from the rod chamber of the cylinder will flow back to the tank through the self-regulating back pressure valve and the reversing valve. During this process, there was no change in the operating status of both the one-way valve and the relief valve. The complex and nonlinear system of the hydraulic drive system of the self-adjusting back pressure governor system is a kind of self-adjusting back-pressure governor system. To facilitate the study of its dynamic characteristics, a simple and reasonable dynamic mathematical model that only considers the main influencing factors is established. Especially important [1][2]. From the theoretical analysis and the experimental study, we can see that the system process time is much longer than the process time of the speed control valve. When the effective pressure bearing area of the rodless cavity of the fuel tank is large, the flow rate at the outlet of the speed control valve is instantaneous. The overshoot is reflected in thesmall change in speed of the slide motion [2]. In order to further broaden and deeply study the dynamic characteristics of the system so that the research work can be effectively performed on a miniature computer, this article will further simplify the original model [2], assuming that the speed control valve is output during the entire system pass. When the flow is constant, this is considered to be the source of the flow. The schematic diagram of the dynamic model structure of this system is shown in Fig. 2. It consists of a cylinder, a sliding table, a self-adjusting back pressure valve, and a connecting pipe.The power bond graph is a power flow graph. It is based on the transmission mode of the system energy, based on the actual structure, and uses the centralized parameters to represent the role of the subsystems abstractly as a resistive element R, a perceptual element I, and a capacitive element. Three kinds of role of C. Using this method, the physical concept of modeling is clear, and combined with the state-space analysis method, the linear system can be described and analyzed more accurately. This method is an effective method to study the dynamic characteristics of complex nonlinear systems in the time domain. According to the main characteristics of each component of the self-adjusting back pressure control system and the modeling rules [1], the power bond diagram of the system is obtained. The upper half of each key in the figure represents the power flow. The two variables that makeup the power are the force variables (oil pressure P and force F) and the flow variables (flow q and velocity v). The O node indicates that the system is connected in parallel, and the force variables on each key are equal and the sum of the flow variables is zero; 1 The nodes represent the series connection in the system, the flow variables on each key are equal and the sum of the force variables is Zero. TF denotes a transformer between different energy forms. The TF subscripted letter represents the conversion ratio of the flow variable or the force variable. The short bar on the key indicates the causal relationship between the two variables on the key. The full arrow indicates the control relationship. There are integral or differential relationships between the force and flow variables of the capacitive and perceptual elements in the three types of action elements. Therefore, a complex nonlinear equation of state with nine state variables can be derived from Fig. 3 . In this paper, the research on the dynamic characteristics of the sliding table starts from the two aspects of the slide's hedging and the smoothness of the motion. The fourth-order fixed-length Runge-Kutta is used for digital simulation on the IBM-PC microcomputer.(3) Slide advanceThe swaying phenomenon of the slide table is caused by the sudden disappearance of the load acting on the slide table (such as drilling work conditions). In this process, the table load F, the moving speed V, and thepressure in the two chambers of the cylinder P3 and P4 can be seen from the simulation results in Fig. 4. When the sliding table moves at a uniform speed under the load, the oil pressure in the rodless cavity of the oil cylinder is high, and a large amount of energy is accumulated in the oil. When the load suddenly disappears, the oil pressure of the cavity is rapidly reduced, and the oil is rapidly reduced. When the high-pressure state is transferred to the low-pressure state, a lot of energy is released to the system, resulting in a high-speed forward impact of the slide. However, the front slide of the sliding table causes the pressure in the rod cavity of the oil cylinder to cause the back pressure to rise, thereby consuming part of the energy in the system, which has a certain effect on the kicking of the slide table. We should see that in the studied system, the inlet pressure of the self-adjusting back pressure valve is subject to the comprehensive effect of the two-chamber oil pressure of the oil cylinder. When the load suddenly disappears, the pressure of the self-adjusting back pressure valve rapidly rises and stably exceeds the initial back pressure value. It can be seen from the figure that self-adjusting back pressure in the speed control system when the load disappears, the back pressure of the cylinder rises more than the traditional speed control system, so the oil in the rod cavity of the cylinder absorbs more energy, resulting in the amount of forward momentum of the slide It will be about 20% smaller than traditionalspeed control systems. It can be seen from this that the use of self-adjusting back-gear speed control system as a drive system slider has good characteristics in suppressing the forward punch, in which the self-adjusting back pressure valve plays a very large role.(4) The smoothness of the slideWhen the load acting on the slide changes periodically (such as in the case of milling), the speed of the slide will have to fluctuate. In order to ensure the processing quality requirements, it must reduce its speed fluctuation range as much as possible. From the perspective of the convenience of the discussion of the problem, assume that the load changes according to a sine wave law, and the resulting digital simulation results are shown in Figure 5. From this we can see that this system has the same variation rules and very close numerical values as the conventional speed control system. The reason is that when the change of the load is not large, the pressure in the two chambers of the fuel tank will not have a large change, which will eventually lead to the self-regulating back pressure valve not showing its effect clearly.(5) Improvement measuresThe results of the research show that the dynamic performance of a sliding table with self-regulating back pressure control system as a drive system is better than that of a traditional speed control system. To reduce the amount of kick in the slide, it is necessary to rapidly increase the backpressure of the rod cavity when the load disappears. To increase the smoothness of the sliding table, it is necessary to increase the rigidity of the system. The main measure is to reduce the volume of oil. From the system structure, it is known that the cylinder has a large volume between the rod cavity and the oil discharge pipe, as shown in Fig. 6a. Its existence in terms of delay and attenuation of the self-regulating back pressure valve function, on the other hand, also reduces the rigidity of the system, it will limit the further improvement of the propulsion characteristics and the smoothness of the motion. Thus, improving the dynamic characteristics of the sliding table can be handled by two methods: changing the cylinder volume or changing the size of the self-regulating back pressure valve. Through the simulation calculation of the structural parameters of the system and the comparison of the results, it can be concluded that the ratio of the volume V4 between the rod cavity and the oil discharge pipe to the volume V3 between the rodless cavity and the oil inlet pipe is changed from 5.5 to 5.5. At 1 oclock, as shown in the figure, the diameter of the bottom end of the self-adjusting back pressure valve is increased from the original 10mm to 13mm, and the length of the damper triangle groove is reduced from the original lmm to 0.7mm, which will enable the front of the slide table. The impulse is reduced by 30%, the transition time is obviously shortened, and the smoothness of the slide motion will also be greatly improved.中文译文液压系统W Arnold1. 绪论液压站称液压泵站,是独立的液压装置。

液压机的设计外文文献翻译

液压机的设计外文文献翻译

附录A液压机水由高处下降到一个低的高度的时候能产生能量, 可以用来驱动水轮和涡轮等机械.最高和最低水位之间的落差决定了每磅水的能量。

水力可以来自很多自然资源, 例如瀑布和建有大坝的河流等.在没有自然资源的情况下, 可以修建人工水库。

当能量充足的时候可以抽水到水库来储存水能, 当能量不足的时候, 这些储存起来的水可提供能量来驱动涡轮。

工业的液压机械的某些称作储蓄器的机械装置被用来短时间的提供高效的功率.活塞负载重量后装入缸体中, 然后水被缓慢的压入缸体, 活塞和活塞负载的重物给强迫的升到一个高的位置, 当放下他们是,他们强迫缸体中的水迅速的流出, 为机器提供水的压力能。

液压机是由一种液体,特别是水的压力来操纵。

他们在工程领域的广泛应用,例如: 地层移动、矿业、建筑机械、汽车工程、纺织工业、电站、农业机械等。

液压设备水、油压力是常用的动力源, 比如压力机、铆机、起锚机、绞盘等机械. 水压或者静水力压是约瑟夫布拉玛(Joseph Bramah)发现的, 因此优势也称布拉玛压力. 他主要包括连个缸体, 一个是用液体填充, 一个用活塞. 两个缸体用管子连接起来, 也同样用液体填充。

一个缸体是小直径的, 另一个是大直径的. 根据帕斯卡定律, 外界作用在小活塞上压强通过液体毫无损失的传到被迫上升的大活塞的表面。

对于两个活塞来说, 压强(单位面积压力)是相同, 作用在大活塞上向上的压力是作用在小活塞的几倍, 因为大活塞的面积是小活塞的几倍. 比如, 举个例子, 小活塞的面积是2平方英寸, 100lb的压力作用在它上面, 于是作用在具有50平方英寸面积的大活塞上的压力就会有25000lb(100×50/2=2,500). 然而, 让活塞一定时, 小活塞一定的距离也成比例的大于大活塞移动的距离, 这满足能量转换定律。

如果小活塞移动25 英寸,大的活塞就会只移动1英寸。

水压被使用了, 比如, 使三维的物体从一片金属压缩成一个大的物体。

液压控制系统-液压液外文文献翻译、中英文翻译

液压控制系统-液压液外文文献翻译、中英文翻译

CHAPTER 3HYDRAULIC FLUIDSDuring the design of equipment that requires fluid power, many factors are considered in selecting the type of system to be used—hydraulic, pneumatic, or a combination of the two. Some of the factors are required speed and accuracy of operation, surrounding atmospheric conditions, economic conditions, availability of replacement fluid, required pressure level, operating temperature range, contamination possibilities, cost of transmission lines, limitations of the equipment, lubricity, safety to the operators, and expected service life of the equipment.After the type of system has been selected, many of these same factors must be considered in selecting the fluid for the system. This chapter is devoted to hydraulic fluids. Included in it are sections on the properties and characteristics desired of hydraulic fluids; types of hydraulic fluids; hazards and safety precautions for working with, handling, and disposing of hydraulic liquids; types and control of contamination; and sampling.PROPERTIESIf fluidity (the physical property of a substance that enables it to flow) and incompressibility were the only properties required, any liquid not too thick might be used in a hydraulic system. However, a satisfactory liquid for a particular system must possess a number of other properties. The most important properties and some characteristics are discussed in the following paragraphs.VISCOSITYViscosity is one of the most important properties of hydraulic fluids. It is a measure of a fluids resistance to flow. A liquid, such as gasoline, which flows easily, has a low viscosity; and a liquid, such as tar, which flows slowly, has a high viscosity. The viscosity of a liquid is affected by changes in temperature and pressure. As the temperature of a liquid increases, its viscosity decreases. That is, a liquid flows more easily when it is hot than when it is cold. The viscosity of a liquid increases as the pressure on the liquid increases.A satisfactory liquid for a hydraulic system must be thick enough to give a good seal at pumps, motors, valves, and so on. These components depend on close fits for creating and maintaining pressure. Any internal leakage through these clearances results in loss of pressure, instantaneous control, and pump efficiency. Leakage losses are greater with thinner liquids (low viscosity). A liquid that is too thin will also allow rapid wearing of moving parts, or of parts that operate under heavy loads. On the other hand, if the liquid is too thick (viscosity too high), the internal friction of the liquid will cause an increase in the liquids flow resistance through clearances of closely fitted parts, lines, and internal passages. This results in pressuredrops throughout the system, sluggish operation of the equipment, and an increase in power consumption.Measurement of ViscosityViscosity is normally determined by measuring the time required for a fixed volume of a fluid (at a given temperature) to flow through a calibrated orifice or capillary tube. The instruments used to measure the viscosity of a liquid are known as viscometers or viscosimeters.Figure 3-1.Saybolt viscometer.Several types of viscosimeters are in use today. The Say bolt viscometer, shown in figure 3-1, measures the time required, in seconds, for 60 milliliters of the tested fluid at 100°F to pass through a standard orifice. The time measured is used to express the fluids viscosity, in Saybolt universal seconds or Saybolt furol seconds.Figure 3-2.Various styles of glass capillary viscometers.The glass capillary viscometers, shown in figure 3-2, are examples of the second type of viscometer used. These viscometers are used to measure kinematic viscosity. Like the Saybolt viscometer, the glass capillary measures the time in seconds required for the tested fluid to flow through the capillary. This time is multiplied by the temperature constant of the viscometer in use to provide the viscosity, expressed in centistokes.The following formulas may be used to convert centistokes (cSt units) to approximate Say bolt universal seconds (SUS units). For SUS values between 32 and 100: SUS SUS cST 195226.0-⨯= For SUS values greater than 100: SUS SUS cST 195220.0-⨯=Although the viscometers discussed above are used in laboratories, there are other viscometers in the supply system that is available for local use. These viscometers can be used to test the viscosity of hydraulic fluids either prior to their being added to a system or periodically after they have been in an operating system for a while.Additional information on the various types of viscometers and their operation can be found in the Physical Measurements Training Manual, NA V AIR 17-35QAL-2.Viscosity IndexThe viscosity index (V.I.) of oil is a number that indicates the effect of temperature changes on the viscosity of the oil. A low V.I. signifies a relatively large change of viscosity with changes of temperature. In other words, the oil becomes extremely thin at high temperatures and extremely thick at low temperatures. On the other hand, a high V.I. signifies relatively little change in viscosity over a wide temperature range.Ideal oil for most purposes is one that maintains a constant viscosity throughout temperature changes. The importance of the V.I. can be shown easily by considering automotive lubricants. Oil having a high V.I. resists excessive thickening when the engine is cold and, consequently, promotes rapid starting and prompt circulation; it resists excessive thinning when the motor is hot and thus provides full lubrication and prevents excessive oil consumption.Another example of the importance of the V.I. is the need for high V.I. hydraulic oil for military aircraft, since hydraulic control systems may be exposed to temperatures ranging from below –65°F at high altitudes to over 100°F on the ground. For the proper operation of the hydraulic control system, the hydraulic fluid must have a sufficiently high V.I. to perform its functions at the extremes of the expected temperature range.Liquids with a high viscosity have a greater resistance to heat than low viscosity liquids which have been derived from the same source. The average hydraulic liquid has a relatively low viscosity. Fortunately, there is a wide choice of liquids available for use in the viscosity range required of hydraulic liquids.The V.I. of an oil may be determined if its viscosity at any two temperatures is known. Tables, based on a large number of tests, are issued by the American Society for Testing and Materials (ASTM). These tables permit calculation of the V.I. from known viscosities.LUBRICATING POWERIf motion takes place between surfaces in contact, friction tends to oppose the motion. When pressure forces the liquid of a hydraulic system between the surfaces of moving parts, the liquid spreads out into a thin film which enables the parts to move more freely. Different liquids, including oils, vary greatly not only in their lubricating ability but also in film strength. Film strength is the capability of a liquid to resist being wiped or squeezed out from between the surfaces when spread out in an extremely thin layer. A liquid will no longer lubricate if the film breaks down, since the motion of part against part wipes the metal clean of liquid.Lubricating power varies with temperature changes; therefore, the climatic and working conditions must enter into the determination of the lubricating qualities of a liquid. Unlike viscosity, which is a physical property, the lubricating power and film strength of a liquid isdirectly related to its chemical nature. Lubricating qualities and film strength can be improved by the addition of certain chemical agents.CHEMICAL STABILITYChemical stability is another property which is exceedingly important in the selection of a hydraulic liquid. It is defined as the liquids ability to resist oxidation and deterioration for long periods. All liquids tend to undergo unfavorable changes under severe operating conditions. This is the case, for example, when a system operates for a considerable period of time at high temperatures.Excessive temperatures, especially extremely high temperatures, have a great effect on the life of a liquid. The temperature of the liquid in the reservoir of an operating hydraulic system does not always indicate the operating conditions throughout the system. Localized hot spots occur on bearings, gear teeth, or at other points where the liquid under pressure is forced through small orifices. Continuous passage of the liquid through these points may produce local temperatures high enough to carbonize the liquid or turn it into sludge, yet the liquid in the reservoir may not indicate an excessively high temperature.Liquids may break down if exposed to air, water, salt, or other impurities, especially if they are in constant motion or subjected to heat. Some metals, such as zinc, lead, brass, and copper, have undesirable chemical reactions with certain liquids.These chemical reactions result in the formation of sludge, gums, carbon, or other deposits which clog openings, cause valves and pistons to stick or leak, and give poor lubrication to moving parts. Once a small amount of sludge or other deposits is formed, the rate of formation generally increases more rapidly. As these deposits are formed, certain changes in the physical and chemical properties of the liquid take place. The liquid usually becomes darker, the viscosity increases and damaging acids are formed.The extent to which changes occur in different liquids depends on the type of liquid, type of refining, and whether it has been treated to provide further resistance to oxidation. The stability of liquids can be improved by the addition of oxidation inhibitors. Inhibitors selected to improve stability must be compatible with the other required properties of the liquid.FREEDOM FROM ACIDITYAn ideal hydraulic liquid should be free from acids which cause corrosion of the metals in the system. Most liquids cannot be expected to remain completely no corrosive under severe operating conditions. The degree of acidity of a liquid, when new, may be satisfactory; but after use, the liquid may tend to become corrosive as it begins to deteriorate.Many systems are idle for long periods after operating at high temperatures. This permits moisture to condense in the system, resulting in rust formation.Certain corrosion- and rust-preventive additives are added to hydraulic liquids. Some of these additives are effective only for a limited period. Therefore, the best procedure is to use the liquid specified for the system for the time specified by the system manufacturer and to protect the liquid and the system as much as possible from contamination by foreign matter, from abnormal temperatures, and from misuse.FLASHPOINTFlashpoint is the temperature at which a liquid gives off vapor in sufficient quantity to ignite momentarily or flash when a flame is applied. A high flashpoint is desirable for hydraulic liquids because it provides good resistance to combustion and a low degree of evaporation at normal temperatures. Required flashpoint minimums vary from 300°F for the lightest oils to 510°F for the heaviest oils.FIRE POINTFire point is the temperature at which a substance gives off vapor in sufficient quantity to ignite and continue to burn when exposed to a spark or flame. Like flashpoint, a high fire point is required of desirable hydraulic liquids.MINIMUM TOXICITYToxicity is defined as the quality, state, or degree of being toxic or poisonous. Some liquids contain chemicals that are a serious toxic hazard. These toxic or poisonous chemicals may enter the body through inhalation, by absorption through the skin, or through the eyes or the mouth. The result is sickness and, in some cases, death. Manufacturers of hydraulic liquids strive to produce suitable liquids that contain no toxic chemicals and, as a result, most hydraulic liquids are free of harmful chemicals. Some fire-resistant liquids are toxic, and suitable protection and care in handling must be provided.DENSITY AND COMPRESSIBILITYA fluid with a specific gravity of less than 1.0 is desired when weight is critical, although with proper system design, a fluid with a specific gravity greater than one can be tolerated. Where avoidance of detection by military units is desired, a fluid which sinks rather than rises to the surface of the water is desirable. Fluids having a specific gravity greater than 1.0 are desired, as leaking fluid will sink, allowing the vessel with the leak to remain undetected.Recall from chapter 2 that under extreme pressure a fluid may be compressed up to 7 percent of its original volume. Highly compressible fluids produce sluggish system operation. This does not present a serious problem in small, low-speed operations, but it must be considered in the operating instructions.FOAMING TENDENCIESFoam is an emulsion of gas bubbles in the fluid. Foam in a hydraulic system results fromcompressed gases in the hydraulic fluid. A fluid under high pressure can contain a large volume of air bubbles. When this fluid is depressurized, as when it reaches the reservoir, the gas bubbles in the fluid expand and produce foam. Any amount of foaming may cause pump cavitations and produce poor system response and spongy control. Therefore, defaming agents are often added to fluids to prevent foaming. Minimizing air in fluid systems is discussed later in this chapter.CLEANLINESSCleanliness in hydraulic systems has received considerable attention recently. Some hydraulic systems, such as aerospace hydraulic systems, are extremely sensitive to contamination. Fluid cleanliness is of primary importance because contaminants can cause component malfunction, prevent proper valve seating, cause wear in components, and may increase the response time of servo valves. Fluid contaminants are discussed later in this chapter.The inside of a hydraulic system can only be kept as clean as the fluid added to it. Initial fluid cleanliness can be achieved by observing stringent cleanliness requirements (discussed later in this chapter) or by filtering all fluid added to the system.TYPES OF HYDRAULIC FLUIDSThere have been many liquids tested for use in hydraulic systems. Currently, liquids being used include mineral oil, water, phosphate ester, water-based ethylene glycol compounds, and silicone fluids. The three most common types of hydraulic liquids are petroleum-based, synthetic fire-resistant, and water-based fire-resistant.PETROLEUM-BASED FLUIDSThe most common hydraulic fluids used in shipboard systems are the petroleum-based oils. These fluids contain additives to protect the fluid from oxidation (antioxidant), to protect system metals from corrosion (anticorrosion), to reduce tendency of the fluid to foam (foam suppressant), and to improve viscosity.Petroleum-based fluids are used in surface ships,electro hydraulic steering and deck machinery systems, submarines,hydraulic systems, and aircraft automatic pilots, shock absorbers, brakes, control mechanisms, and other hydraulic systems using seal materials compatible with petroleum-based fluids.SYNTHETIC FIRE-RESISTANT FLUIDS Petroleum-based oils contain most of the desired properties of a hydraulic liquid. However, they are flammable under normal conditions and can become explosive when subjected to high pressures and a source of flame or high temperatures. Nonflammable synthetic liquids have been developed for use in hydraulic systems where fire hazards exist.Phosphate Ester Fire-Resistant FluidPhosphate ester fire-resistant fluid for shipboard use is covered by specification MIL- H-19457. There are certain trade names closely associated with these fluids. However, the only acceptable fluids conforming to MIL-H-19457 are the ones listed on the current Qualified Products List (QPL) 19457. These fluids will be delivered in containers marked MIL-H-19457C or a later specification revision. Phosphate ester in containers marked by a brand name without specification identification must not be used in shipboard systems, as they may contain toxic chemicals.These fluids will burn if sufficient heat and flame are applied, but they do not support combustion. Drawbacks of phosphate ester fluids are that they will attack and loosen commonly used paints and adhesives, deteriorate many types of insulations used in electrical cables, and deteriorate many gasket and seal materials. Therefore, gaskets and seals for systems in which phosphate ester fluids are used are manufactured of specific materials. Naval Ships,Technical Manual, chapter 262, specifies paints to be used on exterior surfaces of hydraulic systems and components in which phosphate ester fluid is used and on ship structure and decks in the immediate vicinity of this equipment. Naval Ships,Technical Manual, chapter 078, specifies gasket and seal materials used. NA V AIR 01-1A-17 also contains a list of materials resistant to phosphate ester fluids.Trade names for phosphate ester fluids, which do not conform to MIL-H-19457 include Pydraul、Skydrol、and Fire Safe.PHOSPHATE ESTER FLUID SAFETY.—as a maintenance person, operator, supervisor, or crew member of a ship, squadron, or naval shore installation, you must understand the hazards associated with hydraulic fluids to which you may be exposed.Phosphate ester fluid conforming to specification MIL-H-19457 is used in aircraft elevators, ballast valve operating systems, and replenishment-at-sea systems. This type of fluid contains a controlled amount of neurotoxic material. Because of the neurotoxic effects that can result from ingestion, skin absorption, or inhalation of these fluids, be sure to use the following precautions:1. Avoid contact with the fluids by wearing protective clothing.2. Use chemical goggles or face shields to protect your eyes.3. If you are expected to work in an atmosphere containing a fine mist or spray, wear a continuous-flow airline respirator.4. Thoroughly clean skin areas contaminated by this fluid with soap and water.5. If you get any fluid in your eyes, flush them with running water for at least 15 minutes and seek medical attention.If you come in contact with MIL-H-19457 fluid, report the contact when you seek medical aid and whenever you have a routine medical examination.Naval Ships,Technical Manual, chapter 262, contains a list of protective clothing, along with national stock numbers(NSN),for use with fluids conforming to MIL-H-19457.It also contains procedures for repair work and for low-level leakage and massive spills cleanup.PHOSPHATE ESTER FLUID DISPOSAL.—Waste MIL-H-19457 fluids and refuse (rags and other materials) must not be dumped at sea. Fluid should be placed in bung-type drums. Rags and other materials should be placed in open top drums for shore disposal. These drums should be marked with a warning label stating their content, safety precautions, and disposal instructions. Detailed instructions for phosphate ester fluids disposal can be found in Naval Ships, Technical Manual, chapter 262, and OPNA VINST 5090.1.Silicone Synthetic Fire-Resistant FluidsSilicone synthetic fire-resistant fluids are frequently used for hydraulic systems which require fire resistance, but which have only marginal requirements for other chemical or physical properties common to hydraulic fluids. Silicone fluids do not have the detrimental characteristics of phosphate ester fluids, nor do they provide the corrosion protection and lubrication of phosphate ester fluids, but they are excellent for fire protection. Silicone fluid conforming to MIL-S-81087 is used in the missile hold-down and lockout system aboard submarines.Lightweight Synthetic Fire-Resistant Fluids In applications where weight is critical, lightweight synthetic fluid is used in hydraulic systems. MIL-H-83282 is a synthetic, fire-resistant hydraulic fluid used in military aircraft and hydrofoils where the requirement to minimize weight dictates the use of a low-viscosity fluid. It is also the most commonly used fluid in aviation support equipment. NA V AIR 01-1A-17 contains additional information on fluids conforming to specification MIL-H-83282.WATER-BASED FIRE-RESISTANT FLUIDS The most widely used water-based hydraulic fluids may be classified as water-glycol mixtures and water-synthetic base mixtures. The water-glycol mixture contains additives to protect it from oxidation, corrosion, and biological growth and to enhance its load-carrying capacity.Fire resistance of the water mixture fluids depends on the vaporization and smothering effect of steam generated from the water. The water in water-based fluids is constantly being driven off while the system is operating. There- fore, frequent checks to maintain the correct ratio of water are important.The water-based fluid used in catapult retracting engines, jet blast deflectors, and weapons elevators and handling systems conforms to MIL-H-22072.The safety precautions outlined for phosphate ester fluid and the disposal of phosphate ester fluid also apply to water-based fluid conforming to MIL-H-22072.CONTAMINATIONHydraulic fluid contamination may be described as any foreign material or substance whose presence in the fluid is capable of adversely affecting system performance or reliability. It may assume many different forms, including liquids, gases, and solid matter of various compositions, sizes, and shapes. Solid matter is the type most often found in hydraulic systems and is generally referred to as particulate contamination. Con- termination is always present to some degree, even in new, unused fluid, but must be kept below a level that will adversely affect system operation. Hydraulic contamination control consists of requirements, techniques, and practices necessary to minimize and control fluid contamination.CLASSIFICATIONThere are many types of contaminants which are harmful to hydraulic systems and liquids. These contaminants may be divided into two different classes—particulate and fluid.Particulate ContaminationThis class of contaminants includes organic, metallic solid and inorganic solid contaminants. These contaminants are discussed in the following paragraphs.ORGANIC CONTAMINATION.—Organic solids or semisolids found in hydraulic systems are produced by wear, oxidation, or polymerization. Minute particles of O-rings, seals, gaskets, and hoses are present, due to wear or chemical reactions. Synthetic products, such as neoprene, silicones, and hypalon, though resistant to chemical reaction with hydraulic fluids, produce small wear particles. Oxidation of hydraulic fluids increases with pressure and temperature, although antioxidants are blended into hydraulic fluids to minimize such oxidation.The ability of a hydraulic fluid to resist oxidation or polymerization in service is defined as its oxidation stability. Oxidation products appear as organicacids,asphaltics,gums,and varnishes. These products combine with particles in the hydraulic fluid to form sludge. Some oxidation products are oil soluble and cause the hydraulic fluid to increase in viscosity; other oxidation products are not oil soluble and form sediment.METALLIC SOLID CONTAMINATION.—Metallic contaminants are almost always present in a hydraulic system and will range in size from microscopic particles to particles readily visible to the naked eye. These particles are the result of wearing and scoring of bare metal parts and plating materials, such as silver and chromium. Although practically all metals commonly used for parts fabrication and plating may be found in hydraulic fluids, themajor metallic materials found are ferrous, aluminum, and chromium particles. Because of their continuous high-speed internal movement, hydraulic pumps usually contribute most of the metallic particulate contamination present in hydraulic systems. Metal particles are also produced by other hydraulic system components, such as valves and actuators, due to body wear and the chipping and wearing away of small pieces of metal plating materials.INORGANIC SOLID CONTAMINATION.—This contaminant group includes dust, paint particles, dirt, and silicates. Glass particles from glass bead penning and blasting may also be found as contaminants. Glass particles are very undesirable contaminants due to their abrasive effect on synthetic rubber seals and the very fine surfaces of critical moving parts. Atmospheric dust, dirt, paint particles, and other materials are often drawn into hydraulic systems from external sources. For example, the wet piston shaft of a hydraulic actuator may draw some of these foreign materials into the cylinder past the wiper and dynamic seals, and the contaminant materials are then dispersed in the hydraulic fluid. Contaminants may also enter the hydraulic fluid during maintenance when tubing, hoses, fittings, and components are disconnected or replaced. It is therefore important that all exposed fluid ports be sealed with approved protective closures to minimize such contamination.Fluid ContaminationAir, water, solvent,and other foreign fluids are in the class of fluid contaminants.AIR CONTAMINATION.—Hydraulic fluids are adversely affected by dissolved, entrained, or free air. Air may be introduced through improper maintenance or as a result of system design. Any maintenance operation that involves breaking into the hydraulic system, such as disconnecting or removing a line or component will invariably result in some air being introduced into the system. This source of air can and must be minimized by prebilling replacement components with new filtered fluid prior to their installation. Failing to prefill a filter element bowl with fluid is a good example of how air can be introduced into the system. Although prebilling will minimize introduction of air, it is still important to vent the system where venting is possible.Most hydraulic systems have built-in sources of air. Leaky seals in gas-pressurized accumulators and reservoirs can feed gas into a system faster than it can be removed, even with the best of maintenance. Another lesser known but major source of air is air that is sucked into the system past actuator piston rod seals. This usually occurs when the piston rod is stroked by some external means while the actuator itself is not pressurized.WATER CONTAMINATION.—Water is a serious contaminant of hydraulic systems. Hydraulic fluids are adversely affected by dissolved, emulsified, or free water. Water contamination may result in the formation of ice, which impedes the operation of valves,actuators, and other moving parts. Water can also cause the formation of oxidation products and corrosion of metallic surfaces.SOLVENT CONTAMINATION.—Solvent contamination is a special form of foreign fluid contamination in which the original contaminating substance is a chlorinated solvent. Chlorinated solvents or their residues may, when introduced into a hydraulic system, react with any water present to form highly corrosive acids.Chlorinated solvents, when allowed to combine with minute amounts of water often found in operating hydraulic systems, change chemically into hydrochloric acids. These acids then attack internal metallic surfaces in the system, particularly those that are ferrous, and produce a severe rust-like corrosion. NA V AIR 01-1A-17 and NSTM, chapter 556, contain tables of solvents for use in hydraulic maintenance.FOREIGN-FLUIDS CONTAMINATION.—Hydraulic systems can be seriously contaminated by foreign fluids other than water and chlorinated solvents. This type of contamination is generally a result of lube oil, engine fuel, or incorrect hydraulic fluid being introduced inadvertently into the system during servicing. The effects of such contamination depend on the contaminant, the amount in the system, and how long it has been present.NOTE: It is extremely important that the different types of hydraulic fluids are not mixed in one system. If different type hydraulic fluids are mixed, the characteristics of the fluid required for a specific purpose are lost. Mixing the different types of fluids usually will result in a heavy, gummy deposit that will clog passages and require a major cleaning. In addition, seals and packing installed for use with one fluid usually are not compatible with other fluids and damage to the seals will result.ORIGIN OF CONTAMINATIONRecall that contaminants are produced from wear and chemical reactions, introduced by improper maintenance, and inadvertently introduced during servicing. These methods of contaminant introduction fall into one of the four major areas of contaminant origin.1. Particles originally contained in the system. These particles originate during the fabrication and storage of system components. Weld spatter and slag may remain in welded system components, especially in reservoirs and pipe assemblies. The presence is minimized by proper design. For example, seam-welded overlapping joints are preferred, and arc welding of open sections is usually avoided. Hidden passages in valve bodies, inaccessible to sand blasting or other methods of cleaning, are the main source of introduction of core sand. Even the most carefully designed and cleaned castings will almost invariably free some sand particles under the action of hydraulic pressure. Rubber hose assemblies always contain some loose particles. Most of these particles can be removed by flushing the hose before installation;。

液压机的设计外文文献翻译

液压机的设计外文文献翻译

附录A液压机水由高处下降到一个低的高度的时候能产生能量, 可以用来驱动水轮和涡轮等机械.最高和最低水位之间的落差决定了每磅水的能量。

水力可以来自很多自然资源, 例如瀑布和建有大坝的河流等.在没有自然资源的情况下, 可以修建人工水库。

当能量充足的时候可以抽水到水库来储存水能, 当能量不足的时候, 这些储存起来的水可提供能量来驱动涡轮。

工业的液压机械的某些称作储蓄器的机械装置被用来短时间的提供高效的功率.活塞负载重量后装入缸体中, 然后水被缓慢的压入缸体, 活塞和活塞负载的重物给强迫的升到一个高的位置, 当放下他们是,他们强迫缸体中的水迅速的流出, 为机器提供水的压力能。

液压机是由一种液体,特别是水的压力来操纵。

他们在工程领域的广泛应用,例如: 地层移动、矿业、建筑机械、汽车工程、纺织工业、电站、农业机械等。

液压设备水、油压力是常用的动力源, 比如压力机、铆机、起锚机、绞盘等机械. 水压或者静水力压是约瑟夫布拉玛(Joseph Bramah)发现的, 因此优势也称布拉玛压力. 他主要包括连个缸体, 一个是用液体填充, 一个用活塞. 两个缸体用管子连接起来, 也同样用液体填充。

一个缸体是小直径的, 另一个是大直径的. 根据帕斯卡定律, 外界作用在小活塞上压强通过液体毫无损失的传到被迫上升的大活塞的表面。

对于两个活塞来说, 压强(单位面积压力)是相同, 作用在大活塞上向上的压力是作用在小活塞的几倍, 因为大活塞的面积是小活塞的几倍. 比如, 举个例子, 小活塞的面积是2平方英寸, 100lb的压力作用在它上面, 于是作用在具有50平方英寸面积的大活塞上的压力就会有25000lb(100×50/2=2,500). 然而, 让活塞一定时, 小活塞一定的距离也成比例的大于大活塞移动的距离, 这满足能量转换定律。

如果小活塞移动25 英寸,大的活塞就会只移动1英寸。

水压被使用了, 比如, 使三维的物体从一片金属压缩成一个大的物体。

液压系统设计外文文献翻译

液压系统设计外文文献翻译

附录AHydraulic systemC.J.Sexton,S.M.LewisandC.P.PleaseUniversity of Southampton,UKAbstract:A complete hydraulic system consists of five parts, namely, power components, actuators, control components, auxiliary components (accessories) and hydraulic oil. The function of hydraulic system is to help human work, mainly through the implementation of components into the pressure of rotation or reciprocating movement. Other advantages of the hydraulic system include bi-directional movement, overload protection, and variable speed control. In any of the existing powertrain systems, the hydraulic system also has the largest unit mass power ratio. Seals and seals are an important part of hydraulic equipment. Its reliability and service life is an important index to measure the quality of hydraulic system.Keywords: A power element; an actuating element; a control element; an auxiliary element; hydraulic fluidGenerally, there are only three basic ways to transmit power: electrical, mechanical, and hydraulic. Most applications actually combine the three methods into the most efficient and comprehensive system. In order to reasonably determine which method to take, it is important to understand the salient features of the various methods. For example, the hydraulic system transmits power more economically over a long distance than a mechanical system. The hydraulic system, however, has a shorter transmission distance than the electrical system.Hydraulic transmission there are many outstanding advantages, it is widely used, such as the general industrial use of plastics processing machinery, pressure machinery, engineering machinery, machine tools and other mechanical equipment; application of construction machinery, agricultural machinery, automobile and other metallurgical machinery; iron and steel industry, lifting machinery, a roller adjustment device; control gate device in the water conservancy project, riverbed lifting device, bridges and other operating mechanism; high speed turbine power plant equipment, such as nuclear powerplants; ship deck with crane (winch), bow door, bulkhead valve stern thruster; special technology giant antenna with control devices measurement buoys movements such as rotating stage; military industrial control devices used in artillery ship anti rolling devicesaircraft simulation aircraft retractable landing gear and rudder control device device. Special antenna technology control device, measuring buoy, lifting and rotating stage; military artillery unit, ship antirolling device, flight simulation, device and other equipment for rudder control of landing gear and steering device.The function of hydraulic system is to increase the force by changing the pressure. The quality of a hydraulic system depends on the rationality of the system design, the performance of the system components, the pollution prevention and treatment of the system, and the last point is particularly important. In recent years, China's domestic hydraulic technology has greatly improved, and no longer only the use of foreign hydraulic technology for processing.A complete hydraulic system consists of five parts, namely, power components, actuators, control components, auxiliary components (accessories) and hydraulic oil.The function of the power element is to convert the mechanical energy of the prime mover into the pressure energy of the liquid, the oil pump in the hydraulic system, which provides power to the entire hydraulic system. The structure of hydraulic pumps usually include gear pumps, vane pumps and piston pumps.The actuating elements (such as hydraulic cylinders and hydraulic motors) are used to convert the pressure energy of the fluid into mechanical energy and to drive the load in linear reciprocating or slewing motion.Control elements (i.e. hydraulic valves) control and regulate the pressure, flow, and direction of the liquid in the hydraulic system. According to different control functions, the hydraulic valve can be divided into pressure control valve, flow control valve and directional control valve. Pressure control valves are divided into benefits flow valve (An Quanfa), pressure relief valve, sequence valve, pressure relays etc.; flow control valves including throttle valve, regulating valve, diversion valve; directional control valve includes a one-way valve one-way fluid control valve, shuttle valve, reversing valve, etc.. According to different control methods, the hydraulic valve can be divided into switching control valve, fixed value control valve and proportional control valve.The auxiliary components include oil tank, oil filter, oil pipe and pipe joint, sealing ring, quick change joint, high pressure ball valve, hose assembly, pressure measuring joint, pressure gauge, oil level, oil temperature gauge and so on.Hydraulic oil is the medium of transmission of energy in hydraulic system. There are several kinds of mineral oil, emulsion and synthetic hydraulic oil.The function of hydraulic system is to help human work, mainly throughthe implementation of components into the pressure of rotation or reciprocating movement. Hydraulic principle: it is composed of two different sizes of the cylinder is filled with water or oil. Full of water, known as "hydraulic press", full of oil known as "hydraulic press."". Each of two hydraulic cylinders have a movable piston, if put in the small piston on the pressure, according to Pascal's law, the small piston pressure to the piston through the pressure of liquid, the top of the piston will move long distances. The cross-sectional area of the basic small piston is S1, plus a small piston with a downward force F1. Thus, the pressure on the liquid of the small piston, P=F1/S1, can be transmitted equally in all directions. The pressure through the big piston is also P. If the cross sectional area of the piston is S2, pressure F2=P*S2 P pressure piston upward, the cross-sectional area of the small piston is several times, in addition to the small piston small piston force, there will be great pressure, the hydraulic press for pressing plywood, oil, lifting, forging steel.The secret of the hydraulic system's success and versatility lies in its versatility and ease of operation. Hydraulic power transmission will not be restricted, the geometry of the machine as a mechanical system that in addition, hydraulic system is not limited by the physical properties of materials like electrical system, it is almost no amount of power transfer limit. For example, the performance of an electromagnet by steel magnetic saturation limit, on the contrary, the power of hydraulic system only limited by material intensity.In order to increase productivity, enterprises will increasingly rely on automation, which includes remote and direct control of production operations, processing and material handling. The hydraulic power has become an important part of automation, because it has the following four main advantages:1. convenient control, accurate operation by a joystick and a simple button, the hydraulic system operator can immediately start, stop, speed and can provide arbitrary power, position accuracy of 1/10000 inches of position control. A hydraulic system that causes the pilot to lift and drop the landing gear. When the pilot moves the control valve in one direction, the pressure oil flows into a cavity of the hydraulic cylinder and thus falls.2. force, a hydraulic system without the use of heavy gear, pulley lever can simply and effectively less than an ounce of force amplification, produce hundreds of tons of force output.3. constant or constant torque, hydraulic system can not only provide constant change with speed changing or constant torque, it can drive the mobile object per hour from a few inches to several hundred inches per minute per hour. From a few to thousands of revolutions per minute.4. Simple, safe, economical, and in general, hydraulic systems use fewer moving parts than mechanical or electrical systems, so they are easy to run and maintain. This makes the system compact, safe and reliable. For example, a new type of power steering device for vehicles has been phased out of other types of steering power units, which include manual controlsDirection control valve and distributor. Because the steering component is fully hydraulic, there is no universal joint, bearings, gear reducer and other mechanical connections, which makes the system simple and compact. In addition, only very little input torque can produce control force needed to meet the extremely harsh working conditions. It is very important to the operation of space limitations and need a small steering wheel which is necessary to reduce the occasion, operator fatigue.Other advantages of the hydraulic system include bi-directional movement, overload protection, and variable speed control. In any of the existing powertrain systems, the hydraulic system also has the largest unit mass power ratio.The hydraulic system has three disadvantages:1. because the transmission medium (hydraulic oil) in the course of flow, part of the flow velocity is different, resulting in liquid friction, and at the same time, liquid and pipe wall also friction, this is the hydraulic oil temperature rise reasons. Excessive temperature results in more internal and external leakage and reduces mechanical efficiency. At the same time, the hydraulic oil will expand due to the higher temperature. Resulting in an increase in compressibility so that the operation cannot control transmission very well. Solution: high temperature is the hydraulic system's own problems, can only be the biggest mitigation, can not eradicate. The use of better quality hydraulic oil, hydraulic pipe layout, as far as possible to avoid bending, the use of high-quality pipe and pipe fittings, hydraulic valve.2. the vibration of hydraulic system is one of the weak points. The impact of hydraulic oil in the pipeline on the high speed impact and control valve opening and closing is the cause of system vibration. Strong vibrations can cause system control errors, and can cause errors in some of the more complex, sophisticated devices in the system, leading to system failures. Solution: the hydraulic pipe should be fixed, to avoid sharp bends. In order to avoid frequent flow direction changes can not be avoided, shock absorption measures should be done best. The whole hydraulic system should have good vibration reduction measures, while avoiding the influence of the oscillator outside the system.3. the hydraulic system has internal leakage and external leakage, internal leakage refers to the leakage process occurs in the system, such as leakage of hydraulic piston - cylinder, control valve spool and valve leakage between both sides, such as. Although there is no loss of hydraulic oil, but the leakage, the control action has been determined until the system failure. Disclosure refers to the leakage that occurs between the system and the external environment. Hydraulic oil leaks directly into the environment, and in addition to affecting the working environment, there is not enough power to cause system failure. Hydraulic oil leaking into the environment is also dangerous to fire. Solution: use better quality seals to improve the machining accuracy of the equipment.In hydraulic systems and systems, seals are used to prevent leakage of theworking medium and invasion of foreign dust and foreign matter. A sealed element, that is, a seal. Outside leakage will cause waste of working medium, pollute machine and environment, even cause mechanical malfunction and personal accident of equipment. Leakage can cause a drastic drop in volumetric efficiency of hydraulic systems, resulting in insufficient working pressure and even failure to perform work. The small dust particles in the invading system can cause or aggravate the wear of the friction pairs of hydraulic components, and further lead to leakage.As a result, seals and seals are an important part of hydraulic equipment. Its reliability and service life is an important index to measure the quality of hydraulic system. In addition to the clearance seal, the seal is used to control the clearance between the two adjacent surfaces to be below the minimum clearance required for the sealing liquid to pass. In contact sealing, it is divided into two types: self sealing type and self sealing type (i. e. lip seal).附录B液压系统摘要:一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。

液压系统外文文献翻译、中英文翻译、外文翻译

液压系统外文文献翻译、中英文翻译、外文翻译

本科生毕业设计 (论文)外文翻译原文标题液压系统译文标题HYDRAULIC SYSTEMS作者所在系别作者所在专业作者所在班级作者姓名作者学号指导教师姓名指导教师职称完成时间2017 年 4 月15教务处制控制阀控制阀是操作者可访问的阀,用于引导系统内的流体流动以操作机器或其附件。

通过巧妙地使用控制阀,操作员可以调节液压缸的速度和运行。

注意:液压控制应平稳运行,以消除引起机器机械部件快速磨损和破坏的冲击运动。

执行机构(a)旋转叶片液压致动器,(b)线性液压致动器。

通过输入控制信号改变控制阀的位置,允许通过通道流动以操作致动器。

当致动器移动时,其运动沿反馈路径传递,从而抵消控制阀的原始运动。

因此,致动器的输出运动与输入控制运动成比例。

带反馈的旋转风门执行机构线性执行器(RAM)带反馈SPOOL阀门关闭和方向控制阀芯阀直接流到系统的各个部件,并可通过手柄,先导压力信号,电磁螺线管,电动马达和机械凸轮来操作。

用于滑动滑阀方向阀的典型应用是将流体控制到双作用液压缸,其在一个方向上移动时需要在活塞的一侧上的压力下的流体,而另一侧连接到排出管线。

在上述滑阀中,三位置阀芯通过反馈连杆保持在其位置。

在中央位置,所有部件都被锁定。

因此,显而易见的是,当阀芯保持中心时,气缸不能被轻便。

相对于各种端口移动阀芯的位置控制缺陷的方向,如果阀芯向左移动,高压油将通过阀门流到执行器的左侧。

同时,线性执行器的右侧将连接到排气口。

从而将线性致动器向右移动。

一旦致动器已经移动与控制运动成正比的一定量,线轴将自动地通过反馈链路移动到中心。

累积器描述液压蓄能器并解释其目的。

压力蓄能器用于需要储存压力能量以满足需求浪涌的液压系统中,它们还用于吸收液压冲击载荷,并在泵停止时保持压力时补偿小的内部泄漏。

最常见的蓄能器形式包括含有充气和加压柔性气囊的钢壳。

通过特殊阀将气囊预充到所需压力,然后密封以防止气体泄漏。

压力下的液压油进入蓄能器,压缩气囊,直到达到平衡。

液压系统和气压系统外文文献翻译、中英文翻译

液压系统和气压系统外文文献翻译、中英文翻译

液压系统和气压系统外文文献翻译、中英文翻译Hydraulic system and Peumatic SystemHui-xiong wan1,Jun Fan2Abstract:Hydraulic system is widely used in industry, such as stamping, grinding of steel type work and general processing industries, agriculture, mining, space technology, deep sea exploration, transportation, marine technology, offshore gas and oil exploration industries, in short, Few people in their daily lives do not get certain benefits from the hydraulic technology. Successful and widely used in the hydraulic system's secret lies in its versatility and ease of maneuverability. Hydraulic power transmission mechanical systems as being not like the machine geometry constraints, In addition, the hydraulic system does not like the electrical system, as constrained by the physical properties of materials, it passed almost no amount of power constraints.Keywords: Hydraulic system,Pressure system,FluidThe history of hydraulic power is a long one, dating from man’s prehistoric efforts to harness the energy in the world around him. The only source readily available were the water and the wind—two free and moving streams.The watermill, the first hydraulic motor, was an early invention. One is pictured on a mosatic at the Great Palace in Byzantium, dating from the early fifth century. The mill had been built by the Romans. But the first record of a watermill goes back even further, to around 100BC, and the origins may indeed have been much earlier. The domestication of grain began some 5000 years before and some enterprising farmer is bound to have become tired of pounding or grinding the grain by hand. Perhaps,in fact, the inventor were some farmer’s wives. Since the often drew the heavy jobs.Fluid is a substance which may flow; that is, its constituent particles may continuously change their positions relative to one another. Moreover, it offers no lasting resistance to the displacement, however great, of one layer over another. This means that, if the fluid is at rest, no shear force (that is a force tangential to the surface on which it acts) can exist in it.Fluid may be classified as Newtonian or non--Newtonian. In Newtonian fluid there is a linear relation between the magnitude of applied shear stresses and the resulting rate of angular deformation. In non—Newtonian fluid there is a nonlinear relation between the magnitude of applied shear stress and the rate of angulardeformation.The flow of fluids may be classified in many ways, such as steady or non steady, rotational or irrotational, compressible or incompressible, and viscous or no viscous.All hydraulic systems depend on Pascal’s law, such as steady or pipeexerts equal force on all of the surfaces of the container.In actual hydraulic systems, Pas cal’s law defines the basis of results which are obtained from the system. Thus, a pump moves the liquid in the system. The intake of the pump is connected to a liquid source, usually called the tank or reservoir. Atmospheric pressure, pressing on the liquid in the reservoir, forces the liquid into the pump. When the pump operates, it forces liquid from the tank into the discharge pipe at a suitable pressure.The flow of the pressurized liquid discharged by the pump is controlled by valves. Three control functions are used in most hydraulic systems: (1) control of the liquid pressure, (2)controlof the liquid flow rate, and (3) control of the direction of flow of the liquid.Hydraulic drives are used in preference to mechanical systems when(1) powers is to be transmitted between point too far apart for chains or belts; (2) high torque at low speed in required; (3) a very compact unit is needed; (4) a smooth transmission, free of vibration, is required;(5) easy control of speed and direction is necessary; and (6) output speed is varied steplessly.Fig. 1 gives a diagrammatic presentation of the components of a hydraulic installation. Electrically driven oil pressure pumps establish an oil flow for energy transmission, which is fed to hydraulic motors or hydraulic cylinders, converting it into mechanical energy. The control of the oil flow is by means of valves. The pressurized oil flow produces linear or rotary mechanical motion. The kinetic energy of the oil flow is comparatively low, and therefore the term hydrostatic driver is sometimes used. There is little constructional difference between hydraulic motors and pumps. Any pump may be used as a motor. The quantity of oil flowing at any given time may be varied by means of regulating valves( as shown in Fig.7.1) or the use of variable-delivery pumps.The application of hydraulic power to the operation of machine tools is by no means new, though its adoption on such a wide scale as exists at present is comparatively recent. It was in fact in development of the modern self-contained pump unit that stimulated the growth of this form of machine tool operation.Hydraulic machine tool drive offers a great many advantages. One of them is that it can give infinitely-variable speed control over wide ranges. In addition, they can change the direction ofdrive as easily as they can vary the speed. As in many other types of machine, many complex mechanical linkages can be simplified or even wholly eliminated by the use of hydraulics.The flexibility and resilience of hydraulic power is another great virtue of this form of drive. Apart from the smoothness of operation thus obtained, a great improvement is usually found in the surface finish on the work and the tool can make heavier cuts without detriment and will last considerably longer without regrinding.Hydraulic and pneumatic systemThere are only three basic methods of transmitting power:electrical,mechanical,and fluid power.Most applications actually use a combination of the three methods to obtain the most efficient overall system. To properly determine which principle method to use,it is important to know the salient features of each type. For example, fluid systems can transmit power more economically over greater distances than can mechanical types. However, fluid systems are restricted to shorter distances than are electrical systems.Hydraulic power transmission system are concerned with the generation, modelation, and control of pressure and flow,and in general such systems include:1.Pumps which convert available power from the prime mover to hydraulic power at the actuator.2.Valves which control the direction of pump-flow, the level of power produced, and the amount of fluid-flow to the actuators. The power level is determined by controlling both the flow and pressure level.3.Actcators which convert hydtaulic power to usable mechanical power output at the point required.4.The medium, which is a liquid, provides rigid transmission and control as well as lubrication of componts, sealing in valves, and cooling of the system.5.Conncetots which link the various system components, provide power conductors for the fluid under pressure, and fluid flow return to tank(reservoir).6.Fluid storage and conditioning equipment which ensure sufficient quality and quantity as well as cooling of the fluid.Hydraulic systems are used in industrial applications such as stamping presses, steel mills, and general manufacturing, agricultural machines, mining industry,aviation, space technology, deep-sea exploration, transportion, marine technology, and offshore gas and petroleum exploration. In short, very few people get through a day of their lives without somehow benefiting from the technology of hydraulicks.The secret of hydraulic system’s success and widespread use is its versatility and manageability. Fluid power is not hindered by the geometry of the machine as is the case in mechanical systems. Also, power can be transmitted in almost limitless quantities because fluid systems are not so limited by the physical limitations of materials as are the electrical systems. For example, the performance of an electromangnet is limited by the saturation limit of steel. On the other hand, the power limit of fluid systems is limited only by the strength capacity of the material.Industry is going to depend more and more on automation in order to increase productivity. This includes remote and direct control of production operations, manufacturing processes, and materials handling. Fluid power is the muscle of automationbecause of advantages in the following four major categories.1.Ease and accuracy of control. By the use of simple levers and push buttons, the operator of a fluid power system can readily start, stop, speed up or slow down, and position forces which provide any desired horsepower with tolerances as precise as one ten-thousandth of an inch.2.Multiplication of force. A fluid power system(without using cumbersome gears, pulleys, and levers) can multiply forces simply and efficiently from a fraction of an ounce to several hundred tons of output.3.Constant force or torque. Only fluid power systems are capable of providing contant force or torque regardless of speed changes. This is accomplished whether the work output moves a few inches per hour, several hundred inches per minute, a few revolutions per hour, or thousands of revolutions per minute.4.Simplicity, safely, economy. In general, fluid power systems use fewer moving parts than comparable mechanical or electrical systems. Thus, they are simpler to maintain and operate. This, in turn, maximizes safety, companctness, and reliability. For example, a new power steering control designed has made all other kinds of power systems obsolete on many off-highway vehicles. The steering unit consists of a manually operated directional control valve and meter in a single body. Because the steering unit is fully fluid-linked, mechanical linkages, universal joints, bearings, reduction gears, etc, are eliminated. This provides a simple, compact system. In addition, very little input torque is required to produce the control needed for the toughest applications. This is important where limitations of control space require a small steering wheel and it becomes necessary to reduce operatot\r fatique.Additonal benefits of fluid power systems include instantly reversible motion, automatic protection against overloads, and infinitely variable speed control. Fluid power systems also have the highest horsepower per weight ratio of any known power source. In spite of all these highly desirable features of fluid power, it is not a panacea for all power transmission problems. Hydraulic systems also have some drawbacks. Hydraulic oils are messy, and leakage is impossible to completely eliminate. Also, most hydraulic oils can cause fires if an oils occurs in an area of hot equipment.Peumatic SystemPneumatic systems use pressurized gases to tansmit and control power. A s the name implies, pneumatic systems typically use air(rather than some other gas) as the fluid medium because air is a safe, low-cost, and readily available fluid. It is particularly safe in environments where an electrical spark could ignite leaks from system components.In pneumatic systems ,compressors are used to compress and supply the necessary quantities of air. Compressors are typically of the piston, vane or screw type. Basically a compressor increases the pressure of a gas by reducing its volume as described by the perfect gas laws.Pneumatic systems normally use a large centralized air compressor which is considered to be an infinite air source similar to an electrical system where you merely plug into an electrical outlut for electricity. In this way, pressurized air can be piped from one source to various locations throughout an entire industrial plant. The air then flows through a pressue regulator which redeces the pressure to the desired level for the particular circuit application. Because air is not a good lubircant(contains about 20% oxygen), pneumaticssystems required a lubricator to inject a very fine mist of oil into the air discharging from the pressure regulator. This prevents wear of the closely fitting moving parts of pneumatic components.Free air from the atmosphere contains varying amounts of moisure. This moisure can be harmful in that it can wash away lubricants and thus cause excessive wear and corrosion. Hence ,in some applications ,air driers are needed to remove this undesirable moisture. Since pneumatics systems exhaust directly into the atmosphere, they are capable of generating excessive noise. Therefore, mufflers are mounted on exhaust ports of air valves and actuators to reduce noise and prevent operating personnel from injury resulting not only from exposure to noise but also from high-speed airborne particles.There are several reasons for considering the use of pneumatic systems instead of hydraulic systems. Liquids exhibit greater inertia than do gases. Therefore, in hydraulic systems the weight of oil is a potential problem when accelerating and decelerating actuators and when suddenly opening and closing valves. Due to Newton’s law of motion(force equals mass multiplied by acceleration), the force required to accelerate oil is many times greater than that required to accelerate an equal volume of air. Liquids also exhibit greater viscosity than do gases. This results in larger frictional pressure and power losses. Also ,since hydraulic systems use a fluid foreign to the atmosphere, they require special reservoirs and noleak system designs. Pneumatic system use air which is exhausted directly back into the surrounding environment. Generally speaking, pneumatic systems are less expensive than hydraulic systems.However, because of the compressibility of air, it isimpossible to obtain precise controlled actuator velocities with pneumatic systems. Also, precise positioning control is not obtainable. While pneumatics pressures are quite low due to compressor design limitations(less than 250 psi), hydraulic pressures can be as high as 10000 psi. Thus, hydraulics can be high-power systems, whereas pneumatics are confined to low-power applications. Industrial applications of pneumatics systems are growing at a rapid pace. Typical examples include stamping, drilling, hoist, punching, clamping, assembling, riveting, materials handling, and logic controlling operations.液压系统和气压系统万辉雄1,范军2摘要:液压系统在工业中应用广泛,例如冲压、钢类工件的磨削及一般加工业、农业、矿业、航天技术、深海勘探、运输、海洋技术,近海天然气和石油勘探等行业,简而言之,在日常生活中很少有人不从液压技术得到某些益处。

汽车式起重机液压系统外文文献翻译中英文

汽车式起重机液压系统外文文献翻译中英文

外文文献翻译(含:英文原文及中文译文)文献出处:K Tanizumi. Truck Crane Hydraulic System: Technical Status and Development Trend [J]. Advanced Materials Research, 2015, 310-319中文译文汽车式起重机液压系统: 技术现状与发展趋势K Tanizumi1行业背景1.1工程汽车起重机的发展趋势近20年世界工程起重机行业发生了很大变化。

RT(越野轮胎起重机) 和AT(全地面起重机) 产品的迅速发展,打破了原有产品与市场格局,在经济发展及市场激烈竞争冲击下, 导致世界市场进一步趋向一体化。

为与RT 和AT 产品抗衡, 汽车起重机新技术、新产品也在不断发展。

近年来汽车起重机在英、美等国市场的复兴,使人们对汽车起重机产生新的认识。

几年前某些工业界人士曾预测, RT 和AT 产品的兴起将导致汽车起重机的衰退。

日本汽车起重机在世界各地日益流行,以及最近格鲁夫、特雷克斯、林克.贝尔特、德马泰克等公司汽车起重机的产品进展, 已向上述观念提出挑战。

随着工程起重机各机种间技术的相互渗透与竞争,汽车起重机会在世界市场中继续占有一席之地。

国外工程起重机从整体情况分析, 领先国内10~20年(不同类型产品有所不同) 。

随着国外经济发展速度趋于平稳,工程起重机向智能、高性能、灵活、适应性强、多功能方向发展。

25t 以下基本上不生产,产品向高附加值、大吨位发展, 住友建机、多田野和加藤公司曾于1989年相继推出360t 汽车起重机。

住友建机在90年代开发出80t ~250t 共4种AT 产品。

多田野也在90年代相继推出100t ~550t 共6种特大型AT 产品。

加藤公司则研制成NK5000型500t 汽车起重机。

行业配套也与国内有所不同:(1)下车主要是300kW 以上柴油大功率发动机,与之配套的液力变矩器和自动换档变速箱、12吨级驱动转向桥及越野轮胎。

液压系统的组成英语作文

液压系统的组成英语作文

液压系统的组成英语作文Title: The Composition of Hydraulic Systems。

Hydraulic systems are ubiquitous in various industries, playing a crucial role in powering machinery and equipment. Understanding their components is essential for comprehending their functioning and maintenance. In this essay, we will delve into the components of hydraulic systems.1. Hydraulic Fluid: At the heart of any hydraulic system lies the hydraulic fluid, which serves as the medium for power transmission. Common fluids include mineral oil-based, synthetic, and water-based fluids. The choice depends on factors like temperature range, pressure, and environmental considerations.2. Reservoir: The reservoir stores the hydraulic fluid when it is not in use and allows for fluid expansion due to temperature variations. It also facilitates air separationand de-aeration, ensuring the hydraulic system operates efficiently.3. Pump: The pump is responsible for generating the flow of hydraulic fluid. It converts mechanical energy into hydraulic energy. Types of pumps include gear pumps, vane pumps, and piston pumps, each with its advantages and applications.4. Actuators: Actuators are devices that convert hydraulic energy into mechanical energy to perform work. They include hydraulic cylinders and hydraulic motors. Hydraulic cylinders produce linear motion, while hydraulic motors generate rotary motion.5. Valves: Valves control the flow and pressure of hydraulic fluid within the system. They include directional control valves, pressure control valves, flow control valves, and check valves. Valves play a crucial role in regulating the movement and speed of actuators.6. Filters: Filters are essential for maintaining thecleanliness of hydraulic fluid by removing contaminants such as dirt, metal particles, and other debris. Cleanfluid is vital for the proper functioning and longevity of hydraulic components.7. Accumulators: Accumulators store hydraulic energy in the form of pressurized fluid. They help dampen pressure fluctuations, store energy for emergency use, and supplement pump flow during peak demand periods.8. Hoses and Tubing: Hoses and tubing transport hydraulic fluid between components within the system. They must be carefully selected to withstand the operating pressure, temperature, and compatibility with the hydraulic fluid.9. Seals and O-rings: Seals and O-rings prevent leakage of hydraulic fluid from the system. They are critical for maintaining the integrity of the hydraulic system and preventing contamination.10. Coolers: Coolers dissipate heat generated duringthe operation of the hydraulic system, maintaining the optimal operating temperature of the hydraulic fluid. This helps prevent overheating and extends the life of system components.11. Control Systems: Control systems regulate the operation of hydraulic components based on input signals from sensors and user commands. They include hydraulic control valves, electronic controllers, and feedback mechanisms for precise control and automation.12. Safety Devices: Safety devices such as pressure relief valves, burst discs, and emergency stop systems protect the hydraulic system from overpressure and prevent catastrophic failures, ensuring the safety of personnel and equipment.In conclusion, hydraulic systems comprise various components working together to transmit power efficiently and perform a wide range of tasks across different industries. Understanding these components is essential fordesigning, operating, and maintaining hydraulic systems effectively.。

关于液压叉车的英语文献

关于液压叉车的英语文献

关于液压叉车的英语文献English:Hydraulic forklifts play a vital role in various industries, offering efficient and powerful lifting capabilities. These machines utilize a hydraulic system to operate the lifting mechanism, giving them the ability to handle heavy loads with ease. The hydraulic system consists of a pump, valves, cylinders, and fluid, working together to generate the necessary force to lift and lower the forks. When the operator activates the control lever, the pump pressurizes the fluid, which is then distributed through the valves to the cylinders. The cylinders extend or retract, lifting or lowering the forks accordingly. The hydraulic system offers advantages such as smooth and precise control, quick response time, and the ability to handle heavy loads. It also enables the operator to safely maneuver the forklift in tight spaces and narrow aisles.One key component of the hydraulic system is the pump, which generates the required pressure to move the fluid. There are two main types of hydraulic pumps used in forklifts: the gear pump andthe vane pump. Gear pumps are commonly used due to their simplicity, cost-effectiveness, and ability to generate high pressures. They consist of two intermeshing gears, which trap the fluid and force it into the system. Vane pumps, on the other hand, utilize rotating vanes to push the fluid, providing smoother operation and higher efficiency.The valves in the hydraulic system control the flow and direction of the fluid. There are various types of valves used in forklifts, including relief valves, directional control valves, and flow control valves. Relief valves protect the system from excessive pressure, ensuring its safety and preventing damage. Directional control valves determine the direction of the fluid flow, allowing the operator to control the movement of the forks. Flow control valves regulate the speed of the fluid, enabling precise and controlled lifting and lowering.In conclusion, hydraulic forklifts are essential machines in industries that require lifting and moving heavy loads. Their hydraulic systems, comprising a pump, valves, cylinders, and fluid, provide the necessary force and control for efficient operation. The pump generates the pressure, while the valves control the flow anddirection of the fluid. With their numerous advantages and capabilities, hydraulic forklifts are widely used and highly valuable in various industrial applications.中文翻译:液压叉车在各个行业中扮演着重要角色,提供高效且强大的起重能力。

200t液压机液压系统设计英文文献

200t液压机液压系统设计英文文献

HydraulicHydraulic systemA complete hydraulic system consists of five parts, namely, power components, the implementation of components, control components, auxiliary parts and hydraulic oil.The role of dynamic components of the original motive fluid into mechanical energy to the pressure that the hydraulic system of pumps, it is to power the entire hydraulic system. The structure of the form of hydraulic pump gears are generally pump, vane pump and piston pump.Implementation of components (such as hydraulic cylinders and hydraulic motors) which is the pressure of the liquid can be converted to mechanical energy to drive the load for a straight line reciprocating movement or rotational movement.Control components (that is,the various hydraulic valves) in the hydraulic system to control and regulate the pressure of liquid,flow rate and direction. According to the different control functions, hydraulic valves can be divided into the village of force control valve, flow control valves and directional control valve. Pressure control valves are divided into benefits flow valve (safety valve), pressure relief valve, sequence valve, pressure relays, etc.; flow control valves including throttle, adjusting the valves, flow diversion valve sets, etc.; directional control valve includes a one-way valve, one-way fluid control valve, shuttle valve, valve and so on. Under the control of different ways, can be divided into the hydraulic valve control switch valve, control valve and set the value of the ratio control valve.Auxiliary components, including fuel tanks, oil filters, tubing and pipe joints, seals, pressure gauge, oil level, such as oil dollars.Hydraulic oil in the hydraulic system is the work of the energy transfer medium, there are a variety of mineral oil, emulsion oil hydraulic molding Hop categories.Hydraulic principleIt consists of two cylinders of different sizes and composition of fluid in the fluid full of water or oil. Water is called"hydraulic press"; the said oil-filled"hydraulic machine."Each of the two liquid a sliding piston, if the increase in the small piston on the pressure of a certain value, according to Pascal's law, small piston to the pressure of the pressure through the liquid passed to the large piston, piston top will go a long way to go. Based cross-sectional area of the small piston is S1, plus a small piston in the downward pressure on the F1. Thus, a small piston on the liquid pressure to P=F1/SI, Can be the same size in all directions to the transmission of liquid." By the large piston is also equivalent to the inevitable pressure the large piston is the cross-sectional area S2, the pressure P on the piston in the upward pressure generated F2=P×S2 Cross-sectional area is a small multiple of the piston cross-sectional area. From the type known to add in a small piston of a smaller force, the piston will be in great force, for which the hydraulic machine used to suppress plywood, oil, extract heavy objects, such as forging steel.History of the development of hydraulicHydraulic and air pressure drive hydraulic fluid as the transmission is made according to the 17th century, Pascal's principle of hydrostatic pressure to drive the development of an emerging technology, the United Kingdom in 1795 Joseph (Joseph Braman,1749-1814), in London wateras a medium to form hydraulic press used in industry, the birth of the world's first hydraulic press. Media work in 1905 will be replaced by oil-water and further improved.World War I (1914-1918) after the extensive application of hydraulic transmission, especially after 1920, more rapid development. Hydraulic components in the late 19th century about the early 20th century, 20 years, only started to enter the formal phase of industrial production. 1925 Vickers (F·Vikers) the invention of the pressure balanced vane pump, hydraulic components for the modern industrial or hydraulic transmission of the gradual establishment of the foundation. The early 20th century Constantine (G·Constantimsco) fluctuations of the energy carried out by passing theoretical and practical research;in 1910 on the hydraulic transmission (hydraulic coupling, hydraulic torque converter, etc.) contributions, so that these two areas of development.The Second World War (1941-1945) period, in the United States 30% of machine tool applications in the hydraulic transmission. It should be noted that the development of hydraulic transmission in Japan than Europe and the United States and other countries for nearly 20 years later. Before and after in 1955, the rapid development of Japan's hydraulic drive, set up in 1956, "Hydraulic Industry." Nearly 20 to 30 years, the development of Japan's fast hydraulic transmission, a world leader.Hydraulic transmission applicationThere are many outstanding advantages, it is widely used, such as general workers. Plastic processing industry, machinery, pressure machinery, machine tools, etc.; operating machinery engineering machinery, construction machinery, agricultural machinery, automobiles, etc.; iron and steel industry metallurgical machinery, lifting equipment,such as roller adjustment device; civil water projects with flood control the dam gates and devices, bed lifts installations, bridges and other manipulation of institutions; speed turbine power plant installations, nuclear power plants, etc.; ship deck crane (winch), the bow doors, bulkhead valves, such as the stern thruster; special antenna technology giant with control devices, measurement buoys, movements such as rotating stage; military-industrial control devices used in artillery, ship anti-rolling devices, aircraft simulation, aircraft retractable landing gear and rudder control devices and other devices.液压液压系统一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件和液压油。

外文翻译--Komatsu先进的液压系统

外文翻译--Komatsu先进的液压系统

毕业设计(论文)外文资料翻译学院(系):机械工程学院专业:机械工程及自动化姓名:学号:外文出处:Manufacturing Engineering (用外文写)and Technology-Machining附件: 1.外文资料翻译译文;2.外文原文。

指导教师评语:此翻译文章简单介绍Komatsu先进的液压系统,并详细介绍了先进的液压传动装置,并对计算机控制的自动变速系统进行了详细的描述,翻译用词比较准确,文笔也较为通顺,为在以后工作中接触英文资料打下了基础。

签名:年月日附件1:外文资料翻译译文Komatsu先进的液压系统操作舒适,生产能力大人性化设计的驾驶室——既宽敞又实用。

宽大的有色玻璃窗给操作员极大的视线。

带扶手五挡调节座椅,短行程手摇杆,上位开启前窗和带杠杆的驾驶用的脚踏板,所有这些都起到有助于操作员最大限度地提高产量的作用。

操作噪声低——这完全是因为有先进的OLSS液压系统以及封闭式发动机室和具有橡胶支垫的发动机。

所有这一切都有助于降低驾驶室的噪声。

手控操作杆——使得施工设备的操作轻而易举。

安装在扶手上的手控操作杆最大行程仅为65mm(2.6in),KOMATSU比例压力控制操作系统能减少准确控制施工设备所需的操作强度。

回转制动装置——即使推土机停泊在坡路上也能自动防止液压漂移。

操作员不再需要在施工设备作业的过程中用手握住制动装置。

此外,回转控制装备还配置有封闭式滑阀,以便顺利的启动和停止。

行驶/驾驶控制装置——脚踏板控制装置配有可拆卸的控制杆。

两者可根据实际运用和操作员的偏爱加以选择使用。

支垫机构——在臂缸悬臂首端、铲斗缸和底部卸料缸中,能消减液压缸伸展和收缩引起的震动,从而增加操作的舒适性,延长部件的寿命。

燃耗最低两种模式选择系统,挖掘效率高——模式选择开关可选定泵驱动功率的两种模式:S(标准模式)或(轻负荷模式)。

当需要大功率挖掘时,选择标准模式;当挖掘机用来运送轻材料或平地时,选择轻负载模式。

液压系统设计外文文献翻译

液压系统设计外文文献翻译

液压系统设计外文文献翻译附录AHydraulic systemC.J.Sexton,S.M.LewisandC.P.PleaseUniversity of Southampton,UKAbstract:A complete hydraulic system consists of five parts, namely, power components, actuators, control components, auxiliary components (accessories) and hydraulic oil. The function of hydraulic system is to help human work, mainly through the implementation of components into the pressure of rotation or reciprocating movement. Other advantages of the hydraulic system include bi-directional movement, overload protection, and variable speed control. In any of the existing powertrain systems, the hydraulic system also has the largest unit mass power ratio. Seals and seals are an important part of hydraulic equipment. Its reliability and service life is an important index to measure the quality of hydraulic system.Keywords: A power element; an actuating element; a control element; an auxiliary element; hydraulic fluidGenerally, there are only three basic ways to transmit power: electrical, mechanical, and hydraulic. Most applications actually combine the three methods into the most efficient and comprehensive system. In order to reasonably determine which method to take, it is important to understand the salient features of the various methods. For example, the hydraulic system transmits power more economically over a long distance than a mechanical system. The hydraulic system, however, has a shorter transmission distance than the electrical system.Hydraulic transmission there are many outstanding advantages, it is widely used, such as the general industrial use of plastics processing machinery, pressure machinery, engineering machinery, machine tools and other mechanical equipment; application of construction machinery, agricultural machinery, automobile and other metallurgical machinery; iron and steel industry, lifting machinery, a roller adjustment device; control gate device in the water conservancy project, riverbed lifting device, bridges and other operating mechanism; high speed turbine power plant equipment, such as nuclear powerplants; ship deck with crane (winch), bow door, bulkhead valve stern thruster; special technology giant antenna with control devices measurement buoys movements such as rotating stage; military industrial control devices used in artillery ship anti rolling devicesaircraft simulation aircraft retractable landing gear and rudder control device device. Special antenna technology control device, measuring buoy, lifting and rotating stage; military artillery unit, ship antirolling device, flight simulation, device and other equipment for rudder control of landing gear and steering device.The function of hydraulic system is to increase the force by changing the pressure. The quality of a hydraulic system depends on the rationality of the system design, the performance of the system components, the pollution prevention and treatment of the system, and the last point is particularly important. In recent years, China's domestic hydraulic technology has greatly improved, and no longer only the use of foreign hydraulic technology for processing.A complete hydraulic system consists of five parts, namely, power components, actuators, control components, auxiliary components (accessories) and hydraulic oil.The function of the power element is to convert the mechanical energy of the prime mover into the pressure energy of the liquid, the oil pump in the hydraulic system, which provides power to the entire hydraulic system. The structure of hydraulic pumps usually include gear pumps, vane pumps and piston pumps.The actuating elements (such as hydraulic cylinders and hydraulic motors) are used to convert the pressure energy of the fluid into mechanical energy and to drive the load in linear reciprocating or slewing motion.Control elements (i.e. hydraulic valves) control and regulate the pressure, flow, and direction of the liquid in the hydraulic system. According to different control functions, the hydraulic valve can be divided into pressure control valve, flow control valve and directional control valve. Pressure control valves are divided into benefits flow valve (An Quanfa), pressure relief valve, sequence valve, pressure relays etc.; flow control valves including throttle valve, regulating valve, diversion valve; directional control valve includes a one-way valve one-way fluid control valve, shuttle valve, reversing valve, etc.. According to different control methods, the hydraulic valve can be divided into switching control valve, fixed value control valve and proportional control valve.The auxiliary components include oil tank, oil filter, oil pipe and pipe joint, sealing ring, quick change joint, high pressure ball valve, hose assembly, pressure measuring joint, pressure gauge, oil level, oil temperature gauge and so on.Hydraulic oil is the medium of transmission of energy in hydraulic system. There are several kinds of mineral oil, emulsion and synthetic hydraulic oil.The function of hydraulic system is to help human work, mainly throughthe implementation of components into the pressure of rotation or reciprocating movement. Hydraulic principle: it is composed of two different sizes of the cylinder is filled with water or oil. Full of water, known as "hydraulic press", full of oil known as "hydraulic press."". Each of two hydraulic cylinders have a movable piston, if put in the small piston on the pressure, according to Pascal's law, the small piston pressure to the piston through the pressure of liquid, the top of the piston will move long distances. The cross-sectional area of the basic small piston is S1, plus a small piston with a downward force F1. Thus, the pressure on the liquid of the small piston, P=F1/S1, can be transmitted equally in all directions. The pressure through the big piston is also P. If the cross sectional area of the piston is S2, pressure F2=P*S2 P pressure piston upward, the cross-sectional area of the small piston is several times, in addition to the small piston small piston force, there will be great pressure, the hydraulic press for pressing plywood, oil, lifting, forging steel.The secret of the hydraulic system's success and versatility lies in its versatility and ease of operation. Hydraulic power transmission will not be restricted, the geometry of the machine as a mechanical system that in addition, hydraulic system is not limited by the physical properties of materials like electrical system, it is almost no amount of power transfer limit. For example, the performance of an electromagnet by steel magnetic saturation limit, on the contrary, the power of hydraulic system only limited by material intensity.In order to increase productivity, enterprises will increasingly rely on automation, which includes remote and direct control of production operations, processing and material handling. The hydraulic power has become an important part of automation, because it has the following four main advantages:1. convenient control, accurate operation by a joystick and a simple button, the hydraulic system operator can immediately start, stop, speed and can provide arbitrary power, position accuracy of 1/10000 inches of position control. A hydraulic system that causes the pilot to lift and drop the landing gear. When the pilot moves the control valve in one direction, the pressure oil flows into a cavity of the hydraulic cylinder and thus falls.2. force, a hydraulic system without the use of heavy gear, pulley lever can simply and effectively less than an ounce of force amplification, produce hundreds of tons of force output.3. constant or constant torque, hydraulic system can not only provide constant change with speed changing or constant torque, it can drive the mobile object per hour from a few inches to several hundred inches per minute per hour. From a few to thousands of revolutions per minute.4. Simple, safe, economical, and in general, hydraulic systems use fewer moving parts than mechanical or electrical systems, so they are easy to run and maintain. This makes the system compact, safe and reliable. For example, a new type of power steering device for vehicles has been phased out of other types of steering power units, which include manual controlsDirection control valve and distributor. Because the steering component is fully hydraulic, there is no universal joint, bearings, gear reducer and other mechanical connections, which makes the system simple and compact. In addition, only very little input torque can produce control force needed to meet the extremely harsh working conditions. It is very important to the operation of space limitations and need a small steering wheel which is necessary to reduce the occasion, operator fatigue.Other advantages of the hydraulic system include bi-directional movement, overload protection, and variable speed control. In any of the existing powertrain systems, the hydraulic system also has the largest unit mass power ratio.The hydraulic system has three disadvantages:1. because the transmission medium (hydraulic oil) in the course of flow, part of the flow velocity is different, resulting in liquid friction, and at the same time, liquid and pipe wall also friction, this is the hydraulic oil temperature rise reasons. Excessive temperature results in more internal and external leakage and reduces mechanical efficiency. At the same time, the hydraulic oil will expand due to the higher temperature. Resulting in an increase in compressibility so that the operation cannot control transmission very well. Solution: high temperature is the hydraulic system's own problems, can only be the biggest mitigation, can not eradicate. The use of better quality hydraulic oil, hydraulic pipe layout, as far as possible to avoid bending, the use of high-quality pipe and pipe fittings, hydraulic valve.2. the vibration of hydraulic system is one of the weak points. The impact of hydraulic oil in the pipeline on the high speed impact and control valve opening and closing is the cause of system vibration. Strong vibrations can cause system control errors, and can cause errors in some of the more complex, sophisticated devices in the system, leading to system failures. Solution: the hydraulic pipe should be fixed, to avoid sharp bends. In order to avoid frequent flow direction changes can not be avoided, shock absorption measures should be done best. The whole hydraulic system should have good vibration reduction measures, while avoiding the influence of the oscillator outside the system.3. the hydraulic system has internal leakage and external leakage, internal leakage refers to the leakage process occurs in the system, such as leakage of hydraulic piston - cylinder, control valve spool and valve leakage between both sides, such as. Although there is no loss of hydraulic oil, but the leakage, the control action has been determined until the system failure. Disclosure refers to the leakage that occurs between the system and the external environment. Hydraulic oil leaks directly into the environment, and in addition to affecting the working environment, there is not enough power to cause system failure. Hydraulic oil leaking into the environment is also dangerous to fire. Solution: use better quality seals to improve the machining accuracy of the equipment.In hydraulic systems and systems, seals are used to prevent leakage of theworking medium and invasion of foreign dust and foreign matter. A sealed element, that is, a seal. Outside leakage will cause waste of working medium, pollute machine and environment, even cause mechanical malfunction and personal accident of equipment. Leakage can cause a drastic drop in volumetric efficiency of hydraulic systems, resulting in insufficient working pressure and even failure to perform work. The small dust particles in the invading system can cause or aggravate the wear of the friction pairs of hydraulic components, and further lead to leakage.As a result, seals and seals are an important part of hydraulic equipment. Its reliability and service life is an important index to measure the quality of hydraulic system. In addition to the clearance seal, the seal is used to control the clearance between the two adjacent surfaces to be below the minimum clearance required for the sealing liquid to pass. In contact sealing, it is divided into two types: self sealing type and self sealing type (i. e. lip seal).附录B液压系统摘要:一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档