冰蓄冷空调系统原理及应用

合集下载

冰蓄冷空调系统

冰蓄冷空调系统

1.冰蓄冷空调系统的定义:冰蓄冷空调系统,就是利用蓄能设备在空调系统不需要冷量的时间内将冷量储存起来,在空调系统需要的时间再将这部分能量释放出来的空调系统。

按冷源分类:①冷媒液(盐水等)循环,②制冷剂直接膨胀式按制冰形态分类:①静态型,在换热器上结冰与融冰;最常用的为浸水盘管式外制冰内融方式;②动态型,将生成的冰连续或间断地剥离;最常用的是在若干平行板内通以冷媒,在板面上喷水并使其结冰,待冰层达到适当厚度,再加热板面,使冰片剥离,提高了蒸发温度和制冷机性能系数。

按冷水输送方式分类:①二次侧冷水输送方式为冰蓄冷槽与二次侧热媒相通,②一次侧与二次侧相通的盐水输送方式按装置组成分类:①现场安装型,适用于大型建筑物;②机组型,将制冷机与冰蓄冷槽等组合成机组,由工厂生产,适用于中小型建筑物。

冰蓄冷空调自控系统的基本功能冰蓄冷空调由于自身的特点而对自控系统有一定的依赖,而这种依赖就决定了自控系统的基本功能。

就一般情况而言,冰蓄冷空调对自控系统有如下四个方面的基本要求:1、工况切换和设备起停控制。

冰蓄冷空调是在同一管道系统上通过对水泵和阀门等设备的不同组合而得到不同的工况的,而不同的工况组合又体现出不同的运行策略。

因此,选择冰蓄冷空调只是为降低运行费用在设备上提供了可能,而真正实现降低运行费用还需将系统中所有设备有机地结合起来,并使操作者方便快捷地在各工况之间切换。

就具体的工程而言,不同的工况对参与运行的水泵以及阀门的开启和关闭都有不同的规定,与此同时,对各设备的启动顺序和设备启动的时间间隔都有具体的要求。

这就要求自控系统能为工况的切换提供方便、安全的操作手段。

理想情况下,操作者希望通过鼠标在屏幕上的点击或通过菜单的选择就能切换工况。

但是自控系统在提供操作方便的同时又要能够防止人员的误操作,所以建议把工况切换和系统启动分为两步操作,即切换工况只是为系统启动做好了工况的选择,而并不是在切换工况后直接启动系统。

2、融冰速率控制。

冰蓄冷工作原理

冰蓄冷工作原理

冰蓄冷工作原理
冰蓄冷(Ice Storage)是一种利用制冷机组制备冰块的技术,
通过储存冰块来平衡供需差异,提高能源利用效率的方式。

具体工作原理如下:
1. 制冷机组工作:冰蓄冷系统一般采用蒸发冷凝循环制冷机组。

在制冷机组中,通过压缩机将制冷剂压缩成高压气体,然后通过冷凝器冷却成高压冷液。

制冷剂经过膨胀阀放大流量并且从高压冷液变成低温低压气体。

2. 冰块制备:制冷剂低温低压气体通过蒸发器与水进行换热,从而将水冷却至结冰温度以下。

水在与制冷剂进行换热过程中,逐渐形成冰块。

3. 冰块储存:制备好的冰块会存放在冰蓄冷装置中,通常是在大容器里的储冰槽或冰藏器中。

冰块在冷藏过程中会吸收周围的热量,使得周围环境温度下降。

4. 冰块利用:当需要降低室温时,制冷机组的蒸发器会传送制冷剂与冰块进行热量交换,使冰块开始融化。

在这个过程中,冰块释放吸收的热量,将热量传递给制冷剂,从而使制冷剂变成高温高压气体。

5. 冰蓄冷储能:在冰块融化的过程中,系统中的制冷剂会吸收大量的热量。

融化的冰块本身储存了冰蓄冷系统之前的制冷量,这样的储存方式称为“冰蓄冷储能”。

冰蓄冷储能可以在需要冷却时释放储存的制冷量来提供制冷效果。

通过冰蓄冷技术,能够在低负荷时段制备冰块存储储冷能量,在高负荷时段释放储存的制冷量,从而平衡供需差异,提高制冷系统的能源利用效率。

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析1. 引言1.1 冰蓄冷空调系统介绍冰蓄冷空调系统是一种利用冰的蓄冷效应来降低空调系统运行能耗的节能技术。

通常在夜间电力供应较为充裕时,利用低峰电力时段制冷,将水制成冰块并存储起来。

白天高峰电力时段,通过冰蓄冷系统释放存储的冰块来提供冷却效果,从而降低空调系统的电能消耗。

冰蓄冷空调系统不仅可以减少耗电量,还可以优化电力利用效率,降低用电峰值,减少供电紧张情况发生的可能性。

冰蓄冷空调系统适用于各类建筑物,包括商业建筑、办公楼、酒店、医院等。

它不仅可以为建筑物提供舒适的室内环境,还可以降低空调系统的运行成本,节约能源资源。

由于冰蓄冷空调系统具有节能环保的特点,受到了越来越多企业和政府机构的重视和推广。

通过合理规划和设计,冰蓄冷空调系统可以有效地提高建筑物的能源利用效率,同时降低运行成本,为企业和社会带来可观的经济效益和环境效益。

1.2 冰蓄冷空调系统的优势1. 节能环保:冰蓄冷空调系统采用冷冻水进行储存和循环利用,相比传统空调系统,具有更高的能效比和节能效果。

在峰电时段利用低成本的电力制冷水,然后在用冷却的过程中,据需求释放制冷水中的冷量,降低建筑物的负荷需求,从而有效降低了建筑物的全年度电力需求。

2. 调峰平谷:冰蓄冷空调系统可以根据电网的峰谷电价差异,合理利用低谷时段的电力进行制冷水的储存,从而在高峰时段减少电力需求,降低用电成本。

3. 稳定性强:冰蓄冷空调系统储存的冷水可以提供长时间的稳定制冷效果,避免了传统空调系统频繁启停带来的温度波动,提高了室内舒适度。

4. 声音低:由于制冷机组设在噪音较大的低谷时段运行,采用隔音的冰箱组,可以有效降低室内外的噪音污染。

2. 正文2.1 冰蓄冷空调系统的原理冰蓄冷空调系统的原理是利用冰的蓄冷储能特性,在夜间低峰期通过制冷机组将水冷却至冰点以下并冻结成冰块,然后将这些冰块储存在特殊设计的冰块储存装置中。

白天高峰期,空调系统需要制冷时,冰块被融化而释放出储存的冷量,冷水通过冰块储存装置输送至空调系统的蒸发器,实现空调系统的制冷作用。

冰蓄冷知识点总结

冰蓄冷知识点总结

冰蓄冷知识点总结一、冰蓄冷技术的原理1. 制冷原理:冰蓄冷技术利用低温时段利用外部电力或太阳能等能源,把水制冷冰冻,制得冰块。

当需要冷却的时候,释放储存的冷能,以此降低制冷系统的负荷,降低能耗。

2. 蓄冷原理:制冷设备在低峰时段运行,将冰制造好保存起来。

在高峰时段不需要开启制冷设备,通过释放储存的冷能来满足需求。

二、冰蓄冷技术的优点1. 节约能源:冰蓄冷技术能够在低峰时段利用便宜的电力或者太阳能等能源,制冷并储存冷能,降低高峰时段的能耗成本。

2. 减少负荷峰值:通过在低峰时段制冷并储存,可以在高峰时段释放冷能,降低空调系统的负荷峰值,减少对电网的压力。

3. 环保节能:使用冰蓄冷技术可以减少碳排放,降低能源消耗,对环境更加友好。

4. 应用广泛:冰蓄冷技术不仅可以应用在建筑空调系统,还可以应用在食品零售行业、交通车辆、工业生产等领域。

5. 维护便利:冰蓄冷系统相比于传统直接蒸发式制冷系统,维护成本更低,寿命更长。

三、冰蓄冷技术的应用领域1. 建筑空调系统:在商业建筑和住宅楼宇的空调系统中广泛应用,通过在夜间低峰时段制冷,白天释放冷能来降低空调系统运行成本。

2. 食品零售行业:冰蓄冷技术在超市、冷藏库等场所使用,能够减少制冷系统的耗电量,降低运行成本,同时保持食品的新鲜。

3. 交通工具:在公共交通工具和商用车辆中,冰蓄冷技术可以减少车辆空调系统的能耗,提高燃油利用率。

4. 工业生产:在一些工业生产过程中,例如塑料加工、化工等领域,冰蓄冷技术可以用来降低生产过程中的制冷成本。

四、冰蓄冷技术的发展趋势1. 太阳能结合:将太阳能与冰蓄冷技术结合,可以更好地利用清洁能源,增加系统的可持续性。

2. 智能化控制:通过智能传感器和控制系统,可以实现对冰蓄冷系统的精确监控和调节,进一步提高能效。

3. 新材料应用:利用新型材料和制冷技术的发展,可以提高冰蓄冷系统的效率和环保性。

4. 多元化应用:冰蓄冷技术不仅可以应用于空调制冷,还可以拓展到其它工业和生活领域,提高其市场应用的多元性。

冰蓄冷的原理

冰蓄冷的原理

冰蓄冷的原理一、引言冰蓄冷技术是一种通过利用冰的融化吸收热量来实现空调制冷的技术。

这种技术在工业、商业和家庭等领域得到广泛应用,具有节能环保、运行稳定等优点。

本文将详细介绍冰蓄冷的原理。

二、冰蓄冷的基本原理1.相变潜热物质在相变时会吸收或释放大量的热量,这种热量称为相变潜热。

水从液态转变为固态时,需要吸收相当于其自身质量乘以80%的热量,而从固态转变为液态时,则需要释放同样数量的热量。

2.传导换热传导是物质之间由高温向低温传递能量的过程。

在冰蓄冷系统中,通过传导将室内空气中的热量传递到储存了大量冰块的蓄冰槽内,使得室内温度得到降低。

3.循环系统循环系统是指将制冷剂通过压缩、膨胀、液化和汽化等过程循环使用,从而实现制冷的过程。

在冰蓄冷系统中,循环系统是将制冷剂通过蒸发器、压缩机、冷凝器和节流阀等部件进行循环使用。

三、冰蓄冷的工作原理1.储存阶段在储存阶段,制冷剂通过压缩机被压缩成高温高压气体,然后通过冷凝器散发热量,变成高温高压液体。

接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。

这时,蓄冰槽内的水开始结成大块的冰块,并吸收室内空气中的热量。

2.放电阶段在放电阶段,当室内温度达到预设值时,控制系统会切断制冷剂的供应,并启动水泵将储存在蓄冰槽中的大块冰块带入蒸发器。

此时,室内空气通过风机被吹过蒸发器并与储存在其中的大块冰块接触。

由于相变潜热的作用,冰块在融化的过程中吸收了室内空气中的热量,从而使得室内温度得到降低。

3.再生阶段在再生阶段,当储存在蓄冰槽中的大块冰块全部融化后,控制系统会启动制冷机组进行再生。

制冷剂被压缩成高温高压气体,并通过冷凝器散发热量变成高温高压液体。

接着,制冷剂流经节流阀进入蒸发器,在蒸发器内部变成低温低压气体,并吸收室内空气中的热量。

同时,储存在蓄冰槽中的水开始结成大块的冰块,并吸收室内空气中的热量。

四、结语通过以上介绍,我们可以看出,冰蓄冷技术是一种通过利用相变潜热和传导换热来实现空调制冷的技术。

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用冰蓄冷空调系统是一种先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中的空调系统。

它可以在夜间低电价时段使用电力,将冷却剂冷却到较低温度,然后将其储存下来,白天通过蓄冷设备释放冷量,达到降温的目的。

1.电动机和压缩机:电动机将冷却剂吸入,并将其压缩成高压、高温的气体状态。

2.冷却剂管道和换热器:冷却剂通过管道传输,在换热器中与空气或水进行换热,从而将空气或水的温度降低。

3.蓄冷设备:蓄冷设备是冰蓄冷系统的核心部分,用于储存冷却剂。

在夜间低电价时段,电动机将冷却剂冷却到低温,并将其储存在蓄冷设备中。

白天,通过控制阀门的开启和关闭,冷却剂释放出来,用于降低室内温度。

4.控制系统:冰蓄冷空调系统的控制系统根据室内温度和外界环境条件,控制电动机的启停以及蓄冷设备的开启和关闭,以实现室内温度的精确控制。

1.节约能源:冰蓄冷空调系统通过在夜间低电价时段储存冷却剂,并在白天释放冷量,能够更高效地利用电力资源,减少能源消耗。

2.提高能源利用率:由于低温冷却剂的制备和蓄冷设备的储存,冰蓄冷空调系统能够提高制冷效果和能源利用率,从而降低运行成本。

3.灵活控制:冰蓄冷空调系统的控制系统可以根据室内温度和外界环境条件,实现对室内温度的精确控制。

并且,它可以根据能源价格的变化灵活调整运行模式。

4.方便维护:冰蓄冷空调系统的维护相对简单,只需要定期进行冷却剂的添加和设备的检查维护即可。

冰蓄冷空调系统在建筑物、工厂、商场、酒店等场所有着广泛的应用前景。

由于其节能环保的特点,越来越多的地区和国家开始采用冰蓄冷空调系统来替代传统的空调系统。

它能够有效降低能耗,减少电力需求峰值,提高能源的利用率,同时减少对地球环境的负荷,达到节能减排的目的。

总之,冰蓄冷空调系统通过先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中,通过控制系统实现精确控制。

它具有节约能源、提高能源利用率、灵活控制和方便维护等优点,广泛应用于各个领域中。

冰蓄冷介绍

冰蓄冷介绍

1、蓄冷空调原理蓄冷中央空调系统是一种通过蓄能来节约空调系统运行费用的技术,其基本工作原理是:建筑物空调时间所需冷量的部分或全部在非空调时间利用蓄冷介质的显热或其相变过程的潜热迁移等特性,将能量以低温状态蓄存起来,然后根据空调负荷要求释放这些冷量,这样在用电高峰时期就可以少开甚至不开主机。

当空调使用时间与非空调时间和电网高峰和低谷同步时,就可以将电网高峰时间的空调用电量转移至电网低谷时使用。

在一般工程中,空调系统用电量占总耗电量的35%--65%,而制冷主机的电耗在空调系统中又占65%--75%。

在常规空调设计中,冷冰主机及辅助设备容量均按尖峰负荷来选配,这不仅使空调系统的电力容量增大,而且使得主机等空调设备在绝大部分情况下均处于低效率的部分负荷状态运行,显得很不经济。

蓄冷中央空调从系统构成上来说只是在常规空调系统的基础上增加了一套蓄冷装置,其它各部分在结构上与常规空调相同,它在使用范围方面也与常规空调基本一致。

2、蓄冷中央空调的意义随着社会的发展,中央空调在大中城市的普及率日渐增高。

据统计,空调高峰时用电量达到城市用电负荷的25%-30%,加大了电网的峰谷用电差。

蓄冷中央空调之所以得到各国政府和工程技术界的重视,正因为它对电网有卓越的移峰填谷功能,是电力需求侧最有效的电能蓄存方法,蓄冷对于用户还有以下的一些突出优点:1)空调的出水温度低、制冷效果好,低温送风系统节省投资和能耗。

2)空调环境相对湿度较低,空调品质提高,有利于防止中央空调综合症。

3)利用峰谷荷电价差,平衡电网负荷。

减少空调年运行费。

4)减少冷水机组容量,降低一次性投资。

5)在主机出现故障或断电的情况下,蓄冷系统相当于应急冷源,系统可靠性高。

6)当建筑物功能变化或面积增加引起冷负荷增加时,只要增加蓄冷装置的蓄冷量,即可满足大楼新增冷量需要。

3、蓄冷发展史第一代:冰球蓄冷第二代:冰盘管蓄冷第三代:动态冰蓄冷――――――――――――――――――――――――――――――――在没有实行集中供热前,冬天时家家户户烧火取暖,这种原始的用能方式既浪费能源,又污染环境。

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用1、冰蓄冷空调系统原理及主要特点冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽内冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽内的冷能释放出来,满足空调用冷的需要。

因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。

冰蓄冷空调系统具有以下主要特点:(1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧张;(2)冰水主机的容量减少,节省增容费用;(3)总用电设施容量减少,可减少基本电费支出;(4)利用低谷段电价的优惠可减少运行电费;(5)冰水温可低至1~4℃,减少空调设备风管的费用;(6)冷却水泵、冷冻水泵、冷却塔容量减少;(7)电力高压侧及低压侧设备容量减少;(8)室内相对湿度低,冷却速度快,舒适性好;(9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小;(10)充分利用24h有效时间,减少了能量的间歇耗损;(11)充分利用夜间气温变化,提高机组产冷量;(12)投资费用与常规空调相当,经济效益佳。

2系统的组成及制冰方式分类2.1系统组成冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。

冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。

另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。

2.2制冰方式分类根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。

此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。

动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。

每一种制冰具体形式都有其自身的特点和适用的场合。

3运行策略与自动控制3.1运行策略与常规空调系统不同,蓄冷系统可以通过制冷机组或蓄冷设备或两者同时为建筑物供冷,用以确定在某一给定时刻,多少负荷是由制冷机组提供,多少负荷是由蓄冷设备供给的方法,即为系统的运行策略。

冰蓄冷空调系统原理及其技术

冰蓄冷空调系统原理及其技术

冰蓄冷空调系统原理及其技术
一、冰蓄冷空调系统原理
冰蓄冷空调系统属于利用化学反应,在冰蓄冷机组中形成的蓄冷湿冷
却塔,经冰蓄冷循环贮存介质,利用冰蓄冷机组将热能转换为冷能,冷能
之间转换到室外,以及室内“冷热机组”中,将冷能转换为热能,达到空
调系统调节温度和湿度的作用。

1、冰蓄冷机组:冰蓄冷机组由蒸发器、冷凝器、压缩机、再蒸发器、再凝结器和冰水泵组成,形成冷凝蒸发循环。

蒸发器、冷凝器和再蒸发器
由压差驱动器控制,冰水泵能够把自己的热量储存在冰水中,而且能够把
蓄冷介质的温度低于环境的温度。

2、冰水泵:冰水泵负责将蒸发器冷凝到冰池中的热量用压缩机和热
交换器蒸发,将冷凝器的热量用压缩机和热交换器冷凝,然后将冰池中的
冷凝器的冷凝热量带回室内,以实现调温和调湿的作用。

3、蒸发器、冷凝器、压缩机、再蒸发器和再凝结器:这些都是冰蓄
冷机的重要组成部分,用于将空气加热或冷却。

蒸发器的作用是将冷冻液
冷凝,将热量从空气中蒸发;冷凝器的作用是将冷冻液蒸发,将热量从空
气中冷凝;压缩机的作用是将冷冻液压缩,然后释放出热量。

冰蓄冷的优缺点介绍

冰蓄冷的优缺点介绍

冰蓄冷空调的原理和优缺点介绍一、冰蓄冷的技术原理:冰蓄冷中央空调是指在夜间低谷电力段开启制冷主机,将建筑物所需的空调部分或全部制备好,并以冰的形式储存于蓄冷装置中,在电力高峰时段将冰融化提供空调用冷,由于充分应用了夜间低谷电力,由此使中央空调的运行费用(在有夜间低谷电力费用的地区)降低。

在有夜间低谷电力费用的地区,冰蓄冷中央空调不仅为用户节约大量的运行费用,而且对电网具有卓越的移峰填谷功能,提高电网运行的经济性。

国家发改委在《节能中长期专项规划》中,将应用电力蓄冷、蓄热作为节能降耗的十大措施之一。

二、冰蓄冷技术与普通空调相比所具有的优势:1、优化空调系统:原中央空调系统设计属于耗能型中央空调系统设计,通过冰蓄冷系统的设计可将原系统进行优化,使空调运行过程更趋于合理。

2、降低运行电费:充分利用电价优惠政策,在夜间低电谷电价时段制冷,在高峰电价时段放冷使用,能够做到部分移峰,从而降低空调运行电费。

3、节省空调运行电量:a、由于充冷过程在夜间进行,夜间气温相比白天较低,制制冷单耗下降。

B、由于充冷时制冷机满负荷地高效运行,避免了正常供冷时难以避免的“小马拉大车”的现象。

4、增加了空调系统的运行的灵活性:b、然停电时,不需开主机,只需开供冷泵,因此,使用备用电源仍可维持空调供冷。

b、应紧张,供电部门对正常中央空调要限电使用,但在全国各地,蓄冷中央空调往往得到额外支持,不在限制范围。

c、行方式灵活,空调可按原有系统单独运行,也可与增加蓄冷系统结合运行。

三、冰蓄冷技术与普通空调相比所具有的缺点:1、通常在不计电力增容费的前提下,其一次性投资比常规空调大。

2、蓄冷装置要占用一定的建筑空间,而且增加了蓄冷设备费用。

3、制冷蓄冰时制冷主机的制冷效率要比在空调工况下低,其空调系统的制冷性能系数(COP)要下降。

4、与普通空调系统相比需增加水管和风管的保温费用。

5、设计与调试相对比较复杂,效能的完全发挥受环境影响较大。

冰蓄冷空调原理

冰蓄冷空调原理

冰蓄冷空调原理冰蓄冷空调利用了物质的相变潜热原理,能够在低峰耗气时段制冷,然后在高峰用气时段使用制冷效果,并同时采用了新的节能和环保技术。

一、冰蓄冷空调的工作原理冰蓄冷空调是一种采用物质的相变潜热原理制冷的空调设备,其制冷原理主要涉及两个方面:一是固液相变的变温作用;二是固气相变的变压作用。

1. 固液相变的变温作用冰蓄冷空调通过冰蓄体中的水在固液相变过程中的巨大热效应,对空气产生制冷作用。

冰蓄体中的水在0℃下结冰时会释放出热量,这个过程称为“潜热效应”。

换而言之,水从液态冷却到冰态的过程中会释放出冷量,这样就能制造低温环境,起到降温的作用。

2. 固气相变的变压作用冰蓄冷空调中,固态冰作为一个储存热量和冷量的介质,其另外一个重要作用是:通过蓄冰过程中的气体膨胀效应,往往可以分离出这份冷气以达到制冷的目的。

二、冰蓄冷空调与传统空调的差异1. 能耗方面相较于传统的空调,冰蓄冷空调的能耗表现稳定,可以在空调运行时采取蓄冰模式充分利用低谷电来为随后的高谷峰电时间段的需求提供足够的制冷能力。

2. 环境方面冰蓄冷空调具有清洁环保的优势。

传统的空调存在氟利昂等物质的排放,而冰蓄冷空调则不存在这种排放,因为它采用的是自然界中天然的水资源。

3. 经济方面冰蓄冷空调作为一种新型的技术,其市场发展空间较大,而且容易推广。

同时,采用冰蓄冷空调,可以提高空调系统的效率,从而减轻了企业的能耗费用。

三、冰蓄冷空调推广的不足1. 此类空调安装要求较高由于冰蓄冷空调具有较高的技术要求,需要考虑到热力平衡、热量传导、供水质量、控制系统等多方面问题,因此冰蓄冷空调的安装要求较高,需要专业的安装人员的安装和调整。

2. 比传统空调的价格要贵一些由于该装置对材料、技术要求等方面存在较高的要求,因而成本也相对较高,所以,在市场上它的售价要比传统空调的售价要高一些。

3. 冰蓄体本身造价较高要建立一套完整的冰蓄冷系统,必须同时建立冰蓄体和水泵、雾化喷淋系统等其他装置,这些设备需要额外投入资金,在建设成本上会增加一些额外的费用。

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用
首先是冷媒循环部分。

冷媒在蒸发器中吸收室内热量,使室内温度下降,然后通过压缩机被压缩至高温高压气体,进入冷凝器,通过冷却介质(通常是水)散热,使冷媒温度降低,再由膨胀阀节流后进入蒸发器重新循环。

其次是储冷系统部分。

在低峰电价时段,空调系统运行正常,同时将多余的电能利用储存在储冷装置中,通常是将液态水转化为冰。

储冷系统中的冰装置由冷水机组和冰蓄装置组成。

冷水机组负责制冷的工作,冷水通过冷水机组冷凝器冷却冰蓄装置,将其温度降低至使冰蓄装置中的水结冰,冷水机组冷量越大,冰蓄装置中的水结冰越多。

在高峰时段,当空调系统需要制冷时,冷却水通过储冷装置,使冰蓄装置中的冰融化为冰水,提供制冷冷水。

这样就能够在高峰时段减少制冷机的运行时间,达到节约能源的目的。

冰蓄冷空调系统的应用非常广泛。

首先是商业建筑和写字楼等大型公共建筑。

这些建筑的用电需求巨大,尤其是在高温季节,空调使用频繁。

冰蓄冷系统可以在夜间低电价时段制冷并储存冷能,然后在白天高峰时段释放冷能,降低用电负荷,减少能源消耗。

其次是工业制造企业。

许多工业制造过程需要得到恒温控制,而冰蓄冷系统可以提供稳定的冷水供应,满足工业生产的需求。

另外,冰蓄冷系统还可应用于居民住宅。

尤其是在夏季高温天气中,冰蓄冷系统可以提供舒适的室内温度,同时降低用电峰值,减少能源消耗。

总结起来,冰蓄冷空调系统通过储存低温冷能,并在需要时释放,以实现高效能源利用。

其原理是利用冷媒循环和储冷系统,可以应用于各种
场所,包括商业建筑、工业制造企业和居民住宅等,从而达到节约能源、提高能源利用效率的目的。

冰蓄冷空调的原理

冰蓄冷空调的原理

冰蓄冷空调的原理及应用说明阅读: 6146发布时间: 2009年 07月 14日1. 冰蓄冷空调系统的原理冰蓄冷空调系统的原理即是:选择电力离峰时段(电费较低)啓动压缩机运转,冷却冰水制冰,将压缩机的冷却能量,以冰的形态(潜热)储存起来,等到白天尖峰电力时段(电费较高)需使用空调(冰水),而又不适宜运转冷气机组的时间,即可让夜间所储存的冰溶化,吸收空调冰水的热量,达到冰水冷却的效果,如此即可将白天尖峰时段的冷气用电需量,转移至夜间离峰时段。

冰蓄冷空调系统流程图2. 冰蓄冷空调应用说明冰蓄冷空调系统于美、日等国己发展使用30年以上,即使在台湾也已发展25年之久,其对于电力电网的波峰谷平衡调整,及投资设置者的电费回收效益,已是明显且成熟的技术。

基于空调系统的耗电,约占商业大楼用电的40%~50%,且集中于夏天,对于尖峰电力的需求造成很大的负担,因此发展冰蓄冷空调系统,除了符合国家政策需求外,其另具有下述的商业效益优点:2.1.转移尖峰时间耗电量压缩机利用夜间或离峰时间,转移白天(尖峰时间)耗电量。

具有平衡电力负载功能,符合国家削峰填谷的用电政策。

2.2.节约基本电费及外线补偿费(增容费)利用非空调设备的契约电力容量(照明、电梯等),在离峰电力时段移转给储冰系统使用,如此可降低契约电力容量,节约基本电费。

另因电力设备使用时段措开,因此可将受电设备容量降低,包括:无熔丝开关、电磁开关、管线、变压器等设备,及施工费用均可减少(各种设备电力、设备容量、设备费用、电力申请费用、基本电费和施工费用等,全部降低约20%)。

2.3.节约流动电费透过使用二段式和三段式时间电价,享受波峰谷电费差价措施。

2.4.提升机组运转效率传统空调系统,冰水主机容量选定都是以尖峰负荷为依据,但是实际上尖峰负荷全年不超过60天,主机绝大多数时间是在部份负荷下运转,在春天和秋天时,负荷更可能低至50%以下,采用储冰空调系统,主机满载运转至储冰完成,机组完全在100%容量下运转,避免卸载运转时的效率损失(传统机组当容量卸载至50%时,其耗电量仍高达75%)。

冰蓄冷空调的原理

冰蓄冷空调的原理

冰蓄冷空调的原理1.蓄冷阶段:在低峰用电时段或低温时段,空调系统会启动制冷机组,将冷媒变为低温低压的蒸汽状态,并通过换热器吸热。

冷媒的温度会进一步降低,直至低于冰块的冰点温度。

这时,冰蓄冷系统的阀门会打开,把冷媒直接送入冰库。

2.冰蓄冷阶段:冷媒进入冰库后,会与冰块发生热交换,冷却冰块。

冷媒在冰块表面的管道中流动,吸收冰块的热量,导致冰块变得更加冰凉,并将冷媒本身的温度升高。

3.蓄冷储存阶段:在蓄冷储存阶段,冷媒再次流过换热器,发生冷凝,形成高压高温的液体,并交给蓄冷机组,将其储存起来。

通过这个循环,冷媒会持续地与冰块进行热交换,使冰块不断变冷,从而实现冰的蓄冷。

4.释放冷阶段:当用户需要冷空调服务时,冷媒会被释放到室内机组。

在释放冷阶段,储存的冷媒会经过蓄冷机组,通过蒸发器与室内空气进行热交换,将热量从室内空气吸走,使室内空气温度下降。

同时,冷媒通过蒸发变成低温的蒸汽,在压缩机的作用下,再次变为高温高压的气体。

5.释放热阶段:释放冷的同时,冷媒在压缩机的作用下变为高温高压的气体,通过冷凝器冷却,释放出余热。

冷媒再次变成液体状态,回到蓄冷机组,准备下一次的蓄积循环。

通过以上过程的不断循环,冰蓄冷空调系统可以实现对室内温度的调节。

由于冰块可以长时间地储存住冷量,并可根据需要释放,所以冰蓄冷系统具有很好的节能效果。

此外,由于冰块的储存过程是在低峰用电期间,使得冰蓄冷系统可以充分利用廉价电力,进一步提高了节能效率。

总的来说,冰蓄冷空调通过储存冰块来实现制冷和制热功能,减少耗能并提高节能效率。

其原理相对简单,但流程复杂,需要各个组件的配合和控制才能达到预期的效果。

冰蓄冷空调系统是现代节能环保的一种空调解决方案,可以在一定程度上减少对传统电力资源的消耗,达到可持续发展的目标。

冰蓄冷的原理特点应用

冰蓄冷的原理特点应用

冰蓄冷的原理特点应用原理介绍冰蓄冷是一种利用冰的物理特性来实现热能储存和释放的技术。

其原理基于冰的相变过程,即固态的冰在吸收热量的过程中会发生熔化,吸收的热量将用于将冰转化为水,而在释放热量的过程中,水会重新结晶为冰,从而释放出热量。

特点1.高储能密度:冰蓄冷系统能够在较小的体积内储存大量的热能,这使得冰蓄冷技术在需要高储能密度的领域具有优势。

例如,在建筑空调中的应用,冰蓄冷系统能够在低峰时段制冷并储存冷能,然后在高峰时段释放冷能,从而降低能源消耗。

2.高效节能:冰蓄冷系统利用低价电能制冷,在低峰时段制冷储存冷能,然后在高峰时段释放冷能供应空调系统使用,从而减少了高峰时段对电网的负荷需求,实现了电能的合理分配和利用,提高了能源利用效率。

3.稳定可靠:冰蓄冷系统采用稳定的物理过程,不涉及化学反应和移动部件,因此具有较高的可靠性。

而且,冰的相变过程有较大的潜热,可以在短时间内释放大量的热量,满足突发热负荷需求。

4.环保节能:冰蓄冷系统利用低价电能在低峰时段制冷,不仅降低了电能成本,还减少了电网的负荷需求。

同时,冰的制冷过程不会产生有害气体,对环境无污染。

应用领域1.建筑空调系统:冰蓄冷技术广泛用于大型建筑物的空调系统中。

它可以在夜间利用低价电能制冷并储存冷能,然后在白天高峰时段释放冷能供应空调系统使用,从而实现能源的高效利用,降低运营成本。

2.医疗领域:冰蓄冷技术在医疗领域也有应用。

例如,在手术中需要大量冷却的情况下,可以利用冰蓄冷系统提供大量的冷能,确保手术过程中的温度控制和患者的安全。

3.工业领域:一些工业过程需要控制温度,而冰蓄冷技术则可以用于提供稳定的制冷能力。

例如,在食品加工过程中需要进行冷却的情况下,可以利用冰蓄冷系统提供稳定的制冷能力,确保产品的质量和安全。

4.太阳能热利用系统:太阳能热利用系统中,冰蓄冷技术可以用于储存太阳能的热量。

例如,在太阳能集热系统中,可以用太阳能加热水,然后将热水通过冰蓄冷系统储存为冰,夜间或需要的时候再释放热能供应给建筑空调系统等。

冰蓄冷技术的工作原理

冰蓄冷技术的工作原理

冰蓄冷技术的工作原理
冰蓄冷技术是一种利用冰的物理特性进行室内温度调节的技术。

它工作的原理如下:
1. 制冷阶段:工业空调系统会在夜间或低用电峰期利用外部环境的温度低于室内温度的特点,通过制冷机组制造冰块,并将冰块存放在蓄冰池中。

这个过程需要消耗电能,但它可以利用低电价和空余电力时段,降低能源成本。

2. 放冷阶段:白天或高用电峰期,当空调系统需要降温时,它会利用蓄冰池中的冰块来降低室内温度。

通过水泵将蓄冰池中的冰块与空调系统中的冷却水连接起来,实现冷却。

这个过程不需要消耗电能,因为它是利用冰的融化吸热作用来降低室内温度。

这种冰蓄冷技术的好处是,它利用了夜间或空余电力时段来制造冰块,降低了能源成本,并且在白天或高用电峰期,它可以利用蓄冰池中的冰块来降低室内温度,使空调系统的运行更加高效。

同时,这种技术还可以减少对环境的影响,因为利用低电价和空余电力时段来制冰,不仅减少了能源利用的浪费,还可以减少能源消耗对环境的影响。

冰蓄冷空调工作原理分析

冰蓄冷空调工作原理分析

冰蓄冷空调工作原理分析1.冰制冷储存:在夜间低峰期,空调系统通过制冷机组的压缩功率将一部分电能转化为冷量。

冷媒在冷凝器中经过传热过程,将热量释放给外界,使自身变为液态。

然后冷媒进入蓄冷装置,通过换热管与周围环境的热交换实现冷量储存。

蓄冷装置中的换热管内部通过通入冷媒,然后循环流动吸收周围环境的热量,并在外界气温较低的情况下形成冰。

这样,在夜间低温时段长时间积累,使得冰储存单元内的蓄冷媒体逐渐结成冰块。

2.冰蓄能室:冰储存完毕后,在白天高峰期,制冷机组停止运行,与夜间相比,白天的电能需求较高,以供电需求为主。

此时,利用蓄冷系统中的冰块开始进行制冷。

冷媒通过循环泵被抽出,并流经冰蓄能室,与冰块之间的换热器接触,通过传热吸取冰块中储存的冷量。

冷媒在吸热过程中变为气态,通过蒸发器经过换热和获得外界空气的热量,使冷媒在蒸发器中以低温蒸发,并吸收室内的热量,从而实现室内空调效果。

3.循环制冷:冷媒在蒸发器中吸收热量之后,再通过压缩机进行压缩,使冷媒的温度和压力升高。

在压缩过程中,冷媒释放热量给外界环境,然后进入冷凝器。

在冷凝器中,冷媒通过传热过程将热量释放出去,与外界进行热交换,冷媒温度降低形成液态冷媒。

然后液态冷媒通过膨胀阀进行节流膨胀,使压力降低,温度进一步降低。

最后,冷媒再次进入蒸发器,循环往复进行制冷过程。

4.系统控制:冰蓄冷空调系统通过智能控制器实现对整个系统的自动控制。

智能控制器能根据室内温湿度,外界温度、电力负荷以及冰蓄能室的冷媒温度等参数进行调控,实现冰储存和冷量释放的最优控制。

通过对各个部分的运行状态进行监测和控制,保证系统的高效运行以及能源的节约利用。

总结起来,冰蓄冷空调利用夜间低峰期储存冷量,并在白天高峰期释放冷量,以降低电力负荷和能耗。

通过冰蓄冷技术的应用,有效提高了能源的利用效率,减少了能源消耗对环境的污染。

虽然建设和运行成本较高,但是相较传统的空调系统,冰蓄冷空调具有较大的节能潜力和环保优势,是未来可持续发展的趋势。

最新冰蓄冷空调系统原理及应用

最新冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用冰蓄冷空调系统原理及应用1、冰蓄冷空调系统原理及主要特点冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽内冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽内的冷能释放出来,满足空调用冷的需要。

因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。

冰蓄冷空调系统具有以下主要特点:(1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧张;(2)冰水主机的容量减少,节省增容费用;(3)总用电设施容量减少,可减少基本电费支出;(4)利用低谷段电价的优惠可减少运行电费;(5)冰水温可低至1~4℃,减少空调设备风管的费用;(6)冷却水泵、冷冻水泵、冷却塔容量减少;(7)电力高压侧及低压侧设备容量减少;(8)室内相对湿度低,冷却速度快,舒适性好;(9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小;(10)充分利用24h有效时间,减少了能量的间歇耗损;(11)充分利用夜间气温变化,提高机组产冷量;(12)投资费用与常规空调相当,经济效益佳。

冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。

当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。

2系统的组成及制冰方式分类2.1系统组成冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。

冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。

另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。

2.2制冰方式分类根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。

此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。

冰蓄冷空调原理

冰蓄冷空调原理

冰蓄冷空调原理空调对于现代人来说已经是不可或缺的家电了。

在夏季,空调可以让我们的生活更为舒适,但同时造成的能源浪费和环境污染也不容忽视。

为了减小能源的消耗和环境污染,绿色环保型的空调—冰蓄冷空调逐渐进入人们的视野,成为了新的空调趋势。

冰蓄冷空调的原理是将电力变换成冷热能,利用夜间较低的电价及为了避峰用电,对空气进行制冷,并将制冷后的冰蓄积起来,白天通过冰蓄池和深井水进行冷却,达到供应空调的目的。

相比于普通空调,冰蓄冷空调可以节省20%到30%的电费,并且减少画面上避免了污染和噪音,更为环保和舒适。

那么,冰蓄冷空调具体运作的原理是怎样的呢?在这里,我们先解析一下其几个重要的组成部分。

一、制冷机组制冷机组是冰蓄冷空调的核心部件,主要包含压缩机、冷凝器、膨胀阀和蒸发器等。

它们共同协作完成制冷的工作。

制冷机组将环境中的热量吸收,使冷却剂变成低温低压的蒸汽。

蒸汽被吸入制冷机组中的压缩机,之后压缩机压缩蒸气,使其温度逐渐升高。

蒸气进入冷凝器后,蒸气通过与冷水换热,蒸汽变成液体。

液化后的高压高温气体经过膨胀阀节流,流入蒸发器,撒发器中低温低压的制冷剂吸收室内的热量,把物体的温度降低。

二、冰蓄装置冰蓄装置是利用热力学进一步意义上的相变潜热原理。

在夜间,制冷机组向水箱或者玻璃钢冰蓄池中输送制冷剂,然后在这里形成了一层薄冰,整个夜间的废热导致冰的部分溶解,夜间剩余冰量提升,每晚制冷剂可以制出冰蓄储。

白天,在制冷机组转为制热功能后,冰蓄池中的冰蓄能够迅速降低冷凝温度及蒸发温度以减小制冷机组的负荷,从而进一步提高制冷效率。

三、冷却水系统冷却水系统主要由水塔、循环泵和管路等组成,其作用是将冰蓄池中储存的低温水与制冷机组的冷却水进行循环,用来降低室内温度。

以上三部分是构成冰蓄冷空调的关键组成部分。

当夜间电价较低时,制冷机组便会投入到工作中,把制冷剂经过输送管道输送到冰蓄池中形成零度水,供给白天时空调的制冷。

白天制冷机组的水(强制流过蒸发器流通池中的水),水剂在蒸发器中蒸发后,同时把冰蓄池的冰蓄吸收到室内的热量,降低室内温度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冰蓄冷空调系统原理及应用1、冰蓄冷空调系统原理及主要特点冰蓄冷空调技术就是在夜间低电价时段(同时也是空调负荷很低的时间)采用电制冷机组制冷,将水在专门的蓄冰槽内冻结成冰以蓄存冷量;在白天的高电价时段(同时也是空调负荷高峰时间)停开制冷机组,直接将蓄冰槽内的冷能释放出来,满足空调用冷的需要。

因为制冰、融冰转换损失的能量很小,而夜间制冷因气温较低可使效率更高,完全可以弥补蓄冰的冷能损失。

冰蓄冷空调系统具有以下主要特点:(1)利用低谷段电力,具有平衡峰谷用电负荷,缓解电力供应紧张;(2)冰水主机的容量减少,节省增容费用;(3)总用电设施容量减少,可减少基本电费支出;(4)利用低谷段电价的优惠可减少运行电费;(5)冰水温可低至1~4℃,减少空调设备风管的费用;(6)冷却水泵、冷冻水泵、冷却塔容量减少;(7)电力高压侧及低压侧设备容量减少;(8)室内相对湿度低,冷却速度快,舒适性好;(9)制冷设备经常在设计工作点上平衡运行,效率高,机器损耗小;(10)充分利用24h有效时间,减少了能量的间歇耗损;(11)充分利用夜间气温变化,提高机组产冷量;(12)投资费用与常规空调相当,经济效益佳。

冰蓄冷空调技术在我国的应用将成为不可逆转的趋势。

当然它也有一些缺点,如增加蓄冷池、水泵的输送能耗及增加蓄冷池等设备的冷量损失等。

2系统的组成及制冰方式分类2.1系统组成冰蓄冷空调系统一般由制冷机组、蓄冷设备(或蓄水池)、辅助设备及设备之间的连接、调节控制装置等组成。

冰蓄冷空调系统设计种类多种多样,无论采用哪种形式,其最终的目的是为建筑物提供一个舒适的环境。

另外,系统还应达到能源最佳使用效率,节省运转电费,为用户提供一个安全可靠的冰蓄冷空调系统。

2.2制冰方式分类根据制冰方式的不同,冰蓄冷可以分为静态制冰、动态制冰两大类。

此外还有一些特殊的制冰结冰,冰本身始终处于相对静止状态,这一类制冰方式包括冰盘管式、封装式等多种具体形式。

动态制冰方式在制冰过程中有冰晶、冰浆生成,且处于运动状态。

每一种制冰具体形式都有其自身的特点和适用的场合。

3运行策略与自动控制3.1运行策略与常规空调系统不同,蓄冷系统可以通过制冷机组或蓄冷设备或两者同时为建筑物供冷,用以确定在某一给定时刻,多少负荷是由制冷机组提供,多少负荷是由蓄冷设备供给的方法,即为系统的运行策略。

蓄冷系统在设计过程中必须制定一个合适的运行策略,确定具体的控制策略,并详细给出系统中的设备是应作调节还是周期性开停。

对于部分蓄冷系统的运转策略主要是解决每时段制冷设备之间的供冷负荷分配问题,以下为蓄冷系统通常选择的几种运行策略。

3.1.1制冷机组优先式蓄冷系统采用制冷机组优先式运行策略是指制冷机组首先直接供冷,超过制冷机组供冷能力的负荷由蓄冷设备释冷提供。

这种策略通常用于单位蓄冷量所需费用高于单位制冷机组产冷量所需费用,通过降低空调尖峰负荷值,可以大幅度节省系统的投资费用。

3.1.2蓄冷设备优先式蓄冷设备优先式运行策略是指蓄冷设备优先释冷,超过释冷能力的负荷由制冷机组负责供冷。

这种方式通常用于单位蓄冷量所需的费用低于单位制冷机组产冷量所需的费用。

蓄冷设备优先式在控制上要比制冷机组优先式相对复杂些。

在下一个蓄冷过程开始前,蓄冷设备应尽可能将蓄存的冷量全部释放完,即充分利用蓄冷设备的可利用蓄冷量,降低蓄冷系统的运行费用;另外应避免蓄冷设备在释冷过程的前段时间将蓄存的大部分冷量释放,而在以后尖峰负荷时,制冷机组和蓄冷设备无法满足空调负荷需要的现象,因此应合理地控制蓄冷设备的剩余冷量,特别是对于设计日空调尖峰负荷出现在下午时段时非常重要。

一般情况,蓄冷设备优先式运行策略要求蓄冷系统应预测出当日24小时空调负荷分布图,并确定出当日制冷机组在供冷过程中最小供冷量控制分布图,以保证蓄冷设备随时有足够释冷量配合制冷机组满足空调负荷的要求。

3.1.3负荷控制式(限制负荷式)负荷控制式就是在电力负荷不足的时段,对制冷机组的供冷量加以限制的一种控制方法。

通常这种方法是受电力负荷限制时才采用,超过制冷机组供冷量的负荷可由蓄冷设备负责。

例如城市电力负荷高峰时段(上午8∶00~11∶00),禁止制冷机组运行。

3.1.4均衡负荷式均衡负荷式是指在部分蓄冷系统中,制冷机组在设计日24小时内基本上满负荷运行;在夜间满载蓄冷,白天当制冷机组产冷量大于空调冷负荷时,将满足冷负荷所剩余的冷量(用冰的形式)蓄存起来;当空调冷负荷大于制冷机组的制冷量时,不足的部分由蓄冷设备(融冰)来完成。

这种方式系统的初期投资最小,制冷机组的利用率最高,但在设计日空调负荷高峰时段与当地电力负荷高峰时段是否相同时,即是否与当地电价低谷时段相重叠,如不重叠,则系统的运行费用较高。

3.2自动控制蓄冷系统的控制,除了保证蓄冷和供冷模式的转换以及空调供水或回水温度控制以外,主要应解决制冷机组与蓄冷设备之间供冷负荷分配问题,特别是在部分负荷时,应保证尽可能地将蓄冷设备的冷量释放完,即可采用融冰优先式运行策略,甚至可采用全蓄冷运行,即白天制冷机组停开,空调负荷全部由蓄冷设备满足。

而在设计日空调负荷时,应采用制冷机组优先式运行策略,以保证逐时空调负荷要求。

目前蓄冷系统的自动控制系统,大多采用以计算机技术的直接数字控制器与电子传感器及执行机构相结合的直接数字控制系统。

制冷机组的蓄冷量是定量的输出,而蓄冷设备的释冷是总量的输出。

如两者为串联时,控制系统较为简单,供水温度易保持恒定;而对于并联系统,供水温度控制较难,特别是在释冷融冰后期,蓄冷设备的出口温度在逐渐升高,与制冷机组出口温度相比很难保持恒定不变。

为了使每天蓄冷设备冷量充分释放,保持较为恒定的供水温度,满足设计日空调负荷要求,通常利用计算机作为蓄冷系统的监控设备;并利用系统中设置的流量计、温度计反馈的信号,逐时监视蓄冷设备的内部状况;通过计算机对空调系统负荷的预测,以此制定蓄冷系统的运行策略是制冷机组优先式还是蓄冷设备优先式。

4、运行分析冰蓄冷空调系统进行直供和蓄冷运行的对比测试,结果如下:4.1每日峰、平、谷电时段及电价峰电:8∶00~11∶00和18∶00~23∶00,电价为0.878元/kWh;平电:7∶00~8∶00和11∶00~18∶00,电价为0.540元/kWh;谷电:23∶00~次日7∶00,电价为0.224元/kWh。

4.2效益分析空调面积约5700m2,蓄冷系统选用2台螺杆式双工况制冷机组,单机空调工况制冷量70RT(246kW),制冰工况制冷量47RT(165kW)。

蓄冷系统由一个60m3蓄冰罐,内装STL-CO型冰球,3台溶液泵,冷却水系统,自控系统组成。

蓄冷冷媒为乙二醇(25%)——水溶液。

测试结果如下:(1)蓄冷时间、蓄冷量:蓄冷时间7小时(晚11∶00~次日晨6∶00)皆为谷电时间。

蓄冷量:1702.66kWh。

(2)第一周期,即蓄冷——释冷运行方式。

总耗电量1234.81kWh,电费合计420.33元,供出冷量1676.94kWh。

(3)第二周期,即直接供冷运行方式。

总耗电量1159.78kWh,电费合计792.63元,供出冷量水1342.78kWh。

(4)第一周期方式与第二周期方式比较:耗电量增加75.03kWh,但电费节省372.3元/天。

5、推广建议目前,随着商业企业竞争的加剧,购物环境与企业效益有着密切关系。

大、中型商场用中央空调来调节商场一年四季的温、湿度和补充新鲜空气,提高购物环境。

中央空调系统投资费用约占整个投资的10%左右,而平时的运转费用占总能源费用的40%~60%。

商场中央空调用来调节商场一年四季的温、湿度和补充新鲜空气,提高购物环境的舒适性其特点如下:1、商场内人员密度高(一般每天客流量峰值经常出现在上午10~11时,下午13~16时,顾客也较集中),尤其在节假日,新风处理量大,因而商场空调夏季制冷负荷大,冬季供暖负荷较小。

2、商场内客流量的不稳定性和随机性使得商场空调负荷不稳定,要求空调系统变工况性能好,调节灵敏。

3、商场每天营业,四季气候变化大,要求商场空调运转工况与之相适应,既要满足个别恶劣天气的高峰负荷,又要在大部分时间低负荷工况下有良好的经济性能。

冰蓄冷空调系统的适用场所:商场、宾馆、饭店、办公楼等冷负荷高峰和用电高峰基本相同,持续时间长的场所。

冰蓄冷空调有良好的节能环保效益,其技术运用了几十年,已经相当成熟、可靠。

东莞市电价价目表发布时间:2012-07-31说明:1、电价标准根据粤价[2011]275号文、粤价[2012]135号文执行执行。

2、峰谷时段设置为:(1)工业峰谷时段高峰:9:00-12:00;19:00-22:00;低谷:0:00-8:00;平段:8:00-9:00;12:00-19:00;22:00-24:00(2)居民峰谷时段高峰:14:00-17:00;19:00-22:00;低谷:0:00-8:00;平段:8:00-14:00;17:00-19:00;22:00-24:003、城市建设附加费、重大水利工程建设基金、水库移民后期扶持资金由供电企业代收。

4、根据水电财字【83】215号文,100kVA及以上客户执行功率因数调整电费。

5、根据粤价[2009]44号和广东电网公司有关文件,燃气燃油加工费从2009年2月1日抄见电量起,收取标准调整为2.2分/千瓦时。

6、根据粤价[2008]389号、粤价函[2009]114号,污水处理企业从2009年1月1日抄见电量起执行专变大工业电价,不执行峰谷电价,免征燃气燃油加工费。

7、根据广东省物价局《关于我省居民生活用电试行阶梯电价有关问题的通知》(粤价〔2012〕135号),广东省居民阶梯电价从2012年7月1日开始实施,每户每月电量分档划分为夏季标准和非夏季标准,其中:(1)夏季标准(5月-10月):第一档电量为每户每月0-260度的用电量,其电价不作调整;第二档电量为每户每月261-600度的用电量,其电价每度加价0.05元;第三档电量为每户每月601度及以上的用电量,其电价每度加价0.30元。

(2)非夏季标准(1-4月、11-12月):第一档电量为每户每月0-200度的用电量,其电价不作调整;第二档电量为每户每月201-400度的用电量,其电价每度加价0.05元;第三档电量为每户每月401度及以上的用电量,其电价每度加价0.30元。

https:///article.do?op=show&id=000000133国务院关于进一步加大工作力度确保实现“十一五”节能减排目标的通知国发〔2010〕12号各省、自治区、直辖市人民政府,国务院各部委、各直属机构:2006年以来,各地区、各部门认真贯彻落实科学发展观,把节能减排作为调整经济结构、转变发展方式的重要抓手,加大资金投入,强化责任考核,完善政策机制,加强综合协调,节能减排工作取得重要进展。

相关文档
最新文档