高中数学第一章集合与函数概念1.2函数及其表示1.2.1函数的概念学案2(无答案)新人教版必修1
高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.1 函数的概念讲义教案 新人教A版
学习资料1。
2 函数及其表示1.2。
1函数的概念学习目标核心素养1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点) 2。
了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)3.能够正确使用区间表示数集.(易混点)1.通过学习函数的概念,提升数学抽象素养.2.借助函数定义域的求解,提升数学运算素养.3.借助f(x)与f(a)的关系,培养逻辑推理素养。
1.函数的概念定义设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域自变量x的取值范围值域与x的值相对应的y的值的集合{f(x)|x∈A}(2)f(x)与f(a)有何区别与联系?提示:(1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y =f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f (x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a,b∈R,且a<b,规定如下:定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a〈x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a〈x≤b}半开半闭区间(a,b](2)特殊区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞) [a,+∞)(a,+∞)(-∞,a](-∞,a)思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞"读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.1.函数y=错误!的定义域是()A.[-1,+∞)B.[-1,0)C.(-1,+∞) D.(-1,0)C[由x+1>0得x〉-1.所以函数的定义域为(-1,+∞).]2.若f(x)=11-x2,则f(3)=________。
高中数学 第一章 集合与函数的概念 1.2 函数及其表示 1.2.1 第一课时 函数的概念 新人教A
所以这个函数的定义域为{x|1≤x≤3}.………………9 分
(4)y= x 12 - 1 x .
x 1
规范解答:(4)要 使函数有意义,
自变量
x
的取值必须 满足
x 1 1 x
0, 0,
………………10
分
解得 x≤1 且 x≠-1,……………………………… 11 分
即函数定义域为{x|x≤1 且 x≠-1}.………………12 分
③M={三角形},N={x|x>0},对应关系f:“对M中的三角形求面积与N中元素对
应.”
是集合M到集合N上的函数的有( A )
(A)1个
(B)2个
(C)3个
(D)0个
2.(函数判断)下列表示的是y关于x的函数的是( A) (A)y=x2 (B)y2=x
(C)|y|=x (D)|y|=|x|
3.(定义域)函数y=
方法技巧 判断某一对应关系是否为函数的步骤: (1)A,B为非空数集. (2)A中任一元素在B中有元素与之对应. (3)B中与A中元素对应的元素唯一. (4)满足上述三条,则对应关系是函数关系.
即时训练1-1:已知集合M={-1,1,2,4},N={1,2,4},给出下列四个对应关系:
①y=x2,②y=x+1,③y=x-1,④y=|x|,其中能构成从M到N的函数是( )
1.2 函数及其表示 1.2.1 函数的概念 第一课时 函数的概念
课标要求:1.通过实例理解函数的概念,能用集合语言描述具体的函数.2.体 会对应关系在刻画函数概念中的作用.3.会求一些简单函数的定义域.
自主学习——新知建构·自我整合
【情境导学】 导入一 初中是用运动变化的观点对函数进行定义的,虽然这种定义较为直 观,但并未完全揭示出函数概念的本质.对于y=1(x∈R)是不是函数,如果用运 动变化的观点去看它,就不好解释,显得牵强.但如果用集合与对应的观点来 解释,就十分自然.因此,用集合与对应的思想来理解函数,对函数概念的再认 识,就很有必要.
函数的概念和函数的表示法教案-人教版数学高一上必修1第一章1.2.1-1.2.2
第一章集合与函数概念1.2 函数及其表示1.2.1 函数的概念和函数的表示法1 教学目标1.1 知识与技能:[1]理解函数的概念,了解构成函数的三要素.[2]会判断给出的两个函数是否是同一函数.[3]能正确使用区间表示数集.[4]函数的三种表示方法,并会求简单函数的定义域和值域.[5]通过实例体会分段函数的概念.[6]了解映射的概念及表示方法,并会判断一个对应关系是否是映射.1.2过程与方法:[1]通过具体实例,体会函数的概念和函数三要素,会求简单函数的定义域和值域。
[2]通过观察、画图等具体动手,体会分段函数的概念。
[3]通过具体习题,了解映射的概念,并会判断一个对应关系是否是映射.1.3 情感态度与价值观:[1]通过学习函数的概念及其表示法以及相关练习,培养学生逻辑思维。
[2]通过细致作图,培养学生的动手能力和识图能力。
2 教学重点/难点/易考点2.1 教学重点[1]函数的三种表示方法。
[2]分段函数的概念。
2.2 教学难点[1]根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象.[2]会求函数的定义域和值域。
3 专家建议此节为高中数学函数的第一节内容,一定要让学生充分理解函数的概念,结合具体习题提升学生的逻辑思维和数学素养。
4 教学方法实例探究——归纳总结,提炼概念——补充讲解——练习提高5 教学用具多媒体,教学用直尺、三角板。
6 教学过程6.1 引入新课【师】同学们好。
初中的时候我们就接触过函数,并掌握了一次函数,二次函数和反比例函数。
这节课我们来继续进一步学习和函数有关的内容。
【板书】第一章集合与函数概念 1.2 函数及其表示6.2 新知介绍[1]函数的概念【师】下面请同学们看三个实例,看有什么不同点和相同点。
【板演/PPT】PPT演示三个实例。
【师】那我们现在可以发现不同点是三个实例分别用解析式,图像和表格刻画变量之间的对应关系。
相同点是都有两个非空数集,并且两个数集之间都有一种确定的对应关系。
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法课件1新人教A必修1
新知导学
函数的表示法
表示法
定义
解析法
用数__学__表__达__式__表示两个变量之间的对应关系,这种表示 方法叫做解析法,这个数学表达式叫做函数的解析式
以自变量x的取值为横坐标,对应的函数值y为纵坐标,
图象法
在平面直角坐标系中描出各个点,这些点构成了函数y =f(x)的图象,这种用_图__象___表示两个变量之间对应关
解析式可求任一自变量
式
对应的函数值
能形象直观地表示变量 只能近似地求出自变量
图象法
的变化情况
所对应的函数值
不需计算可以直接看出 只能表示有限个数的自 列表法
与自变量对应的函数值 变量所对应的函数值
[知识拓展] 画函数f(x)图象的基本方法
(1)若函数f(x)是正比例函数、反比例函数、一次函数、 二次函数等基本初等函数,则依据各种函数的图象特 点,由关键点(与坐标轴交点,最高最低点),直接画 出f(x)的图象.
②能确定y是x的函数.因为当x在{x|x<-1或x>1}中 任取一个值时,由上图②可确定唯一的y值与它对 应.
③能确定y是x的函数.因为当x在{-3,-2,-1, 0,1,2,3,4}中任取一个值时,由图③可确定y有唯一的值 与它对应.
系的方法叫做图象法
列一个两行多列的表格,第一行是自变量的取值,第二 列表法 行是对应的函数值,这种列出_表__格___来表示两个变量之
间对应关系的方法叫做列表法
[知识点拨] 三种表示法的优缺点如下表:
表示法
优点
缺点
简明、全面地概括了变
不够形象直观,而且并
量之间的关系,且利用
解析法
不是所有函数都有解析
2.已知函数 y=f(x)的图象如图,则 f(x)的定义域是( ) A.R B.(-∞,1)∪(1,+∞) C.(-∞,0)∪(0,+∞) D.(-1,0)
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法教学设计新人教A版必修1
1.2.2 函数的表示法整体设计教学分析课本从引进函数概念开始就比较注重函数的不同表示方法:解析法,图象法,列表法.函数的不同表示方法能丰富对函数的认识,帮助理解抽象的函数概念.特别是在信息技术环境下,可以使函数在形与数两方面的结合得到更充分的表现,使学生通过函数的学习更好地体会数形结合这种重要的数学思想方法.因此,在研究函数时,要充分发挥图象的直观作用.在研究图象时,又要注意代数刻画以求思考和表述的精确性.课本将映射作为函数的一种推广,这与传统的处理方式有了逻辑顺序上的变化.这样处理,主要是想较好地衔接初中的学习,让学生将更多的精力集中理解函数的概念,同时,也体现了从特殊到一般的思维过程.三维目标1.了解函数的一些基本表示法(列表法、图象法、解析法),会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.2.通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力,增加学习数学的兴趣.3.会用描点法画一些简单函数的图象,培养学生应用函数的图象解决问题的能力.4.了解映射的概念及表示方法,会利用映射的概念来判断“对应关系”是否是映射,感受对应关系在刻画函数和映射概念中的作用,提高对数学高度抽象性和广泛应用性的进一步认识.重点难点教学重点:函数的三种表示方法,分段函数和映射的概念.教学难点:分段函数的表示及其图象,映射概念的理解.课时安排3课时教学过程第1课时导入新课思路1.语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday!法文是Bon Anniversaire!德文是Alles Gute Zum Geburtstag!印度尼西亚文是Selamat Ulang Tahun!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.思路2.我们前面已经学习了函数的定义,函数的定义域的求法,函数值的求法,两个函数是否相同的判定方法,那么函数的表示方法常用的有哪些呢?这节课我们就来研究这个问题(板书课题).推进新课新知探究提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?讨论结果:(1)解析法:用数学表达式表示两个变量之间的函数关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式.(2)图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间函数关系的方法叫做图象法.(3)列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格来表示两个变量之间的函数关系的方法叫做列表法.应用示例例1 某种笔记本的单价是5元,买x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表示法表示函数y=f(x).活动:学生思考函数的表示法的规定.注意本例的设问,此处“y=f(x)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.本题的定义域是有限集,且仅有5个元素.解:这个函数的定义域是数集{1,2,3,4,5},用解析法可将函数y=f(x)表示为y=5x,x∈{1,2,3,4,5}.用列表法可将函数y=f(x)表示为图1点评:本题主要考查函数的三种表示法.解析法的特点是:简明、全面地概括了变量间的关系,可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;图象法的特点是:直观、形象地表示自变量变化时相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图、股市走势图等;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等.并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.例如:张丹的年龄n(n∈N*)每取一个值,那么他的身高y(单位:cm)总有唯一确定的值与之对应,因此身高y是年龄n的函数y=f(n),但是这个函数的解析式不存在,函数y=f(n)不能用解析法来表示.注意:①函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;②解析法:必须注明函数的定义域,否则使函数解析式有意义的自变量的取值范围是函数的定义域;③图象法:根据实际情境来决定是否连线;④列表法:选取的自变量要有代表性,应能反映定义域的特征.图2+c<0b=ax2+bx+c的性质,易知表:活动:学生思考做学情分析,具体要分析什么?怎么分析?借助什么工具?本题利用表格给出了四个函数,它们分别表示王伟、张城、赵磊的考试成绩及各次考试的班级平均分.由于表格区分三位同学的成绩高低不直观,故采用图象法来表示.做学情分析,具体要分析学习成绩是否稳定,成绩变化趋势.解:把“成绩”y看成“测试序号”x的函数,用图象法表示函数y=f(x),如图3所示.图3由图3可看到:王伟同学的数学成绩始终高于班级平均分,学习情况比较稳定而且成绩优秀;张城同学的数学成绩不稳定,总是在班级平均分水平上下波动,而且波动幅度较大;赵磊同学的数学学习成绩呈上升趋势,表明他的数学成绩稳步提高.点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样便于研究成绩的变化特点.图4的水瓶中注水,注满为止,如果注水量V与水深h 所示,那么水瓶的形状是( )图5图6要求由水瓶的形状识别容积V 和高度h 的函数关系,突出了对思维能力的考查.观察图象,根据图象的特点发现:取水深h =H 2,注水量V ′>V 02,知能训练课本本节练习2,3. 【补充练习】1.等腰三角形的周长是20,底边长y 是一腰长x 的函数,则( )A.y=10-x(0<x≤10)B.y=10-x(0<x<10)C.y=20-2x(5≤x≤10)D.y=20-2x(5<x<10)解析:根据等腰三角形的周长列出函数解析式.∵2x+y=20,∴y=20-2x.则20-2x>0.∴x<10.由构成三角形的条件(两边之和大于第三边)可知2x>20-2x,得x>5,∴函数的定义域为{x|5<x<10}.∴y=20-2x(5<x<10).答案:D2.定义在R上的函数y=f(x)的值域为[a,b],则y=f(x+1)的值域为( )A.[a,b] B.[a+1,b+1]C.[a-1,b-1] D.无法确定解析:将函数y=f(x)的图象向左平移一个单位得函数y=f(x+1)的图象,由于定义域均是R,则这两个函数图象上点的纵坐标的取值范围相同,所以y=f(x+1)的值域也是[a,b].答案:A3.函数f(x)=11+x2(x∈R)的值域是( )A.(0,1) B.(0,1] C.[0,1) D.[0,1]解析:(观察法)定义域是R,由于x2≥0,则1+x2≥1,从而0<11+x2≤1.答案:B拓展提升问题:变换法画函数的图象都有哪些?解答:变换法画函数的图象有三类:1.平移变换:(1)将函数y=f(x)的图象向左平移a(a>0)个单位得函数y=f(x+a)的图象;(2)将函数y=f(x)的图象向右平移a(a>0)个单位得函数y=f(x-a)的图象;(3)将函数y=f(x)的图象向上平移b(b>0)个单位得函数y=f(x)+b的图象;(4)将函数y=f(x)的图象向下平移b(b>0)个单位得函数y=f(x)-b的图象.简记为“左加(+)右减(-),上加(+)下减(-)”.2.对称变换:(1)函数y=f(x)与函数y=f(-x)的图象关于直线x=0即y轴对称;(2)函数y =f (x )与函数y =-f (x )的图象关于直线y =0即x 轴对称;(3)函数y =f (x )与函数y =-f (-x )的图象关于原点对称. 3.翻折变换:(1)函数y =|f (x )|的图象可以将函数y =f (x )的图象位于x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留y =f (x )的x 轴上方部分即可得到.(2)函数y =f (|x |)的图象可以将函数y =f (x )的图象位于y 轴右边部分翻折到y 轴左边替代原y 轴左边部分并保留y =f (x )在y 轴右边部分图象即可得到.函数的图象是对函数关系的一种直观、形象的表示,可以直观地显示出函数的变化状况及其特性,它是研究函数性质时的重要参考,也是运用数形结合思想研究和运用函数性质的基础.另一方面,函数的一些特性又能指导作图,函数与图象是同一事物的两个方面,是函数的不同表现形式.函数的图象可以比喻成人的相片,观察函数的图象可以解决研究其性质,当然,也可以由函数的性质确定函数图象的特点.借助函数的图象来解决函数问题,函数的图象问题是高考的热点之一,应引起重视.课堂小结本节课学习了:函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数.作业课本习题1.2A 组 7,8,9.设计感想本节教学设计容量较大,尽量借助于信息技术来完成.本节的设计重点是函数的三种表示方法,提出了表示法的应用,特别是用图象法求函数的值域,并对求函数值域的方法进行了总结以满足高考的要求.第2课时 作者:刘菲导入新课思路1.当x >1时,f (x )=x +1;当x ≤1时,f (x )=-x ,请写出函数f (x )的解析式.这个函数的解析式有什么特点?教师指出本节课题.思路2.化简函数y =|x |的解析式,说说此函数解析式的特点,教师指出本节课题. 推进新课新知探究 提出问题①函数h (x )=⎩⎪⎨⎪⎧ x ,-x +1,x <-1,x ≥-1与f (x )=x -1,g (x )=x 2在解析式上有什么区别?②请举出几个分段函数的例子.活动:学生讨论交流函数解析式的区别.所谓“分段函数”,习惯上指在定义域的不同部分,有不同对应法则的函数.讨论结果:①函数h (x )是分段函数,在定义域的不同部分,其解析式不同.说明:分段函数是一个函数,不要把它误认为是几个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集;生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.②例如:y =⎩⎪⎨⎪⎧ 0,1,x >0,x <0等.应用示例例1 画出函数y =|x |的图象.活动:学生思考函数图象的画法:①化简函数的解析式为基本初等函数;②利用变换法画出图象,根据绝对值的概念来化简解析式.解法一:由绝对值的概念,我们有y =⎩⎪⎨⎪⎧ x ,-x ,x ≥0,x <0.所以,函数y =|x |的图象如图7所示.图7解法二:画函数y =x 的图象,将其位于x 轴下方的部分对称到x 轴上方,与函数y =x 的图象位于x 轴上方的部分合起来得函数y =|x |的图象如图7所示.点评:函数y =f (x )的图象位于x 轴上方的部分和y =|f (x )|的图象相同,函数y =f (x )的图象位于x 轴下方的部分对称到x 轴上方就是函数y =|f (x )|图象的一部分.利用函数y =f (x )的图象和函数y =|f (x )|的图象的这种关系,由函数y =f (x )的图象画出函数y =|f (x )|的图象.图821),0,x ≤>的图象.①画整个二次函数y =(x +1)2的图象,再取其在区间图9(1)乘坐汽车5千米以内(含5千米),票价2元;(2)5千米以上,每增加5千米,票价增加1元(不足5千米按5千米计算),如果某条线路的总里程为20千米,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.活动:学生讨论交流题目的条件,弄清题意.本例是一个实际问题,有具体的实际意义,由于里程在不同的范围内,票价有不同的计算方法,故此函数是分段函数.图10解:设里程为x千米时,票价为y元,根据题意得x∈(0,20].由“招手即停”公共汽车票价制定的规定,可得到以下函数解析式:y =⎩⎪⎨⎪⎧ 2,3,4,5, 0<x ≤5,5<x ≤10,10<x ≤15,15<x ≤20.根据这个函数解析式,可画出函数图象,如图10所示.点评:本题主要考查分段函数的实际应用,以及应用函数解决问题的能力.生活中有很多可以用分段函数描述的实际问题,如出租车的计费、个人所得税纳税额等等.在列出其解析式时,要充分考虑实际问题的规定,根据规定来求得解析式.注意:①本例具有实际背景,所以解题时应考虑其实际意义;②分段函数的解析式不能写成几个不同的方程,而应写成函数值不同的几种表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.1.函数f (x )=|x -1|的图象是( )图11解析:方法一:函数的解析式化为y =⎩⎪⎨⎪⎧ x -1,1-x , x ≥1,x <1.画出此分段函数的图象,故选B.方法二:将函数f (x )=x -1位于x 轴下方部分沿x 轴翻折到x 轴上方,与f (x )=x -1位于x 轴上方部分合起来,即可得到函数f (x )=|x -1|的图象,故选B.方法三:由f (-1)=2,知图象过点(-1,2),排除A ,C ,D ,故选B.答案:B2.已知函数f (x )=⎩⎪⎨⎪⎧ x 2, x >0,1, x =0,-1x ,x <0.(1)画出函数的图象; (2)求f (1),f (-1),f [f (-1)]的值.解:分别作出f (x )在x >0,x =0,x <0上的图象,合在一起得函数的图象.(1)如图12所示,画法略.图12(2)f (1)=12=1,f (-1)=-1-1=1,f [f (-1)]=f (1)=1. 3.某人驱车以52千米/时的速度从A 地驶往260千米远处的B 地,到达B 地并停留1.5小时后,再以65千米/时的速度返回A 地.试将此人驱车走过的路程s (千米)表示为时间t 的函数.分析:本题中的函数是分段函数,要由时间t 属于哪个时间段,得到相应的解析式.解:从A 地到B 地,路上的时间为26052=5(小时);从B 地回到A 地,路上的时间为26065=4(小时).所以走过的路程s (千米)与时间t 的函数关系式为s =⎩⎪⎨⎪⎧ 52t ,260,260+65(t -6.5), 0≤t <5,5≤t ≤6.5,6.5<t ≤10.5.拓展提升问题:已知函数f (x )满足f (1)=1,f (n +1)=f (n )+2,n ∈N *.(1)求:f (2),f (3),f (4),f (5);(2)猜想f (n ),n ∈N *.探究:(1)由题意得f (1)=1,则有 f (2)=f (1)+2=1+2=3,f (3)=f (2)+2=3+2=5,f(4)=f(3)+2=5+2=7,f(5)=f(4)+2=7+2=9.(2)由(1)得f(1)=1=2×1-1,f(2)=3=2×2-1,f(3)=5=2×3-1,f(4)=7=2×4-1,f(5)=9=2×5-1.因此猜想f(n)=2n-1,n∈N*.课堂小结本节课学习了:画分段函数的图象;求分段函数的解析式以及分段函数的实际应用.作业课本习题1.2B组3,4.设计感想本节教学设计容量较大,特别是例题涉及图象,建议使用信息技术来完成.本节重点为分段函数,这是课标明确要求也是高考的重点,通过分段函数问题能够区分学生的思维层次,因此教学中应予以重视.第3课时作者:林大华导入新课思路1.复习初中常见的对应关系1.对于任何一个实数a,数轴上都有唯一的点P和它对应.2.对于坐标平面内任何一个点A,都有唯一的有序实数对(x,y)和它对应.3.对于任意一个三角形,都有唯一确定的面积和它对应.4.某影院的某场电影的每一张电影票有唯一确定的座位与它对应.5.函数的概念.我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种对应就叫映射(板书课题).思路2.前面学习了函数的概念是:一般地,设A,B是两个非空数集,如果按照某种对应法则f,对于集合A中的每个元素x,在集合B中都有唯一的元素y和它对应.(1)对于任意一个实数,在数轴上都有唯一的点与之对应.(2)班级里的每一位同学在教室里都有唯一的座位与之对应.(3)对于任意的三角形,都有唯一确定的面积与之对应.那么这些对应又有什么特点呢?这种对应称为映射,引出课题.推进新课新知探究提出问题①给出以下对应关系:图13这三个对应关系有什么共同特点?②像问题①中的对应我们称为映射,请给出映射的定义?③“都有唯一”是什么意思?④函数与映射有什么关系?讨论结果:①集合A,B均为非空集合,并且集合A中的元素在集合B中都有唯一的元素与之对应.②一般地,设A,B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A 中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B 为从集合A到集合B的一个映射,记作“f:A→B”.如果集合A中的元素x对应集合B中的元素y,那么集合A中的元素x叫集合B中元素y的原象,集合B中元素y叫集合A中的元素x的象.③包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思,即是一对一或多对一.④函数是特殊的映射,映射是函数的推广.应用示例例题下列哪些对应是从集合A到集合B的映射?(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;(2)集合A={P|P是平面直角坐标系中的点},集合B={(x,y)|x∈R,y∈R},对应关系f:平面直角坐标系中的点与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.活动:学生思考映射的定义.判断一个对应是否是映射,要紧扣映射的定义.(1)中数轴上的点对应着唯一的实数;(2)中平面直角坐标系中的点对应着唯一的有序实数对;(3)中每一个三角形都有唯一的内切圆;(4)中新华中学的每个班级对应其班内的多个学生.解:(1)是映射;(2)是映射;(3)是映射;(4)不是映射.新华中学的每个班级对应其班内的多个学生,是一对多,不符合映射的定义.图14答案:(1)不是;(2)是;(3)是.在图15中的映射中,A中元素60°对应的元素是什么?在A中的什么元素与中元素22对应?图1560°对应的元素是32,在A 中的元素1.下列对应是从集合S 到T 的映射的是( )A .S =N ,T ={-1,1},对应法则是(-1)n,n ∈SB .S ={0,1,4,9},T ={-3,-2,-1,0,1,2,3},对应法则是开平方C .S ={0,1,2,5},T ={1,12,15},对应法则是取倒数 D .S ={x |x ∈R },T ={y |y ∈R },对应法则是x →y =1+x 1-x解析:判断映射的方法简单地说应考虑A 中的元素是否都可以受对应法则f 的作用,作用的结果是否一定在B 中,作用的结果是否唯一这三个方面.很明显A 符合定义;B 是一对多的对应;C 中集合S 中的元素0没有象;D 中集合S 中的元素1也无象.答案:A2.已知集合M ={x |0≤x ≤6},P ={y |0≤y ≤3},则下列对应关系中不能看作从M 到P 的映射的是( )A .f :x →y =12x B .f :x →y =13x C .f :x →y =xD .f :x →y =16x 解析:选项C 中,集合M 中部分元素没有象,其他均是映射.答案:C3.已知集合A =N *,B ={a |a =2n -1,n ∈Z },映射f :A →B ,使A 中任一元素a 与B 中元素2a -1对应,则与B 中元素17对应的A 中元素是( )A.3 B.5 C.17 D.9解析:利用对应法则转化为解方程.由题意得2a-1=17,解得a=9.答案:D4.若映射f:A→B的象的集合是Y,原象的集合是X,则X与A的关系是________;Y 与B的关系是________.解析:根据映射的定义,可知集合A中的元素必有象且唯一;集合B中的元素在集合A 中不一定有原象.故象的集合是B的子集.所以X=A,Y⊆B.答案:X=A Y⊆B5.已知集合M={a,b,c,d},P={x,y,z},则从M到P能建立不同映射的个数是________.解析:集合M中有4个元素,集合P中有3个元素,则从M到P能建立34=81个不同的映射.答案:816.下列对应哪个是集合M到集合N的映射?哪个不是映射?为什么?(1)设M={矩形},N={实数},对应法则f为矩形到它的面积的对应.(2)设M={实数},N={正实数},对应法则f为x→1|x|.(3)设M={x|0≤x≤100},N={x|0≤x≤100},对应法则f为开方再乘10.解:(1)是M到N的映射,因为它是多对一的对应.(2)不是映射,因为当x=0时,集合N中没有元素与之对应.(3)是映射,因为它是一对一的对应.7.设集合A和B都是自然数集,映射f:A→B把A中的元素n映射到B中的元素2n+n,则在映射f下,A中的元素________对应B中的元素3.( )A.1 B.3 C.9 D.11解析:对应法则为f:n→2n+n,根据选项验证2n+n=3,可得n=1.答案:A8.已知集合A={1,2,3,k},B={4,7,a4,a2+3a},且a∈N,k∈N,x∈A,y∈B,映射f:A→B,使B中元素y=3x+1和A中元素x对应,求a及k的值.分析:先从集合A和对应法则f入手,同时考虑集合中元素的互异性,可以分析出此映射必为一一映射,再由3→10,求得a值,进而求得k值.解:∵B中元素y=3x+1和A中元素x对应,∴A中元素1的象是4;2的象是7;3的象是10,即a4=10或a2+3a=10.∵a∈N,∴由a2+3a=10,得a=2.∵k 的象是a 4,∴3k +1=16,得k =5.∴a =2,k =5.9.已知集合A ={(x ,y )|x +y <3,x ∈N ,y ∈N },B ={0,1,2},f :(x ,y )→x +y ,则这个对应是否为映射?是否为函数?请说明理由.解:是映射,不是函数.由题意得A ={(0,0),(0,1),(0,2),(1,0),(1,1),(2,0)},显然对于A 中的每一个有序实数对,它们的和是0或1或2,则在B 中都有唯一一个数与它对应,所以是映射,因为集合A 不是数集而是点集,所以不是函数.拓展提升问题:集合M 中有m 个元素,集合N 中有n 个元素,则从M 到N 能建立多少个不同的映射?探究:当m =1,n =1时,从M 到N 能建立1=11个不同的映射;当m =2,n =1时,从M 到N 能建立1=12个不同的映射;当m =3,n =1时,从M 到N 能建立1=13个不同的映射;当m =2,n =2时,从M 到N 能建立4=22个不同的映射;当m =2,n =3时,从M 到N 能建立9=32个不同的映射.集合M 中有m 个元素,集合N 中有n 个元素,则从M 到N 能建立n m 个不同的映射. 课堂小结本节课学习了:(1)映射的对应是一种特殊的对应,元素之间的对应必须满足“一对一或多对一”.(2)映射由三个部分组成:集合A ,集合B 及对应法则f ,称为映射的三要素.(3)映射中集合A ,B 中的元素可以为任意的.作业课本本节练习4.补充作业:已知下列集合A 到B 的对应,请判断哪些是A 到B 的映射,并说明理由.(1)A =N ,B =Z ,对应法则f 为“取相反数”;(2)A ={-1,0,2},B =⎩⎨⎧⎭⎬⎫-1,0,12,对应法则:“取倒数”; (3)A ={1,2,3,4,5},B =R ,对应法则:“求平方根”;(4)A ={0,1,2,4},B ={0,1,4,9,64},对应法则f :a →b =(a -1)2;(5)A =N *,B ={0,1},对应法则:除以2所得的余数.答案:(2)不是映射,(1)(3)(4)(5)是映射.设计感想本节教学设计的内容拓展较深,在实际教学中根据学生实际选取例题和练习.本节重点为映射的概念,对于映射来说,只需要掌握概念即可,不要求拓展其内容,以免加重学生的负担,也偏离了课标要求和高考的方向.备课资料【备选例题】【例1】区间[0,m]在映射f:x→2x+m下所得的象集区间为[a,b],若区间[a,b]的长度比区间[0,m]的长度大5,则m等于( )A.5 B.10 C.2.5 D.1解析:函数f(x)=2x+m在区间[0,m]上的值域是[m,3m],则有[m,3m]=[a,b],则a=m,b=3m,又区间[a,b]的长度比区间[0,m]的长度大5,则有b-a=(m-0)+5,即b-a=m+5,所以3m-m=m+5,解得m=5.答案:A【例2】设x∈R,对于函数f(x)满足条件f(x2+1)=x4+5x2-3,那么对所有的x∈R,f(x2-1)=________.解析:(换元法)设x2+1=t,则x2=t-1,则f(t)=(t-1)2+5(t-1)-3=t2+3t-7,即f(x)=x2+3x-7.所以f(x2-1)=(x2-1)2+3(x2-1)-7=x4+x2-9.答案:x4+x2-9【知识总结】1.函数与映射的知识记忆口诀:函数新概念,记准要素三;定义域值域,关系式相连;函数表示法,记住也不难;图象和列表,解析最常见;对应变映射,只是变唯一;映射变函数,集合变数集.2.映射到底是什么?怎样理解映射的概念?剖析:对于映射这个概念,可以从以下几点来理解:(1)映射中的两个集合A和B可以是数集、点集或由图形组成的集合等;(2)映射是有方向的,A到B的映射与B到A的映射往往是不一样的;(3)映射要求对集合A中的每一个元素在集合B中都有元素与之对应,而这个与之对应的元素是唯一的,这样集合A中元素的任意性和在集合B中对应的元素的唯一性构成了映射的核心;(4)映射允许集合B中存在元素在A中没有元素与其对应;(5)映射允高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法教学设计新人教A版必修1许集合A中不同的元素在集合B中有相同的对应元素,即映射只能是“多对一”或“一对一”,不能是“一对多”;(6)映射是特殊的对应,函数是特殊的映射.3.函数与映射的关系函数是特殊的映射,对于映射f:A→B,当两个集合A,B均为非空数集时,则从A到B 的映射就是函数,所以函数一定是映射,而映射不一定是函数.21 / 21。
人教版高中数学目录超详细
必修1第一章集合与函数概念1.1 集合1.1.1集合的含义与表示1.1.2集合间的基本关系1.1.3集合的基本运算1.2 函数及其表示1.2.1函数的概念1.2.2函数的表示法1.3 函数的基本性质1.3.1单调性与最大小值1.3.2奇偶性第二章基本初等函数(Ⅰ)2.1 指数函数2.1.1指数与指数幂的运算2..1.2指数函数及其性质2.2 对数函数2.2.1对数与对数运算2.2.2对数函数及其性质2.3 幂函数第三章函数的应用3.1 函数与方程3.1.1方程的根与函数的零点3.1.2用二分法求方程的近似解3.2 函数模型及其应用3.2.1几类不同增长的函数模型3.2.2函数模型的应用实例必修2第一章空间几何体1.1 空间几何体的结构1.1.1柱、锥、台、球的结构特征1.1.2简单组合体的结构特征1.2 空间几何体的三视图和直观图1.2.1中心投影与平行投影1.2.2空间几何体的三视图1.2.3空间几何体的直观图1.3 空间几何体的表面积与体积1.3.1柱体、锥体、台体的表面积与体积1.3.2球的体积与表面积第二章点、直线、平面之间的位置关系2.1 空间点、直线、平面之间的位置关系2.1.1平面2.1.2空间中直线与直线之间的位置关系2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定2.2.3直线与平面平行的性质2.2.4平面与平面平行的性质2.3 直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定2.3.2平面与平面垂直的判定2.3.3直线与平面垂直的性质2.3.4平面与平面垂直的性质第三章直线与方程3.1 直线的倾斜角与斜率3.1.1倾斜角与斜率3.1.2两条直线平行与垂直的判定3.2 直线的方程3.2.1直线的点斜式方程3.2.2直线的两点式方程3.2.3直线的一般式方程3.3 直线的交点坐标与距离公式3.3.1两条直线的交点坐标3.3.2两点间的距离3.3.3点到直线的距离3.3.4两条平行直线间的距离第四章圆与方程4.1圆的方程4.1.1圆的标准方程4.1.2圆的一般方程4.2直线、圆的位置关系4.2.1直线与圆的位置关系4.2.2圆与圆的位置关系4.2.3直线与圆的方程的应用4.3空间直角坐标系4.3.1空间直角坐标系4.3.2空间两点间的距离公式必修3第一章算法初步1.1 算法与程序框图1.1.1算法的概念1.1.2程序框图与算法的基本逻辑结构1.2 基本算法语句1.2.1输入语句、输出语句和赋值语句1.2.2条件语句1.2.3循环语句1.3 算法案例(进位制等)阅读与思考割圆术第二章统计2.1 随机抽样2.1.1简单随机抽样2.1.2系统抽样2.1.3分层抽样阅读与思考一个著名的案例阅读与思考广告中数据的可靠性阅读与思考如何得到敏感性问题的诚实反应2.2 用样本估计总体2.2.1用样本的频率分布估计总体分布2.2.2.用样本的数字特征估计总体的数字特征阅读与思考生产过程中的质量控制图2.3 变量间的相关关系2.3.1变量之间的相关关系2.3.2两个变量的线性相关阅读与思考相关关系的强与弱第三章概率3.1 随机事件的概率3.1.1随机事件的概率3.1.2概率的意义3.1.3概率的基本性质阅读与思考天气变化的认识过程3.2 古典概型3.2.1古典概率3.2.2(整数值)随机数的产生3.3 几何概型3.3.1几何概型3.3.2均匀随机数的产生必修4第一章三角函数1.1 任意角和弧度制1.1.1任意角1.1.2弧度制1.2 任意角的三角函数1.2.1任意角的三角函数1.2.2同角三角函数的基本关系1.3 三角函数的诱导公式1.4 三角函数的图象与性质1.4.1正弦函数、余弦函数的图像1.4.2正弦函数、余弦函数的性质1.4.3正切函数的性质与图像1.5 函数y=Asin(ωx+ψ)1.6 三角函数模型的简单应用第二章平面向量2.1 平面向量的实际背景及基本概念2.1.1向量的物理背景与概念2.1.2向量的几何表示2.1.3相等向量与共线向量2.2 平面向量的线性运算2.2.1向量加法运算及其几何意义2.2.2向量减法运算及其几何意义2.2.3向量数乘运算及其几何意义2.3 平面向量的基本定理及坐标表示2.3.1平面向量基本定理2.3.2平面向量的正交分解及坐标表示2.3.3平面向量的坐标运算2.3.4平面向量共线的坐标表示2.4 平面向量的数量积2.4.1平面向量数量积的物理背景及其含义2.4.2平面向量数量积的坐标表示、模、夹角2.5 平面向量应用举例2.5.1平面几何的向量方法2.5.2向量在物理中的应用举例第三章三角恒等变换3.1 两角和与差的正弦、余弦和正切公式3.1.1两角差的余弦公式3.1.2两角和与差的正弦、余弦、正切公式3.1.3二倍角的正弦、余弦、正切公式3.2 简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.1.1正弦定理1.1.2余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)1.4全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定第二章圆锥曲线与方程2.1椭圆2.1.1椭圆及其标准方程2.1.2椭圆的简单几何性质2.2双曲线2.2.1双曲线及其标准方程2.2.2双曲线的简单几何性质2.3抛物线2.3.1抛物线及其标准方程2.3.2抛物线的简单几何性质第三章导数及其应用3.1变化率与导数3.1.1变化率问题3.1.2导数的概念3.1.3导数的几何意义3.2导数的计算3.2.1几个常用函数的导数3.2.2基本初等函数的导数公式及导数的运算法则3.3导数在研究函数中的应用3.3.1函数的单调性与导数3.3.2函数的极值与导数3.3.3函数的最大(小)值与导数3.4生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.1.1合情推理2.1.2演绎推理2.2 直接证明与间接证明2.2.1综合法和分析法2.2.2反证法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加减运算及其几何意义3.2.2复数代数形式的乘除运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1 命题及其关系1.1.1命题1.1.2四种命题1.1.3四种命题间的相互关系1.2 充分条件与必要条件1.2.1充分条件与必要条件1.2.2充要条件1.3 简单的逻辑联结词1.3.1且(and)1.3.2或(or)1.3.3非(not)1.4 全称量词与存在量词1.4.1全称量词1.4.2存在量词1.4.3含有一个量词的命题的否定第二章圆锥曲线与方程2.1 曲线与方程2.1.1曲线与方程2.1.2求曲线的方程2.2 椭圆2.2.1椭圆及其标准方程2.2.2椭圆的简单几何性质2.3 双曲线2.3.1双曲线及其标准方程2.3.2双曲线的简单几何性质2.4 抛物线2.4.1抛物线及其标准方程2.4.2抛物线的简单几何性质第三章空间向量与立体几何3.1 空间向量及其运算3.1.1空间向量及其加减运算3.1.2空间向量的数乘运算3.1.3空间向量的数量积运算3.1.4空间向量的正交分解及其坐标表示3.1.5空间向量运算的坐标表示3.2 立体几何中的向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.1.1变化率问题1.1.2导数的概念1.1.3导数的几何意义1.2 导数的计算1.2.1几个常用函数的导数1.2.2基本初等函数的导数公式及其导数的运算法则1.3 导数在研究函数中的应用1.3.1函数的单调性与导数1.3.2函数的极值与导数1.3.3函数的最大(小)值与导数1.4 生活中的优化问题举例1.5 定积分的概念1.5.1曲边梯形的面积1.5.2汽车行驶的路程1.5.3定积分的概念1.6 微积分基本定理1.7 定积分的简单应用1.7.1定积分在的几何中应用1.7.2定积分在物理中应用第二章推理与证明2.1 合情推理与演绎推理2.1.1合情推理2.1.2演绎推理2.2 直接证明与间接证明2.2.1综合法和分析法2.2.2反证法2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.1.1数系的扩充和复数的概念3.1.2复数的几何意义3.2复数代数形式的四则运算3.2.1复数代数形式的加、减运算及其几何意义3.2.2复数代数形式的乘除运算选修2-3第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.2.1排列1.2.2组合1.3 二项式定理1.3.1二项式定理1.3.2“杨辉三角”与二项式系数的性质第二章随机变量及其分布2.1 离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.2 二项分布及其应用2.2.1条件概率2.2.2事件的相互独立性2.2.3独立重复试验与二项分布2.3 离散型随机变量的均值与方差2.3.1离散型随机变量的均值2.3.2离散型随机变量的均差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考第九讲中国现代数学的开拓与发展选修3-2选修3-3第一讲从欧氏几何看球面1.平面与球面的位置关系2.直线与球面的位置关系和球幂定理3.球面的对称性第二讲球面上的距离和角1.球面上的距离2.球面上的角第三讲球面上的基本图形1.极与赤道2.球面二面角3.球面三面角第四讲球面三角形1.球面三角形三边之间的关系2.球面“等腰“三角形3.球面三角形的周长4.球面三角形的内角和第五讲球面三角形的全等第六讲球面多边形与欧拉公式1.球面多边形及其内角和公式2.简单多面体的欧拉公式3.用球面多边形的内角和公式证明欧拉公式第七讲球面三角形的边角关系1.球面上的正玄定理和余弦定理2.用向量方法证明球面上的余弦定理3.从球面上的正弦定理看球面与平面4.球面上余弦定理的应用——求地球上两城市间的距离第八讲欧氏几何与非欧几何1.平面几何与球面几何的比较2.欧式平行公里与非欧几何模型——庞加莱模型3.欧式几何与非欧几何的意义选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质1.平行线等分线段定理2.平行线分线段成比例定理3.相似三角形的判定及性质4.直角三角形的射影定理第二讲直线与圆的位置关系1.圆周角定理2.圆内接四边形的性质与判定定理3.圆的切线的性质与判定定理4.弦切角的性质5.与圆有关的比例线段第三讲圆锥曲线性质的探讨1.平行射影2.平面与圆柱面的截线3.平面与圆锥面的截线选修4-2第一讲线性变换与二阶矩阵1.线性变换与二阶矩阵2.二阶矩阵与平面向量的乘法3.线性变换的基本性质第二讲变换的复合与二阶矩阵的乘法1.复合变换与二阶矩阵的乘法2.矩阵乘法的性质第三讲逆变换与逆矩阵1.逆变换与逆矩阵2.二阶行列式与逆矩阵3.逆矩阵与二元一次方程组第四讲变换的不变量与矩阵的特征向量1.变换的不变量——矩阵的特征向量2.特征向量的应用选修4-3选修4-4第一讲坐标系1.平面直角坐标系2.极坐标系3.简单曲线的极坐标方程4.柱坐标系与球坐标系的简介第二讲参数方程1.曲线的参数方程2.圆锥曲线的参数方程3.直线的参数方程4.渐开线与摆线选修4-5第一讲不等式和绝对值不等式1.不等式2.绝对值不等式第二讲证明不等式的基本方法1.比较法2.综合法与分析法3.反证法与缩放法第三讲柯西不等式与排序不等式1.二维形式的柯西不等式2.一般形式的柯西不等式3.排序不等式第四讲数学归纳法证明不等式1.数学归纳法2.用数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应用选修4-7 第一讲优选法第二讲试验设计初步选修4-8选修4-9 第一讲风险与决策的基本概念人教版高中数学目录第二讲决策树方法第三讲风险型决策的敏感性分析第四讲马尔可夫型决策简介11。
高中数学第一章集合与函数概念1.2函数及其表示1.2.1第
2.区间与无穷的概念 (1)区间定义及表示. 设a,b是两个实数,而且a<b.
定义
名称
符号
{x|a≤x≤b} 闭区间
_[_a_,__b_]
{x|a<x<b} 开区间
_(a_,__b_)_
{x|a≤x<b} 半开半闭区间 _[a_,__b_)_
{x|a<x≤b} 半开半闭区间 _(a_,__b_]_
A.1 C.3
B.2 D.4
思路点拨:
集合A中任一元素在B中 的对应元素是否唯一 解析:(1)A中的元素0在B中没有对应元素,故不是A到B的 函数; (2)对于集合A中的任意一个整数x,按照对应关系f:x→y =x2,在集合B中都有唯一确定的整数x2与其对应,故是集合A 到集合B的函数;
(3)对于集合A中任意一个实数x,按照对应关系f:x→y= 0,在集合B中都有唯一确定的数0和它对应,故是集合A到集合 B的函数;
数轴表示
(2)无穷概念及无穷区间表示. 定义 R {x|x≥a} {x|x>a} {x|x≤a} {x|x<a} 符号 (-∞, _[a_,__+___∞_)_ _(a_,__+__∞__)_ _(-__∞__,__a_]_ _(_-__∞_,__a_)_
+∞)
用区间表示下列集合: (1){x|2<x≤4}用区间表示为________. (2){x|x>1且x≠2}用区间表示为________. 解析:(1){x|2<x≤4}用区间表示为(2,4].(2){x|x>1且 x≠2}用区间表示为(1,2)∪(2,+∞). 答案:(1)(2,4] (2)(1,2)∪(2,+∞)
第一章 集合与函数概念
1.2 函数及其表示 1.2.1 函数的概念 第1课时 函数的概念
高中数学各章节内容
【必修一】第一章集合与函数概念ﻫ1.1集合1.2 函数及其表示ﻫ1.3函数的基本性质ﻫ第二章基本初等函数(Ⅰ)ﻫ2.1指数函数2.2对数函数2.3 幂函数ﻫ第三章函数的应用ﻫ3.2函数模型及其应用ﻫ3.1函数与方程ﻫ【必修二】ﻫ第一章空间几何体ﻫ1.1空间几何体的结构ﻫ1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系ﻫ2.1空间点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质ﻫ第三章直线与方程2.3直线、平面垂直的判定及其性质ﻫ3.1 直线的倾斜角与斜率3.2 直线的方程3.3 直线的交点坐标与距离公式ﻫ第四章圆与方程ﻫ4.1 圆的方程4.2直线、圆的位置关系4.3空间直角坐标系ﻫﻫ【必修三】ﻫ第一章算法初步ﻫ1.1算法与程序框图ﻫ1.2 基本算法语句1.3算法案例第二章统计ﻫ2.1 随机抽样ﻫ2.2用样本估计总体ﻫ2.3 变量间的相关关系ﻫ第三章概率ﻫ3.1随机事件的概率ﻫ3.2古典概型3.3几何概型ﻫ【必修四】ﻫ第一章三角函数ﻫ1.4 1.1任意角和弧度制ﻫ1.2 任意角的三角函数ﻫ1.3三角函数的诱导公式ﻫ三角函数的图象和性质ﻫ1.5 函数的图象ﻫ第二章平面向量1.6三角函数模型的简单应用ﻫ2.1平面向量的实际背景及基本概念ﻫ2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.5平面向量应用举例ﻫ2.4平面向量的数量积ﻫ3.1两角和与差的正弦、余弦和正切公式ﻫ3.2简单的第三章三角恒等变换ﻫ三角恒等变换ﻫﻫ【必修五】第一章解三角形ﻫ1.1正弦定理和余弦定理1.2 应用举例ﻫ第二章数列2.2等差数列ﻫ2.3 等差数列的前n项和2.1数列的概念与简单表示法ﻫ2.5等比数列的前n项和ﻫﻫ第三章不等式2.4等比数列ﻫﻫ3.1不等关系与不等式ﻫ3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题ﻫ3.4基本不等式选修2-1ﻫﻫ第一章常用逻辑用语1-2充分条件与必要条件ﻫ1-1命题及其关系ﻫﻫﻫ1-3简单的逻辑联结词1-4全称量词与存在量词ﻫ小结复习参考题2-1曲线与方程ﻫ第二章圆锥曲线与方程ﻫﻫ2-2椭圆ﻫﻫ探究与发现为什么截口曲线是椭圆ﻫ信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线ﻫﻫ探究与发现2-4抛物线ﻫ探究与发现ﻫ阅读与思考圆锥曲线的光学性质及其应用ﻫ小结复习参考题ﻫ第三章空间向量与立体几何ﻫ3-1空间向量及其运算ﻫ阅读与思考向量概念的推广与应用3-2立体几何中的向量方法1-1小结ﻫﻫ复习参考题ﻫﻫ选修2-2 ﻫﻫ第一章导数及其应用ﻫﻫ变化率与导数ﻫ1-2导数的计算ﻫﻫ1-3导数在研究函数中的应用1-6微积分基本定理1-4生活中的优化问题举例ﻫﻫ1-5定积分的概念ﻫﻫ1-7定积分的简单应用小结复习参考题ﻫ第二章推理与证明ﻫ2-1合情推理与演绎推理ﻫ2-2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入ﻫ3-1数系的扩充和复数的概念ﻫ3-2复数代数形式的四则运算ﻫ小结ﻫ复习参考题选修2-3ﻫ第一章计数原理1-1分类加法计数原理与分步乘法计数原理ﻫ探究与发现子集的个数有多少ﻫ1-2排列与组合1-3二项式定理探究与发现组合数的两个性质ﻫﻫ探究与发现“杨辉三角”中的一些秘密小结ﻫ复习参考题ﻫ第二章随机变量及其分布2-1离散型随机变量及其分布列ﻫ2-2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2-3离散型随机变量的均值与方差ﻫ2-4正态分布ﻫ信息技术应用μ,σ对正态分布的影响ﻫﻫ小结复习参考题ﻫﻫ第三章统计案例ﻫ3-1回归分析的基本思想及其初步应用ﻫﻫ3-2独立性检验的基本思想及其初步应用ﻫ实习作业ﻫﻫ小结ﻫ复习参考题。
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件
A.0
B.π
C.π2 D.9
解析:f(f(-3))=f(0)=π.
答案:B
||
2.函数 f(x)=x+ 的图象是(
||
解析:f(x)=x+
答案:C
)
)
+ 1, > 0,
=
是分段函数.
-1, < 0
当堂检测
探究一
探究二
探究三
探究四
思想方法
当堂检测
3.已知A=R,B={x|x≥1},映射f:A→B,且A中元素x与B中元素y=x2+1
解:(1)函数 y=
探究一
探究二
探究三
探究四
思想方法
当堂检测
反思感悟 1.因为分段函数在定义域的不同区间内解析式不一样,
所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也
可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对
应点的实虚之分.
2.对含有绝对值的函数,要作出其图象,第一根据绝对值的意义去
通过图象得出实数根的个数.但要注意这种方法一般只求根的个数,
不需知道实数根的具体数值.
探究一
探究二
探究三
探究四
思想方法
当堂检测
变式训练 讨论关于x的方程|x2-4x+3|=a(a∈R)的实数解的个数.
解:作函数y=|x2-4x+3|及y=a的图象如图所示,
方程|x2-4x+3|=a的实数解就是两个函数图象的交点(纵坐标相等)
自己的身高;
③A={非负实数},B=R,f:x→y= 3 .
A.0个 B.1个 C.2个D.3个
高中数学 第一章 集合与函数概念 12 函数及其表示 121 函数的概念学案(含解析)新人教版必修1
§1.2函数及其表示1.2.1 函数的概念学习目标 1.理解函数的概念(重点、难点).2.了解构成函数的三要素(重点).3.正确使用函数、区间符号(易错点).知识点1 函数的概念(1)函数的概念概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域x的取值X围值域与x对应的y的值的集合{f(x)|x∈A}如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.【预习评价】(正确的打“√”,错误的打“×”)(1)函数的定义域和值域一定是无限集合.( )(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(3)在函数的定义中,集合B是函数的值域.( )提示(1)×函数的定义域和值域也可能是有限集,如f(x)=1;(2)×根据函数的定义,对于定义域中的任何一个x,在值域中都有唯一确定的y与之对应;(3)×在函数的定义中,函数的值域是集合B的子集.知识点2 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b }开区间 (a ,b ){x |a ≤x <b }半开半闭区间 [a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )【预习评价】已知全集U =R ,A ={x |1<x ≤3},则∁U A 用区间表示为________. 解析 ∁U A ={x |x ≤1或x >3},用区间可表示为(-∞,1]∪(3,+∞). 答案 (-∞,1]∪(3,+∞)题型一 函数关系的判定【例1】 (1)下列图形中,不能确定y 是x 的函数的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1;②g :把x 对应到|x |+1; ③h :把x 对应到1x;④r :把x 对应到x .(1)解析 任作一条垂直于x 轴的直线x =a ,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知D 不满足要求,因此不表示函数关系. 答案 D(2)解 ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任意x ∈R ,3x +1都有唯一确定的值与之对应,如当x =-1时,有3x +1=-2与之对应. 同理,②也是实数集R 上的一个函数. ③不是实数集R x =0时,1x的值不存在.④不是实数集R x <0时,x 的值不存在.(1)任取一条垂直于x 轴的直线l ; (2)在定义域内平行移动直线l ;(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.【训练1】 设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )解析 ①错,x =2时,在N 中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x =2时,对应元素y =3∉N ,不满足任意性.④错,x =1时,在N 中有两个元素与之对应,不满足唯一性. 答案 B题型二 相等函数【例2】(1)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x;③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).(2)试判断函数y =x -1·x +1与函数y =(x +1)(x -1)是否相等,并说明理由. (1)解析 ①f (x )与g (x )的定义域不同,不是相等函数;②f (x )与g (x )的解析式不同,不是相等函数;③f (x )=|x +3|,与g (x )的解析式不同,不是相等函数;④f (x )与g (x )的定义域不同,不是相等函数;⑤f (t )与g (x )的定义域、值域、对应关系皆相同,故是相等函数. 答案 ⑤y =x -1·x +1,由⎩⎪⎨⎪⎧x -1≥0,x +1≥0,解得x ≥1,故定义域为{x |x ≥1},对于函数y =(x +1)(x -1),由(x +1)(x -1)≥0解得x ≥1或x ≤-1,故定义域为{x |x ≥1或x ≤-1},显然两个函数定义域不同,故不是相等函数. 规律方法 判断两个函数为相等函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是相等函数,即使定义域与值域都相同,也不一定是相等函数.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.【训练2】 判断以下各组函数是否表示相等函数: (1)f (x )=(x )2;g (x )=x 2.(2)f (x )=x 2-2x -1;g (t )=t 2-2t -1.解 (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示相等函数.(2)两个函数的定义域和对应关系都相同,所以它们表示相等函数. 题型三 求函数值【例3】 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (3))的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f (g (3))=f (11)=11+11=112. 规律方法 求函数值的方法及关注点(1)方法:①已知f (x )的解析式时,只需用a 替换解析式中的x 即得f (a )的值;②求f (g (a ))的值应遵循由里往外的原则.(2)关注点:用来替换解析式中x 的数a 必须是函数定义域内的值,否则函数无意义. 【训练3】 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f (f (1)). 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f (f (1))=f ⎝ ⎛⎭⎪⎫23=23+123+2=58.【例4-1】 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}. 规律方法 求函数定义域的实质及结果要求(1)求函数的定义域实质是解不等式(组),即将满足的条件转化为解不等式(组)的问题,要求把满足条件的不等式列全.(2)结果要求:定义域的表达形式可以是集合形式,也可以是区间形式. 方向2 求抽象函数的定义域【例4-2】 (1)设函数f (x )=x ,则f (x +1)等于什么?f (x +1)的定义域是什么? (2)若函数y =f (x )的定义域是[0,+∞),那么函数y =f (x +1)的定义域是什么? 解 (1)f (x +1)=x +1.令x +1≥0,解得x ≥-1,所以f (x +1)=x +1的定义域为[-1,+∞).(2)函数y =f (x )的定义域是[0,+∞),所以令x +1≥0,解得x ≥-1,所以函数y =f (x +1)的定义域是[-1,+∞).【例4-3】 若函数y =f (x +1)的定义域是[1,2],根据函数定义域的定义,这里的“[1,2]”是指谁的取值X 围?使对应关系f 有意义的自变量t =x +1的X 围是什么?函数y =f (x )的定义域是什么?解 这里的“[1,2]”是自变量xx ∈[1,2],所以x +1∈[2,3],所以使对应关系f 有意义的自变量t =x +1的X 围是[2,3],所以函数y =f (x )的定义域是[2,3].【例4-4】 (1)已知函数y =f (x )的定义域为[-2,3],求函数y =f (2x -3)的定义域; (2)已知函数y =f (2x -3)的定义域是[-2,3],求函数y =f (x +2)的定义域.解 (1)因为函数y =f (x )的定义域为[-2,3],即x ∈[-2,3],函数y =f (2x -3)中2x -3的X 围与函数y =f (x )中x 的X 围相同,所以-2≤2x -3≤3,解得12≤x ≤3,所以函数y =f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤12,3. (2)因为x ∈[-2,3],所以2x -3∈[-7,3],即函数y =f (x )的定义域为[-7,3]. 令-7≤x +2≤3,解得-9≤x ≤1,所以函数y =f (x +2)的定义域为[-9,1]. 规律方法 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值X 围,g (x )的值域即为f (x )的定义域.课堂达标1.下列图象中表示函数图象的是( )解析 根据函数的定义,对定义域中任意的一个x 都存在唯一的y 与之对应,而A ,B ,D 都存在一对多,只有C 满足函数的定义.故选C. 答案 C2.下列各组函数中表示相等函数的是( ) A.f (x )=x 与g (x )=(x )2B.f (x )=|x |与g (x )=x (x >0)C.f (x )=2x -1与g (x )=2x +1(x ∈N *)D.f (x )=x 2-1x -1与g (x )=x +1(x ≠1)解析 选项A ,B ,C 中两个函数的定义域均不相同,故选D. 答案 Df (x )=x -4+1x -5的定义域是________.解析 ∵函数f (x )=x -4+1x -5,∴⎩⎪⎨⎪⎧x -4≥0,x -5≠0,解得x ≥4,且x ≠5.∴函数f (x )的定义域是[4,5)∪(5,+∞). 答案 [4,5)∪(5,+∞)f (x )的定义域为(0,2),则f (x -1)的定义域为________.解析 由题意知0<x -1<2,解得1<x <3,故f (x -1)的定义域为(1,3). 答案 (1,3)f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ;(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f ⎝ ⎛⎭⎪⎫1x =1x 2+1x-1=1+x -x 2x 2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2或x =-3.课堂小结1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等只须两个函数的定义域和对应法则一样即可.2.f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与xff (x )表示外,还可用g (x ),F (x )等表示.基础过关1.下列函数中,与函数y =x 相等的是( ) A.y =(x )2B.y =x 2C.y =⎩⎪⎨⎪⎧x ,x >0-x ,x <0D.y =3x 3解析 函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,对应关系不同;y =3x 3=x ,且定义域为R .故选D.答案 D2.下列四个图象中,是函数图象的是( )A.①B.①③④C.①②③D.③④解析 由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象. 答案 By =1-x +x 的定义域为( )A.{x |x ≤1}B.{x |x ≥0}C.{x |x ≥1或x ≤0}D.{x |0≤x ≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.答案 Df (x )=2x -1,g (x )=x 2,则g (f (2)-1)=________.解析 f (2)-1=2×2-1-1=2,所以g (f (2)-1)=g (2)=22=4. 答案 45.用区间表示下列集合: (1){x |-12≤x <5}=________;(2){x |x <1或2<x ≤3}=________.解析 (1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=⎣⎢⎡⎭⎪⎫-12,5. (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案 (1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]f (x )=x +5+1x -2.(1)求函数的定义域;(2)求f (-4),f ⎝ ⎛⎭⎪⎫23的值. 解 (1)使根式x +5有意义的实数x 的取值集合是{x |x ≥-5},使分式1x -2有意义的实数x 的取值集合是{x |x ≠2},所以这个函数的定义域是{x |x ≥-5}∩{x |x ≠2}={x |x ≥-5且x ≠2}. (2)f (-4)=-4+5+1-4-2=1-16=56. f ⎝ ⎛⎭⎪⎫23=23+5+123-2=173-34=513-34.f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值.(1)解 ∵f (x )=x 21+x2, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明 f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. 能力提升f (x )=ax 2-1,a 为一个正常数,且f (f (-1))=-1,那么a 的值是( )A.1B.0解析 f (-1)=a ·(-1)2-1=a -1,f (f (-1))=a ·(a -1)2-1=a 3-2a 2+a -1=-1. ∴a 3-2a 2+a =0,∴a =1或a =0(舍去). 答案 Af (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值X 围是( )A.(-∞,+∞)B.⎝ ⎛⎭⎪⎫0,43C.⎝ ⎛⎭⎪⎫43,+∞ D.⎣⎢⎡⎭⎪⎫0,43 解析 (1)当m =0时,分母为4x +3,此时定义域不为R ,故m =0不符合题意.(2)当m ≠0时,由题意,得⎩⎪⎨⎪⎧m ≠0,Δ=16-4×3m <0,解得m >43. 由(1)(2)知,实数m 的取值X 围是⎝ ⎛⎭⎪⎫43,+∞. 答案 Cf (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域是________. 解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.从而0<x <2, 于是函数g (x )的定义域为(0,2).答案 (0,2)f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,则f (175)=________.解析 ∵f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,∴把x =5,y =7代入得f (5)+f (7)=f (35),∴m +n =f (35),把x =5,y =35代入得f (5)+f (35)=f (175),∴m +m +n =f (175),即2m +n =f (175),∴f (175)=2m +n .答案 2m +n数的定义域:(1)y =(x +1)0x +2; (2)y =2x +3-12-x +1x . 解 (1)由于00无意义,故x +1≠0,即x ≠-1.又x +2>0,x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}. (2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2,且x ≠0. 13.(选做题)已知甲地到乙地的高速公路长1 500 km ,现有一辆汽车以100 km/h 的速度从甲地驶往乙地,写出汽车离开甲地的距离s (单位:km)与时间t (单位:h)的函数解析式,并求出函数的定义域.解 ∵汽车在甲、乙两地之间匀速行驶,∴s =100 t .∵汽车行驶速度为100 km/h ,两地之间的距离为1 500 km ,∴从甲地到乙地所用时间为15小时.∴所求函数解析式为s =100t ,0≤t ≤15.。
高中数学 第一章 集合与函数概念 1.2 函数及其表示教案数学教案
1.2 函数及其表示1.2.1 函数的概念 第一课时 函数的概念 三维目标定向〖知识与技能〗理解函数的概念,能用集合与对应的语言刻画函数,了解构成函数的三要素。
〖过程与方法〗1、通过丰富实例,建立函数概念的背景,体会函数是描述变量之间的依赖关系的重要数学模型。
2、体会对应关系在刻画函数概念中的作用。
〖情感、态度、价值观〗通过从实际问题中抽象概括函数概念的活动,培养学生的抽象思维能力。
教学重、难点〖重点〗体会函数是描述变量之间的依赖关系的重要数学模型,正确理解函数的概念。
〖难点〗函数概念及符号的理解。
教学过程设计 一、知识回顾1、初中学习的函数概念是什么?设在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有惟一的值与它对应,则称x 是自变量,y 是x 的函数;其中自变量x 的取值的集合叫做函数的定义域,和自变量x 的值对应的y 的值叫做函数的值域。
2、思考:(1)y = 1是函数吗?(2)y = x 与2x y x=是同一个函数吗?显然,仅用初中函数的概念很难回答这些问题。
因此,需要从新的高度认识函数。
二、问题情境设疑引例1、(炮弹发射)一枚炮弹发射后,经过26s 落到地面击中目标。
炮弹的射高为845m ,且炮弹距地面的高度h (单位:m )随时间t (单位:s )变化的规律是:25130t t h -=(*)。
炮弹飞行时间t 的变化范围是数集A = {t |0 ≤ t ≤ 26},炮弹距地面的高度h 的变化范围是数集B = {h | 0 ≤ h ≤ 845}。
从问题的实际意义可知,对于数集A 中的任意一个时间t ,按照对应关系(*),在数集B 中都有惟一的高度h 和它对应。
引例2、(南极臭氧空洞)近几十年来,大气层中的臭氧迅速减少,因而出现了臭氧层空洞问题,如图的曲线显示了南极上空臭氧层空洞的面积从1979 ~ 2001年的变化情况:根据可图中的曲线可知,时间t 的变化范围是数集A = {t | 1979 ≤ t ≤ 2001},臭氧层空洞面积S 的变化范围是数集B = {S |0 ≤ S ≤26}。
高中数学 第一章 集合与函数概念 1.2 函数及其表示 1.2.2 函数的表示法学案2(无答案)新人教版必修1
1.2.2函数的表示法学习目标: 1.能正确认识和使用函数的三种表示法,能根据不同的需要选择恰当的方法表示函数,了解函数不同表示法的优缺点;2.理解分段函数及其表示法,会处理某些简单的分段函数问题;3.会用数形结合与分类讨论的数学思想方法解决问题语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:Happy Birthday !那么对于函数,又有什么不同的表示方法呢?学习任务:阅读课本19页至21页,完成下列问题1、函数的三种表示法是什么?可以举例说明2、通过对本节例3的学习,你认为用解析法表示函数是否一定要写出自变量的取值范围?用描点法画函数的图象的一般步骤是什么?此题中的图象为什么不是一条直线?回答P 20思考;3、通过对例4的学习思考:题目中的表格能否直观地分析出三名同学的成绩高低?如何才能更好地比较三名同学的成绩高低呢?怎样利用画出的图象来分析三名同学的成绩变化情况的呢?函数的三种表示法优缺点是什么?4、由例5总结,画绝对值函数图象的方法是什么?做P 23 35、由例6思考:分段函数解析式的特点,做P 24习题1.2 A 组7必做题:(一)求函数解析式1、课本P 23 1、2 ;P 24习题1.2 A 组8,92、求下列函数的解析式:(1)已知2)(2+=x x f ,求)1(-x f ,)2(+x f ;(2)已知x x x f 2)1(2+=+,求)(x f 。
3、求下列函数的解析式:(1)已知)(x f 是二次函数,且,2)0(=f 1)()1(-=-+x x f x f 求)(x f ;(2)已知反比例函数)(x f 满足6)3(-=f ,求)(x f 的解析式(二)函数的图像及应用1.做课本P 23 22.作出函数f (x )= 的图像并写出其值域3.画出下列函数图像并求其值域:(1)3422--=x x y ;(2))73(3422≤≤--=x x x y ;⎪⎩⎪⎨⎧≥<<1,10,1x x x x(3))03(3422≤≤---=x x x y (4) 选做题: B 组 2、3请归纳本节课你所学到的知识并反思你在学习中存在的问题:1.2.2函数的表示法(二)班级里的每一位同学在教室都有唯一的坐位与之对应,对于任意的三角形,都有唯一确定的面积与之对应。
高中数学 第一章 集合与函数的概念 1.2.1 函数的概念(2)学案(无答案)新人教A版必修1(2
河北省承德市高中数学第一章集合与函数的概念1.2.1 函数的概念(2)学案(无答案)新人教A版必修1
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(河北省承德市高中数学第一章集合与函数的概念1.2.1 函数的概念(2)学案(无答案)新人教A版必修1)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为河北省承德市高中数学第一章集合与函数的概念1.2.1 函数的概念(2)学案(无答案)新人教A版必修1的全部内容。
1。
2。
1函数(2)
探究2. 求下列函数的定义域:
(1)y=错误!;
(2)y=错误!;
(3)y=(x+2)0+错误!
(4)y=错误!+错误!-错误!。
探究3. 下列各对函数中,是相等函数的序号是________.
①f(x)=x+1与g(x)=x+x0
②f(x)=2x+12与g(x)=|2x+1|。
高中数学第一章集合与函数概念1.2函数及其表示1.2.1函数的概念学案2(无答案)新人教版
§1.2.1 函数的概念
一. 自主探究
教材P 15~ P 18,对照学习目标,完成下列任务
探究任务一:函数概念
1.(1)结合教材15页三个实例归纳函数的定义
(2)认真阅读《名师一号》13页例1,完成变式训练1
2.认真阅读17页例1,(1)完成19页练习1,2,完成24页习题A 组1
(2)归纳如何求函数的定义域?
3.(1)构成函数的三要素是什么?起决定作用的是哪两个要素?
(2)认真阅读18页例2,完成19页练习3,完成24页习题A 组2
(3)归纳如何判断两个函数是否相等?
4.
(1)求f(0)、f(1)、f(2)、f(-1)的值。
(2) 求223,{1,0,1,2}y x x x =-+∈-值域.
(3)求
,的值域
(4)求
,
由上可知求函数的值域需要注意什么?
探究任务二:区间及写法
试试:用区间表示.
(1){x |x ≥1}=、{x |x >-3}=、{x |x ≤6}=、{x |x <-1}=.
(2){x|1x a -≤≤}=.=..
(3)函数y
.
二.总结提升
本节课你的收获是什么?
2()23f x x x =-+2()23f x x x =-+2()23f x x x =-+{|01}x x x <>或。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第一章集合与函数概念1.2函数及其表示1.2.1函数
的概念学案2(无答案)新人教版必修1
一. 自主探究
教材P 15~ P 18,对照学习目标,完成下列任务
探究任务一:函数概念
1.(1)结合教材15页三个实例归纳函数的定义
(2)认真阅读《名师一号》13页例1,完成变式训练1
2.认真阅读17页例1,(1)完成19页练习1,2,完成24页习题A 组1
(2)归纳如何求函数的定义域?
3.(1)构成函数的三要素是什么?起决定作用的是哪两个要素?
(2)认真阅读18页例2,完成19页练习3,完成24页习题A 组2
(3)归纳如何判断两个函数是否相等?
4.2()23f x x x =-+
(1)求f(0)、f(1)、f(2)、f(-1)的值。
(2) 求223,{1,0,1,2}y x x x =-+∈-值域.
(3)求2()23f x x x =-+,的值域
(4)求
2()23f x x x =-+,
由上可知求函数的值域需要注意什么?
探究任务二:区间及写法
试试:用区间表示.
(1){x |x ≥1}=、{x |x >-3}=、{x |x ≤6}=、{x |x <-1}=.
(2){x|1x a -≤≤}=.{|01}x x x <>或=..
(3)函数y .
二.总结提升
本节课你的收获是什么?。