宁国市D片2015-2016学年第二学期八年级数学期中试卷及答案
2015-2016学年八年级下册期中数学试卷(含答案)
2015-2016学年八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x25.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣17.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠时,分式有意义.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.11.当x=时,分式的值为0.12.若,则=.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是.16.已知:a2﹣3a+1=0,则a+﹣2的值为.17.已知关于x的方程的解是正数,则m的取值范围是.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)20.解下列方程:(1)=(2)﹣=1.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是;②MB,BN的位置关系是.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?2015-2016学年八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题有且只有一个答案正确,每小题3分,共24分)1.下列电视台的台标,是中心对称图形的是()A. B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项错误;D、是中心对称图形,故D选项正确.故选D.【点评】本题考查了中心对称图形,掌握中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180°后与原图重合是解题的关键.2.下列调查中,适合用全面调查方法的是()A.了解一批电视机的使用寿命B.了解我市居民家庭一周内丢弃塑料袋的数量C.了解我市中学生的近视率D.了解我校学生最喜爱的体育项目【考点】全面调查与抽样调查.【分析】要选择调查方式,需将普查的局限性和抽样调查的必要性结合起来具体分析.【解答】解:A、调查过程带有破坏性,只能采取抽样调查,选项错误;B、数量多,不适合全面调查,适合抽查;C、数量多,不适合全面调查,适合抽查;D、人数不多,容易调查,因而适合全面调查,选项正确.故选D.【点评】本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.3.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.4.下列三个分式、、的最简公分母是()A.4(m﹣n)x B.2(m﹣n)x2C.D.4(m﹣n)x2【考点】最简公分母.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式、、的分母分别是2x2、4(m﹣n)、x,故最简公分母是4(m﹣n)x2.故选:D.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.5.如果分式中的x,y都扩大到原来的3倍,那么分式的值()A.不变 B.扩大到原来的6倍C.扩大到原来的3倍 D.缩小到原来的倍【考点】分式的基本性质.【分析】根据分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变,可得答案.【解答】解:分式中的x,y都扩大到原来的3倍,那么分式的值缩小到原来的,故选:D.【点评】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式分式的值不变.6.若关于x的方程﹣=0有增根,则增根是()A.﹣4 B.1 C.4 D.﹣1【考点】分式方程的增根.【专题】计算题.【分析】由分式方程有增根,得到最简公分母为0,求出x的值即为增根.【解答】解:由分式方程有增根,得到x﹣4=0,即x=4,则增根为4.故选C.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.14【考点】菱形的性质;直角三角形斜边上的中线;三角形中位线定理.【分析】根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.【解答】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.【点评】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.8.如图,在Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点B出发,沿BA方向以每秒cm的速度向终点A运动;同时,动点Q从点C出发沿CB方向以每秒1cm的速度向终点B运动,将△BPQ沿BC翻折,点P的对应点为点P′.设Q点运动的时间t秒,若四边形QPBP′为菱形,则t的值为()A.B.2 C.2D.4【考点】菱形的判定;翻折变换(折叠问题).【专题】动点型.【分析】首先设Q点运动的时间t秒,则CQ=tcm,BP=xcm,根据菱形的性质可得QP=BP=tcm,∠P′BQ=∠QBP,再根据勾股定理可得(t)2+(t)2=(6﹣t)2,再解方程即可.【解答】解:设Q点运动的时间t秒,则CQ=tcm,BP=xcm,∵四边形QPBP′为菱形,∴QP=BP=tcm,∠P′BQ=∠QBP,∵∠C=90°,AC=BC,∴∠CBP=45°,∴∠P′BP=90°,∴∠QPB=90°,∴(t)2+(t)2=(6﹣t)2,解得:t1=2,t2=﹣6(不合题意舍去),故选:B.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形对角线平分每一组对角.二、填空题(本大题共10小题,每小题2分,共20分)9.当x≠2时,分式有意义.【考点】分式有意义的条件.【专题】计算题.【分析】分式有意义的条件为x﹣2≠0.即可求得x的值.【解答】解:根据条件得:x﹣2≠0.解得:x≠2.故答案为2.【点评】此题主要考查了分式的意义,要求掌握.意义:对于任意一个分式,分母都不能为0,否则分式无意义.解此类问题,只要令分式中分母不等于0,求得x的取值范围即可.10.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任意取出一只是二等品的概率是.【考点】概率公式.【分析】让二等品数除以总产品数即为所求的概率.【解答】解:∵现有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,从中任意取1只,可能出现12种结果,是二等品的有3种可能,∴概率==.故答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.当x=1时,分式的值为0.【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x2﹣1=0,且x+1≠0,再解即可.【解答】解:由题意得:x2﹣1=0,且x+1≠0,解得:x=1,故答案为:1.【点评】此题主要考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.12.若,则=.【考点】比例的性质.【分析】先用b表示出a,然后代入比例式进行计算即可得解.【解答】解:∵=,∴a=,∴=.故答案为:.【点评】本题考查了比例的性质,用b表示出a是解题的关键,也是本题的难点.13.若矩形的两条对角线的夹角为60°,一条对角线的长为6,则矩形短边的长等于3.【考点】矩形的性质.【分析】先由矩形的性质得出OA=OB=3,再由∠AOB=60°,证出△AOB是等边三角形,即可得出AB=OA=3.【解答】解:如图所示:∵四边形ABCD是矩形,∴OA=AC,OB=BD,AC=BD=6,∴OA=OB=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OA=3;故答案为:3.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.14.如图,在周长为10cm的▱ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,则△ABE的周长为5cm.【考点】平行四边形的性质;线段垂直平分线的性质.【分析】先判断出EO是BD的中垂线,得出BE=ED,从而可得出△ABE的周长=AB+AD,再由平行四边形的周长为10cm,即可得出答案.【解答】解:∵点O是BD中点,EO⊥BD,∴EO是线段BD的中垂线,∴BE=ED,故可得△ABE的周长=AB+AD,又∵平行四边形的周长为10cm,∴AB+AD=50cm.故答案为:5cm.【点评】此题考查了平行四边形的性质及线段的中垂线的性质,属于基础题,解答本题的关键是判断出EO 是线段BD的中垂线,难度一般.15.如图,已知直线l1∥l2∥l3∥l4,相邻两条平行直线间的距离都是1,如果正方形ABCD的四个顶点分别在四条直线上,则正方形ABCD的面积是5.【考点】平行线的性质;正方形的性质.【分析】过D点作直线EF与平行线垂直,与l1交于点E,与l4交于点F.易证△ADE≌△DFC,得CF=1,DF=2.根据勾股定理可求CD2得正方形的面积.【解答】解:作EF⊥l2,交l1于E点,交l4于F点.∵l1∥l2∥l3∥l4,EF⊥l2,∴EF⊥l1,EF⊥l4,即∠AED=∠DFC=90°.∵ABCD为正方形,∴∠ADC=90°.∴∠ADE+∠CDF=90°.又∵∠ADE+∠DAE=90°,∴∠CDF=∠DAE.∵AD=CD,∴△ADE≌△DCF,∴CF=DE=1.∵DF=2,∴CD2=12+22=5,即正方形ABCD的面积为5.故答案为:5.【点评】题考查正方形的性质和面积计算,根据平行线之间的距离构造全等的直角三角形是关键.16.已知:a2﹣3a+1=0,则a+﹣2的值为1.【考点】分式的混合运算.【专题】计算题.【分析】已知等式两边除以a,求出a+的值,代入原式计算即可得到结果.【解答】解:∵a2﹣3a+1=0,∴a+=3,则原式=3﹣2=1,故答案为:1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.17.已知关于x的方程的解是正数,则m的取值范围是m.>﹣6且m≠﹣4【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x 的不等式是本题的一个难点.18.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、解答题(本大题共9小题,共76分,解答要求写出文字说明、证明过程或计算步骤)19.计算:(1)(a2+3a)÷(2)÷(1﹣)【考点】分式的混合运算.【分析】(1)先把被除式与分子因式分解,把除法改为乘法,进一步约分得出答案即可;(2)先通分算减法,再进一步把除法改为乘法,进一步约分得出答案即可.【解答】解:(1)原式=a(a+3)×=a;(2)原式=÷=•=.【点评】此题考查分式的混合运算,掌握运算顺序,正确通分约分,因式分解是解决问题的关键.20.解下列方程:(1)=(2)﹣=1.【考点】解分式方程.【专题】计算题.【分析】(1)分式方程两边乘以x(x﹣2)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程两边乘以(x+1)(x﹣1)去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:4x=x﹣2,解得:x=﹣,经检验x=﹣是分式方程的解;(2)去分母得:(x+1)2﹣4=x2﹣1,去括号得:x2+2x+1﹣4=x2﹣1,移项合并得:2x=2,解得:x=1,经检验x=1是增根,原分式方程无解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质,可得对角线互相平分,根据对角线互相平分的四边形式平行四边形,可得证明结论.【解答】证明:如图,连接BD设对角线交于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AE=CF,OA﹣AE=OC﹣CF,∴OE=OF.∴四边形BEDF是平行四边形.【点评】本题考查了平行四边形的判定与性质,利用了平行四边形的对角线互相平分,对角线互相平分的四边形是平行四边形.22.先化简,再求值:(﹣)÷,其中x是小于3的非负整数.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再根据x是小于3的非负整数选取合适的x的值,代入进行计算即可.【解答】解:原式=•=•=•=x+4.∵x是小于3的非负整数,∴x=0,1,2,∵x=0,2,∴x=1,∴原式=1+4=5.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.23.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.【考点】菱形的性质;矩形的判定与性质.【专题】证明题.【分析】先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED 是矩形,利用勾股定理即可求出BC=OE.【解答】证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴∠COD=90°,∴四边形OCED是矩形,∴DE=OC,∵OB=OD,∠BOC=∠ODE=90°,∴BC===OE【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.24.水果店老板用600元购进一批水果,很快售完;老板又用1250元购进第二批水果,所购件数是第一批的2倍,但进价比第一批每件多了5元,问第一批水果每件进价多少元?【考点】分式方程的应用.【分析】设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,根据用1250元所购件数是第一批的2倍,列方程求解.【解答】解:设第一批水果每件进价为x元,则第二批水果每件进价为(x+5)元,由题意得,×2=,解得:x=120,经检验:x=120是原分式方程的解,且符合题意.答:第一批水果每件进价为120元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.25.把一张矩形纸片ABCD按如图方式折叠,使顶点B和D重合,折痕为EF.(1)连接BE,求证:四边形BFDE是菱形;(2)若AB=8cm,BC=16cm,求线段DF和EF的长.【考点】翻折变换(折叠问题);菱形的判定与性质.【分析】(1)证得DE=DF,得四边形BFDE是平行四边形,根据折叠的性质知:BF=DF,得四边形BFDE 是菱形;=EF•BD,(2)在Rt△DCF中,利用勾股定理可求得DF的长;连接BD,得BD=8cm,利用S菱形BFDE易得EF的长.【解答】解:(1)由折叠的性质可得∠BFE=∠DFE,∵AD∥BC,∴∠BFE=∠DEF,∴∠DFE=∠DEF,∴DE=DF,∴四边形BFDE是平行四边形,由折叠知,BF=DF.∴四边形BFDE是菱形;(3)在Rt△DCF中,设DF=x,则BF=x,CF=16﹣x,由勾股定理得:x2=(16﹣x)2+82,解得x=10,DF=10cm,连接BD.在Rt△BCD中,BD==8,=EF•BD=BF•DC,∵S菱形BFDE∴EF×8=10×8解得EF=4cm.【点评】本题主要考查了勾股定理、平行四边形的判定、菱形的判定和性质,解题的关键是作好辅助线找到相关的三角形.26.阅读下列材料,并解答问题:材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由父母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)试说明的最小值为10.【考点】分式的混合运算.【专题】阅读型.【分析】(1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;(2)原式分子变形后,利用非负数的性质求出最小值即可.【解答】解:(1)设﹣x4﹣8x2+10=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=9,b=1.∴=x2+9+;(2)由=x2+9+知,当x=0时,x2+9和分别有最小值,因此当x=0时,的最小值为10.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.操作与证明:把一个含45°角的直角三角板BEF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点B重合,点E,F分别在正方形的边CB,AB上,易知:AF=CE,AF⊥CE.(如图1)(不要证明)(1)将图1中的直角三角板BEF绕点B顺时针旋转α度(0<α<45),连接AF,CE,(如图2),试证明:AF=CE,AF⊥CE.猜想与发现:(2)将图2中的直角三角板BEF绕点B顺时针继续旋转,使BF落在BC边上,连接AF,CE,(如图3),点M,N分别为AF,CE的中点,连接MB,BN.①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直.变式与探究:(3)图1中的直角三角板BEF绕点B顺时针旋转180°,点M,N分别为DF,EF的中点,连接MA,MN,(如图4),MA,MN的数量关系、位置关系又如何?为什么?【考点】几何变换综合题.【分析】(1)延长AF交EC于G,交BC于H,利用正方形ABCD的性质和等腰△BEF的性质,证明△ABF≌△CBE,得到AF=CE,∠BAF=∠BCE,根据∠BAF+AHB=90°,∠AHB=∠CHG,所以∠BCE+∠CHG=90°,即可解答.(2)①MB,BN的数量关系是相等;②MB,BN的位置关系是垂直;(3)MA=MN,MA⊥MN,理由:如图4,连接DE,利用正方形ABCD的性质和等腰△BEF的性质,证明△ADF≌△CDE,得到DF=DE,∠1=∠2,利用在Rt△ADF中,点M是DF的中点,得到MA=DF=MD=MF,再利用中位线的性质,得到得到MN=DE,MN∥DE,通过角之间的等量代换和三角形内角和,得到∠6=90°,从而得到∠7=∠6=90°,即可解答.【解答】解:(1)如图2,延长AF交EC于G,交BC于H,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABF+∠FBC=90°,∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∴∠CBE+∠FBC=90°,∴∠ABF=∠CBE,在△ABF和△CBE中,,∴△ABF≌△CBE,∴AF=CE,∠BAF=∠BCE,∵∠BAF+AHB=90°,∠AHB=∠CHG,∴∠BCE+∠CHG=90°,∴AF⊥CE.(2)①相等;②垂直.故答案为:相等,垂直.(3)MA=MN,MA⊥MN,理由:如图4,连接DE,∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵∵△BEF是等腰直角三角形,∴BE=BF,∠EBF=90°,∵点E、F分别在正方形CB、AB的延长线上,∴AB+BF=CB+BE,即AF=CE,∵,∴△ADF≌△CDE,∴DF=DE,∠1=∠2,在Rt△ADF中,∵点M是DF的中点,∴MA=DF=MD=MF,∴∠1=∠3,∵点N是EF的中点,∴MN是△DEF的中位线,∴MN=DE,MN∥DE,∴MA=MN,∠2=∠3,∵∠2+∠4=∠ABC=90°,∠4=∠5,∴∠3+∠5=90°,∴∠6=180°﹣(∠3+∠5)=90°,∴∠7=∠6=90°,MA⊥MN.【点评】本题考查了图形的旋转的性质、全等三角形的性质与判定、等腰三角形的性质,解决本题的关键是证明三角形全等,得到相等的边与角,作辅助线也是解决本题的关键.。
2016年第二学期八年级期中考试数学试题及答案1
2015学年第二学期八年级期中考试数学试题班别: 姓名: 座号: 分数:一、 填空题:(每小题4分,共48分)1、下列二次根式是最简二次根式的是 ( )。
A 、21B 、4C 、3D 、82、25)(-等于( )。
A 、-5B 、5C 、25D 、-253、已知三组数据:①2,3,4; ②3,4,5 ;③1,3,2。
分别以每组数据中的三个数据为三角形的三边长,构成直角三角形的有 ( )。
A 、①② B 、②③ C 、①③ D 、①②③4、在Rt △ABC 中,∠C =90°,a =12,b =16,则c 的长为 ( )。
A 、26 B 、18 C 、20 D 、215、菱形和矩形一定都具有的性质是 ( )。
A 、对角线相等 B 、对角线互相平分 C 、对角线互相平分且相等 D 、对角线互相垂直6、下列计算错误的是 ( )。
A 、14772⨯=B 、60302÷=C 、9258a a a +=D 、3223-= 7、已知四边形ABCD 是平行四边形,则下列各图中∠1与∠2一定不相等的是 ( )。
8.已知菱形的边长和一条对角线的长均为4cm ,则菱形的面积为( ) A.16cm 2B.223cmC.423cmD.823cm9、下列二次根式中能与2合并的二次根式的是( )。
A 、12B 、23C 、32D 、1810、在矩形ABCD 中,AB=3,BC=4,则点A 到对角线BD 的距离为 ( )。
A 、513 B 、5 C 、 2.5 D 、51211、若75n 是整数,则正整数n 的最小值是( )。
A 、2B 、3C 、4D 、512、已知a 、b 、c 是三角形的三边长,如果满足(a -6)2+8-b +10-c =0,则三角形的形状是( )A 、底与边不相等的等腰三角形B 、等边三角形C 、钝角三角形D 、直角三角形 二、填空题:(每小题4分,共32分)。
13、已知x x -=-3)32(,则x 的取值范围是: 。
2015-2016学年第二学期八年级期中考试数学试卷.
A.大长方形的长为 6 10 B.大长方形的宽为 5 10
C.大长方形的长为 11 10 D.大长方形的面积为 300
第 7 题图
第 8 题图
8.一艘轮船和一艘渔船同时沿各自的航向从港口 O 出发,如图所示,轮船从港口 O 沿北偏西 20°的方向行 60 海里到达点 M 处,同一时刻渔船已航行到与港口 O 相距 80 海里的点 N 处,若 M、N 两点相距 100 海里, 则∠NOF 的度数为( )
2015-2016 学年第二学期八年级期中考试
数学试卷
本试卷分卷 I 和卷 II 两部分;卷 I 为选择题,卷 II 为非选择题. 本试卷总分 120 分,考试时间为 120 分钟.
卷 I(选择题,共 42 分)
注意事项:1.答卷 I 前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人 员将试卷和答题卡一并收回. 2.每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,答在试卷上无效.
PE⊥AB 于 E,PF⊥AC 于 F,M 为 EF 的中点,则 PM 的最小值为( )
A.1.2
B.1.3
C.1.4
D.2.4
12.△ABC 中,AB=AC=5,BC=8,点 P 是 BC 边上的动点,过点 P 作 PD⊥AB 于点 D,PE⊥AC 于点 E,
则 PD+PE 的长是( )
A.4.8
C.( 3 )2015 3
D.( 3 )2014 3
卷 II(非选择题,共 78 分)
三
题号
二
21
22
23
24
2015---2016第二学期期中八年级数学考试试卷
D A = 30k
m
!
CB- 20k n
那 么 基 地 E 应建 在 离 A 站 多 少 千米 的地 方 ?
( 第 19 题 图 )
八
年 级 数 学期 中试 卷
第5 页
(共
8
页)
21
( 本题 8 分 ) 如图
四边 形
A B CD
是 平 行 四边 形
O
是对角线
A C
与
BD
的交 点
A B 上A C
,
若A
B
=
8
,
A ( Æ12
求
BD
的长
( 第 2 1 题)
22
( 本 题 10 分 ) 如 图
在 正 方形 A
,
B CD
中
边长 A B
=
3
点E (与B
•A C
不 重合 ) 是 B C 边 上
任意
点
E F 上月E 且 E F 与 4 E
(5 分)
连接 傓
( 1 ) 求 偳D C F 的度 数
° ( 2 ) 当 僲且 4 居 3 0 时
应城 市
( 2 0 15
-
2 o 16 )
第二 学期 期 中 考 试 八 年
数
( 本卷 满分 12 0 分
学
考试 时 间
12 0
丄
分钟 )
•A精 心选
选
相信 自 己 的判 断 ! ( 将 下 列 各 题 中惟
不 填填错 或 填 的 序
正 确 答 案 的 序 号 填入 下 面 答 题
栏 中相 应
的题 号栏 内
6 小题
每小题
3
2015-2016学年八年级下学期数学期中综合检测(含答案)
2015~2016学年下期八年级半期数学试题(含答案)(90分钟 100分)一、选择题(每小题3分,共24分)1.在代数式-,,x+y,,中,分式有( )A.2个B.3个C.4个D.5个2.(2013·兰州中考)当x>0时,函数y=-的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限3.若分式的值为零,则a的值为( )A.4B.2C.〒2D.-24.函数y=的自变量x的取值范围是( )A.x>3B.x≥3C.x≠3D.x<-35.某闭合电路中,电源的电压为定值,电流I(A)与电阻R(Ω)成反比例.如图表示的是该电路中电流I与电阻R之间函数关系的图象,则用电阻R表示电流I的函数关系式为( )A.I=B.I=C.I=D.I=-6.在物理实验课上,小明用弹簧秤将铁块悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度.下图能反映弹簧秤的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是( )7.方程+=1的解是( )A.x=-3B.x=-2C.x=-1D.x=08.(2013·南充中考)如图,函数y1=与y2=k2x的图象相交于点A(1,2)和点B.当y1<y2时,自变量x 的取值范围是( )A.x>1B.-1<x<0C.-1<x<0或x>1D.x<-1或0<x<1二、填空题(每小题4分,共24分)9.当x= 时,分式没有意义.10.反比例函数y=的图象与一次函数y=2x+1的图象的一个交点是(1,k),则反比例函数的关系式是.11.已知点P(3,-1),则点P关于x轴对称的点Q是.12.分式方程=的解是.13.点P1(x1,y1),点P2(x2,y2)是直线y=-4x+3上的两个点,且x1<x2,则y1与y2的大小关系是.14.李老师开车从甲地到相距240km的乙地,如果油箱剩余油量y(L)与行驶里程x(km)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是L.三、解答题(共52分)15.(10分)先化简〔,然后选择一个你最喜欢的合适的x的值,代入求值.16.(10分)李明到离家2.1千米的学校参加初三联欢会,到学校时发现演出道具还放在家中,此时距联欢会开始还有42分钟,于是他立即步行(匀速)回家,在家拿道具用了1分钟,然后立即骑自行车(匀速)返回学校,已知李明骑自行车到学校比他从学校步行到家用时少20分钟,且骑自行车的速度是步行速度的3倍.(1)李明步行的速度(单位:米/分)是多少?(2)李明能否在联欢会开始前赶到学校?17.(10分)已知一次函数y=kx+b(k≠0)的图象过点(0,2),且与两坐标轴围成的三角形的面积为2,求此一次函数的关系式.18.(10分)如图,直线y=k1x+b与双曲线y=相交于A(1,2),B(m,-1)两点.(1)求直线和双曲线的关系式.(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式.(3)观察图象,请直接写出不等式k1x+b>的解集.19.(12分)荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式.(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%,95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?答案解析1.【解析】选A.根据分式的概念含有分母且分母中含有字母,故,是分式.2.【解析】选A.函数y=-的图象在第二、四象限,当x>0时,图象在第四象限.3.【解析】选D.根据题意得,解得a=-2.4.【解析】选A.由题意得x-3>0,所以x>3.5.【解析】选C.设用电阻R表示电流I的函数关系式为I=,观察图象知,图象过(3,2),所以k=6,其关系式为I=.21教育名师原创作品6.【解析】选C.铁块完全在水里时,弹簧秤的读数不变,慢慢露出水面时,弹簧秤的读数逐渐增加,完全露出水面时,弹簧秤的读数又是定值.7.【解析】选D.解分式方程+=1,去分母,得x-5=2x-5,解得x=0,检验得x=0是原分式方程的解.21教育网8.【解析】选C.根据反比例函数和正比例函数的对称性,另一个交点的坐标为(-1,-2),当y1<y2时,反比例函数的图象位于正比例函数的图象的下方,此时,-1<x<0或x>1.9.【解析】∵分式没有意义,∴x-4=0,解得x=4.答案:410.【解析】把(1,k)代入y=2x+1,解得k=3,所以反比例函数的关系式是y=.答案:y=11.【解析】∵点P与点Q关于x轴对称,∴点P与点Q的坐标关系是横坐标不变,纵坐标互为相反数,即点Q的坐标(3,1).答案:(3,1)12.【解析】去分母,方程的两边同乘2(x+4),得2(x-2)=x+4,去括号,得2x-4=x+4,移项,得2x-x=4+4,合并同类项,得x=8,检验:把x=8代入2(x+4)=24≠0,∴原方程的解为x=8.答案:x=813.【解析】∵直线y=-4x+3中,k=-4<0,∴函数值y随x的增大而减小,又∵x1<x2,y1到y2逐渐减小,∴y1>y2.答案:y1>y214.【解析】设y与x之间的函数关系式为y=kx+b,由函数图象,得解得则y=-x+3.5.当x=240时,y=-〓240+3.5=2(L).答案:215.【解析】原式=〔=·=x+1.当x=2时,原式=2+1=3(为保证分式有意义,所选择的数不能为〒1和0).16.【解析】(1)设步行速度为x米/分,则自行车的速度为3x米/分.根据题意得=+20,得x=70.经检验x=70是原方程的解,答:李明步行的速度是70米/分.(2)根据题意得++1=41<42,∴李明能在联欢会开始前赶到.17.【解析】设一次函数y=kx+b(k≠0)的图象与x轴的交点为(a,0),所以〓2〓|a|=2,解得a=〒2,所以一次函数y=kx+b(k≠0)图象与x轴的交点为(2,0)或(-2,0),把点的坐标代入函数关系式,得或解得k=〒1,所以一次函数的关系式为y=x+2或y=-x+2.18.【解析】(1)∵双曲线y=经过点A(1,2),∴k2=2.∴双曲线的关系式为y=.∵点B(m,-1)在双曲线y=上,∴m=-2,则B(-2,-1).由点A(1,2),B(-2,-1)在直线y=k1x+b上,得解得∴直线的关系式为y=x+1.(2)y2<y1<y3.(3)x>1或-2<x<0.19.【解析】(1)y=(2)设该经销商购进乌鱼x千克,则购进草鱼(75-x)千克,所需进货费用为W元.由题意得解得x≥50.由题意得W=8(75-x)+24x=16x+600.∵16>0,∴W的值随x的增大而增大,∴当x=50时,75-x=25,W最小=1400元.答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.。
【人教版】2015-2016年八年级下期中数学试卷及答案解析
【解答】 解:矩形的性质有: ① 矩形的对边相等且平行, ② 矩形的对角相等, 且都是直角,
③ 矩形的对角线互相平分、相等; 平行四边形的性质有: ① 平行四边形的对边分别相等且平行,
② 平行四边形的对角分别相
等, ③ 平行四边形的对角线互相平分;
∴矩形具有而平行四边形不一定具有的性质是对角线相等,
【点评】本题考查了矩形的性质及菱形的判定.注意掌握菱形的判定方法有三种:
① 定义:
一组邻边相等的平行四边形是菱形; ② 四边相等; ③ 对角线互相垂直平分的四边形是菱形.
9.矩形具有而一般的平行四边形不一定具有的特征(
)
A .对角相等 B.对角线相等
C.对角线互相平分 D .对边相等 【分析】举出矩形和平行四边形的所有性质, 找出矩形具有而平行四边形不具有的性质即可.
八年级(下)期中数学试卷(解析版)
参考答案与试题解析
一、选择题(每小题只有 1 个正确答案,每小题 3 分,共 30 分)
1.下列的式子一定是二次根式的是(
)
A.
B . C.
D.
【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.
【解答】解: A 、当 x=0 时,﹣ x﹣ 2< 0,
无意义,故本选项错误;
为负数,则无实数根).
2.下列二次根式中属于最简二次根式的是(
)
A.
B.
C. D.
【分析】 B、 D 选项的被开方数中含有未开尽方的因数或因式; 母;因此这三个选项都不是最简二次根式. 【解答】解:因为: B、 =4 ;
C 选项的被开方数中含有分
C、 =
;
D、
=2
;
所以这三项都不是最简二次根式.故选 A .
2015-2016学年人教版八年级下期中考试数学试题及答案
2015-2016学年人教版八年级下期中考试数学试题及答案CBA2017-2018学年下期期中考试卷八年级数学 一、精心选一选(每题3分,共24分)1. 二次根式x -1有意义,则x 的取值范围是( ) A .x >1 B .x ≥1 C .x <1 D .x ≤12. 下列各式计算正确的是( ) A .2222-=- B .aa482=(a>0)C .)9()4(-⨯-=4-9-⨯D .336=÷ 3. 如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45° D.30°4. 如图,在矩形ABCD 中,对角线AC ,BD 交于点O .已知∠AOB = 60°,AC =16,则图中长度为8的线段有( )A .2条B .4条C .5条D .6条5. 如图,小聪在作线段AB 的垂直平分线时,他是这样操作的:分别以A 和B 为圆心,大于12AB的长为半径画弧,两弧相交于C 、D ,则直线CD 即为所求.根据他的作图方法可知四边形ADBC 一定是...(. ). A .矩形 B .菱形 C .正方形 D .平行四边形6. 如图,E 、F 分别是正方形ABCD 的边CD 、AD 上的点,且CE =DF ,AE 、BF 相交于点O ,下列结论:(1)AE =BF ;(2)AE ⊥BF ;(3)AO =OE ;(4)AOB DEOFS S ∆=四边形中正确的有( )A. 4个B. 3个C. 2个D. 1个7.如图,在底面半径为2,(π取3)高为8的圆柱体上有只小虫子在A 点,它想爬到B 点,则爬行的最短路程是( )A .10B .8C .5D . 4 B AC D6458. 如图,正方形ABCD 的边长为4,P 为正方形边上一动点,沿的路径匀速移动,设P 点经过的路径长为x ,△APD 的面积是y ,则下列图象能大致反映y 与x 的函数关系的是( )二、细心填一填(每题3分,共30分)9. 若直角三角形的两直角边长为a 、b ,且满足,则该直角三角形的斜边长为 ______ .10.如图所示,菱形ABCD 中,对角线AC ,BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为24,则OH 的长等于________. 11. 实数a ,b 在数轴上的位置如图所示,则2()a b a +的化简结果为P D Bxy48816124Oxy41216884OABxy41216884Oxy41216884O____________. 12.如图,正方形ODBC 中,OC =1,OA =OB ,则数轴上点A 表示的数是 。
2015-2016学年度第二学期期中联考测试卷八年级数学参考答案
.405256三、解答题三、解答题 17.(1) 213x x -+£ …………………………………………………………1分231x x -£-………………………………………………………2分 2x -£ ………………………………………………………3分 2x ³-………………………………………………………4分(2)解不等式①得:3-³x …………………………………………………………1分解不等式②得:x < 2…………………………………………………………………………………………………………………………2分 在同一数轴上分别表示出它们的解集为在同一数轴上分别表示出它们的解集为 …………………………3分∴原不等式组的解集是23<£-x …………………………………………4分(3)原式)原式 =()24129x a a --+………………………………………………………2分=()223x a -- …………………………………………………………4分18.原式.原式 =[](1)43(1)x m m --- …………………………………………2分= (1)(73)x m m -- ………………………………………………3分∴当3, 32x m ==时,原式时,原式 =()()3317332´-´-´………………………………………… 4分 =6- ………………………………………5分19.①点B 的坐标是(-4,-3);………1分②画出△O 1A 1B 1, ………1分 点B 1的坐标是(-4,2);………1分 ③画出旋转后的△OA 2B 2,………2分 点B 2的坐标是(3,-4)。
………1分(注:每一个坐标1分,第一个画图1分,第二个画图2分,共6分,能画准确图形,坐标要准确。
)0 1 2 3 4 –1 –2 –3 –4 图7 2015-2016学年度第二学期期中联考测试卷八年级数学 参考答案一、选择题一、选择题DABCA DCCDC BB 二、填空题二、填空题13.()241x -14.6º15.2x <16DECBA20.(1)证明:∵)证明:∵ DE 垂直平分AB ,∠A=30º,∠ABC=60º∴ EA=EB ……………………1分 ∴∠ABE=∠A=30º∴∠EBC=60º —30º30º=30º=30º…………………2分 在△EBC 中,∠C=90º ,∠EBC=30º∴EB=2CE …………………3分 ∵ EA=EB ∴AE=2CE …………………4分 (2)证明:∵∠ABE=∠EBC ∴EB 平分∠ABC ………………………5分 又∵AC ⊥BC ,ED ⊥AB ∴ED=EC ………………………6分 (注:其他正确证法可类似按点给分。
期中考试】___2015-2016年八年级下期中数学试卷含答案解析
期中考试】___2015-2016年八年级下期中数学试卷含答案解析2015-2016学年___八年级(下)期中数学试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1.要使分式的值为 $-\frac{1}{2}$,则 $x$ 的值为()A。
$x=1$。
B。
$x=2$。
C。
$x=-1$。
D。
$x=-2$2.下列说法正确的是()A。
对角线互相垂直的四边形是菱形B。
对角线相等的四边形是矩形C。
三条边相等的四边形是菱形D。
三个角是直角的四边形是矩形3.运用分式的性质,下列计算正确的是()A。
$\frac{3}{4} \div \frac{6}{5} = \frac{5}{8}$。
B。
$\frac{2}{3} \div \frac{1}{4} = \frac{1}{6}$。
C。
$\frac{5}{6} \times \frac{1}{4} = \frac{5}{24}$。
D。
$\frac{2}{3} + \frac{3}{4} = \frac{17}{12}$。
4.一个凸五边形的内角和为()A。
$360^\circ$。
B。
$540^\circ$。
C。
$720^\circ$。
D。
$900^\circ$5.根据下列表格对应值,判断关于 $x$ 的方程$ax^2+bx+c=0$($a\neq 0$)的一个解 $x$ 的取值范围为()begin{array}{|c|c|}hlinex & ax^2+bx+c \\hline1.1 & -0.59 \\hline1.2 & 0.84 \\hline1.3 &2.29 \\hline1.4 & 3.76 \\hlineend{array}A。
$-0.59<x<0.84$。
B。
$1.1<x<1.2$。
人教版2015-2016学年第二学期期中八年级数学试卷
人教版2015-2016学年第二学期期中质量检测八年级数学试卷(本试卷共三个大题,25个小题,时间90分钟,满分100分)一、精心选一选(本大题共10小题,每小题2分,共20分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内.1.若分式13+x 有意义,则x 的取值范围是…………………………………………【 】 A .x =0 B . x ≠0 C .x ≠1 D .x ≠-12.反比例函数xy 3-=的图象在…………………………………………………【 】A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限 3.下列图形不是轴对称图形的是……………………………………………………【 】 A .平行四边形 B.矩形 C.菱形 D.等腰梯形4.□ABCD 对角线AC 、BD 交于O 点,若AC =6cm ,BD =10cm ,则AB 的长可能是…………【 】A.10cmB. 9cmC.7cmD.2cm5.若O 是四边形ABCD 对角线的交点,且OA =OB =OC =OD ,则四边形ABCD 是…………【 】 A .平行四边形 B .矩形 C .正方形 D .菱形6.菱形的两条对角线长分别是6和8,则此菱形的边长是…………………………【 】 A .6 B .8 C .5 D .107.顺次连接等腰梯形各边中点所得四边形是……………………………………… 【 】 A .等腰梯形 B .菱形 C .矩形 D .正方形8.有8个数的平均数是11,还有12个数的平均数是12,则这20个数的平均数是【 】 A. 11.6 B. 232 C. 23.2 D. 11.59.小丽服装店对上个月各种型号的服装销售数量进行统计分析后,决定在这个月的进货中多进某种型号服装,此时小丽应重点参考……………………………………… 【 】 A.众数 B.平均数 C.加权平均数 D.中位数10.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为…………………………………………【】A.8,9 B. 8.5,8 C. 8,8 D.8.5,9二、细心填一填(本大题共8小题,每小题3分,共24分)把答案直接写在题中的横线上.11.在□ABCD中,∠A+∠C=240°,∠C= .12.甲、乙两个样本的容量相同,甲样本的方差为0.102,乙样本的方差是0.06,那么的波动大 .(填“甲”或“乙”)13.如图,DE是△ABC的中位线,若BC=12,则DE= .14.是对角线AC A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是_______.15.如图,在正方形ABCD中,E是对角线BD上任意一点,过E作EF⊥BC于F,作EG⊥CD 于G,若正方形ABCD的周长为12,则四边形EFCG的周长为.16.如图,在正方形ABCD内取一点M,若△MAB是等边三角形,则∠ADM的度数是.17.一组数据1,2,3,x的极差是6,则x的值是 .18.平面直角坐标系中,四边形OABC是矩形,点A(10,0),点C(0,4),点D是OA的中点,点P是BC边上的一个动点,当△POD是等腰三角形时,点P的坐标是_ __.EDCBAMD CBA三.专心解一解(本题满分56分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.19.(本题满分7分)已知:如图,在正方形ABCD 中,AE ⊥BF ,垂足为P ,AE 与CD 交于点E ,•BF •与AD 交于点F .求证:AE=BF .20.(本题满分7分)如图,四边形ABCD 是平行四边形,点A (1,0),B (3,1),C (3,3).反比例函数y =xm(x >0)的图象经过点D ,点P 是一次函数y =kx +3-3k (k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式.(2)通过计算,说明一次函数y =kx +3-3k (k ≠0)的图象一定过点C .如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图. 教练组规定:体能测试成绩70分以上(包括70分)为合格. ⑴请根据图中所提供的信息填写下表: ⑵请从下面两个不同的角度对运动员 体能测试结果进行判断:① 依据平均数与成绩合格的次数比较甲和乙, 的体能测试成绩较好; ② 依据平均数与中位数比较甲和乙, 的体能测试成绩较好.⑶依据折线统计图和成绩合格的次数, 分析哪位运动员体能训练的效果较好.22.(本题满分8分)如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F .请你猜想DE 与DF 的数量关系,并证明你的猜想.当今,青少年视力水平下降已引起全社会的关注,为了解某市30000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的频数分布直方图如下:解答下列问题:(1)本次调查共抽测了多少名学生?(2)参加抽测学生的视力众数在哪一组范围内?中位数在哪一组范围内?(3)若视力为4.9及以上为正常,试估计该市学生的视力正常的人数约为多少?24.(本题满分9分)如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,AC=18,求DM的长。
2015-2016学年八年级(下)期中数学试卷含答案解析
=﹣4C.
=×
4.如图,直角三角形的三边长分为 a、b、c,下列各式正确的是(
D. ﹣ = )
A.a2+b2=c2 B.b2+c2=a2 C.c2+a2=b2 D.以上都不对 5.一个直角三角形的两边长分别为 4cm、3cm,则第三条边长为( ) A.5cm B.4cm C. cm D.5cm 或 cm 6.下列各组数中不能作为直角三角形的三边长的是( ) A.1.5,2,3 B.7,24,25 C.6,8,10 D.9,12,15 7.如图,在▱ABCD中,已知 AD=5cm,AB=3cm,AE平分∠BAD交 BC边于点 E,则 EC等于( )
A.1cm B.2cm C.3cm D. 4cm 8.菱形具有而矩形不具有的性质是( ) A.对角线互相平分 B.四条边都相等 C.对角相等 D.邻角互补 9.两条对角线互相垂直平分且相等的四边形是( ) A.矩形 B.菱形 C.正方形 D.都有可能 10.如图,在矩形 ABCD中,AB=8,BC=4,将矩形沿 AC折叠,点 D 落在点 D′处,则重叠部分△
【解答】解:∵式子
有意义,
∴x﹣5≥0,解得 x≥5.
故选 C. 【点评】本题考查的是二次根式有意义的条件,熟知二次根式中的被开方数是非负数是解答此题的
关键.
2.下列二次根式中,属于最简二次根式的是( )
A. B.
C. D.
【考点】最简二次根式. 【分析】根据最简二次根式的条件进行判断即可. 【解答】解: = ,被开方数含分母,不是最简二次根式;
2015-2016 学年八年级(下)期中数学试卷 参考答案与试题解析
一、选择题(本题共 10 小题,每小题 3 分,共 30 分)
1.使式子
2015--2016八年级下册数学期中测试卷及答案
2015—2016学年度第二学期期中考试初二数学试题 (I 卷)一、选择答案:(每题3分,共30分)1、下列二次根式中,属于最简二次根式的是( ) A .21B . 8.0C . 4D . 52、有意义的条件是二次根式3 x ( ) A .x>3 B. x>-3 C. x ≥-3 D.x ≥33、正方形面积为36,则对角线的长为( ) A .6 B. C .9 D.4、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为( )A. 12B. 10C. 7.5D. 55、如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( ) A.12 B. 24 C. 312 D. 3166、下列条件中 能判断四边形是平行四边形的是( )(A ) 对角线互相垂直(B )对角线相等(C )对角线互相垂直且相等(D )对角线互相平分7、如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于( )(A)1cm (B)2cm (C)3cm (D)4cm8、如图,菱形ABCD 中,E 、F 分别是AB 、AC的中点,若EF =3,则菱形ABCD 的周长是( )A .12B .16C .20D .249、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ).A .6B .8C .10D .1210、如图,正方形ABCD 中,AE =AB ,直线DE 交 BC 于点F ,则∠BEF =( ) A .45° B .30° C .60° D .55°A B CD F D ’2015—2016学年度第二学期期中考试初二数学试题 (II 卷)11、ABCD 中一条对角线分∠A 为35°和45°,则∠B= __ 度。
2015-2016学年第二学期期中八年级数学试卷
八年级数学第1页 共2页 2015-2016学年第二学期期中试卷 八年级 数学 座位号一、选择题(本题共有15小题,每小题4分,共60分) 1.下列各式由左边到右边的变形中,是分解因式的为( ) A .()a x y ax ay +=+ B .211(1)x x x x x +-=+- C . 21055(21)x x x x -=- D .2()1634)43(x x x x x -+=-++ 2.下列说法不一定成立的是( ) A .若a >b ,则a+c > b+c B .若a+c > b+c ,则a >b C . 若a >b ,则ac 2 > bc 2 D .若ac 2 > bc 2,则a >b 3.用提取公因式法将多项式4a 2b 3-8a 4b 2+10a 3b 分解因式,得公因式是( ) A .2a 2b B .2a 2b 2 C .4a 2b D .4ab 2 4.下列命题是真命题的是( ) C . 三角形的一个外角等于两个内角的和 B .如果a >b ,那么ac > bc C .一组数据4,2,3,5,7的中位数是3 D .平行四边形的对角线互相平分 5. 如图,在□ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是( ) A .AB ∥CD B .AB =CD C .AC =BD D .OA =OC 6.如图,△ABC 中,AB =AC ,点D 是BC 边上的中点,点E 在AD 上,那么下列结论不一定正确的是( ) A .AD ⊥BC B .∠EBC =∠ECB C .∠ABE =∠ACE D .AE =BE 7.如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( ) A .3.5 B .4 C .7 D .14 8.如图,等腰△ABC 中,AB =AC =8,BC =5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为( ) A .13 B .14 C .15 D .16 9.已知△ABC 中,AB =AC ,∠B =50°,则∠C 的度数为() A .65° B .50° C .80° D .50°或65° 10.不等式组10420x x -≥⎧⎨->⎩的解集在数轴上表示为() C . B . C . D . 11.如图,矩形ABCD 中,∠AOD =120°,AB=3,则BD 的长是( ) A . B .6 C .4 D . 12.关于x 的不等式组1x a x >⎧⎨>⎩的解集为x>1,则a 的取值范围是( ) A .a >1 B .a <1 C .a ≥1 D .a ≤1 13.同一直角坐标系中,一次函数11y k x b =+与正比例函数22y k x =的图象如图所示,则满足y 1≥y 2的x 取值范围是() A .x ≤-2B .x ≥-2C .x <-2 D .x >-2 14.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC =45°,OCB 的坐标为( ) A .1) B .(1)C .+1,1) D .(1+1) 15.如图,点O 是矩形ABCD的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE 的长为( ) A. B C D .6 二、填空题(本题共有5小题,每小题4分,共20分)学校:_____________班级:_____________姓名:_____________ 学号:_____________八年级数学第2页 共2页 16.分解因式:26mx my -= ;21×3.14+79×3.14= .17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,若BC =10,则DE = .18.如图,过正方形ABCD 的顶点B 作直线l ,过A 、C 两点分别作直线l 的垂线,垂足分别为E 、F .若AE =1,EF =2,则BC的长度为 .19.若关于x 的方程2337x m x +-=+的解为不大于2的非负数,则m 的取值范围是 .20.如图,等腰直角三角形ABC 中,∠C =90°,AD 为∠CAB 的平分线,DE ⊥AB 于E ,AC =4,则△BDE 的周长为 .三、解答题(本题共有8小题,共70分)21.(12分)解下列不等式(组)并将解集在数轴上表示出来:(1)2752x x ->- (2)2(4)513(2)x x --<-- (3)3(2)4,1213x x x x --≥⎧⎪+⎨>-⎪⎩ 22.(13分)把下列各式因式分解: (1)因式分解:222xy x y -- (2)因式分解:4233ax ay - (3)已知123x y -=,xy=2,求43342x y x y - 23.(5分)如图,点C 、D 为∠AOB 内的两点,求作一点P ,使PC =PD ,且P 到OA 、OB 的距离相等.(不写作法,保留作图痕迹) 24.(8分)把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本.这些书有多少本?学生有多少人? 25.(7分)如图,四边形ABCD 是平行四边形,点E 、F 分别为AD 、BC 边上的点,且AE =CF . 求证:(1)△ABE ≌△CDF ; (2)四边形BEDF 是平行四边形. 26. (8分)已知:如图,AE ∥BF ,AC 平分∠BAD ,交BF 于点C ,BD 平分∠ABC ,交AE 于点D ,连接CD . 求证:四边形ABCD 是菱形. 27. (8分)某公司计划组装A 、B 两种健身器材共40件,组装一套A 需甲7个、乙4个,B 需甲3个、乙6个,公司有甲220个、乙194个.(1)公司在组装A 、B 两种器材时,共有几种组装方案?(2)组装一套A 需20元,一套B18元,求组装最少费用是多少?是哪种方案?28. (9分)如图,在四边形ABCD 中,E 、F 分别为对角线BD 上的两点,且BE =DF .(1)若四边形AECF 是平行四边形,求证:四边形ABCD 是平行四边形;(2)若四边形AECF 是菱形,则四边形ABCD 是菱形吗?请说明理由?(3)若四边形AECF 是矩形,则四边形ABCD 是矩形吗?不必写出理由.。
2015—2016学年度第二学期八年级数学期中考试试题
2015-2016学年度第二学期八年级期中考试数 学 试 题(分值:120分 考试时间:120分钟)一、选择题(每小题3分,共36分),,A .6B .C .9D .4. □ABCD 中,∠A:∠B =1:2,则∠C 的度数为( ).A .30°B .45°C .60°D .120°5. 下列说法中正确的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直且相等的四边形是正方形D .两条对角线互相平分的四边形是平行四边形6 如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是( ) A .12 B .16 C .20 D .247、 如图,正方形ABCD 中,以对角线AC 为一边作 菱形AEFC ,则∠FAB 等于( ) A .22.5° B .45° C .30° D .135°8、 如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于A.1cmB.2cmC.3cmD.4cm7题 8题 9题9、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ).A .6B .8C .10D .12 10 能判定四边形ABCD 为平行四边形的条件是( )A 、AB ∥CD ,AD=BC; B 、∠A=∠B ,∠C=∠D;C 、AB ∥CD ,∠C=∠A; D 、AB=AD ,CB=CD6题A B C D F D’11 等腰三角形的一腰长为13,底边长为10,则它的面积为( )A.65B.60C.120D.13012.先化简再求值:当a=9时,求221a a a +-+的值,甲乙两人的解答如下:甲的解答为:原式1)1()1(2=-+=-+=a a a a ;乙的解答为:原式1712)1()1(2=-=-+=-+=a a a a a .在两人的解法中( )A .甲正确B .乙正确C .都不正确D .无法确定。
安徽省宁国市D片2015-2016学年八年级下学期期中联考数学试题(解析版)
安徽省宁国市D 片2015-2016学年八年级期中联考数学试题一、选择题(30分)1.x 取什么值时,x +4有意义( )A .4->xB .4-<xC .4-≥xD .4-≤x【答案】C【解析】试题分析:要使二次根式有意义,则必须满足二次根式的被开方数为非负数.考点:二次根式的性质2.下列式子中,属于最简二次根式的是( ) A.9 B.7 C. 20 D.31 【答案】B【解析】试题分析:最简二次根式是指不能继续化简的二次根式.A 、原式=3;B 、不能继续化简;C 、原式=25;D 、原式=33. 考点:最简二次根式3.已知三角形两边长分别为2和9,第三边的长为一元二次方程错误!未找到引用源。
的一根, 则这个三角形的周长为( )A.11B.17C.17或19D.19【答案】D【解析】试题分析:将方程化简可得:(x-6)(x-8)=0,解得:x=6或x=8,当第三边为6时不能构成三角形,则三角形的三边长为2、8和9,则三角形的周长2+8+9=19.考点:(1)、解一元二次方程;(2)、三角形的三边关系4.关于x 的一元二次方程0632=+-m x x 有两个不相等的实数根,则m 的取值范围是 ( )A.3>mB. 3≥mC. 3<mD. 3≤m【答案】C【解析】试题分析:对于三角形的根的判别式△=ac b 42-,当△ 0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△ 0时,方程没有实数根.根据题意可得:36-12m 0,解得:m 3. 考点:一元二次根的判别式5.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )A. 5个B. 6个C. 7个D. 8个 【答案】C【解析】试题分析:设参赛球队的数量为x ,则根据题意可得:2)1(-x x =21,解得:x=7或x=-6(舍去),即参赛球队的数量为7个.考点:一元二次方程的应用6.如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 ( )A .8米B .10米C .12米D .14米【答案】B【解析】试题分析:连接两棵树的顶点,然后利用勾股定理可得:小鸟飞行的长度=22)410(8-+=10米. 考点:勾股定理7.能使等式 33-=-x x x x 成立的条件是( )A. x>0B. x ≥3C. x ≥0D. x>3【答案】D【解析】 试题分析:要使二次根式b a b a =成立,则必须满足0≥a 且0 b . 考点:二次根式的性质8.方程09622=--x x 的二次项系数,一次项系数,常数项分别为( ) .A .6;2; 9B .2; -6;-9C .2; -6; 9D .-2; 6;9【答案】B【解析】试题分析:对于一元二次方程c bx ax ++2=0,则a 为二次项系数,b 为一次项系数,c 为常数项.则根据题意可得:二次项系数为2,一次项系数为-6,常数项为-9.考点:一元二次方程各系数 9.用换元法解方程:322222=-+-x x x x 时,若设y x x =-22,并将原方程化为关于y 的整式方程,那么这个整式方程是( )A .0232=+-y yB .0232=--y yC .0232=++y yD .0232=-+y y 【答案】A【解析】 试题分析:根据题意可得:y x x 2222=-,则原方程可变形为:y+y2=3,两边同时乘以y 可得:2y +2=3y ,即2y -3y+2=0.考点:方程的变形10.已知a<b ,化简二次根式b a 3-的正确结果是( ).A .ab a --B .ab a -C .ab aD .ab a -【答案】A【解析】试题分析:根据题意可得:0 a ,0 b ,则原式=ab a ab a a ab --=-=∙-2.考点:二次根式的化简 二、填空题(24分)11.已知关于x 的一元二次方程032=--x x的两个实数根分别为βα,,则=++)3)(3(βα_____ 【答案】9【解析】 试题分析:根据韦达定理可得:a b -=+βα=1,ac =∙βα=-3,则原式=αβ+3α+3β+9=αβ+3(α+β)+9=-3+3+9=9.考点:韦达定理12.一个直角三角形的两条直角边的和为6cm ,面积为错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁国市初中D 片15—16年度第二学期四校期中联考八年级数学学科试卷
1、x 取什么值时,x +4有意义( ) A .4->x B .4-<x C .4-≥x D .4-≤x
2、下列式子中,属于最简二次根式的是( )
A.9
B.7
C. 20
D.
31 3、已知三角形两边长分别为2和9,第三边的长为一元二次方程
的一根, 则这个三角形的周长为( )
A.11
B.17
C.17或19
D.19
4、关于x 的一元二次方程0632=+-m x x 有两个不相等的实数根,则m 的取值范围是
( )
A.3>m
B. 3≥m
C. 3<m
D. 3≤m
5、要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是( )
A. 5个
B. 6个
C. 7个
D. 8个
6、如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行 ( )
A .8米
B .10米
C .12米
D .14米
7、能使等式 33-=-x x x x 成立的条件是( )
A. x >0
B. x ≥3
C. x ≥0
D. x >3
8、方程09622=--x x 的二次项系数. 一次项系数. 常数项分别为( ) .
A .6;2; 9
B .2; -6;-9
C .2; -6; 9
D .-2; 6;9
9、用换元法解方程:32
2222=-+-x x x x 时,若设y x x =-22,并将原方程化为关于y 的整式方程,那么这个整式方程是( )
A .0232=+-y y
B .0232=--y y
C .0232=++y y
D .0232=-+y y
10、已知a<b ,化简二次根式b a 3-的正确结果是( ).
A .ab a --
B .ab a -
C .ab a
D .ab a -
二、填空题(24分)
11、已知关于x 的一元二次方程032=--x x 的两个实数根分别为βα,,则
=++)3)(3(βα________
12、一个直角三角形的两条直角边的和为6cm ,面积为
,则这个三角形的斜边的
长为 cm.
13、在实数范围内分解因式2210x -=
14、观察下列各式: 312311=+; 413412=+; 5
14513=+……,请你将猜想到的规律用含有自然数n (n≥1)的代数式表达出来
15、已知一个直角三角形的三边是三个连续的偶数,则它的三边为 .
16、写出一个以―5和3为根的一元二次方程,且它的二次项系数为1,
此方程是 .
17、若2<m<8,化简:(2-m)2 -(m-8)2 =___________
18、放学以后,萍萍和晓晓从学校分手,分别沿东南方向和西南方向回家,若萍萍和晓晓行走的速度都是40米/分,萍萍用15分钟到家,晓晓用20分钟到家,萍萍家和晓晓家的距离为 .
三、计算题(18分)
19、210x x +-= 20、02)1(3)1(2=++-+x x
21
22、
2
3
27
)3
(
)3
(
3
3
2-
+
-
+
+
-π
四、解答题
23、(8分)若
11
x=-是方程250
x mx
+-=的一个根,求m的值及方程的另一个根
2
x.24、(10分)在ABC
∆中,点D是直线BC上的一点,已知15,12,13,9.
AB AD AC BD
====
求线段BC的长.
25、(10分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具。
某运动商城的自行车销售量自2015年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆。
(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?
(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆。
根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8
倍。
假设所进车辆全部售完,为使利润最大,该商城应如何进货?
八年级期中考试数学参考答案:
1、C
2、B
3、D
4、C
5、C
6、B
7、D
8、B
9、A 10、A
11、9 12、22 13、2(x x 14、()21121++=++n n n n 15、6 、8、10 16、.x ²+2x-15=0 17、2m -10 18、1000米
19、1x = 2x = 20、x 1=0 x 2=1 21、4
23. 25x = 4m =- 24、当D 点在线段BC 上时,BC=14,当D 点在线段BC 延长线上时,BC=4
25、(1)、125辆 (5分)
(2)、当A 型车进34辆,B 型车进13辆时,利润最大。
(5分)。