2020版高考数学(理科数学)刷题小卷练1(含解析)
2020年高考数学(理)必刷试卷1(解析版)
2020年高考必刷卷(新课标卷)01数学(理)(本试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡的相应位置上。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其它答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷(选择题)一、单选题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i 为虚数单位,若复数()13i z i -=-,则z =( )A .1B .1-C D .2或1【答案】C 【解析】分析:根据表达式得31iz i-=-,化简可求得2z i =+,根据模的定义即可求得z 。
详解:()()()()313111i i i z i i i -+-==--+ 4222ii +==+所以z ==所以选C点睛:本题考查了复数的简单运算和模的定义,化简过程中注意共轭复数和符号的变化,是简单题。
2.若集合{}|11A x x =-<<,{}2|log 1B x x =<,则 A B =I ( )A .(11)-,B .(01),C .(12)-,D .(0)2,【答案】B 【解析】集合{}|11A x x =-<<,{}2|log 1B x x =<=()0,2故得到()01A B ⋂=,故答案为:B 。
3.若椭圆2231x ky += 的一个焦点的坐标是()0,1,则其离心率等于( )A .2B ..12C .D 【答案】D 【解析】依题意可知,b=13 ,a=1k =1, ∴e=c a 故选B .点睛:根据题意可知a 和b ,进而根据c ,进而根据e=ca求得e . 4.2019年庆祝中华人民共和国成立70周年阅兵式彰显了中华民族从站起来、富起来迈向强起来的雄心壮志.阅兵式规模之大、类型之全均创历史之最,编组之新、要素之全彰显强军成就.装备方阵堪称“强军利刃”“强国之盾”,见证着人民军队迈向世界一流军队的坚定步伐.此次大阅兵不仅得到了全中国人的关注,还得到了无数外国人的关注.某单位有10位外国人,其中关注此次大阅兵的有8位,若从这10位外国人中任意选取3位做一次采访,则被采访者中至少有2位关注此次大阅兵的概率为( )A .715B .1315C .1415D .2930【答案】C 【解析】【分析】至少有2位关注此次大阅兵的对立事件为恰有2位不关注此次大阅兵,根据对立事件的概率公式计算概率. 【详解】解:从这10位外国人中任意选取3位做一次采访,其结果为310120C =个,恰有2位不关注此次大阅兵有21288C C =个,则至少有2位关注大阅兵的概率212831014115C C P C =-=. 故选:C 【点睛】本题考查排列组合的应用与古典概型,考查运算求解能力,属于基础题.5.正方体ABCD -A 1B 1C 1D 1中,E 是棱AB 上的动点,则直线A 1D 与直线C 1E 所成的角等于 ( ) A .60° B .90°C .30°D .随点E 的位置而变化【答案】B 【解析】∴A 1D ∴AB ,A 1D ∴AD 1,1AB AD A =I , ∴A 1D ∴平面AD 1C 1B , 又1C E ⊂平面AD 1C 1B , ∴A 1D ∴C 1E .∴直线A 1D 与直线C 1E 所成的角等于90°.选B . 6.已知tanα=–2,则212sin sin cos 45ααα+的值为( ) A .125B .257C .725D .2517【答案】A 【解析】tan 2α=-Q ,所以原式222221212sin +sin cos tan +tan 4545==sin +cos tan +1αααααααα()124+2145==4+125⨯⨯- ,故选A. 7.在平行四边形ABCD 中,4AB =,1AD =,60BAD ∠=︒,DE DC λ=u u u r u u u r ,29AE DB ⋅=u u u r u u u r,则λ=( )A .12B .14C .47D .34【答案】B 【解析】 【分析】根据向量的线性运算及向量的数量积计算可得. 【详解】解:4AB =Q ,1AD =,60BAD ∠=︒,DE DC λ=u u u r u u u r,29AE DB ⋅=u u u r u u u rAE AD DE AD AB λ∴=+=+u u u r u u u r u u u r u u u r u u u r ,DB AB AD =-u u u r u u u r u u u r ()()AE DB AD DE AB AD ∴⋅=+⋅-u u u r u u u r u u u r u u u r u u u r u u u r()()AD AB AB AD λ=+⋅-u u u r u u u r u u u r u u u r()221AD AB AB AD λλ=-++-⋅u u u r u u u r u u u r u u u r()9161114cos601412λλλ=-+-⨯⨯⨯︒=+=,所以14λ=.故选:B 【点睛】本题考查平面向量的数量积,考查运算求解能力,属于基础题.8.三世纪中期,魏晋时期的数学家刘徽利用不断倍增圆内接正多边形边数的方法求出圆周率的近似值,首创“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的程序框图,则输出的n 值为( )(参考数据:7.50.1305,150.2588sin sin ≈≈o o )A .6B .12C .24D .48【答案】C 【解析】 【分析】根据程序框图运行程序,直到满足 3.10s ≥时输出结果即可. 【详解】按照程序框图运行程序,输入6n =则3sin 60s ==o 3.10s ≥,循环; 12n =,6sin 303s ==o ,不满足 3.10s ≥,循环;24n =,12sin15 3.1056s =≈o ,满足 3.10s ≥,输出结果:24n =本题正确选项:C 【点睛】本题考查根据程序框图循环结构计算输出结果,关键是能够准确判断是否满足输出条件,属于基础题.9.已知函数()2cos f x x =-,若将曲线()2y f x =向左平移12π个单位长度后,得到曲线()y g x =,则不等式()1g x …的解集是( )A .()5,124k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ B .()3,124k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()37,84k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()52,262k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】A 【解析】 【分析】根据三角函数的变换规则求得()g x 的解析式,再根据余弦函数的性质解不等式即可. 【详解】解:将曲线()2y f x =向左平移12π个单位长度后,得到曲线2cos 26y x π⎛⎫=-+ ⎪⎝⎭,则()2cos 26g x x π⎛⎫=-+ ⎪⎝⎭.由()1g x „,得2cos 216x π⎛⎫-+⎪⎝⎭„,得1cos 262x π⎛⎫+- ⎪⎝⎭…,则22222363k x k πππππ-++剟,()k Z ∈,得()5124k x k k ππππ-+∈Z 剟. 故选:A 【点睛】本题考查三角函数的图象及其性质,考查推理论证能力与运算求解能力. 10.现有三条曲线:∴曲线22x y e =-;∴曲线2sin y x =;∴曲线32y x x =--.直线2y x =与其相切的共有( ) A .0条 B .1条 C .2条 D .3条【答案】D 【解析】 【分析】分别求出函数的导数,根据导数的几何意义一一判断. 【详解】解:若()2e 2x f x =-,则由()2e 2xf x '==,得0x =,点()0,0在直线2y x =上,则直线2y x=与曲线22xy e =-相切;若()2sin f x x =,则由()2cos 2f x x '==,得()2x k k =π∈Z ,当0k =时0x =,点()0,0在直线2y x =上,则直线2y x =与曲线2sin y x =相切;若()32f x x x =--,则由()2312f x x '=-=,得1x =±,其中()1,2--在直线2y x =上,所以直线2y x =与曲线32y x x =--相切.故选:D 【点睛】本题考查导数的几何意义,考查逻辑推理与数学运算的核心素养,属于基础题.11.设双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,直线l :()ay x c b=-与双曲线C 在第一、三象限的渐近线的交点为P ,若12PF PF ⊥,则双曲线的离心率为( ) AB .2CD【答案】B 【解析】由题可知双曲线C 在第一、三象限的渐近线方程为,by x a=联立方程组 2222222222,,,(,()by xa c abc a c abc ax y P a a b a b a b a b y x c b⎧=⎪⎪∴=∴=∴⎨----⎪=-⎪⎩),设点O 为坐标原点,由12PF PF ⊥A 可知22222212222|,|.()(),a c abc OP OF c OP c c a b a b ==∴=∴+=-- 化简得4222222222222(3,3,4, 2.a a b a b a b a c a a c e +=-∴=∴=-∴=∴=),故选B. 12.已知函数()f x 为偶函数,当0x ≥时,()242x x x xf x =-,则( )A .()()()0.20.329.13f f f --->>B .()()()0.30.239.12f f f -->>-C .()()()0.30.2239.1f f f --->>D .()()()0.20.39.132f f f -->>-【解析】 【分析】 令()()1022xx g x x =-…,则()()()214f xg x =-,对()g x 求导,分析其单调性, 再根据指数函数的性质比较0.29.1-,0.33-的大小关系,根据函数的单调性判断大小/. 【详解】解:()221142224x x x x x x f x ⎛⎫=-=-- ⎪⎝⎭,令()()1022x x g x x =-…,()1ln 22xx g x -'=. 当20log e x <„时,()0g x '>,()g x 单调递增; 当2log e x >时,()0g x '<,()g x 单调递减. 因为()()120g g ==,所以当01x <„时,()0g x <,且()g x 单调递增. 又0.20.20.40.309.19331----<<-<<,所以()()()0.20.29.1310g g g --<<<,()()()214f x g x =-Q 在(),0-∞上单调递减,且()min 14f x =- ()()()21122244f f g -==-=-Q故()()()0.20.29.132f f f -->>-.故选:D 【点睛】本题考查函数的综合应用,考查数学抽象与逻辑推理的核心素养,属于难题.第Ⅱ卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分。
2020年高考_理科数学模拟试卷(含答案和解析)
【高仿咫卷•理科数学 笫1页(共4页)】2020年普通高等学校招生全国统一考试高仿密卷理科数学注意事项:L 本卷满分150分,考试时间120分钟.答题前,先将自己的姓名、准考证号 厦写在试题卷和答题卡上,并将准考证号条影码粘贴在答勉卡上的曲 定位JL 。
2.选择题的作答:每小题选出答案后•用2B 铅爸把答题卡上对应题目的答案 标号涂浜,写在试晦卷、草稿纭和答题卡上的非答题区域均无殁°3,非选释题的作答:用签字名直报答在卷麴卡上对应的答意区域内。
客在试 场卷、草稿纸和答邈卡上的非答邈.区域均无效。
4.选考题的作冬:先把所选题目的期号在笔超卡上指定的位置用2B 铅笔涂耍.至案写在答题卡上 对应的冬题区域内,写在试题卷、草稿纸和答题卡上的非答麴区域均无效. 5,考试结束后,请将本试四卷和答题于一并上交,一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要 求的61.已知复数2=~<i 为虚数单位八则|片十2| = £ 1 A.ZB.75D.HH IgGr-DV1卜廿二《衣|2炉一9父+4t0},则AD 《C RB>=A. (1,4)B. (y.4)C. (4J + /I^)D. (1,14-710)2 .已知集合A={3 .已知向量:%。
则“E| =㈤"是口一2川=12。
一加”的 A.充分不必要条件 C,充要条件B.必鬟不充分条件 口既不充分也不必要条件4 .我国古代名著仪孙子算经》中有如卜有趣的问题广今有三女,长女五日一归,中女四日一归•少女三日一归.问三女何n 相会之意思是「一家有三个女儿郴已出嫁.大女儿五天回一次娘家9二女儿四天回一 次娘家,小女儿三天回一次娘家,三个女儿从娘冢同一天走后•至少再隔多少天三人可以再次在娘家相 会?:三人再次在娘家相会■则要隔的天数可以为A. 90 天C. 270 天S.执行如图所示的程序框图,则输出S 的值为B. 180天B. 2 020 *2 019 2Q21 '2 020n 2 020I I ------- 276.已知等差数列{。
2020版高考数学(理)刷题小卷练 1 Word版含解析
刷题增分练集合的概念与运算刷题增分练①小题基础练提分快一、选择题.[·全国卷Ⅱ]已知集合={},={},则∩=( ).{} .{}.{} .{}答案:解析:∩={}∩{}={}.故选..[·全国卷Ⅰ]已知集合={-->},则∁=( ).{-<<} .{-≤≤}.{<-}∪{>} .{≤-}∪{≥}答案:解析:∵-->,∴ (-)(+)>,∴>或<-,即={>或<-}.在数轴上表示出集合,如图所示.由图可得∁={-≤≤}.故选..[·河南质检]已知全集={},集合={},={},则∩(∁)=( ).{} .{}.{} .{}答案:解析:因为∁={},所以∩(∁)={}.故选..[·武邑调研]已知全集=,集合={<<,∈}和={-<<,∈}关系的图如图所示,则阴影部分所表示集合中的元素共有( ).个.个.个.无穷多个答案:解析:因为={<<,∈},所以∁={≤或≥}.题图中阴影部分表示的集合为(∁)∩={-<≤,∈}={-,-,-,},故该集合中共有个元素.故选..[·惠州调研]已知集合={-},={=,∈},则∁=( ).{} .{-}.∅.{-}答案:解析:∵={=,∈}={},∴∁={-},故选..[·河北联考]已知集合={<},={--<},则( ).∩={<} .∪=.∪={<} .∩={-<<}答案:解析:∵--<,∴-<<,∴={-<<},∴∪={<},∩={-<<},故选..[·赣州模拟]已知集合={-≤≤},={<},则∩=( ).{<<}.{<≤} .{<≤}答案:解析:∵-≤≤,∴≤≤,∴=.由<知<,∴={<},∴∩=.故选..[·广西模拟]已知全集=,集合={(-)(+)≥},={-≤≤},则(∁)∩=( ) .[-,-] .[-].[-) .[]答案:解析:因为全集=,集合={(-)(+)≥}={≤-或≥},所以∁={-<<}.又={-≤≤},所以(∁)∩=[-).故选.二、非选择题.已知集合={,},={,},若∩=,则=.答案:或解析:∵∩=,∴⊆,∴=或=,解得=,=(舍去)或=..[·南昌模拟]已知集合={},={(,)∈,∈,+∈},则集合的子集的个数为.答案:解析:∵集合={},集合={(,)∈,∈,+∈},∴={(),(),()},∴集合有个元素,∴集合的子集个数为=..[·石家庄质检]已知集合={-<<},={=(-)},则∩(∁)=.答案:(-]解析:由题意得={=(-)}=(,+∞),∴∁=(-∞,],∴∩(∁)=(-]..[·辽宁联考]已知集合={-->},={≥},∪=,则的取值范围是.答案:(-∞,-]。
2020年全国高考理科数学模拟试卷及答案解析
2020 国1⅛二模拟考试(T数学(理科)吋⅛J2O 分绅满分:巧。
分注言舉项:I •答题讯卽f∙∙务必4⅞ΠL 1的孙名、纲'•;"C 舍!⅛∣∙.∙ Vr √Zll 存选择题时•閨Ii 毎小S8养案蹄•川那S 把?;収甘IF M 迪[I 的祥案标号济黒Tli 阪越•川 橡皮按I 净圧・肉•涂选口他答案标θv m IN 逸择越时•将谷案冯在答題P 上吗在木试卷I xXie ;3•号试酷JKvh 籽不试卷和袴題k •并交柯 一、选择題(本題共I?小题,勺小題,分,共胡分•在超小題给出的四个选项中,只有一项足符合题目实 求的)L LL 加 U ;存 M-;・F |/ .Lg0; .N= {j IOO<3} •则 Mn λ 一 Λ.<-2.2> Ik ((>∙3) C. (0,2) 2. & i 为除数单位•苦复数=满足二∙ (2-i> = 3-5i.则复数7的甫部为 \ 1 l λ i C. -2 S. L LΛI<∕ log. 2.Λ 3 Y lug.2.则i.我们軽 肉心率,一叫1的Wm 叫优关桶岡•下列納论正确的个数足① 个焦点、•个R 潮闻也打•个K 轴顶点构成宜角•侑形的Ifim 是优羌桶伽②划轴KqK 紬KIK- l∙3> ( )∣λ 2i ( )∣λ^(<u之匕为汙1的榔圓是优IH⅜hb WJ■V" √⅛-ι楚・优艾・WIH: 0;佐IH i •知轴K 、K 轴K 成等It欽列的的IffiI 列定ItXIffiIMl ・5•我尺传统丈化中彳M F 地支之说•夭干为“叭乙•丙.几戊上•决•汉T:.^. HJIHlLz./HfW 木•IJKUy-I 1L Γ7∏r4S 火•归南方•戊、t:•归屮央•决•辛Ti 行换金∙l⅛艸力• 1\癸IlfrFX 水4 北方•血犬Γ L 个/中随仇取阿个・刈宅们五行属性相利的tt4⅛⅛,k⅛A.τ-&函数/(.r ) = ( r-2j M 的图象ΛJ¾是∣4K7∙ S Ih^Ii>114汀∙∏⅛址 211RI 3' IoAIΛ — R — • 6K3I5∣AnlJJIlJ7∏.∏βθW<ffi>j11.已HI 祈数 y(.r) = α5in.ι /∕α∣5 .r(.r ∈ R}.Zf .r=x.∙ Si⅛5⅛ JΛ.vU(i •条对称轴•丨1 Ifm V ~3•则点3“所在的fi 线方櫟为I). 3.∕-÷v «)12. d>41HIfIi 体“BCD 的PM 个顶点都在球O 的球面I ∙M 为4”屮山∙ZvWX∙∕M"D/(T)M 那是正•角权"I” 6•划球仆的衣面枳为 I). <!∙,π二. 填空題(本题共1小题,毎小题5分,共2(分.) 13. IfhMi y C ∙ SinJ - Ii 点⑴小处的切线方W 为IL idS...为等出放列 h(的Hijn^ 411.也 L<η-‰. ∙H ∣S,- 1二何心捫11洲猎⅜r 的战牛中•某市场防疫检测所得加•批共m 只猪中i 昆入了 3只携帝病成的昭•化设仃传染扩放前•吗I il 个不放何地檢测•每次抽中齐只猪的机会均等•"到检制出所右病偌就伴 Ih 检测∙ WJtft 任第六次检测府停Kl-JWJf ¼al∙λ LlMim 物线.√-Kf 的©心刘収刑线小二一3!" •“啲渐近线的距离不大J 、広則忍曲线 Cr卜:的肉心书的M½s. IMf KlfU 的保序桩国・为快输:l ; > IiWl 小十91 •则输人的IE 整数 '的彊小们为Γ>. ;•'」•记集合Al •八::“二•“ :“:•“•“ •…•川I ■"为公X;大J n 的弄总数列•若小;3•和.则IM 凰于C∙∕h[)・山10. LLMlm 罰|「的两个焦点为⑴∙ IUilWA 1A 的直tζ∕∣∣i y=⅛l .f ^jl,ty ≈k..t -u<u≠ι [的交点恰好金(T:・IL 化A- 2•则(•的方秤为c ∙f +f-1K.r-3v 0 A. 32πK 3If(I •“三、解答鬆(共R分■窟答应写出文字说明、证明过祥或済算步骤.M ∣7-" Sg为必考題,每个试題考主都必须作答.第22.23 55为诜考鬆,考生祝庭姜茨作答.)(一;必石題:共M分.17.(12 分〉LL)4】向Ml m~(√3>in-• 1 ;皿一(心十.eo^-γ-)∙ IxX}~m ∙ n.(】I求八2的届小值•并求此时,的fit<21花U(•中•内巾4』,(•所对的边分别为⑴儿C且满足/(B) ⅛j∙.U 2y :仁求Sin .4的们・18.< 12分MMl右图所示的儿何休屮•叫血形CDEF为矩形•屮而CDEF f∙IfilAJJdhPM边形A/X7)为血角怫形.∏. Aii//CD.Ab_ClKeD= 2Λ!i= 2ΛI) 2■点M ⅛f⅛B(,的中点・(Il^证MLLLF(2苦忙线W川我川7所成巾为I亿求1呈线BF号平面BCr所成角的I9.<12分〉域Ij活办••竝我牛*必扬传呎除I识枪薜鄴•最话冇张肛乍泮两位选F进人包亜军PK扒规期⅛ιι下:依次从忠、扒仁、义、礼.信用匕个题片沖毎一次Ki机迭取•道题利人抢答•胜冷得?- 分•败杵不扣分(Jt平知)•先冯I 2分杵为冠军•结柬HC ill J WA阅彥习惯的区別・金前Ifif的比赛中越山:张删住忠、孝、礼、椰加加1帖j优势•脏孝为u∙6∙兀它加血两人不分们仲・胜率邯艮U.3.< 1)求PK结束时爷诗恰得25分的概彳心⑵IPK貉束时抢答场敦为"•求J的分和列及期银2o. ()2分>U知l½砌线€:y;s.r的佟点为F•斜半为牛的宵线/ 4 (•的交点为-A •久⅛ #轴的仝点为化{】)若∣∕∖F∣ + ∣HF∣= ∙∣.^/ 的方陆⑵乃寸一3皿.求∣.M∣.汎m和已知補I H=√ I I I dn H心“为常Q(I)q U-HIj.,R √<,r)4 .r-l 处的切线力程*⑵对任虑M个不Hl等的止S U •『:•求UE √l r <r≤o时•都Vf Z-J-'./ ,-'小(⅛l ).(二)选石融:共10分・i青石生在策2次23题中任选一题作答,如果乡做,懸按所做的策一砸计分.22.[选修I- ,ψf d;系与参数方程](")分)I A = COS α•A-I f Ifh坐杯糸."UU-CXiiItlI⅛<∖: S为参数》•任以坐林曲点门为极点∙I轴止乍轴为{y Mna极紬的极A b标系∣"∙nll线 C :γ)-⅛.IlhfJc (;“ 2>in (?.小求IIh级「与U的交点M的町f]坐标,⑵设点,4∙B分別为me2.C, I.的动点•蚓∙1B∣的最小備.23.[运烤1—6不等式迪讲H IO分)设臥数儿门Ir-Il-12,r- H的尿大值为" 门)求"『的偵:IZyyi a I Ze Mi一川・求Ub I ZfHλflt2020届全国l ⅛三模拟考试(一)参考答案・数学(理科)I 〜5 C ∖∖H(∖∖6. B 悴析:八』> = (・卩一 2W •故”2>巾件个极備点±√Σ・乂 ∙r<L 。
2020高考数学(理)必刷试题+参考答案+评分标准 (96)
2020高考数学模拟试题(理科)第I卷选择题(共60分)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.已知复数与为共轭复数,其中,为虚数单位,则A. 1B.C.D.2.已知集合,则A. B. C. D.3.已知单位向量的夹角为,且,若向量m=2-3,则|m|=A. 9B. 10C. 3D.4.下列说法正确的是A. 若命题均为真命题,则命题为真命题B. “若,则”的否命题是“若”C. 在,“”是“”的充要条件D. 命题“”的否定为“”5.已知正项等比数列的前项和为,若,则A. B. C. D.6.已知函数.若不等式的解集中整数的个数为,则的取值范围是A. B. C. D.7.已知程序框图如图,则输出i的值为A. 7B. 9C. 11D. 13 8.曲线的一条切线l 与轴三条直线围成的三角形记为,则外接圆面积的最小值为 A.B.C.D.9.已知为实数,,若,则函数的单调递增区间为A. B. C.D.10.定义在R 上的函数()2,10{ ,01x x f x x x -≤<=≤<,且()()()12,2f x f xg x x +==-,则方程()()f x g x =在区间[]5,9-上的所有实数根之和最接近下列哪个数A. 14B. 12C. 11D. 10 11.如图,某住宅小区的平面图呈圆心角为120°的扇形AOB ,C 是该小区的一个出入口,且小区里有一条平行于AO 的小路CD .已知某人从O 沿OD 走到D 用了2分钟,从D 沿着DC 走到C 用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径的长度为A .505B .507.5011 D .501912.()f x 是定义在R 上的奇函数,对x R ∀∈,均有()()2f x f x +=,已知当[)0,1x ∈时, ()21x f x =-,则下列结论正确的是( )A. ()f x 的图象关于1x =对称B. ()f x 有最大值1C. ()f x 在[]1,3-上有5个零点D. 当[]2,3x ∈时, ()121x f x -=-第II 卷 非选择题(共90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.在中,已知,若,则周长的取值范围为__________.14.曲线在点(0,0)处的切线方程为______________;15.各项均为正数的等比数列的前项和为,已知,,则_____.16.已知且,则______。
2020高考数学(理)必刷试题+参考答案+评分标准 (72)
2020高考数学模拟试题(理科)第I 卷(选择题部分,共60分)一、选择题:本大题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
l.己知集合A ={x|lnx>0},集合B ={x ∈N|(x -1)(x -5)≤0},则A ∩B = A.{0,l ,2,3,4,5} B.{l ,2,3,4,5} C.{l ,2,3,4} D.{2,3,4,5}2.下列函数中,在其定义域内是增函数且是奇函数的是A.y =xln|x|B.y =xcosxC.y =2x -2-x D.y =e x +e -x 3.设a ∈R ,则“y =sinax 周期为2π”是“a =1”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且a =1,3,6c A π==,则B =A.6π B.3π C.6π或2π D.3π或23π5.设函数f(x)在R 上可导,其导函数为f'(x),且函数y =(x -l)f'(x)的图像如图所示,则下列结论中一定成立的是A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(-2)D.函数f(x)有极大值f(-2)和极小值f(2)6.已知函数g(x)是定义在R 上的偶函数,且在(0,+∞)上单调递减,a =g(log 20.2),b =g(20.2),c =g(0.20.3),则a ,b ,c 的大小关系为A.a<b<cB.a<c<bC.c<a<bD.b<c<a 7.若实数a 满足2log 13a<,则a 的取值范围是A.(23,1) B.(0,23)∪(1,+∞) C.(1,+∞) D.(23,1)∪(1,+∞) 8.函数y =3|x|sin2x 的图像可能是9.若130,0,cos(),sin()2243422ππππβαβα<<-<<+=-=,则sin()2βα+= A.539-B.33C.539D.33- 10.设x ∈R ,函数f(x)单调递增,且对任意实数x ,有f[f(x)-e 2x ]=e 2+1(其中e 为自然对数的底数),则f(ln2)=A.e 2+1B.3C.e 4+1D.5 11.将函数y =cos2x 的图象向右平移(0)2πϕϕ<<个单位长度得到y =f(x)的图象。
2020届理科高考数学专题练习含解析(对数与对数函数)
2020届理科高考数学专题练习含解析(指数与指数函数)1、下列运算中正确的是( )A .236a a a ⋅=B .2332()()a a -=-C .01)1=D . 2510()a a -=-2、函数()21,x f x =-使()0f x ≤成立的 x 的集合是( )A. {|0}x x <B. {}=0x xC. {|1}x x <D. {}|1x x =3、如果指数函数()y f x =的图象经过点12,4⎛⎫- ⎪⎝⎭,那么()()42f f ⋅等于( )A.8B.16C.32D.644、若函数1()2x f x a ⎛⎫=- ⎪⎝⎭的图象经过一、二、四象限,则()f a 的取值范围为( ) A. ()0,1 B. 1,12⎛⎫-⎪⎝⎭ C. ()1,1- D. 1,2⎛⎫-+∞ ⎪⎝⎭5、已知函数1()2x f x a +=-(0a >且1a ≠),且函数()y f x =-的图像经过定点()1,2-,则实数a 的值是( )A.1B.2C.3D.46、下列函数中,与函数22x x y -=-的定义域、单调性与奇偶性均一致的函数是( )A.sin y x =B.3y x =C.1()2x y = D.2log y x =7、函数2212x x y -⎛⎫= ⎪⎝⎭的值域为( ) A. 1,2⎡⎫+∞⎪⎢⎣⎭B. 1,2⎛⎤-∞ ⎥⎝⎦C. 10,2⎛⎤ ⎥⎝⎦D. (]0,28、已知函数()133xx f x ⎛⎫=- ⎪⎝⎭,则()f x ( ) A.是偶函数,且在R 上是增函数B.是奇函数,且在R 上是增函数C.是偶函数,且在R 上是减函数D.是奇函数,且在R 上是减函数9、函数()log (1)x a f x a x =++ (0a >且1a ≠)在[]0,1上的最大值与最小值之和为a ,则a 的值为( ) A.12B. 14C. 2D. 410、已知函数()(0,1)x x f x a a a a -=->≠,且(1)0f >,则关于 x 的不等式的解集为( )A.()2,1- B.()(),21,-∞-⋃+∞ C.()1,2- D. ()(),12,-∞-⋃+∞11、已知5.0log 2=a ,6.03=b ,36.0=c ,c b a ,,大小关系为_______.12、若集合{}31log ,1,,1,2||x A y y x x B y y x ⎛⎫==>==> ⎪⎧⎫⎪⎪⎨⎬⎭⎪⎪⎩⎭⎝则A B ⋂=__________ 13、若2510a b ==,则11a b +=__________ 14、已知函数()()0,1x f x a a a =>≠是定义在R 上的单调递减函数,则函数()()log 1a g x x =+的图像大致是__________.15、已知函数()()()()log 1log 301a a f x x x a =-++<< 1.求函数()f x 的定义域 2.若函数()f x 的最小值为4-,求a 的值答案以及解析1答案及解析:答案:D解析:2答案及解析:解析:3答案及解析:答案:D解析:设()(0x f x a a =>且1)a ≠ 由已知得221,44a a -== ∴2a =于是()2x f x =所以()()4264222264f f ⋅=⋅==.4答案及解析:答案:B解析:依题意可得(0)1,0,f a a =-⎧⎨-<⎩解得01a <<,1()2a f a a ⎛⎫=- ⎪⎝⎭. 设函数1()2xg x x ⎛⎫=- ⎪⎝⎭,则()g x 在()0,1上为减函数,故1(),12f a ⎛⎫∈- ⎪⎝⎭.5答案及解析:答案:B解析:6答案及解析:答案:B解析:7答案及解析:答案:D8答案及解析:答案:B解析:()f x 的定义域是R ,关于原点对称,由11()33()33x xx x f x f x --⎛⎫⎛⎫-=-=-=- ⎪ ⎪⎝⎭⎝⎭可得()f x 为奇函数.单调性:函数 3?x y =是R 上的增函数,函数13x y ⎛⎫= ⎪⎝⎭是R 上的减函数,根据单调性的运算,增函数减去减函数所得新函数是增函数,即1()33xx f x ⎛⎫=- ⎪⎝⎭是R 上的增函数.综上选B9答案及解析:答案:A解析:10答案及解析:答案:A解析:11答案及解析:答案:a c b <<解析:12答案及解析: 答案:10,2⎛⎫ ⎪⎝⎭解析:13答案及解析:解析:14答案及解析:答案:④解析:根据指数函数的单调性先确定a 的范围,然后得出对数函数log a yx =的图像,最后利用平移变换得到()()log 1a gx x =+的图像. 由函数()()0,1x f x a a a =>≠是定义在R 上的单调递减函数,得01a <<,将log a y x =的图像向左平移1个单位长度得到()()log 1a gx x =+的图像.故填④.15答案及解析: 答案:1.要使函数有意义,则有10{30x x ->+>解之得31x -<<,所以函数的定义域为()3,1-2.()()()()()22log 13log 23log 14a a a f x x x x x x =-+⎡⎤=--+=-++⎣⎦∵31x -<<∴()20144x <-++≤∵01a <<∴()2log 14log 4aa x ⎡⎤-++≥⎣⎦∴()min log 4a f x =由log 44a =-得44a -=∴144a -==解析:。
2020年高考理科数学模拟试题含答案及解析5套)
绝密★启用前2020年高考模拟试题(一)理科数学时间:120分钟分值:150分注意事项:封号位座1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
密第Ⅰ卷(选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一不号场考项是符合题目要求的.ab1.已知a,b都是实数,那么“2222”是“ab”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件订 22.抛物线x2py(p0)的焦点坐标为()装号证考准p A.,0 218p360 xy≤p218pB.,0C.0,D.0, 3.十字路口来往的车辆,如果不允许掉头,则行车路线共有()A.24种B.16种C.12种D.10种只4.设x,y满足约束条件xy2≥0,则目标函数z2xy的最小值为()x≥0,y≥0A.4B.2C.0D.2卷5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为()名姓A.5B.34C.41D.52此6.sinxfxxx,0U0,大致的图象是()A.B.C.D.级班7.函数fxsinxcosx(0)在,22 上单调递增,则的取值不可能为()A.14B.15C.12D.348.运行如图所示的程序框图,设输出数据构成的集合为A,从集合A中任取一个元素a,则函数ayx,x0,是增函数的概率为()A.35B.45C.34D.37开始x3否x≤3是22yxx结束输出yxx11x9.已知A,B是函数y2的图象上的相异两点,若点A,B到直线y的距离相等,2则点A,B的横坐标之和的取值范围是()A.,1B.,2C.,3D.,410.在四面体ABCD中,若ABCD3,ACBD2,ADBC5,则四面体ABCD的外接球的表面积为()A.2B.4C.6D.811.设x1是函数32fxa1xaxa2x1nN的极值点,nnn数列a n满足a11,a22,b n log2a n1,若x表示不超过x的最大整数,则201820182018L=()b b bbbb122320182019A.2017B.2018C.2019D.2020ax12.已知函数fxeaR在区间0,1上单调递增,则实数a的取值范围()xeA.1,1B.1,C.1,1D.0,第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.命题“x00,2x0mx020”的否定是_________._C2π314.在△ABC中,角B的平分线长为3,角,BC2,则AB_________._15.抛物线24yx的焦点为F,过F的直线与抛物线交于A,B两点,且满足A FBF4,点O为原点,则△AOF的面积为_________._16.已知函数fxxxx223sincos2cos0222的周期为2π3,当πx0,3 时,函gxfxm数恰有两个不同的零点,则实数m的取值范围是_________._三、解答题:共70分。
2020高考理科数学仿真模拟卷01(解析版)
精品文档2020 年 4 月开学摸底考(新课标卷)高三数学(理)(考试时间:120 分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.测试范围:高中全部内容.一、选择题(本大题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合A2, 1,0,1,2 ,B x | y x ,则A I B()A.1,2B.0,1,2C.2,1D.2, 1,02.已知复数z a i a R 是纯虚数,则a的值为()2i11C.2D.2A .B.223.已知 a 3ln2, b2ln3 , c3ln 2 ,则下列选项正确的是()A .B.C.D.4.已知函数f (x)1),则 y= f (x) 的图象大致为(x ln x 1A .B .C .D .uuuvuuuv1uuuvuuuvuuuv ,ABAC ,则()5.在 ABC中, D 为 BC 上一点, E 是 AD 的中点,若 BDDC CE31B .17D .7A .3C .6366.已知数列 { a n } 满足 a 1 1, a 21 ,若 a n a n 1 2a n 1 3a n 1an 1n 2, nN * ,则数列 { a n } 的通3项 a n()1B .1C .1D .1 A . n12n 12n 1 123n 17.已知函数f ( x) 2sin(x)(06,) 的图象经过点 ( , 2) 和 ( 2, 2) .若函数263g( x)f ( x) m 在区间 [,0] 上有唯一零点,则实数 m 的取值范围是( )2A . ( 1,1]B . { 1}U(1,1]2 2 C . (1,1]D . { 2} U(1,1]28.已知 A3,2 ,若点 P 是抛物线 y 28x 上任意一点,点 Q 是圆 (x2) 2 y 2 1上任意一点,则PAPQ 的最小值为 ()A . 3B . 4C . 5D . 69.如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供 5 种颜色给其中 5 个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为A .B.C.D.10.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1, x2 , x3, x4,大圆盘上所写的实数分别记为y1, y2 , y3 , y4,如图所示 .将小圆盘逆时针旋转i i1,2,3,4次,每次转动90,记T i i 1,2,3,4 为转动 i次后各区域内两数乘积之和,例如 T1x1 y2x2 y3x3 y4x4 y1.若 x1 +x2+x3x40 , y1 +y2 +y3 +y40 ,则以下结论正确的是A .T1, T2,T3,T4中至少有一个为正数B.T1,T2, T3,T4中至少有一个为负数C.T1, T2,T3,T4中至多有一个为正数D.T1,T2, T3,T4中至多有一个为负数11.已知集合A={1 , 2, 3, 4, 5, 6, 7, 8, 9),在集合 A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为,现将组成的三个数字按从小到大排成的三位数记为(),按从大到小排成的三位数记为D()(例如=219,则()=129,D()=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个,则输出 b 的值为()A . 792B. 693C. 594D. 49512.如下图,在正方体ABCD A1B1C1D1中,点E、F分别为棱BB1, CC1的中点,点 O 为上底面的中心,过 E、 F、 O 三点的平面把正方体分为两部分,其中含 A1的部分为 V1,不含 A1的部分为 V2,连接 A1和 V2的任一点 M ,设A1M与平面A1B1C1D1所成角为,则 sin 的最大值为().A .2B.2 5C.2 6D.2 62556二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13.已知函数 f x ln 1 x2x 1 , f a 4 ,则 f a________.14.已知随机变量X 服从正态分布N 2,1 ,若P X a 2 P X 2a 3 ,则a__________ .精品文档15.已知双曲线x2y2中, A1 , A2是左、右顶点, F 是右焦点,B是虚轴的上端点.若在2b2 1(a 0,b 0)a线段 BF 上(不含端点)存在不同的两点P i (i 1,2)uuuuv uuuuv,使得 PA i 1PA i 2 0 ,则双曲线离心率的取值范围是____________.16.四面体 A BCD 中,AB底面 BCD ,AB BD 2 ,CB CD 1 ,则四面体A BCD 的外接球的表面积为______三、解答题(本大题共 6 小题,共70 分.解答应写出文字说明、证明过程或演算步骤)1n 1满足 b n 2n a n.17(.本小题满分12 分)已知数列a n的前n项和S n a n 2 n N *,数列b n2(Ⅰ)求证:数列b n是等差数列,并求数列a n的通项公式;(Ⅱ)设 c nn n1c n的前n项和为T n,求满足T n124n N *的 n 的最大nn a n,数列2n 1 a n 163值 .18.(本小题满分12 分)某种大型医疗检查机器生产商,对一次性购买 2 台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金7000 元,在延保的两年内可免费维修 2 次,超过2 次每次收取维修费2000 元;方案二:交纳延保金10000 元,在延保的两年内可免费维修 4 次,超过 4 次每次收取维修费1000 元.某医院准备一次性购买 2 台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50 台这种机器超过质保期后延保两年内维修的次数,得下表:维修次数0123台数5102015以这 50 台机器维修次数的频率代替 1 台机器维修次数发生的概率,记X表示这2台机器超过质保期后延保的两年内共需维修的次数.(1)求 X 的分布列;(2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?19.(本小题满分 12分)如图,在四棱柱ABCD A1 B1C1 D1中,侧棱A1 A 底面ABCD,AB AC ,AB 1,AC AA12,AD CD5,且点 M 和N分别为B1C和D1D 的中点.(1)求证:MN / /平面ABCD;( 2)求二面角D1AC B1的正弦值;( 3)设E为棱A1B1上的点,若直线NE 和平面 ABCD 所成角的正弦值为1,求线段A1E的长. 320.(本小题满分12 分)已知 A x1 , y1 , B x2 , y2是抛物线 C : x2 2 py p 0 上不同两点.( 1)设直线l : y py x 1,且直线 l : yp与 y 轴交于点M,若A, B两点所在的直线方程为恰好平44分AFB,求抛物线 C 的标准方程.( 2)若直线AB与x轴交于点P,与y轴的正半轴交于点Q,且y1 y2p2,是否存在直线AB ,使得4113PA PB PQ?若存在,求出直线AB 的方程;若不存在,请说明理由.21.(本小题满分12 分)已知函数 f x ln x 1 x2ax a R , g x e x3 x2x .22(1)讨论f x的单调性;( 2)定义:对于函数 f x ,若存在x0,使f x0x0成立,则称x0为函数f x 的不动点.如果函数F x f x g x 存在不动点,求实数 a 的取值范围.请考生在第22、 23 两题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10 分)选修4-4:坐标系与参数方程x 3t x 2 2cos 在直角坐标系 xOy 中,直线l的参数方程为( t 为参数),曲线 C1的参数方程为2siny3t y(为参数),以该直角坐标系的原点O 为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2 的极坐标方程为 2 3cos2sin.(1)分别求曲线C1的极坐标方程和曲线C2的直角坐标方程;(2)设直线l交曲线C1于O,A两点,交曲线C2于O,B两点,求| AB |的长.23.(本小题满分10 分)选修4-5:不等式选讲已知 a 0, b0, c 0 设函数 f (x)x b x c a , x R( I )若a b c1,求不等式 f ( x)5的解集;( II )若函数 f(x) 的最小值为1,证明:149( a b c )a b b c18c a一、选择题(本大题共12 小题,每小题 5 分,共60 分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知集合A2,1,0,1,2 ,B x | y x ,则A I B()A.1,2B.0,1,2C.2,1D.2,1,0【答案】 D【解析】因为A2, 1,0,1,2, B x x0,所以 AI B2,1,0.故选 D.2.已知复数z a i a R是纯虚数,则 a 的值为()2i1B.1C.2D.2A .2 2【答案】 A【解析】 Q z a i a i2i2a 1 2ai 是纯虚数2i2i2i552a151,解得: a2a 本题正确选项: A0253.已知 a 3ln2 , b 2ln3, c3ln 2 ,则下列选项正确的是()A.B.C.D.【答案】 D【解析】,,,∵ 6π>0,∴ a, b, c 的大小比较可以转化为的大小比较.设 f( x),则f′(x),当 x= e 时, f′( x)= 0,当 x> e 时, f′(x)> 0,当 0< x< e 时, f′( x)< 0∴ f (x)在( e, +∞)上, f( x)单调递减,∵ e< 3<π< 4∴,∴ b>c>a,故选:D.14.已知函数 f (x),则y= f (x)的图象大致为()x ln x1A.B.C.D.【答案】 A【解析】由于f11220,排除 B 选项.2112ln 1 ln 222由于 f e2, f e22, f e f e2,函数单调递减,排除C选项.e2e23由于 f e10021010 ,排除D选项.故选A.e100uuuv uuuv uuuv uuuv uuuv 5.在ABC中,D为BC上一点,E是AD的中点,若BDDC,CE1 AB AC ,则31B.17D.7A .3C.636【答案】 B 精品文档()精品文档uuur 1 uuur uuuruuur1 uuur1 uuur 1 uuur1 uuur【解析】 CE 3 CB CAAC3 CB3 CA3 CD 3CA ,因为 E 是 AD 的中点, 所以1 1 , 1 1 ,解得1 , 5 , 1 .故选 B.3 2 3 22636.已知数列 { a n } 满足 a 1 1, a 21 ,若 a nan 12a n 13a n 1an 1n 2, n N * ,则数列 { a n } 的通3项 a n( )1111A.2n 1B .2n 1C .3n 1D .2n 1 1【答案】 B【解析】 a n a n 12a n a n 1 3a n 1 a n 1 , 1 2 3 , 1 1 2(11 ) ,an 1an 1a nan 1a na nan 111则an 1a n 2 ,数列 11 是首项为 2,公比为2 的等比数列,11a na n 1a n an 11122n 12n ,利用叠加法,a n 1 a n1 ( 1 1 ) ( 1 1 ) ...... ( 1 1 ) 1 222 .......2n 1 ,a 1a 2a 1a 3a 2a n an 11 2n 1 2n 1 ,则 a n 1 1 .选 B.a n 2 12n7.已知函数f ( x)2sin( x)(06,) 的图象经过点 ( ,2)和(2, 2) .若函数2 63g( x)f ( x) m 在区间 [2 ,0] 上有唯一零点,则实数m 的取值范围是()A . ( 1,1]B . { 1}U(1,1]2 2C . (1,1]D . { 2} U( 1,1]【答案】 D【解析】由题意得21N,得T,故24k2,因为0 6 ,36k T ,kT22k 1k N ,所以2.由f62sin32 ,得2k,因为2,故,所以326f x2sin2x,从而当 x,052x,令 t2x,则由题意得6时,626662sint m 0在 t 5,上有唯一解,故由正弦函数图象可得m1或1m16222,解得62m21,1故选D.8.已知A 3,2,若点P是抛物线y28x 上任意一点,点Q 是圆(x2) 2y21上任意一点,则PA PQ 的最小值为()A . 3B. 4C. 5D. 6【答案】 B【解析】抛物线 y28x 的焦点F 2,0,准线l:x 2 ,圆 (x 2) 2y21的圆心为F 2,0,半径r 1 ,过点 P 作PB垂直准线l,垂足为 B ,由抛物线的定义可知PB PF |,则 PA PQ PA PF r PA PB1,当 A,P,B三点共线时PA PB 取最小值 3 2 5,PA PQ PA PB 1 5 1 4.即有 PA PQ 取得最小值4,故选 B.9.如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供 5 种颜色给其中 5 个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为A.B.C.D.【答案】 D【解析】提供 5 种颜色给其中 5 个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,根据题意,如图,设 5 个区域依次为,分 4 步进行分析:,对于区域,有 5 种颜色可选;,对于区域与区域相邻,有 4 种颜色可选;,对于区域,与区域相邻,有 3 种颜色可选;,对于区域,若与颜色相同,区域有3种颜色可选,若与颜色不相同,区域有2种颜色可选,区域有2种颜色可选,则区域有种选择,则不同的涂色方案有种,其中,区域涂色不相同的情况有:,对于区域,有 5 种颜色可选;,对于区域与区域相邻,有 4 种颜色可选;,对于区域与区域相邻,有 2 种颜色可选;,对于区域,若与颜色相同,区域有2种颜色可选,若与颜色不相同,区域有2种颜色可选,区域有1种颜色可选,则区域有种选择,不同的涂色方案有种,区域涂色不相同的概率为,故选 D.10.已知两个半径不等的圆盘叠放在一起(有一轴穿过它们的圆心),两圆盘上分别有互相垂直的两条直径将其分为四个区域,小圆盘上所写的实数分别记为x1, x2 , x3 , x4,大圆盘上所写的实数分别记为y1, y2 , y3 , y4,如图所示 .将小圆盘逆时针旋转i i 1,2,3,4 次,每次转动90,记 T i i 1,2,3,4为转动i次后各区域内两数乘积之和,例如T1x1 y2x2 y3x3 y4x4 y1.若 x1 +x2 +x3x40 ,y1 +y2 +y3 +y40 ,则以下结论正确的是A .T1, T2,T3,T4中至少有一个为正数B.T1,T2, T3,T4中至少有一个为负数C.T1, T2,T3,T4中至多有一个为正数D.T1,T2, T3,T4中至多有一个为负数【答案】 A【解析】根据题意可知:(x1+ x2+x3x4)( y1 +y2 +y3 +y4)>0,又( x1 +x2 + x3x4)( y1+y2 +y3 +y4)去掉括号即得:( x1 +x2 +x3x4)( y1 +y2 +y3 +y4)= T1T2T3T4>0,所以可知 T1 ,T2 ,T3, T4中至少有一个为正数,故选A11.已知集合A={1 , 2, 3, 4, 5, 6, 7, 8, 9),在集合 A 中任取三个元素,分别作为一个三位数的个位数,十位数和百位数,记这个三位数为,现将组成的三个数字按从小到大排成的三位数记为(),按从大到小排成的三位数记为D()(例如=219,则()=129,D()=921),阅读如图所示的程序框图,运行相应的程序,任意输入一个,则输出 b 的值为()A . 792B. 693C. 594D. 495【答案】 D【解析】试题分析: A,如果输出的值为792,则,不满足题意.B,如果输出的值为693,则,,不满足题意.C,如果输出的值为594,则,不满足题意.D ,如果输出的值为495,则,,满足题意.故选D.12.如下图,在正方体ABCD A1B1C1D1中,点E、F分别为棱BB1, CC1的中点,点 O 为上底面的中心,过 E、 F、 O 三点的平面把正方体分为两部分,其中含 A1的部分为 V1,不含A1的部分为 V2,连接 A1和 V2的任一点 M ,设A1M与平面 A1 B1C1D1所成角为,则 sin 的最大值为().A .2B.2 5C.2 6D.2 62556【答案】 B【解析】连接EF,因为 EF//面 ABCD, 所以过 EFO 的平面与平面ABCD 的交线一定是过点O且与EF平行的直线,过点O 作 GH //BC 交 CD 于点 G,交 AB 于 H 点,则 GH //EF,连接 EH,FG,则平行四边形 EFGH 为截面,则五棱柱 A1B1 EHA D1C1 FGD 为 V1,三棱柱EBH -FCG为 V2,设M点为 V2的任一点,过M 点作底面 A1 B1C1D1的垂线,垂足为N,连接A1N ,则MA1N即为A1M与平面A1B1C1D1所成的角,所以MN,要使α的正弦最大,必须 MN 最大,A1M最小,当点 M 与点 H 重合时符合MA1 N =α,因为sinα=A1M题意,故 sin α的最大值为MN=HN=25,故选B A1M A1H5二、填空题(本大题共 4 小题,每小题 5 分,共 20 分)13.已知函数 f x ln 1 x2x 1 , f a 4 ,则 f a________.【答案】2【解析】因为 f x f x ln 1 x2x 1 ln 1 x2x 1 ln 1 x2x22 2 ,f a f a 2 ,且 f a 4 ,则 f a 2 .故答案为-214.已知随机变量X 服从正态分布N 2,1 ,若P X a 2 P X 2a 3 ,则a__________ .【答案】 1【解析】由正态分布的性质可得正态分布的图像对称轴为X 2 ,a22a3a 1.故答案为1.结合题意有:22,15.已知双曲线x2y20,b 0)中, A1 , A2是左、右顶点, F 是右焦点,B是虚轴的上端点.若在22 1(aa b线段 BF 上(不含端点)存在不同的两点P (i 1,2)uuuuv uuuuv ,使得PA i 1 PA i 2 0 ,则双曲线离心率的取值范围是i____________.【答案】2,512【解析】设 c 为半焦距,则F c,0 ,又 B 0,b ,所以 BF : bxcy bc 0,uuuur uuuur以 A 1 A 2 为直径的圆的方程为e O : x2y 2 a 2 ,因为 PA i 1 PA i 2 0 ,i1,2 ,所以 e O 与线段 BF 有两个交点(不含端点) ,bcac 4 3a 2c 2a4e 4 3e 21 0 所以b 2c 2即2a 2,故,c 2e 2 2b a解得 2 e5 1.故填2,5 1.2216.四面体A BCD 中, AB 底面 BCD , AB BD2 , CB CD 1 ,则四面体A BCD 的外接球的表面积为 ______【答案】 4【解析】如图,在四面体A BCD 中, AB 底面 BCD , ABBD 2, CB CD 1,可得BCD 90 ,补形为长方体,则过一个顶点的三条棱长分别为1, 1,2 ,则长方体的对角线长为1212 ( 2) 2 2,则三棱锥 A BCD 的外接球的半径为 1.其表面积为 412 4 .故答案为: 4 .三、解答题(本大题共6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分 12 分)1 n 1b n 满足 b n 2n a n .已知数列a n 的前 n 项和 S na n2 n N * ,数列2(Ⅰ)求证:数列b n 是等差数列,并求数列a n 的通项公式;(Ⅱ)设 c nn n1c n 的前 n 项和为 T n ,求满足 T n124 n N * 的 n 的最大nn a n,数列 2 n 1 a n 163值 .n 1【解析】 (Ⅰ ) Q S n a n12 n N ,2n 21n 1当 n2时,S n 1 12 ,a nS nS n 1anan 1an 12,2化为 2n a n 2n 1 a n 11,Q b n2n a n , b nb n 1 1 ,即当 n 2时 , b n b n 1 1 ,令 n 1 ,可得 Sa 1 2 a ,即 1.a 11112又 b 1 2a 1 1 , 数列 b n 是首项和公差均为 1 的等差数列 .于是 b n1 n 1 1 nna nn2 a n ,n .2( Ⅱ)由( Ⅰ )可得c nn n 12 nn n nn 12n 12n 12n 1112n 1 2n 1 1 2,2n 1 2n 1 1T n1111 111242 11 23 1...1 2n 1 12 1,221222n2n 1 163可得 2n 164 26 , n 5 ,因为 n 是自然数,所以 n 的最大值为 4.18.(本小题满分 12 分)某种大型医疗检查机器生产商,对一次性购买2 台机器的客户,推出两种超过质保期后两年内的延保维修优惠方案:方案一:交纳延保金 7000 元,在延保的两年内可免费维修2 次,超过 2 次每次收取维修费2000 元;方案二:交纳延保金 10000 元,在延保的两年内可免费维修4 次,超过 4 次每次收取维修费 1000元 . 某医院准备一次性购买2 台这种机器.现需决策在购买机器时应购买哪种延保方案,为此搜集并整理了50台这种机器超过质保期后延保两年内维修的次数,得下表:维修次数0 1 2 3台数5 10 20 15以这 50 台机器维修次数的频率代替1 台机器维修次数发生的概率, 记 X 表示这2 台机器超过质保期后延保的两年内共需维修的次数.( 1)求 X 的分布列;( 2)以所需延保金及维修费用的期望值为决策依据,医院选择哪种延保方案更合算?【解析】(Ⅰ) X 所有可能的取值为0,1, 2,3, 4,5, 6,P X 0 1 11, P X11 1 21,PX211212 3 ,1010100105255551025P X 3 1 3212211,P X 42 2 3127 ,101055505510525P X 52326, P X339,5106101002510∴ X 的分布列为X012345611311769 P2525502525100 100(Ⅱ)选择延保一,所需费用Y1元的分布列为:Y170009000110001300015000P 1711769 100502525100EY117700011900071100061300091500010720(元).100502525100选择延保二,所需费用Y2元的分布列为:Y2100001100012000P 6769 10025100EY26710000611000910420 (元). 1002512000100∵ EY EY,∴该医院选择延保方案二较合算.19.(本小题满分12 分)如图,在四棱柱ABCD A1 B1C1 D1中,侧棱 A1 A底面ABCD,AB AC ,AB 1,AC AA12, AD CD5,且点M和N分别为B1C和D1D的中点 .(1)求证:MN / /平面ABCD;( 2)求二面角 D1AC B1的正弦值;( 3)设 E 为棱 A1B1上的点,若直线NE和平面ABCD所成角的正弦值为1,求线段 A1E 的长. 3【解析】如图,以A为原点建立空间直角坐标系,依题意可得A(0,0,0),B(0,1,0), C (2,0,0), D (1, 2,0) ,又因为 M , N 分别为B1C和 D1D 的中点,得M 1,1,1 , N (1, 2,1). 2r uuuur5,0 ,(Ⅰ)证明:依题意,可得n (0,0,1) 为平面ABCD的一个法向量,MN0,2 uuuur r由此可得,MN n 0,又因为直线 MN 平面 ABCD ,所以 MN / / 平面 ABCD精品文档urur uuuurn 1 AD 1 0(Ⅱ),设n 1( x, y, z) 为平面 ACD 1 的法向量,则 { uruuur ,即n 1 ACx 2 y 2z 0ur(0,1,1),{,不妨设 z1,可得 n 12xuuruur uuuruuur( x, y, z) 为平面 ACB 1n 2 AB 1 0 (0,1,2)y 2z 0设n 2的一个法向量,则 { uur uuur 0,又 AB 1,得 { ,不妨设n 2 AC2x 0uurz 1,可得 n 2(0, 2,1),ur uurur uurn 1 n 210ur uur310 ,因此有 cos n 1 , n 2uruur,于是sin n 1, n 2n 1 n 21010所以二面角 D 1AC B 1 的正弦值为310 .uuur uuuur10uuur(Ⅲ)依题意,可设A 1EA 1B 1,其中[0,1] ,则 E(0, ,2) ,从而 NE( 1,2,1) ,r (0,0,1) 为平面 ABCD 的一个法向量,由已知得又 nuuur r uuur r 1 1NE n2cos NE ,n uuur r,整理得43 0 ,( 1)2 ( 2)2 12NE n 3又因为[0,1] ,解得7 2 ,所以线段 A 1E 的长为7 2 .20.(本小题满分 12 分)已知 Ax 1 , y 1 , B x 2 , y 2 是抛物线 C : x 2 2 py p 0 上不同两点 .( 1)设直线 l : ypy x 1,且直线 l : yp 与 y 轴交于点 M ,若 A, B 两点所在的直线方程为恰好平44分 AFB ,求抛物线 C 的标准方程 .( 2)若直线 AB 与 x 轴交于点 P ,与 y 轴的正半轴交于点 Q ,且 y 1 y 2p 2 ,是否存在直线 AB ,使得411 3 AB 的方程;若不存在,请说明理由.PAPB?若存在,求出直线PQ【解析】(1)设 A x 1 , y 1 , B x 2 , y 2, M 0, px 22 py2px 2p0 ,,由 {,消去 y 整理得 x24y x 14p 2 8 p 0p则 { x 1 x 2 2 p , ∵直线 y AFB , ∴ k AF k BF0 ,平分x 1x 2 2 p 4∴y1p y 2 p,即:x 11px 2 1 pp x 1 x 24 44421 0 ,x 1x 2x 1x 24 x 1 x 2∴ p4 ,满足0 ,∴抛物线 C 标准方程为 x 2 8y .( 2)由题意知,直线AB 的斜率存在,且不为零,设直线 AB 的方程为: ykxb(k0, b0) ,y kx b4p 2 k 2 8 pb 02pkx2pb0, ∴{x 1x 2 2 pk由 { 2 ,得 x 2 ,x 2 pyx 1x 22 pb2 22pb 2∴y 1 y 2x 1 ?x 2b 2 ,4p 22p 2p∵y 1 y 2p 2 , ∴ b 2 p 2 , ∵ b 0 , ∴ b p .442∴直线 AB 的方程为: ykxp.2AB ,使得11 3PQPQ 假设存在直线PBPQ ,即PA3 ,PAPB作 AA x 轴, BB x 轴,垂足为A 、B ,∴ PQPQOQ OQ pp p y 1 y 2 2 2 ,PAPB AABB·y 1y 22 y 1y 2∵ y 1 y 2 k x 1 x 2 p 2pk 2p , y 1y 2p 2,PQ PQ p 2pk 2 p21 ∴PAPB2·p 24k2,由4k22 3 ,得 k,4211 3 1 x p . 故存在直线 AB ,使得PB,直线 AB 方程为 yPAPQ2 221 .(本小题满分12 分)已知函数 f xln x1 x2 ax a R , g xe x 3 x 2x .22( 1)讨论 f x的单调性;( 2)定义:对于函数f x ,若存在 x 0 ,使 f x 0x 0 成立,则称 x 0 为函数f x 的不动点 .如果函数F x f x g x 存在不动点,求实数a 的取值范围 .【解析】 (1) fx 的定义域为 0,x 2 ax 1, f xx 0 ,x对于函数 yx 2 ax 1 0 ,①当a 2 4 0 时,即 2 a 2 时, x 2 ax 1 0 在 x 0 恒成立 .fx 2 ax10,恒成立 .f x 在 0,为增函数;xx0 在②当0 ,即 a 2 或 a 2 时,当 a2 时,由 f x0 ,得 xaa 24或xa a 24,0aa 2 4 aa 2 4 ,222 2f x 在 0,aa 2 4 为增函数, aa 2 4 , a a 2 4 减函数 .222aa 2 4 , 为增函数,2当 a2x2ax 10,恒成立,时,由 f x0 在xf x 在 0,为增函数。
2020年(理科数学)(新课标Ⅰ)试卷真题+参考答案+详细解析
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)若1z i =+,则2|2|(z z -= ) A .0B .1C .2D .22.(5分)设集合2{|40}A x x =-,{|20}B x x a =+,且{|21}A B x x =-,则(a = )A .4-B .2-C .2D .43.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A 51-B 51-C 51+D 51+4.(5分)已知A 为抛物线2:2(0)C y px p =>上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则(p = ) A .2B .3C .6D .95.(5分)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C)︒的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据()(1,i i x y i =,2,⋯,20)得到下面的散点图:由此散点图,在10C ︒至40C ︒之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y a bx =+B .2y a bx =+C .x y a be =+D .y a blnx =+6.(5分)函数43()2f x x x =-的图象在点(1,(1))f 处的切线方程为( ) A .21y x =--B .21y x =-+C .23y x =-D .21y x =+7.(5分)设函数()cos()6f x x πω=+在[,]ππ-的图象大致如图,则()f x 的最小正周期为( )A .109πB .76π C .43π D .32π 8.(5分)25()()y x x y x++的展开式中33x y 的系数为( )A .5B .10C .15D .209.(5分)已知(0,)απ∈,且3cos28cos 5αα-=,则sin (α= ) A 5B .23 C .13D 5 10.(5分)已知A ,B ,C 为球O 的球面上的三个点,1O 为ABC ∆的外接圆.若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π11.(5分)已知22:2220M x y x y +---=,直线:220l x y ++=,P 为l 上的动点.过点P 作M 的切线PA ,PB ,切点为A ,B ,当||||PM AB 最小时,直线AB 的方程为( ) A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=12.(5分)若242log 42log a b a b +=+,则( ) A .2a b >B .2a b <C .2a b >D .2a b <二、填空题:本题共4小题,每小题5分,共20分。
2020届高考理科数学(理数)高三模拟试卷(全国1卷)pdf参考答案
理科数学答案全解全析一、选择题1. 【答案】D【解析】集合 A 满足: x2 3x 4 0 ,( x 4)( x 1) 0 , x 4 或x 1 , A {x | x 4 或 x 1} , CU A={x | 1 x 4} , y 2x 2 2 , B {y | y 2} ,可知 (CU A) B {x | 2 x 4} .故选 D. 2. 【答案】A【解析】 z 1 i (1 i)(1 2i) 1 3i ,复数 z 的虚部为 3 ,1 2i555故错误;② | z | ( 1)2 ( 3)2 10 ,故错误;③复数 z 对应的555点为 ( 1 , 3) 为第三象限内的点,故正确;④复数不能比较大小, 55故错误.故选 A.3. 【答案】C【解析】 Sn 2an 4 ,可得当 n 1 时, a1 2a1 4 , a1 4 ,当n 2时,S n 12 an 14与已知相减可得an an 12,可知数列{ an } 是首项为 4,公比为 2 的等比数列, a5 4 24 64 .故选 C.4. 【答案】D【解析】可知降落的概率为pA22 A55 A661 3.故选D.5. 【答案】C【解析】函数 f (x) 2 020x sin 2x 满足 f (x) 2 020x sin 2x f (x) ,且 f (x) 2 020 2cos 2x 0 ,可知函数 f (x) 为单调递增的奇函数, f (x2 x) f (1 t) 0 可以变为 f (x2 x) f (1 t) f (t 1) ,可知 x2 x t 1 ,t x2 x 1 ,x2 x 1 (x 1)2 2 3 3 ,可知实数 t 3 ,故实数 t 的取值范围为 (∞,3] .故选 C.44446. 【答案】A【解析】双曲线的渐近线方程为 y 3x ,可得双曲线的方程为x2 y2 ,把点 P(2,3) 代入可得 4 3= , 1 ,双曲线的 3方程为 x2 y2 1,c2 1 3 4,c 2,F(2,0) ,可得 A(2,2 3) , 3B(2, 23),可得SAOB1 224343 .故选 A.7. 【答案】B【解析】 f (x) sin(x π )sin x cos2 x3 (sin x cos π cos x sin π )sin x 1 cos 2x332 3 sin 2x 1 cos 2x 3 1 ( 3 sin 2x 1 cos 2x) 3444 2224 1 sin(2x π ) 3264把函数 f (x) 的图象向右平移 π 单位,再把横坐标缩小到原来的一 6半,得到函数 g(x) ,可得 g (x) 1 sin(4x π ) 3 ,最小正周期为2642π π ,故选项 A 错误; x π , 4x π 4 π π π ,故选426666 2项 B 正确;最大值为 1 3 5 ,故选项 C 错误;对称中心的方程 244为 (kπ π ,3)(k Z) ,故选项 D 错误.故选 B. 4 24 48. 【答案】D【解析】可知 BDC 120°,且 AD 3 ,BD DC 1 ,在 BDC中,根据余弦定理可得 BC 2 1 1 2 11 cos120° 3, BC 3 ,据正弦定理可得 BC 2r , sin120°3 32r,r 1 , O1 为 BDC2的外心,过点 O1 作 O1O 平面 BDC , O 为三棱锥 A BCD 的外 接球的球心,过点 O 作 OK AD , K 为 AD 的中点,连接 OD 即为外接球的半径 R 12 ( 3 )2 7 ,可得外接球的表面积为22S 4πR2 4π ( 7 )2 7π .故选 D. 29. 【答案】C【解析】二项式 (x y)n 的展开式的二项式项的系数和为 64 ,可得 2n 64 ,n 6 ,(2x 3)n (2x 3)6 ,设 x 1 t ,2x 3 2t 1 ,(2x 3)n (2x 3)6 (2t 1)6 a 0 a1t a 2t 2 a 6t 6 ,可得 Tr1 C64 (2t)6414 C64 22t 2 60t 2 ,可知 a2 60 .故选 C. 10.【答案】A【解析】设点 P(x0 ,y0) ,则 x0 y0 6 0 ,则过点 P 向圆 C 作切 线,切点为 A,B ,连接 AB ,则直线 AB 的方程为 xx0 yy0 4 ,可得y0x06,代入可得(xy) x06y40,满足 x y 0 6y 4 0 x 2 3,故过定点为M(2,2).故选A. y2 33311.【答案】B【解析】f (x) log2 (x2 e|x|) ,定义域为 R ,且满足 f ( x) f (| x |) ,当 x 0 时,单调递增,而 (5)0.2 1 , 0 (1)0.3 1 , b a ,42cf(log 125) 4f( log25) 4f(log25 4),而0log25 4 log221, 2( 1 )0.3 21 2, log 25 4 (1)0.3 , 2f(log25) 4f(( 1 )0.3 ) 2,故 c a,故 c a b .故选 B.12.【答案】D【解析】f (x1) f (x2 ) x1 x21 x1x2,不妨设 x1x2 ,则f( x1) f (x2 ) 1 x21 x1,整理可得f (x1) 1 x1f (x2 ) 1 x2,设函数 h(x) f (x) 1 xa ln xx1 x在[e2 ,e4 ]上单调递减,可知 h'(x)a(1 ln x2x)1 x20,可知 a 1 1 lnx,而函数F ( x)1 1 lnx在[e2,e4 ]单调递增,F (x)maxF (4)11 41 3,可知实数a 1 3.故选D.二、填空题13.【答案】 9 5 5【解析】向量 a b在 a上的投影为| a b|cos (a b) a|a| (1,5) (1,2) 9 5 .5514.【答案】 5 2 6【解析】首先作出可行域,把 z ax by(a 0,b 0) 变形为 y a x z ,根据图象可知当目标函数过点 A 时,取最大值为 1, bb理科数学答案第 1 页(共 4 页) x 2x y 1 0 y40A(3,2),代入可得3a2b1,则1 a1 b3a a2b 3a 2b 3 2b 3a 2 5 2 2b 3a 5 2 6 ,当且仅当bababb 6 a 取等号,可知最小值为 5 2 6 .故选 C. 215.【答案】 4 3【解析】 cos A cos B 2 3 sin C ,根据正弦定理 sin B cos A ab3asin Acos B 2 3 sin B sin C ,可知 sin( A B) 2 3 sin B sin C ,33sin C 2 3 sin B sin C ,sin B 3 ,在 ABC 内,可知 B π 或3232π ,因为锐角 ABC ,可知 B π ,利用余弦定理可得 b2 a2 c2 332ac cos B a2 c2 ac 2ac ac ac ,可知 ac 16 ,则 ABC 的面积的最大值 1 ac sin B 1 16 3 4 3 ,当且仅当 a c 时,取222等号,故面积的最大值为 4 3 .16.【答案】 4 5【解析】抛物线 C :y2 2 px( p 0) 的准线方程为 x 2 ,可知抛物线 C 的方程为:y2 8x ,设点 A(x1 ,y1) ,B(x2 ,y2 ) ,AB 的中点为 M (x0 ,y0 ) ,则 y12 8x1 ,y22 8x2 两式相减可得 ( y1 y2 )( y1 y2 ) 8(x1 x2 ),y1 y2 x1 x2 8 y1 y2 ,可知 8 (1) 1 2 y0 x0 y0 6 0,解得 x0 y02 4,可得 M(2,4),则 OA OB 2OM 2(2,4) (4,8) ,可得 | OA OB | | (4,8) | 42 82 4 5 .三、解答题17.【解析】(1) a1 1,an1 2an 1 ,可得 an1 1 2(an 1) ,{an 1} 是首项为 2,公比为 2 的等比数列.--------------- 2 分 an 1 2 2n1 2n , an 2n 1 .即数列 { an } 的通项公式 an 2n 1 .--------------- 4 分数列 { bn } 的前 n 项的和为 Sn n2 ,可得 b1 S1 1 ,当 n 2 时, bn Sn Sn1 n2 (n 1)2 2n 1 ,故数列 { bn } 的通项公式为 bn 2n 1 .--------------- 6 分(2)可知 cn bn an (2n 1) (2n 1) (2n 1) 2n (2n 1) --------------- 7 分设 An 1 2 3 22 5 23 (2n 1) 2 n , 2 An 1 22 3 23 (2n 3) 2 n (2n 1) 2 n 1 , 两式相减可得 An 2 2(22 23 2 n) (2n 1) 2 n 1 ,可得 An 6 (2n 1) 2n1 2n2 ,--------------- 10 分而数列 {2n 1}的前n项的和为Bn(1 2n 1) 2nn2,所以 Tn 6 (2n 1) 2n1 2n2 n2 .--------------- 12 分 18.【解析】(1)证明: PD 面 ABCD , PD BC ,在梯形 ABCD 中,过 B 作 BH DC 交 DC 于 H , BH 1 ,BD DH 2 BH 2 1 1 2 ,BC 2 ,( 2)2 ( 2)2 22 ,即 DB2 BC 2 DC 2 ,即 BC DB .--------------- 2 分 BC DB , PD BD D , BC 平面 PDB , BC 平面 EBC 平面 PBC 平面 PDB .--------------- 4 分 (2)连接 PH , BH 面 PDC ,BPH 为 PB 与面 PDC 所成的角, tan BPH BH 1 , BH 1 , PH 2 , PH 2 PD2 DH 2 PH 2 , PD2 1 2 , PD 1 ,--------------- 6 分以 D 为原点,分别以 DA , DC 与 PD 为 x ,y ,z 轴,建立如图所示的E(空0间,2直,角12)坐,标可系知,则PBP(0(1,,01,,1) ,1)A,(A1,B0,(00),,1B,(01),1,,0) ,C (0,2,0) ,设平面PAB 可知 PB a AB a 设平面 PEB的法向量为 a (x,y,z) , 0 0 xy y z 00,可取 a(1,0,1),-----------的法向量为 b(x,y ,z ) ,BE(1,1,1),8分2可知 PB BE b b 0 0 x x y y z 1 2 z0 0 ,可取 b(3,1,4),-----10分可知两向量的夹角的余弦值为 cos a b 1 3 0 11 4| a || b | 1 1 32 1 42 7 13 ,可知两平面所成的角为钝角,可知两平面所成角的余弦 26值为 7 13 .--------------- 12 分 2619.【解析】(1)完成 2 2 列联表, 满意 不满意总计男生302555女生50合计80156540120 ----------- 4 分根据列联表中的数据,得到 K 2 120 (30 15 25 50)2 55 65 80 40 960 6.713 6.635 ,所以有 99% 的把握认为对“线上教育是否 143满意与性别有关”.--------------- 6 分(2)由(1)可知男生抽 3 人,女生抽 5 人, 0,1,2,3 .P(0)C53 C835 ,P( 28 1)C52C31 C8315 28,P(2)C51C32 C8315 ,P( 563)C33 C831 56.---------------8分可得分布列为0123P515152828561------------ 10 分56可得 E( ) 0 5 1 15 2 15 3 1 9 .--------------- 12 分 28 28 56 56 820.【解析】(1)x2 4 y ,焦点 F (0 , 1) ,代入得 b 1,e c 2 , a2a2 b2 c2 ,解得 a2 2,b2 1 , x2 y2 1 ,-------------- 2 分 2 直线的斜率为 1,且经过 (1,0) ,则直线方程为 y x 1 ,联立 x2 2y2 1,解得y x 1,x y 0 1或 x y 4 3 1 3, ,C(0,1) ,D( 4 ,1) ,--------------- 4 分 33理科数学答案第 2 页(共 4 页)| CD | 4 2 ,又原点 O 到直线 y x 1 的距离 d 为 2 ,32 SCOD1 2| CD|d1 242 32 2 .--------------- 6 分 23(2)根据题意可知直线 m 的斜率存在,可设直线 m 的方程为: y kx t,ykxt,联立 x2 2y2 1,(2k 2 1)x24ktx2t 220,可得 (4kt)2 4(2k 2 1)(2t 2 2) 0 ,整理可得 t 2 2k 2 1 ,可知 F2 (1,0) , A(1,k t),B(2,2k t) ,--------------- 8 分则 | AF2 | (1 1)2 (k t 0)2 k 2 2kt t2| BF2 | (2 1)2 (2k t 0)2 1 (4k 2 4kt t2) k 2 2kt t2 2 为定值.--------------- 12 分 2k 2 4kt 2t 2 221.【解析】(1)函数 f (x) 的定义域为 (0, ∞) ,f (x) x a 1 x2 ax 1 ,设 h(x) x2 ax 1 ,xx函数 h(x) 在 (1,3) 内有且只有一个零点,满足 h(1) h(3) 0 ,可得 (1 a 1)(9 3a 1) 0 ,解得 2 a 10 , 3故实数 a 的取值范围为 (2,10) .--------------- 4 分3(2) 2 f (x) 2x 2 (a 1)x2 ,可以变形为 2ln x 2x 2 a(x22x),因为x0,可得a 2ln x x2 2x 2x2,--------------6分设g(x)2ln x 2x x2 2x2,g' ( x)2(x 1)(2ln x (x2 2x)2x).设 h(x) 2 ln x x ,h(x) 在 (0, ∞) 单调递增,h(1 ) 2ln 2 1 0 , h(1) 1 0 .22故存在一点 x0 (0.5,1) ,使得 h(x0 ) 0 ,--------------- 8 分当 0 x x0 时, h(x) 0,g'(x) 0 ,函数 g(x) 单调递增;当 x x0 时, h(x) 0,g'(x) 0 ,函数 g(x) 的最大值为 g(x0) ,且 2 ln x0 x0 0 ,--------------- 10 分g (x)max g(x0) 2ln x0 2x0 2 x02 2x01 x0,可知 a 1 x0,又1 x0 (1,2) ,可得整数 a 的最小值为 2.--------------- 12 分22.【解析】(1)由题可知:2 2 2 cos2 6 , 2(x2 y2 ) x2 6 ,曲线 C 的直角坐标方程为 y2 x2 1 , 32直线 l 的普通方程为 3x 4 y 4 3a 0 ,--------------- 3 分两方程联立可得 33x2 6 (4 3a)x (4 3a)2 48 0 ,可知 [6 (4 3a)]2 4 33 [(4 3a)2 48] 0 ,解得 a 66 4 或 a 66 4 .--------------- 6 分33(2)曲线 C 的方程y2x21,可设x 2 cos ,32 y 3 sin则 2x 3y 2 2 cos 3 3 sin (2 2)2 (3 3)2 sin( ) ,其中 tan 2 6 ,可知最大值为 9(2 2)2 (3 3)2 35 .--------------- 10 分 23.【解析】(1)当 a 1 时, f (x) | 3x 6 | | x 1 | x 10 ,当 x 1时, (3x 6) (x 1) x 10 ,解得 x 1 , 可得 x 1;--------------- 2 分 当 1 x 2 时, (3x 6) (x 1) x 10 ,解得 x 1 , 可得 x 1; 当 x 2 时, (3x 6) (x 1) x 10 ,解得 x 5 , 综上可得 {x | x 5或x 1} .--------------- 4 分 (2)由 f (x) 0 可知, f (x) | 3x 6 | | x 1| ax 0 , | 3x 6 | | x 1| ax ,设 g(x) | 3x 6 | | x 1| , h(x) ax , 同一坐标系中作出两函数的图象如图所示,--------------- 6 分 4x 5,x 1, g(x) 2x 7,1 x 2,可得 A(2,3) , 4x 5,x 2, 当函数 h(x) 与函数 g (x) 的图象有两个交点时,方程 f (x) 0 有两 个不同的实数根,--------------- 8 分由函数图象可知,当 3 a 4 时,有两个不同的解,故实数 a 的 2取值范围为 ( 3 ,4) .--------------- 10 分 2理科数学答案第 3 页(共 4 页)理科数学答案第 4 页(共 4 页)。
2020年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学模拟试题(PDF版,含解析)
2020年普通高等学校招生全国统一考试(全国Ⅰ卷)理科数学注意事项:1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
一、单项选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集{}3,U x x x Z =<∈,{}1,2M =,{}2,1,2N =−−,则()UMN =( ). A .{}1 B .{}1,2 C .{}2 D .{}0,1,2 2.函数()sin2xxf x e=的大致图像是( ) A . B .C .D .3.在ABC 中,D 为BC 边上一点,若ABD △是等边三角形,且AC =则ADC 的面积的最大值为( )A .B .C .D .4.数列{}n a 是各项均为正数的等比数列,数列{}n b 是等差数列,且56a b =,则( )A .3748a a b b +≤+B .3748a a b b +≥+C .3748a a b b +≠+D .3748a a b b +=+5.已知2log 0.7a =,0.12b =,ln 2c =,则( ) A .b c a <<B .a c b <<C .b a c <<D .a b c <<6.设函数()sin()(0,0)f x x ωφωφπ=+><<的图象关于点(,0)3M π对称,点M 到该函数图象的对称轴的距离的最小值为4π,则( ) A .()f x 的周期为2π B .()f x 的初相6πφ=C .()f x 在区间2[,]33ππ上是单调递减函数 D .将()f x 的图象向左平移12π个单位长度后与函数cos 2y x =图象重合 7.2018年6月18日,是我国的传统节日“端午节”.这天,小明的妈妈煮了5个粽子,其中两个腊肉馅,三个豆沙馅.小明随机抽取出两个粽子,若已知小明取到的两个粽子为同一种馅,则这两个粽子都为腊肉馅的概率为( ) A .14B .34C .110D .3108.若1321xlog ≤−,则函数f (x )=4x ﹣2x +1+1的最小值为( ) A .4B .0C .5D .99.已知i 为虚数单位,实数a ,b 满足(2)()(8)i a bi i i −−=−−,则ab 的值为( ) A .6B .-6C .5D .-55−10.已知1a xdx =⎰, 12b x dx =⎰, 0c =,则a , b , c 的大小关系是( )A .a b c <<B .a c b <<C .b a c <<D .c a b <<11.在ABC ∆中,角,,A B C 的对边分别为,,a b c ,ABC ∆的面积为S ,已知15A =,2a =,则b cc b+的值为( )AB .CD .12.已知函数()f x 的定义域为R ,且()26f =,对任意x ∈R ,()2f x '>,则()22f x x >+的解集为( )A .(),2−∞−B .()2,+∞C .()2,2−D .(),−∞+∞二、填空题(本题共4小题,每小题5分,共20分)13.变量满足约束条件,若的最大值为2,则实数等于_________14.已知正数x ,y 满足2x y +=,若2212x ya x y ≤+++恒成立,则实数a 的取值范围是______15.在三棱锥P ABC −中,6,3PB AC ==,G 为PAC ∆的重心,过点G 作三棱锥的一个截面,使截面平行于直线PB 和AC ,则截面的周长为_________.16.某人乘车从A 地到B 地,所需时间(分钟)服从正态分布N (30,100),求此人在40分钟至50分钟到达目的地的概率为__________.参考数据:若2~(,)Z N μσ, 则()0.6826P Z μσμσ−<<+=,(22)0.9544P Z μσμσ−<<+=, (33)0.9974P Z μσμσ−<<+=.三、解答题(本题共7小题,共70分。
2020版高考数学(理)刷题小卷练: 1-4
刷题增分练1 集合的概念与运算刷题增分练①小题基础练提分快一、选择题1.[2018·全国卷Ⅱ]已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=( )A.{3} B.{5}C.{3,5} D.{1,2,3,4,5,7}答案:C解析:A∩B={1,3,5,7}∩{2,3,4,5}={3,5}.故选C.A=2.[2018·全国卷Ⅰ]已知集合A={x|x2-x-2>0},则∁R ( )A.{x|-1<x<2} B.{x|-1≤x≤2}C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}答案:B解析:∵x2-x-2>0,∴ (x-2)(x+1)>0,∴x>2或x<-1,即A={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.由图可得∁R A={x|-1≤x≤2}.故选B.3.[2019·河南质检]已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=( )A.{1} B.{2}C.{4} D.{1,2}答案:A解析:因为∁U B={1,3,5},所以A∩(∁U B)={1}.故选A.4.[2019·武邑调研]已知全集U=R,集合A={x|0<x<9,x∈R}刷题课时增分练①一、选择题1.[2018·全国卷Ⅱ]已知集合A={(x,y)|x2+y2≤3,x∈Z,y ∈Z},则A中元素的个数为( )A.9 B.8 C.5 D.4答案:A解析:将满足x2+y2≤3的整数x,y全部列举出来,即(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),共有9个.故选A.2.[2019·湖南联考]已知全集U=R,集合A={x|x2-3x≥0},B={x|1<x≤3},则如图所示的阴影部分表示的集合为( )A.[0,1) B.(0,3]C.(0,1] D.[1,3]答案:C解析:因为A={x|x2-3x≥0}={x|x≤0或x≥3},B={x|1<x ≤3},所以A∪B={x|x>1或x≤0},所以图中阴影部分表示的集合为∁U(A∪B)=(0,1],故选C.3.设集合A={x|-3≤x≤3,x∈Z},B={y|y=x2+1,x∈A},则集合B中元素的个数是( )A.3 B.4 C.5 D.无数个答案:B解析:∵A={x|-3≤x≤3,x∈Z},∴A={-3,-2,-1,0,1,2,3},∵B={y|y=x2+1,x∈A},∴B={1,2,5,10},故集合B中元素的个数是4,选B.4.[2019·四川统考]已知集合A={x|x2-4x<0},B={x|x<a},若A⊆B,则实数a的取值范围是( )6.[2019·安徽联考]命题p:“若a≥b,则a+b>2 012且a>-b”的逆否命题是( )A.若a+b≤2 012且a≤-b,则a<bB.若a+b≤2 012且a≤-b,则a>bC.若a+b≤2 012或a≤-b,则a<bD.若a+b≤2 012或a≤-b,则a>b答案:C解析:根据逆否命题的定义可得命题p:“若a≥b,则a+b>2 012且a>-b”的逆否命题是:若a+b≤2 012或a≤-b,则a<b.故选C.7.[2019·山东诊断]已知命题p:|x+1|>2;命题q:x≤a,且綈p是綈q的充分不必要条件,则a的取值范围是( ) A.(-∞,-3) B.(-∞,-3]C.(-∞,1) D.(-∞,1]答案:A解析:命题p:|x+1|>2,即x<-3或x>1.∵綈p是綈q的充分不必要条件,∴q是p的充分不必要条件,∴{x|x≤a}{x|x<-3或x>1},∴a<-3.故选A.8.[2019·豫西联考,4]若定义域为R的函数f(x)不是偶函数,则下列命题中一定为真命题的是( )A.∀x∈R,f(-x)≠f(x)B.∀x∈R,f(-x)=-f(x)C.∃x0∈R,f(-x0)≠f(x0)D.∃x0∈R,f(-x0)=-f(x0)答案:C解析:由题意知∀x∈R,f(-x)=f(x)是假命题,则其否定为真命题,∃x0∈R,f(-x0)≠f(x0)是真命题,故选C.二、非选择题9.[2019·江苏测试]命题“若x2-x≥0,则x>2”的否命题是__________________.答案:若x2-x<0,则x≤2解析:命题的否命题需要同时否定条件和结论,则命题“若x2-x≥0,则x>2”的否命题是“若x2-x<0,则x≤2”.10.若“∀x∈[-π4,π4],m≤tan x+1”为真命题,则实数m的最大值为________.答案:0C .4D .-4 答案:D解析:解法一 由已知得f (a )=a +1a -1=2,即a +1a=3,所以f (-a )=-a -1a-1=-⎝⎛⎭⎪⎫a +1a -1=-3-1=-4.解法二 因为f (x )+1=x +1x ,设g (x )=f (x )+1=x +1x,易判断g (x )=x +1x 为奇函数,故g (x )+g (-x )=x +1x-x -1x=0,即f (x )+1+f (-x )+1=0,故f (x )+f (-x )=-2,所以f (a )+f (-a )=-2,故f (-a )=-4.2.下列所给图象是函数图象的个数为( )A .1B .2C .3D .4 答案:B解析:①中当x >0时,每一个x 的值对应两个不同的y 值,因此不是函数图象;②中当x =x 0时,y 的值有两个,因此不是函数图象,③④中每一个x 的值对应唯一的y 值,因此是函数图象.故选B.3.[2019·河南豫东、豫北十所名校段测]设函数f (x )=⎩⎪⎨⎪⎧log 3x ,0<x ≤9,f x -4,x >9,则f (13)+2f ⎝ ⎛⎭⎪⎫13的值为( )A .1B .0C .-2D .2 答案:B1,则a =________.答案:-7 解析:∵ f (x )=log 2 (x 2+a )且f (3)=1,∴ 1=log 2 (9+a ),∴ 9+a =2,∴ a =-7.10.[2019·南阳模拟]已知函数y =f (x )满足f (x )=2f ⎝ ⎛⎭⎪⎫1x +3x ,则f (x )的解析式为________.答案:f (x )=-x -2x(x ≠0)解析:由题意知函数y =f (x )满足f (x )=2f ⎝ ⎛⎭⎪⎫1x +3x ,即f (x )-2f ⎝ ⎛⎭⎪⎫1x =3x ,用1x 代换上式中的x ,可得f ⎝ ⎛⎭⎪⎫1x -2f (x )=3x ,联立得,⎩⎪⎨⎪⎧f x-2f ⎝ ⎛⎭⎪⎫1x =3x ,f ⎝ ⎛⎭⎪⎫1x -2f x =3x,解得f (x )=-x -2x(x ≠0).11.[2019·河南开封模拟]f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3x 2-1,x ≥2,则f (f (2))的值为________.答案:2解析:∵当x ≥2时,f (x )=log 3(x 2-1),∴f (2)=log 3(22-1)=1<2,∴f (f (2))=f (1)=2e 1-1=2.12.[2019·湖北黄冈浠水县实验高中模拟]已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为________.答案:⎝⎛⎭⎪⎫-1,-12解析:∵函数f (x )的定义域为(-1,0),∴由-1<2x +1<0,解得-1<x <-12.∴函数f (2x +1)的定义域为⎝⎛⎭⎪⎫-1,-12.刷题课时增分练③ 综合提能力 课时练 赢高分 一、选择题1.下列各组函数中表示同一函数的是( )6.[2019·新疆乌鲁木齐诊断]函数f (x )=⎩⎪⎨⎪⎧e x -1,x <2,-log 3x -1,x ≥2,则不等式f (x )>1的解集为( )A .(1,2) B.⎝⎛⎭⎪⎫-∞,43C.⎝⎛⎭⎪⎫1,43 D .[2,+∞)答案:A解析:当x <2时,不等式f (x )>1即e x -1>1, ∴x -1>0,∴x >1,则1<x <2;当x ≥2时,不等式f (x )>1即-log 3(x -1)>1,∴0<x -1<13,∴1<x <43,此时不等式无解.综上可得,不等式的解集为(1,2).故选A.7.[2019·定州模拟]设函数f (x )=⎩⎪⎨⎪⎧log 2x 2,x <0,-e x,x ≥0,若f (f (t ))≤2,则实数t 的取值范围是( )A.⎝⎛⎦⎥⎤-∞,-12∪[0,ln2] B .[ln2,+∞)C.⎝⎛⎦⎥⎤-∞,-12 D .[-2,+∞)答案:A解析:令m =f (t ),则f (m )≤2,则⎩⎪⎨⎪⎧m <0,log 2m 2≤2或⎩⎪⎨⎪⎧m ≥0,-e m≤2,刷题增分练 4 函数的基本性质刷题增分练④小题基础练提分快一、选择题1.函数f (x )=3x-2x 的图象关于( )A .y 轴对称B .直线y =-x 对称C .坐标原点对称D .直线y =x 对称 答案:C解析:因为f (x )的定义域为(-∞,0)∪(0,+∞),f (-x )=3-x-(-2x )=-3x+2x =-⎝ ⎛⎭⎪⎫3x-2x =-f (x ),所以f (x )=3x-2x 是奇函数,所以其图象关于坐标原点对称.故选C.2.[2019·潍坊统考]下列函数中,图象是轴对称图形且在区间(0,+∞)上单调递减的是( )A .y =-x 3B .y =-x 2+1C .y =2xD .y =log 2|x | 答案:B解析:因为函数的图象是轴对称图形,所以排除A ,C ,又y =-x 2+1在(0,+∞)上单调递减,y =log 2|x |在(0,+∞)上单调递增,所以排除D.故选B.3.若函数f (x )=x 2+bx +c 对一切实数都有f (2+x ) =f (2-x )则( )A .f (2)<f (1)< f (4)B .f (1)<f (2)< f (4)C .f (2)<f (4)< f (1)D .f (4)<f (2)< f (1) 答案:A解析:由已知对称轴为x =2,由于抛物线开口向上,所以越靠近对称轴值越小.4.[2019·黑龙江双鸭山适应性考试]函数f (x )对于任意实数x满足条件f (x +2)=1f x,若f (1)=-5,则f [f (5)]=( )A .-5B .5C.15 D .-15 答案:D解析:由题意得f (x +4)=1f x +2=f (x ),则f (5)=f (1)=-5,所以f [f (5)]=f (-5)=f (-1)=1f 1=-15.故选D.于原点对称.∵当x≥0时恒有f(x)=f(x+2),∴函数f(x)的周期为2.∴f(2 016)+f(-2 015)=f(0)-f(1)=1-e.故选A.8.定义在R上的奇函数f(x)满足f(x+2)=-f(x),且在[0,2)上单调递减,则下列结论正确的是( )A.0<f(1)<f(3) B.f(3)<0<f(1)C.f(1)<0<f(3) D.f(3)<f(1)<0答案:C解析:由函数f(x)是定义在R上的奇函数,得f(0)=0.由f(x+2)=-f(x),得f(x+4)=-f(x+2)=f(x),故函数f(x)是以4为周期的周期函数,所以f(3)=f(-1).又f(x)在[0,2)上单调递减,所以函数f(x)在(-2,2)上单调递减,所以f(-1)>f(0)>f(1),即f(1)<0<f(3).故选C.二、非选择题9.已知f(x)是定义在[m-4,m]上的奇函数,则f(0)+m=________.答案:2解析:∵f(x)是定义在[m-4,m]上的奇函数,∴m-4+m=0,解得m=2,又f(0)=0,∴f(0)+m=2.10.已知定义在R上的函数f(x)满足:∀x∈R,都有f(-x)+f(x)=0,f(x+1)=f(5-x)成立.若f(-2)=-1,则f(2 018)=________.答案:1解析:由题意得f(x)=f(6-x)=-f(x-6),即f(x-6)=-f(x),则f(x-12)=-f(x-6)=f(x),所以函数f(x)的周期为12.故f(2 018)=f(12×168+2)=f(2)=-f(-2)=1.11.已知函数y=f(x)是偶函数,且在[0,+∞)上单调递减.若f(a)<f(2),求实数a的取值范围为________.答案:(-∞,-2)∪(2,+∞)解析:∵y=f(x)是偶函数,∴f(a)=f(|a|).∵f(a)<f(2),∴f(|a|)<f(2),∵y=f(x)在[0,+∞)上是减函数,∴|a|>2,即a>2或a<-2.∴实数a的取值范围是a>2或a<-2.12.[2019·云南民族大学附中模拟]f(x)=⎩⎪⎨⎪⎧a x ,x <1,a -3x +4a ,x ≥1,满足对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,则a 的取值范围是________________.答案:⎝⎛⎦⎥⎤0,34解析:∵对任意x 1≠x 2,都有f x 1-f x 2x 1-x 2<0成立,∴f (x )在定义域R 上为单调递减函数,∴⎩⎪⎨⎪⎧0<a <1,a -3<0,a ≥a -3×1+4a ,解得0<a ≤34,∴a 的取值范围是⎝⎛⎦⎥⎤0,34.刷题课时增分练④ 综合提能力 课时练 赢高分一、选择题1.[2019·贵阳模拟]下列四个函数中,在定义域上不是单调函数的是( )A .y =-2x +1B .y =1xC .y =lg xD .y =x 3 答案:B解析:y =-2x +1在定义域上为单调递减函数;y =lg x 在定义域上为单调递增函数;y =x 3在定义域上为单调递增函数;y =1x在(-∞,0)和(0,+∞)上均为单调递减函数,但在定义域上不是单调函数.故选B.2.[2019·太原模拟]设函数f (x ),g (x )分别是R 上的偶函数和奇函数,则下列结论正确的是( )A .f (x )+g (x )是奇函数B .f (x )-g (x )是偶函数C .f (x )g (x )是奇函数D .f (x )g (x )是偶函数 答案:C解析:∵f (x ),g (x )分别是R 上的偶函数和奇函数, ∴f (-x )=f (x ),g (-x )=-g (x ).令F (x )=f (x )g (x ),则F (-x )=f (-x )g (-x )=f (x )[-g (x )]=-f (x )g (x )=-F (x ),∴F (x )=f (x )g (x )为奇函数.故选C.3.[2019·贵阳监测]已知函数f (x )=2xx -1,则下列结论正确的是( )A .函数f (x )的图象关于点(1,2)中心对称B .函数f (x )在(-∞,1)上是增函数C .函数f (x )的图象上存在不同的两点A ,B ,使得直线AB ∥x 轴D .函数f (x )的图象关于直线x =1对称 答案:A解析:因为f (x )=2x x -1=2x -1+2x -1=2x -1+2,所以该函数图象可以由y =2x的图象向右平移1个单位长度,向上平移2个单位长度得到,所以函数f (x )的图象关于点(1,2)中心对称,A 正确,D 错误;易知函数f (x )在(-∞,1)上单调递减,故B 错误;易知函数f (x )的图象是由y =2x的图象平移得到的,所以不存在不同的两点A ,B ,使得直线AB ∥x 轴,C 错误.故选A.4.[2019·湖北鄂东南省级示范高中教育教学改革联盟模拟]若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1] 答案:D解析:由于g (x )=ax +1在区间[1,2]上是减函数,所以a >0;由于f (x )=-x 2+2ax 在区间[1,2]上是减函数,且f (x )的对称轴为x =a ,则a ≤1.综上有0<a ≤1.故选D.5.已知函数f (x )=⎩⎪⎨⎪⎧3a -3x +2,x ≤1,-4a -ln x ,x >1,对任意的x 1≠x 2都有(x 1-x 2)[f (x 2)-f (x 1)]>0成立,则实数a 的取值范围是( )A .(-∞,3]B .(-∞,3)C .(3,+∞)D .[1,3) 答案:D解析:由(x 1-x 2)[f (x 2)-f (x 1)]>0,得(x 1-x 2)·[f (x 1)-f (x 2)]<0,所以函数f (x )在R 上单调递减,所以⎩⎪⎨⎪⎧a -3<0,3a -3+2≥-4a ,解得1≤a <3.故选D. 6.[2019·山东诊断]已知奇函数f (x )的定义域为R ,当x ∈(0,1]时,f (x )=x 2+1,且函数f (x +1)为偶函数,则f (2 016)+f (-2 017)的值为( )A .-2B .2C .-1D .3 答案:A解析:∵f (x )为R 上的奇函数,f (x +1)为偶函数,∴f (x )=f (x -1+1)=f (1-x +1)=f (-x +2)=-f (x -2)=f (x -4);∴f (x )是周期为4的周期函数.又f (1)=2,∴f (2 016)+f (-2 017)=f (0)-f (1)=0-2=-2.故选A. 7.[2019·福建龙岩联考]若函数y =f (x )在[1,3]上单调递减,且函数f (x +3)是偶函数,则下列结论成立的是( )A .f (2)<f (π)<f (5)B .f (π)<f (2)<f (5)C .f (2)<f (5)<f (π)D .f (5)<f (π)<f (2) 答案:B解析:∵函数y =f (x )在[1,3]上单调递减,且函数f (x +3)是偶函数,∴f (x +3)=f (-x +3),f (x )=f (6-x ),∴f (π)=f (6-π),f (5)=f (1).∵1<2<6-π<3,∴f (6-π)<f (2)<f (1),∴f (π)<f (2)<f (5).故选B.8.[2019·沈阳监测]设函数f (x )是定义在R 上的偶函数,且f (x+2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎪⎫22x-1,若关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)在区间(-2,6)内有且只有4个不同的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫14,1 B .(1,4) C .(1,8) D .(8,+∞) 答案:D解析:∵f (x )为偶函数,且f (2+x )=f (2-x ), ∴f (4+x )=f (-x )=f (x ),∴f (x )为偶函数且周期为4,又当-2≤x ≤0时,f (x )=⎝ ⎛⎭⎪⎪⎫22x-1,∴可画出f (x )在(-2,6)上的大致图象,如图所示.若f (x )-log a (x +2)=0(a >0且a ≠1)在(-2,6)内有4个不同的实根,则y =f (x )的图象与y =log a (x +2)的图象在(-2,6)内有4个不同的交点,∴⎩⎪⎨⎪⎧a >1,log a 6+2<1,所以a >8,故选D.二、非选择题9.设f (x )是定义在R 上的奇函数,且y =f (x )的图象关于直线x =12对称,则f (1)+f (2)+f (3)+f (4)+f (5)= __________. 答案:0解析:∵f (x )是定义在R 上的奇函数,∴f (x )=-f (-x ),又∵f (x )的图象关于直线x =12对称,∴f (x )=f (1-x )=-f (-x )=-f (2-x )⇒f (x )=f (x +2),在f (x )=f (1-x )中,令x =0,∴f (0)=f (1)=0,∴f (0)=f (1)=…=f (5)=0,∴f (1)+f (2)+f (3)+f (4)+f (5)=0.10.[2019·福建龙岩毕业班教学质量检查]函数f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +4)在区间[-2,2]上的最大值为________.答案:8解析:由函数的解析式可知f (x )=⎝ ⎛⎭⎪⎫13x-log 2(x +4)在区间[-2,2]上是单调递减函数,则函数的最大值为f (-2)=⎝ ⎛⎭⎪⎫13-2-log 2(-2+4)=9-1=8.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刷题增分练1集合的概念与运算
刷题增分练①小题基础练提分快
一、选择题
1.[2018·全国卷Ⅱ]已知集合A={1,3,5,7},B={2,3,4,5},则A∩B =()
A.{3}B.{5}
C.{3,5} D.{1,2,3,4,5,7}
答案:C
解析:A∩B={1,3,5,7}∩{2,3,4,5}={3,5}.故选C.
A=() 2.[2018·全国卷Ⅰ]已知集合A={x|x2-x-2>0},则∁
R A.{x|-1<x<2} B.{x|-1≤x≤2}
C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}
答案:B
解析:∵x2-x-2>0,∴ (x-2)(x+1)>0,∴x>2或x<-1,即A ={x|x>2或x<-1}.在数轴上表示出集合A,如图所示.
由图可得∁R A={x|-1≤x≤2}.
故选B.
3.[2019·河南质检]已知全集U={1,2,3,4,5,6},集合A={1,2,4},B={2,4,6},则A∩(∁U B)=()
A.{1} B.{2}
C.{4} D.{1,2}
答案:A
解析:因为∁U B={1,3,5},所以A∩(∁U B)={1}.故选A.
4.[2019·武邑调研]已知全集U=R,集合A={x|0<x<9,x∈R}和B={x|-4<x<4,x∈Z}关系的Venn图如图所示,则阴影部分所表示集合中的元素共有()
A.3个B.4个
C.5个D.无穷多个
共有9个.故选A.
2.[2019·湖南联考]已知全集U =R ,集合A ={x |x 2-3x ≥0},B ={x |1<x ≤3},则如图所示的阴影部分表示的集合为( )
A .[0,1)
B .(0,3]
C .(0,1]
D .[1,3]
答案:C 解析:因为A ={x |x 2-3x ≥0}={x |x ≤0或x ≥3},B ={x |1<x ≤3},所以A ∪B ={x |x >1或x ≤0},所以图中阴影部分表示的集合为∁U (A ∪B )=(0,1],故选C.
3.设集合A ={x |-3≤x ≤3,x ∈Z },B ={y |y =x 2+1,x ∈A },则集合B 中元素的个数是( )
A .3
B .4
C .5
D .无数个
答案:B
解析:∵A ={x |-3≤x ≤3,x ∈Z },∴A ={-3,-2,-1,0,1,2,3},∵B ={y |y =x 2+1,x ∈A },∴B ={1,2,5,10},故集合B 中元素的个数是4,选B.
4.[2019·四川统考]已知集合A ={x |x 2-4x <0},B ={x |x <a },若A ⊆B ,则实数a 的取值范围是( )
A .(0,4]
B .(-∞,4)
C .[4,+∞)
D .(4,+∞)
答案:C
解析:由已知可得A ={x |0<x <4}.若A ⊆B ,则a ≥4.故选C.
5.[2019·贵州遵义南白中学联考]已知集合A ={x |x 2+x -2<0},B ={x |log 12
x >1},则A ∩B =( )
A.⎝ ⎛⎭
⎪⎫0,12 B .(0,1) C.⎝ ⎛⎭⎪⎫-2,12 D.⎝ ⎛⎭
⎪⎫12,1 答案:A
解析:由题意,得A ={x |-2<x <1},B =⎩⎨⎧⎭
⎬⎫x ⎪⎪⎪
0<x <12,所以A ∩B
=⎩⎨⎧ x ⎪⎪⎪⎭⎬⎫0<x <12=⎝ ⎛⎭
⎪⎫0,12.故选A. 6.[2019·河北唐山模拟]已知集合A ={x ∈N |x <3},B ={x |x =a -b ,a ∈A ,b ∈A },则A ∩B =( )
A .{1,2}
B .{-2,-1,1,2}
C .{1}
D .{0,1,2}
答案:D
解析:A ={x ∈N |x <3}={0,1,2},B ={x |x =a -b ,a ∈A ,b ∈A }.由题意知,当a =0,b =0时,x =a -b =0;当a =0,b =1时,x =a -b =-1;当a =0,b =2时,x =a -b =-2;当a =1,b =0时,x =a -b =1;当a =1,b =1时,x =a -b =0;当a =1,b =2时,x =a -b =-1;当a =2,b =0时,x =a -b =2;当a =2,b =1时,x =a -b =1;当a =2,b =2时,x =a -b =0,根据集合中元素的互异性,B ={-2,-1,0,1,2},∴A ∩B ={0,1,2}.故选D.
7.[2019·浙江模拟]已知集合P ={x ∈R |-2<x ≤3},Q =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫x ∈R ⎪⎪⎪ 1+x x -3≤0,则( ) A .P ∩Q ={x ∈R |-1<x <3}
B .P ∪Q ={x ∈R |-2<x <3}
C .P ∩Q ={x ∈R |-1≤x ≤3}
D .P ∪Q ={x ∈R |-2<x ≤3}
答案:D
解析:由1+x x -3
≤0,得(1+x )(x -3)≤0且x ≠3,解得-1≤x <3,故P ∩Q ={x ∈R |-1≤x <3},P ∪Q ={x ∈R |-2<x ≤3}.故选D.
8.已知全集U =R ,集合A ={x |x 2-2x ≤0},B ={y |y =sin x ,x ∈R },则图中阴影部分表示的集合为( )
A .[-1,2]
B .[-1,0)∪(1,2]
C .[0,1]
D .(-∞,-1)∪(2,+∞)
答案:B
∴A∩B={x|2<x≤3}.
∵∁R B={x|x≤2},∴(∁R B)∪A={x|x≤3}.(2)由(1)知A={x|1≤x≤3},C⊆A.
当C为空集时,满足C⊆A,a≤1;
当C为非空集合时,可得1<a≤3.
综上所述,a的取值范围为(-∞,3].
实数a的取值范围为(-∞,3].。