2020高考理科数学冲刺—压轴大题高分练一

合集下载

2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题(解析版)

2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题(解析版)

2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题一、单选题1.已知集合{1A y y ==+,{}30B x x =-≤,则A B =I ( )A .[]1,2B .[]1,3C .[]2,3D .()2,+∞【答案】B【解析】首先分别化简集合A ,B ,再求交集即可. 【详解】{{}11A y y y y ==+=≥,{}{}303B x x x x =-≤=≤,所以[]1,3A B ⋂=. 故选:B. 【点睛】本题主要考查集合的交集运算,同时考查了函数的值域,属于简单题.2.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式,设复数cos sin33z i ππ=+,则3z 等于( )A .12- B .1- C .12-D .12-+ 【答案】B 【解析】根据欧拉公式得到3i z e π=,再计算3z 即可. 【详解】由题意得3cossin33iz i e πππ=+=,333()cos sin 1ii z e e i ππππ====-+.故选:B本题主要考查三角函数求值问题,同时复数的概念,属于简单题.3.月形是一种特殊的平面图形,指有相同的底,且在底的同一侧的两个弓形所围成的图形.月形中的一种特殊的情形是镰刀形,即由半圆和弓形所围成的图形(如下图),若半圆的半径与弓形所在圆的半径之比为1:2,现向半圆内随机取一点,则取到镰刀形中的一点的概率为()A.423 3π-B.2313π-C.3πD.31π-【答案】B【解析】首先设半圆半径为r,分别计算半圆的面积和弓形的面积,再代入几何概型公式计算即可.【详解】如图所示:设半圆半径为r,半圆面积为22rπ,221(2)3OO r r r=-=弓形面积为()2221122233623r r r r rππ⨯⨯-⨯=-,概率为2222232312332rr rrπππ-+=-.故选:B本题主要以数学文化为背景考查几何概型,同时考查学生的逻辑思维能力,属于中档题. 4.数列{}n a的前几项是:0、2、4、8、12、18、24、32、49、50⋅⋅⋅其规律是:偶数项是序号平方再除2;奇数项是序号平方减1再除2.如图所示的程序框图是为了得到该数列的前100项而设计的,那么在两个判断框中,可以先后填入()n≤?A.n是偶数?,100n≤?B.n是奇数?,100n<?C.n是偶数?,100n<?D.n是奇数?,100【答案】A【解析】模拟程序框图的运行过程,结合输出的条件,即可得到答案.【详解】根据偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,可知第一个框应该是“n是偶数?”;n=>结束,执行程序框图,当101100n≤?.所以第二个框应该填100故选:A【点睛】本题主要考查程序框图的应用问题,解题时应模拟程序框图的运行过程,属于简单题.5.已知数列{}n a 的前n 项和为n S ,且对任意*N n ∈都有21n n S a =-,设2log n n b a =,则数列{}n b 的前6项之和为( ) A .11 B .16 C .10 D .15【答案】D 【解析】首先根据21n n S a =-得到12n n a -=,代入2log n n b a =,再计算数列{}n b 的前6项之和即可. 【详解】因为21n n S a =-,当1n =时,11121S a a =-=,所以11a =.当2n ≥时,1n n n a S S -=-,所以121(21)n n n a a a -=---,即12n n a a -=. 所以数列{}n a 是以1为首项,以2为公比的等比数列,所以12n n a -=,12log 21n n b n -==-,11(2)1n n b b n n --=---=,所以数列{}n b 是以0为首项,以1为公差的等差数列, 数列{}n b 的前6项之和为1656152b d ⨯+= 故选:D 【点睛】本题主要考查由n S 求通项公式n a ,同时考查了等差数列的求和,属于中档题. 6.声音中包含着正弦函数.音的四要素:音调、响度、音长和音色都与正弦函数的参数有关.我们平时听到的音乐不只是一个音在响,是由基音和许多个谐音的结合,其函数可以是()11sin sin 2sin 323f x x x x =++,则()f x 的图象可以是( ) A . B .C .D .【答案】D【解析】首先根据()f x 为奇函数,排除C ,根据42f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭,排除B ,根据()11111=236f x <++,排除A ,排除法即可得到答案.【详解】因为()f x 的定义域为R ,1111()sin()sin(2)sin(3)sin sin 2sin 3()2323f x x x x x x x f x -=-+-+-=---=-,所以()f x 为奇函数,排除C .221432f π⎛⎫=+ ⎪⎝⎭,223f π⎛⎫= ⎪⎝⎭,故42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B ; 因为()11111=236f x <++,而A 选项的()max 2f x =,排除A. 故选:D 【点睛】本题主要考查根据解析式判断函数的图象,同时考查了函数的奇偶性,特值法以及函数的最值,属于中档题.7.过双曲线M :()22210y x b b-=>的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近线分别交于B 、C 两点,且54OB OA OC =+u u u r u u u r u u u r,则双曲线的离心率是( ) A .10B .132C 13D .133【答案】B【解析】首先设出直线l 的方程为1y x =+,与渐近线方程联立得到1(,)11bB b b -++, 1(,)11bC b b --.根据54OB OA OC =+u u u r u u u r u u u r 得到32b =,再计算离心率即可.【详解】由题可知(1,0)A -,所以直线l 的方程为1y x =+. 因双曲线M 的两条渐近线方程为y bx =或y bx =-.由1y bx y x =-⎧⎨=+⎩,解得1(,)11b B b b -++;同理可得1(,)11bC b b --. 又()1,0OA =-u u u r ,1,11b OB b b ⎛⎫=- ⎪++⎝⎭u u u r ,1,11b OC b b ⎛⎫= ⎪--⎝⎭u u u r因为54OB OA OC =+u u u r u u u r u u u r, 所以511b b b b =+-,解得32b =,2c =,2e =.故选:B 【点睛】本题主要考查双曲线离心率的求法,根据题意解出b ,c 的值为解题的关键,属于中档题.8.已知定义在R 上的连续可导函数()f x 无极值,且x R ∀∈,()20192020xf f x ⎡=⎤⎣⎦-.若()2sin 6g x x mx π⎛⎫=++ ⎪⎝⎭在3,22ππ⎡⎤⎢⎥⎣⎦上与函数()f x 的单调性相同,则实数m 的取值范围是( ) A .(],1-∞- B .[)1,-+∞ C .(],2-∞-D .[]2,1--【答案】B【解析】首先设()2019xt f x =-,得到()2019xf x t =+在R 上的增函数,从而得到()g x 在3,22ππ⎡⎤⎢⎥⎣⎦上为增函数.再利用导数转化为max [2cos()]6m x π≥-+,即可得到答案. 【详解】由于()f x 连续可导且无极值,故函数()f x 为单调函数, 可令()2019xt f x =-(t 为常数),使()2020f t =成立,故()2019xf x t =+,故()f x 为R 上的增函数.故()g x 在3,22ππ⎡⎤⎢⎥⎣⎦上为增函数.()2cos 06g x x m π⎛⎫'=++≥ ⎪⎝⎭在3,22x ππ⎡⎤∈⎢⎥⎣⎦上恒成立, 即max [2cos()]6m x π≥-+. 因为3,22x ππ⎡⎤∈⎢⎥⎣⎦所以513,636x πππ⎡⎤+∈⎢⎥⎣⎦,故61cos ,12x π⎛⎫⎡⎤∈ ⎪⎢⎝⎭⎣+⎥⎦,[]2cos 2,16x π⎛⎫-+∈-- ⎪⎝⎭, 所以1m ≥-. 故选:B 【点睛】本题主要考查三角函数的值域问题,同时考查了导数的单调区间和极值,属于中档题. 9.在平面四边形ABCD 中,AB BD ⊥,60BCD ∠=︒,223424AB BD +=,若将ABD △沿BD 折成直二面角A BD C --,则三棱锥A BDC -外接球的表面积是( ) A .4π B .5πC .6πD .8π【答案】D【解析】首先根据二面角A BD C --为直二面角得到AB ⊥平面BCD .再将三棱锥的外接球转化为直三棱柱的外接球即可得到表面积. 【详解】 如图所示:因为二面角A BD C --为直二面角,且AB BD ⊥, 所以AB ⊥平面BCD .将三棱锥A BDC -放入三棱柱中,如图所示:1O ,2O 为底面外接圆的圆心,12O O 的中点O 为三棱锥A BDC -外接球的球心.在BDC V 中,2sin 60BD r =o,所以3r =. 因为222222221111()3234R r OO BD AB BD AB =+=+=+ 又因为223424AB BD +=,所以2211234BD AB +=所以22R =,外接球表面积 248S R ππ==. 故选:D 【点睛】本题主要考查三棱锥外接球的表面积,同时考查了二面角,将三棱锥的外接球转化为直三棱柱的外接球为解题的关键,属于中档题.10.若e a =π,3e b =,3c π=,则a ,b ,c 的大小关系为( ) A .b a c << B .a b c << C .c a b << D .b c a <<【答案】A【解析】首先利用指数函数和幂函数的单调性得到b c <和a b >,再构造函数,利用导数得到函数的单调性得到a c <,即可得到答案. 【详解】因为3xy =在R 上为增函数,所以33e π<,即b c <. 因为e y x =在(0,)+∞为增函数,所以3e e π>,即a b >. 设ln ()xf x x=,21ln ()xf x x-'=,令()0f x '=,x e =. (0,)x e ∈,()0f x '>,()f x 为增函数, (,)x e ∈+∞,()0f x '<,()f x 为减函数.则()(3)f f π<,即ln ln 33ππ<,因此3ln ln3ππ<, 即3ln ln 3ππ<,33ππ<.又33e πππ<<,所以a c <. 所以b a c <<. 故选:A 【点睛】本题主要考查指数和幂的比较大小,利用导数得到函数的单调性来比较大小为解决本题的关键,属于中档题.11.已知F 为抛物线C :28y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A ,B 两点,直线2l 与C 交于D ,E 两点,则AD EB ⋅u u u r u u u r的最小值为( ) A .60 B .62C .64D .66【答案】C【解析】首先设出()11,A x y ,()22,B x y ,()33,D x y ,()44,E x y ,联立直线1l ,2l 和抛物线得到()212242k x x k++=,124x x=,()234412x x k +=+,344x x =.利用向量的减法化简AD EB ⋅u u u r u u u r得到FD FE FA F AD B B E ⋅+⋅=⋅u u u r u u u r ,再利用焦半径公式和基本不等式从而得到最小值. 【详解】 如图所示:设()11,A x y ,()22,B x y ,()33,D x y ,()44,E x y , 直线1l 方程为()()20y k x k =-≠,则直线2l 方程为()12y x k=--, 联立()228y k x y x⎧=-⎨=⎩得()22224840k x k x k -++=,()212242k x x k++=,124x x=;同理()223424211412k x x k k ⎛⎫+ ⎪⎝⎭+==+,344x x =. ()()AD EB FD FA FB FE FD FE FA FB ⋅=-⋅-=-⋅-⋅=u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ()()()()12342222FD FE FA FB x x x x +++++⋅=+⋅()()12341234822x x x x x x x x =++++++()()2222282161681232163264k k k k k +=+++=++≥+=. 当且仅当1k =±时,取“=”. 故选:C 【点睛】本题主要考查直线与抛物线的位置关系,同时考查了抛物线的焦半径公式和基本不等式,属于中档题.12.已知函数()f x ,()g x 定义域为R ,()()1f x g x +=.若()()()()()()(),, ,,f x f xg x F x g x f x g x ⎧≥⎪=⎨<⎪⎩且()()2222F x x a x a a R =-+∈,则关于x 的方程()()1f x g x -=有两解时,a 的取值范围为( )A.{}1122⎛⎫--⋃ ⎪ ⎪⎝⎭B.2⎡⎤-⎢⎥⎣⎦C.{}112⎛⎤-⋃ ⎥ ⎝⎦D .1,12⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题知()()()()()2f xg x f x g x F x ++-=,根据题意得到:()12F x ≥恒成立且()1F x =有两解.分别讨论0a <和0a >时的情况,根据图象即可得到a 的取值范围. 【详解】由题意知:()()()()()2f xg x f x g x F x ++-=,则()()()210f x g x F x -=-≥对任意的x ∈R 恒成立, 又()()1f x g x -=有两解, 则()12F x ≥恒成立且()1F x =有两解. ()222222()F x x a x a x a a =-+=-+.当0a <时,如图所示:只需21212a ≤<,解得2122a -<≤-. 当0a >时,如图所示:只需212a ≥且221a <或者21a =即可,解得1a =. 综上所述:{}21,122a ⎛⎤∈--⋃ ⎥ ⎝⎦. 故选:C 【点睛】本题主要考查函数的零点问题,同时考查了分类讨论的思想,数形结合为解决本题的关键,属于中档题.二、填空题13.变量x ,y 满足约束条件220,240,10,x y x y x y +-≥⎧⎪+-≤⎨⎪-+≥⎩则目标函数232z x y =--的取值范围是______. 【答案】[]3,2-【解析】首先根据不等式组画出可行域,根据可行域化简目标函数得到2633z y x +=-+,再根据z 的几何意义结合可行域即可得到z 的取值范围. 【详解】不等式的可行域如图所示:由图知:0x ≥,02y ≤≤,因此23(2)236z x y x y =+-=+-,此时2633z y x +=-+,直线的纵截距越大,z 越大,纵截距越小,z 越小. 当直线经过点()0,1A 时,min 363z =-=-,联立24010x y x y +-=⎧⎨-+=⎩,解得(1,2)C .当直线经过点(1,2)C 时,max 2662z =+-=, 所以z 的范围为[]3,2-. 故答案为:[]3,2- 【点睛】本题主要考查线性规划,根据不等式组画出可行域为解题的关键,属于中档题.14.设1e u r ,2e u u r 为单位向量,非零向量()12,a xe ye x y R =+∈r u r u u r ,若1e u r ,2e u u r 的夹角为3π,则yar 的最大值等于______.【答案】3【解析】首先计算2a r ,化简22y ar 得到2221()1x x y y y a =++r ,再利用二次函数的最值得到yar 的最大值. 【详解】当0y =时,0ya=r . 当0y ≠时,222222211222=a x e xye e y e x xy y =++++r u r u r u u r u u r g, 则2222221()1y x x x xy y yy a y ==++++r , 因为22133()1()244xx x yy y ++=++≥ 所以()222140133()24y a y x y =≤≠++r所以y a r【点睛】本题主要考查平面向量模长的计算,同时考查了二次函数的最值,属于中档题.15.在数列{}n a ,{}n b 中,()12n n n a a b +=++,()12n n n b a b +=+-11a =,11b =.设11n n mc a b +=,则数列{}n c 的通项公式n c =______. 【答案】22n -【解析】首先让两式()12n n n a a b +=++和()12n n n b a b +=+-别相加和相乘得到212n n n a b -+=和13382n n n n a b --⋅==,再代入n c 即可得到通项公式.【详解】由()12n n n a a b +=++,()12n n n b a b +=+-两式相加可得:()114n n n n a b a b +++=+. 112a b +=,故数列{}nn a b +是以2为首项,4为公比的等比数列.212n n n a b -+=.两式相乘得:()()22211448n n n n n n n n a b a b a b a b ++⋅=+-+=⋅,111a b =,故{}n n a b ⋅是以1为首项,8为公比的等比数列, 13382n n n n a b --⋅==,所以2123311222n n n n n n n n n n a b c a b a b ---⎛⎫+=+===⎪⋅⎝⎭. 故答案为:22n - 【点睛】本题主要考查利用定义求等差数列和等比数列的通项公式,同时考查了学生分析问题的能力,属于中档题.16.已知a R ∈,函数()sin 2cos x f x a a x =-++在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值为12,则a的取值范围为______.【答案】1(,]4-∞ 【解析】首先令()sin 2cos xg x x=+,利用导数求出函数的单调区间和最值,再分类讨论a 的范围即可得到答案.【详解】 令()sin 2cos x g x x=+,()()22cos 12cos x g x x +'=+, 0,2x π⎡⎤∈⎢⎥⎣⎦,则()0g x '>,()g x 在0,2π⎡⎤⎢⎥⎣⎦为增函数,()00g =,122g π⎛⎫=⎪⎝⎭,()102g x ≤≤,()12a g x a a -≤-≤-.若0a ≤,()()1[0,]2f xg x =∈,此时()f x 最大值为12,成立; 若12a ≥,()()12[2,2]2f x a g x a a =-∈-,则()max 122x f a ==,14a =,不成立,舍去.若102a <<,()max 1max 2,2f x a ⎧⎫=⎨⎬⎩⎭,只需122a ≤,即104a <≤. 综上所述:14a ≤. 故答案为:1(,]4-∞【点睛】本题主要考查利用导数求函数的最值问题,构造函数()g x 为解题的关键,属于难题.三、解答题17.已知ABC V 的内角为A ,B ,C ,它们的对边分别为a ,b ,c ,已知sinsin 2A Ca b A +=. (1)求角B 的大小;(2)若1cos 7A =,BA BC +=u uu r u u u r ABC V 的面积.【答案】(1)3B π=(2)【解析】(1)首先利用三角函数的诱导公式得到sin cossin 22BBa ab A π-==,再利用正弦定理的边化角即可得到1sin22B =,3B π=.(2)首先根据已知1cos 7A =和3B π=得到53sin 14C =,利用余弦定理得到2211129474c b cb +-=,再根据sin 7sin 5b B c C ==算出b ,c 值求面积即可. 【详解】 (1)因为sinsin 2A Ca b A +=,所以sin cos sin 22B B a a b A π-==, 由正弦定理:sin sin sin a b cA B C ==知,sin cos sin sin 2B A B A =, 而sin 0A ≠,则cos sin 2sin cos 222B B BB ==, 又0B π<<,022B π<<,cos 02B ≠,所以1sin 22B =. 26B π=,3B π=. (2)设ABC V 三边分别为a ,b ,c ,AC 中点为M , 如图所示:因为1cos 7A =,所以43sin A =. 又因为3B π=,()53sin sin sin cos cos sin C A B A B A B =+=+=. 因为1292BA BC BM +==u u u r u u u r u u u u r ,所以1292BM =.由余弦定理知2222cos BM AB AM AB AM A=+-⋅⋅2222111111292427474c b c b c b cb =+-⋅⋅=+-=,因为3sin72sin553b BcC===,75b c=.得到221717129()45754c c+⨯-⨯=解得5c=,7b=.1143sin5710322S bc A==⨯⨯⨯=.【点睛】本题第一问考查利用正弦定理的边化角求角,第二问考查余弦定理解三角形,同时考查正弦定理的面积公式,属于中档题.18.如图,三棱柱111ABC A B C-中,CA CB=,1AA BC⊥,145BAA∠=︒.(1)求证:平面11AA C C⊥平面11AA B B;(2)若122BB==,直线11B C与平面11ABB A所成角为45°,D为1CC的中点,求二面角11B AD C--的余弦值.【答案】(1)证明见解析;(2)31414【解析】(1)首先过点C作1CO AA⊥,垂足为O,根据1CO AA⊥,1AA BC⊥得到1AA⊥平面BOC,从而得到1AA OB⊥.又因为Rt AOC Rt BOC△≌△得到CO OB⊥,CO AO⊥,从而得到CO⊥平面11ABB A,由此即证平面11AA C C⊥平面11AA B B.(2)首先以O为坐标原点,OA,OB,OC所在直线为x,y,z轴,建立空间直角坐标系O xyz-,根据直线11B C与平面11ABB A所成角为45o得到2AB=,1AO BO CD ===,再利用向量法求二面角11B AD C --的余弦值即可.【详解】(1)过点C 作1CO AA ⊥,垂足为O . 因为1AA BC ⊥,BC 交CO 于点C , 所以1AA ⊥平面BOC .又因为OB ⊂平面BOC ,故1AA OB ⊥. 因为145A AB ∠=︒,1AA OB ⊥,所以AOB V 为等腰直角三角形,则OA OB =. 又因为CA CB =,CO CO =,所以Rt AOC Rt BOC △≌△,故90COA COB ∠=∠=︒, 故CO OB ⊥,CO AO ⊥.因为BO ,AO ⊂平面11ABB A ,BO AO O =I ,所以CO ⊥平面11ABB A . 又因为CO ⊂平面11AAC C ,故平面11AAC C ⊥平面11AA B B . (2)由(1)知CO ⊥平面11AA B B .以O 为坐标原点,OA ,OB ,OC 所在直线为x ,y ,z 轴, 建立空间直角坐标系O xyz -.因为直线11B C 与平面11ABB A 成角为45°,而11//BC B C , 所以直线BC 与平面11ABB A 成角为45︒,而CBO ∠是直线BC 与平面11AA B B 所成角,故45CBO ∠=︒.所以AB =,1AO BO CD ===,()1,0,0A ,()0,1,0B ,()0,0,1C ,()11,0,0A -,()12,1,0B -,()1,0,1D - ()2,0,1AD =-u u u r ,()11,1,1B D =-u u u u r设平面1AB D 的法向量为()111,,n x y z =r,则111111200n AD x z n B D x y z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩u u u v v u u u u v v ,令11x =,得()1,3,2n =r .因为OB ⊥平面11AAC C ,所以OB uuu r为平面1AC D 的一条法向量,()0,1,0OB =u u u r .所以cos ,14n OB n OB n OB⋅<>===⋅r u u u rr u u u r r u u u r ,二面角11B AD C --的余弦值为14. 【点睛】本题第一问考查面面的垂直的证明,第二问考查向量法求二面角,同时考查了学生的计算能力,属于中档题.19.某工厂质检部门要对该厂流水线生产出的一批产品进行检验,如果检查到第0n 件仍未发现不合格品,则此次检查通过且认为这批产品合格,如果在尚未抽到第0n 件时已检查到不合格品则拒绝通过且认为这批产品不合格.设这批产品的数量足够大,可以认为每次检查查到不合格品的概率都为p ,即每次抽查的产品是相互独立的. (1)若05n =,求这批产品能够通过检查的概率;(2)已知每件产品质检费用为50元,若04n =,设对这批产品的质检个数记作X ,求X 的分布列;(3)在(2)的条件下,已知1000批此类产品,若11,2010p ⎡⎤∈⎢⎥⎣⎦,则总平均检查费用至少需要多少元?(总平均检查费用=每批次平均检查费用⨯批数)【答案】(1)()51p -(2)详见解析(3)171950元【解析】(1)根据05n =,这批产品能够通过检查说明前5次都通过检查,即可得到()()51P A p =-.(2)根据题意得到1X =,2,3,4,分别计算概率再列出分布列即可.(3)首先计算数学期望,令()()32464f p E X p p p ==-+-+,利用导数求出其最小值,即可得到答案. 【详解】(1)因为05n =,记事件A 为“当05n =时,这批产品能够通过检查”, 则由题意知:()()51P A p =-. (2)由题可知1X =,2,3,4()1P X p ==,()()21P X p p ==-,()()231P X p p ==-,()()341P X p ==-所以X 的分布列为:(3)由(2)可知X 的数学期望为:()()()()2332213141464E X p p p p p p p p p =+-+-+-=-+-+.设()32464f p p p p =-+-+,()2386f p p p '=-+-,因为64720∆=-<,所以()0f p '<, 所以()f p 在11,2010p ⎡⎤∈⎢⎥⎣⎦单调递减, 所以()min 11464 3.43910100010010f p f ⎛⎫==-+-+=⎪⎝⎭所以每批次平均检查费用至少为50 3.439171.95⨯=(元)所以1000批次此类产品总平均检查费用至少需要1000171.95171950⨯=(元)【点睛】本题主要考查离散型随机变量,同时考查了数学期望的应用,利用导数思想求最值为解题的关键,属于中档题.20.平面内与两定点()12,0A -,()22,0A 连线的斜率之积等于14-的点的轨迹,加上1A 、2A 两点所成的曲线为C .若曲线C 与y 轴的正半轴的交点为M ,且曲线C 上的相异两点A 、B 满足0MA MB ⋅=u u u r u u u r.(1)求曲线C 的轨迹方程; (2)求ABM V 面积S 的最大值.【答案】(1)2214x y +=(2)6425【解析】(1)首先设出(),P x y ,根据斜率之积等于14-得到()1212224A P A P y y k k x x x ⋅=⋅=-≠±+-,再化简即可得到曲线C 的轨迹方程. (2)分别讨论AB 的斜率存在和不存在时,根据0MA MB ⋅=u u u r u u u r,设出直线方程与椭圆联立,利用根系关系得到直线恒过30,5N ⎛⎫- ⎪⎝⎭,再将ABM V 面积转化为ABM AMN BMN S S S =+V V V ,利用根系关系和对勾函数的单调性即可得到面积的最大值.【详解】(1)设曲线C 上任意一点(),P x y ,12A P y k x =+,22A P y k x =-, ()1212224A P A P y y k k x x x ⋅=⋅=-≠±+-, 整理得:()22124x y x +=≠±.又曲线C 加上1A ,2A 两点,所以曲线C 的方程是:2214x y +=.(2)由题意可知()0,1M ,设()11,A x y ,()22,B x y , 当AB 的斜率存在时,设直线AB :y kx m =+,联立方程组:2214x y y kx m ⎧+=⎪⎨⎪=+⎩,得到()222148440k x kmx m +++-=,则122814km x x k -+=+,21224414m x x k -⋅=+.()11,1MA x y =-u u u r ,()22,1MB x y =-u u u r,因为0MA MB ⋅=u u u r u u u r,所以有()()1212110x x kx m kx m ⋅++-+-=,()()()()2212121110k x xk m x x m +⋅+-++-=,()()()2222244811101414m km k k m m k k--++-+-=++, ()()()()()22222144811140k mk m m m k +---+-+=化简得到()()1530m m -+=,解得:35m =-或1m =(舍). 当AB 的斜率不存在时,易知满足条件0MA MB ⋅=u u u r u u u r的直线AB 为:0x =.因此,直线AB 恒过定点30,5N ⎛⎫- ⎪⎝⎭.所以1212ABM AMN BMN S S S MN x x =+=-=V V V1212MN x x ==-ABMS =V , 因为35m =-,所以2322514ABM S k =+V .设2t =≥,()2323229494t S t t t t==≥++. 由对勾函数的单调性得到94y t t=+在[2,)+∞为增函数,所以92542t t +≥. 即:6425S ≤(0k =时取到最大值). 所以ABM 面积S 的最大值为6425.【点睛】本题第一问考查圆锥曲线的轨迹方程,第二问考查直线与椭圆的位置关系,同时考查了学生的计算能力,属于难题.21.已知函数()()ln f x x x a =-+的最小值为0,其中0a >. (1)求a 的值;(2)若对任意的[)0,x ∈+∞,有()2f x kx ≤恒成立,求实数k 的最小值;(3)记()12ln 2121nn i S n i ==-+-∑,[]x 为不超过x 的最大整数,求[]n S 的值. (参考数据:ln 20.7≈,ln3 1.1≈,ln5 1.6≈) 【答案】(1)1a =(2)12(3)[]0,1,1, 2.n n S n =⎧=⎨≥⎩ 【解析】(1)首先求导()1x a f x x a+-=+',求出函数的单调区间,根据单调区间得到最小值,即可得到a 的值.(2)当0k ≤时,易证不合题意,当0k >时,令()()()22ln 1g x f x kx x x kx =-=-+-,()()2121x kx k g x x ⎡⎤---⎣⎦'=+,令()0g x '=,可得10x =,2122k x k-=.分类讨论12k ≥和102k <<时()g x 的单调性和最值即可得到实数k 的最小值.(3)当1n =时,()12ln30,1S =-∈,[]10S =.当2n ≥时,()1122ln 212121nnn i i f n S i i ==⎛⎫==-+= ⎪--⎝⎭∑∑,取12k =,得()21()20f x x x ≤≥,从而得到()()()*222,N 212321f i i i i i ⎛⎫<≥∈ ⎪---⎝⎭,所以12ln 31221nS n <-+-<-.又因为10n n S S -->,得到123012n S S S S <<<<<⋅⋅⋅<<,即可得到[]0,11,2n n S n =⎧=⎨≥⎩.【详解】 (1)()()111x a x a x a f x x a+-=-+'=>-+,令()0f x '=,得1x a =-,()f x 在(),1a a --单调递减,()1,a -+∞单调递增,()()min 110f x f a a =-=-=,所以1a =.(2)当0k ≤时,取1x =,有()11ln 20f =->,故0k ≤不合题意. 当0k >时,令()()()22ln 1g x f x kx x x kx =-=-+-,求导函数可得()()21211211x kx k g x kx x x ⎡⎤---⎣⎦'=--=++,令()0g x '=,可得10x =,21212kx k-=>-. ①当12k ≥时,1202k k-≤, 所以[)0,x ∈+∞,()0g x '≤恒成立, 因此()g x 在[)0,+∞上单调递减,从而对任意的[)0,x ∈+∞,总有()()00g x g ≤=,即对任意的[)0,x ∈+∞,有2()f x kx ≤成立,故12k ≥符合题意; ②当102k <<时,1202k k->, 对于120,2k x k -⎛⎫∈ ⎪⎝⎭,()0g x '>,因此()g x 在120,2k k -⎛⎫ ⎪⎝⎭内单调递增, 从而当0120,2k x k -⎛⎫∈ ⎪⎝⎭时,()()000g x g ≥=, 即有()200f x kx ≤不成立,故102k <<不合题意.综上, k 的最小值为12. (3)当1n =时,()12ln30,1S =-∈,[]10S =. 当2n ≥时,11222ln 1212121nn i i f i i i ==⎡⎤⎛⎫⎛⎫=-+ ⎪ ⎪⎢⎥---⎝⎭⎝⎭⎣⎦∑∑ ()12ln 2121nn i n S i ==-+=-∑由(2)知,取12k =,得()21()20f x x x ≤≥,从而()()()()2*2212222,N 21221232121f i i i i i i i ⎛⎫⎛⎫≤=<≥∈ ⎪ ⎪----⎝⎭⎝⎭-, 所以()()()12222222ln 233212211nnnn i i i S f f fi i i i ===⎛⎫⎛⎫==+<-+ ⎪ ⎪--⎝⎭⎝--⎭∑∑∑ 21112ln 32ln 312232121ni i i n =⎛⎫=-+-=-+-< ⎪---⎝⎭∑. 又()()1112ln 21221n n i S n n i --==--≥-∑, 所以122122ln ln 121212121n n n S S n n n n -+⎛⎫-=-=-+ ⎪----⎝⎭. 令221t n =-,则()0,1t ∈,设()()ln 1h t t t =-+, ()11011th t t t'=-=>++,所以()h t 在()0,1单调递增,则()()00h t h >=,所以{}n S 单调递增,即1230n S S S S <<<<⋅⋅⋅<,又222ln 513S =+->, 所以123012n S S S S <<<<<⋅⋅⋅<<,所以[]0,11,2n n S n =⎧=⎨≥⎩. 【点睛】本题主要考查利用导数求函数的最值,利用导数解决恒成立问题,同时考查了分类讨论和构造函数的思想,属于难题.22.已知在极坐系中,点(),P ρθ绕极点O 顺时针旋转角α得到点(),P ρθα'-.以O 为原点,极轴为x 轴非负半轴,并取相同的单位长度建立平面直角坐标系,曲线E :1xy =绕O 逆时针旋转4π得到曲线C . (1)求曲线E 的极坐标方程和曲线C 的直角坐标方程;(2)点M 的极坐标为4,4π⎛⎫⎪⎝⎭,直线l 过点M 且与曲线E 交于A ,B 两点,求MA MB⋅的最小值.【答案】(1)2sin 22ρθ=;22122y x -=(2)14【解析】(1)首先根据题意得到E 的极坐标方程为2sin 22p θ=,设(),P ρθ为曲线C 上任意一点,得到点,4P πρθ⎛⎫'-⎪⎝⎭在曲线E 上,即2sin 222πρθ⎛⎫-= ⎪⎝⎭,再化简得到曲线C 的直角坐标方程为22122y x -=.(2)首先设l:cos ,sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数),代入1xy =得到()2cos sin sin cos 70t αααα+++=,利用直线参数方程的几何意义得到1214sin 2MA MA t t α⋅==,再利用三角函数的性质即可得到最小值.【详解】(1)由E 的直角坐标方程为1xy =可得cos sin 1ρθρθ⨯=即:2sin 22p θ=,设(),P ρθ为曲线C 上任意一点, 则P 绕O 顺时针旋转4π得到点,4P πρθ⎛⎫'- ⎪⎝⎭在曲线E 上,则2sin 222πρθ⎛⎫-= ⎪⎝⎭,即2cos 22ρθ=-, ()22222si cos n 2x y ρθθ-=-=-所以曲线C 的方程为22122y x -=.(2)M的直角坐标为(,设l:cos ,sin x t y t αα⎧=⎪⎨=⎪⎩(t 为参数),代入1xy=,整理后可得()2cos sin sin cos 70t αααα+++=.127cos sin t t αα=g所以1271414cos sin sin 2MA MA t t ααα⋅===≥.当且仅当4k παπ=+或()4k k Z παπ=-∈时取等号,此时>0∆,符合条件.故MA MB ⋅的最小值为14【点睛】本题第一问考查直角坐标方程和极坐标方程的互化,第二问考查直线参数方程的几何意义,属于中档题.23.已知函数()21f x x x =+-的最小值为M . (1)求M ;(2)若正实数a ,b ,c 满足a b c M ++=,求证:2222221a b a c b cc b a+++++≥.【答案】(1)12M =(2)证明见解析; 【解析】(1)首先化简解析式得到()31,01=1,02131,2x x f x x x x x ⎧⎪-+<⎪⎪-≤<⎨⎪⎪-≥⎪⎩,根据函数的单调性即可得到()f x 的最小值.(2)首先利用重要不等式得到222222222a b a c b c ab ac bcc b a c b a+++++≥++,再根据均值不等式和12a b c ++=即可证明. 【详解】(1)()31,0,1=211,0,2131,.2x x f x x x x x x x ⎧⎪-+<⎪⎪+-=-≤<⎨⎪⎪-≥⎪⎩因为函数13(0)y x x =-<是减函数,11(0)2y x x =-≤<是减函数;131()2y x x =-≥是增函数,故当12x =时,()f x 取得最小值11()22M f ==.(2)222222222a b a c b c ab ac bcc b a c b a+++++≥++()()()2()1b c a c c ba b c a b c c b c a b a=+++++≥++=,当且仅当16a b c ===取等号.【点睛】本题第一问考查求绝对值函数的最值,把绝对值函数变为分段函数为解题的关键,第二问考查利用均值不等式的性质证明不等式,属于中档题.。

2020年高考数学(理)原创终极押题卷(新课标Ⅰ卷)(考试版)

2020年高考数学(理)原创终极押题卷(新课标Ⅰ卷)(考试版)

数学试题 第 1页(共 6页)
数学试题 第 2页(共 6页)
A.7
B.20
C.22
D.54
7. 已知函数 f x 是定义在 R 上的偶函数,且在 0, 上单调递增,则( )
A. f 3 f log313 f 20.6 C. f 20.6 f log313 f 3
B. f 3 f 20.6 f log313 D. f 20.6 f 3 f log313
A. 这 天中有 天空气质量为一级 B. 从 日到 日 PM 2.5 日均值逐渐降低 C. 这 天中 PM 2.5 日均值的中位数是 D. 这 天中 PM 2.5 日均值最高的是 5 月 日 4. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )
A. (M P) S
数学试题 第 4页(共 6页)
关注公众号:初高中数学交流群,回复 PDF 获取答案
(Ⅱ)设直线 BD1 与动点 F 的轨迹所在平面所成的角记为 ,求 cos .
D1 A1
E C1
B1
D C
A
B
19.(本小题满分 12 分) 为了迎接 2019 年高考,了解学生的成绩状况,在一次省质检中,某省教育部门随机抽取了 500 名学生的 数学考试成绩,统计如下表所示:
三、解答题(共 70 分.解答应写出必要的文字说明、证明过程或演算步骤。第 17~21 题为必考题,每个 试题考生都必须作答,第 22、23 题为选考题,考生根据要求作答。)
(一)必考题:共 60 分。 17.(本小题满分 12 分) 已知数列 {an} 是等差数列, a2 3 , a5 6 ,数列{bn} 的前 n 项和为 Sn ,且 2bn Sn 2 .

2020高考理科数学押题卷含答案

2020高考理科数学押题卷含答案

形镜子的最大面积为 ( )
A、10 平方分米
B、20 平方分米
C、40 平方分米 D、
1600 平方分米
41
(文)函数 y 3x 1的图象
x2
A. 关于点(2,3)对称
C. 关于直线 x= 2 对称

() B. 关于点(2,3)对称
D. 关于直线 y= 3 对
9.若双曲线 x2 y2 1的左支上一点 P(a ,b)到直线 y x 的距离为
4
4
7.(理)C .如图,复数2 i 与 3 3i 对应的向量垂直,
2
所以 3 3i 的辐角主值是 3 。
2
2
C 32+3i
O
2-i
B
(文)A .当函数的图像左右平移时,不改变函数的
B
A
值域。 8.(理)C.如图可设 A 的坐标为 (5cos,4sin ) ,
-6
-4
-2 -1
-2
C
-3
-4
D
16.3 .
2
由非负性
1 2 3
P
0
P
3 2
,Eξ=0
1
2 3
P
1
P 3
2
P 3
P
3 2
三、解答题(本大题共 6 小题,共 74 分.解答应写出文字说明,证明
过程或演算步骤)
17.解:(1)∵2sin2A-cos2A=2 ∴cos2A=- 1 ∴A=
2
3
分)
…………(6
(2)y=2sin2B+sin(2B+ )=1+sin(2B- )
2
2
(1)求 a, k 之值;

2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题解析

2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题解析

绝密★启用前2020年普通高等学校招生全国统一考试压轴(一)数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上一、单选题1.已知集合{1A y y ==,{}30B x x =-≤,则A B =I () A .[]1,2B .[]1,3C .[]2,3D .()2,+∞ 答案:B首先分别化简集合A ,B ,再求交集即可.解: {{}11A y y y y ==+=≥,{}{}303B x x x x =-≤=≤,所以[]1,3A B ⋂=.故选:B.点评:本题主要考查集合的交集运算,同时考查了函数的值域,属于简单题.2.欧拉公式cos sin ix e x i x =+(i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天桥”.根据欧拉公式,设复数cossin 33z i ππ=+,则3z 等于()A .122-B .1-C .122--D .122-+ 答案:B 根据欧拉公式得到3i z e π=,再计算3z 即可.解: 由题意得3cossin 33i z i e πππ=+=, 333()cos sin 1i i z e e i ππππ====-+. 故选:B点评:本题主要考查三角函数求值问题,同时复数的概念,属于简单题.3.月形是一种特殊的平面图形,指有相同的底,且在底的同一侧的两个弓形所围成的图形.月形中的一种特殊的情形是镰刀形,即由半圆和弓形所围成的图形(如下图),若半圆的半径与弓形所在圆的半径之比为1:2,现向半圆内随机取一点,则取到镰刀形中的一点的概率为()A.423 3-B.2313-C.3πD.31π-答案:B首先设半圆半径为r,分别计算半圆的面积和弓形的面积,再代入几何概型公式计算即可.解:如图所示:设半圆半径为r,半圆面积为22rπ,221(2)3OO r r r=-=弓形面积为()2221122233623r r r r rππ⨯⨯-⨯=-,概率为2222232312332rr rrπππ-+=-.故选:B点评:本题主要以数学文化为背景考查几何概型,同时考查学生的逻辑思维能力,属于中档题. 4.数列{}n a的前几项是:0、2、4、8、12、18、24、32、49、50⋅⋅⋅其规律是:偶数项是序号平方再除2;奇数项是序号平方减1再除2.如图所示的程序框图是为了得到该数列的前100项而设计的,那么在两个判断框中,可以先后填入()A .n 是偶数?,100n ≤?B .n 是奇数?,100n ≤?C .n 是偶数?,100n <?D .n 是奇数?,100n <?答案:A模拟程序框图的运行过程,结合输出的条件,即可得到答案.解:根据偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,可知第一个框应该是“n 是偶数?”;执行程序框图,当101100n =>结束,所以第二个框应该填100n ≤?.故选:A点评:本题主要考查程序框图的应用问题,解题时应模拟程序框图的运行过程,属于简单题.5.已知数列{}n a 的前n 项和为n S ,且对任意*N n ∈都有21n n S a =-,设2log n n b a =,则数列{}n b 的前6项之和为()A .11B .16C .10D .15答案:D首先根据21n n S a =-得到12n n a -=,代入2log n n b a =,再计算数列{}n b 的前6项之和即可.解:因为21n n S a =-,当1n =时,11121S a a =-=,所以11a =.当2n ≥时,1n n n a S S -=-,所以121(21)n n n a a a -=---,即12n n a a -=. 所以数列{}n a 是以1为首项,以2为公比的等比数列,所以12n n a -=,12log 21n n b n -==-,11(2)1n n b b n n --=---=,所以数列{}n b 是以0为首项,以1为公差的等差数列,数列{}n b 的前6项之和为1656152b d ⨯+= 故选:D点评: 本题主要考查由n S 求通项公式n a ,同时考查了等差数列的求和,属于中档题.6.声音中包含着正弦函数.音的四要素:音调、响度、音长和音色都与正弦函数的参数有关.我们平时听到的音乐不只是一个音在响,是由基音和许多个谐音的结合,其函数可以是()11sin sin 2sin 323f x x x x =++,则()f x 的图象可以是() A . B .C .D . 答案:D首先根据()f x 为奇函数,排除C ,根据42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B ,根据()11111=236f x <++,排除A ,排除法即可得到答案. 解:因为()f x 的定义域为R ,1111()sin()sin(2)sin(3)sin sin 2sin 3()2323f x x x x x x x f x -=-+-+-=---=-, 所以()f x 为奇函数,排除C.1432f π⎛⎫=+ ⎪⎝⎭,223f π⎛⎫= ⎪⎝⎭,故42f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,排除B ; 因为()11111=236f x <++,而A 选项的()max 2f x =,排除A. 故选:D点评: 本题主要考查根据解析式判断函数的图象,同时考查了函数的奇偶性,特值法以及函数的最值,属于中档题.7.过双曲线M :()22210y x b b -=>的左顶点A 作斜率为1的直线l ,若l 与双曲线的渐近线分别交于B 、C 两点,且54OB OA OC =+u u u r u u u r u u u r ,则双曲线的离心率是()ABCD答案:B首先设出直线l 的方程为1y x =+,与渐近线方程联立得到1(,)11b B b b -++,1(,)11b C b b --.根据54OB OA OC =+u u u r u u u r u u u r 得到32b =,再计算离心率即可. 解:由题可知(1,0)A -,所以直线l 的方程为1y x =+.因双曲线M 的两条渐近线方程为y bx =或y bx =-.由1y bx y x =-⎧⎨=+⎩,解得1(,)11b B b b -++;同理可得1(,)11b C b b --. 又()1,0OA =-u u u r ,1,11b OB b b ⎛⎫=- ⎪++⎝⎭u u u r ,1,11b OC b b ⎛⎫= ⎪--⎝⎭u u u r。

2020年高考数学(理)终极押题卷(全解全析)

2020年高考数学(理)终极押题卷(全解全析)

2020年高考数学(理)终极押题卷(全解全析)1.【答案】C 【解析】因为312iz i-=+,所以(3)(12)17(12)(12)55i i z i i i --==-+-,所以z ==C .2.【答案】C【解析】由题得221,1,x y x y ⎧+=⎨+=⎩∴1,0,x y =⎧⎨=⎩或0,1,x y =⎧⎨=⎩则A ∩B ={(1,0),(0,1)}.故选C.3.【答案】B【解析】因为222131331()44244x x x x x -+=-++=-+≥,所以命题p 为真;1122,,22-<-<∴Q 命题q 为假,所以p q ∧⌝为真,故选B.4.【答案】D【解析】由图表可知:2012年我国实际利用外资规模较2011年下降,可知A 错误;2000年以来,我国实际利用外资规模总体呈现上升趋势,可知B 错误; 2008年我国实际利用外资同比增速最大,高于2010年,可知C 错误,D 正确.本题正确选项:D . 5.【答案】A【解析】Q 设等差数列{}n a 的公差为d ,()0d ≠,11a =,且2a ,3a ,6a 成等比数列,2326a a a ∴=⋅,()()()211125a d a d a d ∴+=++,解得2d =-,{}n a ∴前6项的和为616562S a d ⨯=+()65612242⨯=⨯+⨯-=-. 故选:A. 6.【答案】B【解析】由a r ∥b r得3(1)2233y x x y -=-⇒+=,因此3232231491()(12)(128333x y x y x y x y y x ++=+⋅=++≥+=,当且仅当49x y y x=时取等号,所以选B. 7.【答案】C【解析】()()()()555222x y x y x x y y x y +-=-+-,由()52x y -展开式的通项公式()()515C 2rrr r T x y -+=-可得:当3r =时,()52x x y -展开式中33x y 的系数为()3325C 2140⨯⨯-=-; 当2r =时,()52y x y -展开式中33x y 的系数为()2235C 2180⨯⨯-=,则33x y 的系数为804040-=.故选C. 8.【答案】C【解析】如图所示,直角三角形的斜边长为2251213+=, 设内切圆的半径为r ,则51213r r -+-=,解得2r =. 所以内切圆的面积为24r ππ=, 所以豆子落在内切圆外部的概率42P 111155122ππ=-=-⨯⨯,故选C .9.【答案】C【解析】函数()f x 的图象如图所示,函数是偶函数,1x =时,函数值为0.()()44x x f x x -=+是偶函数,但是()10f ≠, ()()244log x x f x x -=-是奇函数,不满足题意. ()()244log x x f x x -=+是偶函数,()10f =满足题意;()()1244log x x f x x -=+是偶函数,()10f =,()0,1x ∈时,()0f x >,不满足题意.故选C 项. 10.【答案】B【解析】()f x 为[]3,3-上的偶函数,而xy a π=为[]3,3-上的偶函数,故()()sin g x x ωϕ=+为[]3,3-上的偶函数,所以,2k k πϕπ=+∈Z .因为0ϕπ<<,故2ϕπ=,()()sin cos 2x xx x f x a a πωωππ⎛⎫+ ⎪⎝⎭==. 因()10f =,故cos 0ω=,所以2k πωπ=+,k ∈N .因()02f =,故0cos 012a a π==,所以12a =. 综上,()21k aωπ=+,k ∈N ,故选B .11.【答案】A【解析】设BC 的中点是E ,连接DE ,A ′E , 因为AB =AD =1,BD, 由勾股定理得:BA ⊥AD ,又因为BD ⊥CD ,即三角形BCD 为直角三角形, 所以DE为球体的半径,2DE =,2432S ππ==, 故选A . 12.【答案】A【解析】由题可知2(31),0()2ln 1,0x m x f x mx x x -+≤++'⎧=⎨>⎩,当0x >时,令()0f x '=,可化为ln 12x m x +-=,令()ln 1x g x x +=,则()2ln xg x x-=',则函数()g x 在()0,1上单调递增,在(1,)+∞上单调递减,()g x 的图象如图所示,所以当021m <-<,即12m -<<时,()0f x '=有两个不同的解;当0x ≤,令()0f x '=,3102m x +=<,解得13m <-,综上,11,23m ⎛⎫∈-- ⎪⎝⎭.13.【答案】22【解析】作出不等式组表示的平面区域如下图中阴影部分所示,由3z x y =-可得3y x z =-,观察可知,当直线3y x z =-过点B 时,z 取得最大值,由2402x y y --=⎧⎨=⎩,解得82x y =⎧⎨=⎩,即(8,2)B ,所以max 38222z =⨯-=.故答案为:22. 14.【答案】乙【解析】根据甲与团支书的年龄不同,团支书比乙年龄小,得到丙是团支书, 丙的年龄比学委的大,甲与团支书的年龄不同,团支书比乙年龄小, 得到年龄从大到小是乙>丙>学委, 由此得到乙不是学委,故乙是班长. 故答案为乙. 15.【答案】985987【解析】由题1n a +=n a +n +2,∴12n n a a n +-=+,所以213a a -=,324a a -=,435a a -=,…,()112n n a a n n --=+≥,上式1n -个式子左右两边分别相加得()()1412n n n a a +--=,即()()122nn n a ++=,当n =1时,满足题意,所以111212n a n n ⎛⎫=- ⎪++⎝⎭,从而12985111111111985 (22334986987987)a a a L +++=-+-++-=. 故答案为985987. 16.【答案】y x =±【解析】设12,PF m PF n == ,可得2m n a -= ,可得22224m mn n a -+=(1), 在12PF F △中,由余弦定理可得2222242cos3c m n mn m n mn π=+-=+-(2),因为2PO b =,所以在1PFO △,2POF V 中分别利用余弦定理可得, ()2222221144cos ,44cos m c b b POF n c b b POF π=+-∠=+--∠,两式相加可得222228m n c b +=+ ,分别与(1)、(2)联立得22222222222284102,28462mn c b a b a mn c b c b a =+-=-=+-=-,消去mn 可得22a b =,a b = 所以双曲线的渐近线方程为by x a=±,即y x =±,故答案为y x =±.17.(12分)【解析】(1)因为sin sin sin sin sin B C b B c C a A A ⎛⎫+=+ ⎪ ⎪⎝⎭,由正弦定理可得:22b c a a ⎫+=⎪⎭,即222b c a +-=,再由余弦定理可得2cos bc A =,即cos A =所以4A π=.(6分)(2)因为3B π=,所以()sin sin C A B =+=由正弦定理sin sin a b A B=,可得b =13sin 24ABC S ab C ∆+==.(12分) 18.(12分)【解析】(1)证明:连接AC ,因为PB PC =,E 为线段BC 的中点, 所以PE BC ⊥.又AB BC =,60ABC ∠=︒,所以ABC ∆为等边三角形,BC AE ⊥. 因为AE PE E ⋂=,所以BC ⊥平面PAE ,又BC ⊂平面BCP ,所以平面PAE ⊥平面BCP .(5分) (2)解:设AB PA a ==,则PB PC ==,因为222PA AB PB +=,所以PA AB ⊥,同理可证PA AC ⊥,所以PA ⊥平面ABCD .如图,设AC BD O ⋂=,以O 为坐标原点,OB uuu v的方向为x 轴正方向,建立空间直角坐标系O xyz -.易知FOA ∠为二面角A BD F --的平面角,所以3cos 5FOA ∠=,从而4tan 3FOA ∠=.由432AFa=,得23AF a=.又由20,,23a a F⎛⎫-⎪⎝⎭,3,0,02B a⎛⎫⎪⎪⎝⎭,知32,,223a a aBF⎛⎫=--⎪⎪⎝⎭u u u v,20,,23a aOF⎛⎫=-⎪⎝⎭u u u v.设平面BDF的法向量为(),,n x y z=v,由n BF⊥u u u vv,n OFu u u vv⊥,得3223223a a ax y za ay z⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨设3z=,得()0,4,3n=v.又0,,2aP a⎛⎫-⎪⎝⎭,3,0,0D a⎛⎫-⎪⎪⎝⎭,所以3,,2a aPD a⎛⎫=--⎪⎪⎝⎭u u u v.设PD与平面BDF所成角为θ,则222232sin1031544n PD a an PDa a aθ⋅-===++u u u vvu u u vv.所以PD与平面BDF所成角的正弦值为210.(12分)19.(12分)【解析】(1)依题意得33,2cc aa==⇒=,又2231a b b-=⇒=∴椭圆C的方程为2214xy+=.(4分)(2)设直线l 的方程为()0y kx m m =+≠,()()1122,,,M x y N x y由2214y kx m x y =+⎧⎪⎨+=⎪⎩得()()222148410k x kmx m +++-=, ∴()2121222418,1414m km x x x x k k--+==++. 由题设知()()12212121212kx m kx m y y k k k x x x x ++=== ()212212km x x m k x x ++=+, ∴()2120km x x m ++=,∴22228014k m m k-+=+, ∵0m ≠,∴214k =. 此时()()()222221212224184,211414m km x x m x x m k k --⎛⎫+====- ⎪++⎝⎭则2222222222121122121144x x OM ON x y x y x x +=+++=+-++-()()2221212123322244x x x x x x ⎡⎤=⨯++=+-+⎣⎦()223441254m m ⎡⎤=--+=⎣⎦ 故直线l 的斜率为221,52k OM ON =±+=.(12分)20.(12分)【解析】(1)由频率分布直方图可知一台电脑使用时间在(]4,8上的概率为:()20.140.0620.45p =+⨯==, 设“任选3台电脑,至少有两台使用时间在(]4,8”为事件A ,则 ()23233323244·555125P A C C ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭.(4分) (2)(ⅰ)由a bxy e +=得ln y a bx =+,即t a bx =+,10110221110ˆ0i i i ii x t xtbx x =-=-=-∑∑279.7510 5.5 1.90.338510 5.5-⨯⨯==--⨯()1.90.3 5.53ˆ.55a=--⨯=,即0.3 3.55t x =-+,所以0.3 3.55ˆx y e -+=.(8分) (ⅱ)根据频率分布直方图对成交的二手折旧电脑使用时间在(]0,2,(]2,4,(]4,6,(]6,8,(]8,10上的频率依次为:0.2,0.36,0.28,0,12,0.04:根据(1)中的回归方程,在区间(]0,2上折旧电脑价格的预测值为 3.550.31 3.2526e e -⨯=≈, 在区间(]2,4上折旧电脑价格的预测值为 3.550.33 2.6514e e -⨯=≈, 在区间(]4,6上折旧电脑价格的预测值为 3.550.35 2.057.8e e -⨯=≈, 在区间(]6,8上折旧电脑价格的预测值为 3.550.37 1.45 4.3e e -⨯=≈, 在区间(]8,10上折旧电脑价格的预测值为 3.550.390.85 2.3e e -⨯=≈, 于是,可以预测该交易市场一台折旧电脑交易的平均价格为:0.2260.36140.287.80.12 4.30.04 2.313.032⨯+⨯+⨯+⨯+⨯=(百元)故该交易市场收购1000台折旧电脑所需的的费用为: 100013.0321303200⨯=(元)(12分) 21.(12分)【解析】(1)函数()f x 的定义域为(0,)+∞, 又221(1)[(1)]()1a a x x a f x x x x '----=-++=, 由()0f x '=,得1x =或1x a =-.当2a >即11a ->时,由()0f x '<得11x a <<-,由()0f x '>得01x <<或1x a >-;当2a =即11a -=时,当0x >时都有()0f x '≥;∴当2a >时,单调减区间是()1,1a -,单调增区间是()0,1,()1,a -+∞;当2a =时,单调增区间是()0,+?,没有单调减区间;(5分) (2)当21a e =+时,由(1)知()f x 在()21,e 单调递减,在()2,e +∞单调递增.从而()f x 在[)1,+∞上的最小值为22()3f e e =--. 对任意[)11,x ∈+∞,存在[)21,x ∈+∞,使()()2212g x f x e ≤+,即存在[)21,x ∈+∞,使的值不超过()22f x e +在区间[)1,+∞上的最小值23e -.由222e 32e e 3xmx --+≥+-得22xmx e e +≤,22xe e m x-∴≤. 令22()xe e h x x-=,则当[)1,x ∈+∞时,max ()m h x ≤. ()()()22223222()x x x x e x e e xxe e e h x x x ---+-'==-Q ,当[1,2]x ∈时()0h x '<;当[2,)x ∈+∞时,()22e 20xxxx xe exee +->-≥,()0h x '<.故()h x 在[1,)+∞上单调递减,从而2max ()(1)h x h e e ==-,从而实数2m e e ≤-得证.(12分) 22.[选修4−4:坐标系与参数方程](10分)【解析】(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(4分)(2)由题意,可设点P的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C 的距离()d α的最小值,π()sin()2|3d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d αP 的直角坐标为31(,)22.(10分)23.[选修4−5:不等式选讲](10分)【解析】(1)由题意, ()2,12,112,1x f x x x x -≤-⎧⎪=-⎨⎪≥⎩<<,①当1x ≤-时,()21f x =-<,不等式()1f x ≥无解; ②当11x -<<时,()21f x x =≥,解得12x ≥,所以112x ≤<. ③当1x ≥时,()21f x =≥恒成立,所以()1f x ≥的解集为1,2⎡⎫+∞⎪⎢⎣⎭.(5分)(2)当x ∈R 时,()()11112f x x x x x =+--≤++-=; ()()222222g x x a x b x a x b a b =++-≥+--=+.而()()()22222222222a b a b a b a b ab a b ++⎛⎫+=+-≥+-⨯== ⎪⎝⎭, 当且仅当1a b ==时,等号成立,即222a b +≥,因此,当x ∈R 时, ()()222f x a b g x ≤≤+≤,所以,当x R ∈时, ()()f x g x ≤.(10分)。

2020年高考(理科)数学预测押题密卷最后一卷 参考答案

2020年高考(理科)数学预测押题密卷最后一卷 参考答案

理科数学答案全解全析一、选择题1. 【答案】D【解析】集合 A 满足 x2 2x 3 0 ,(x 3)(x 1) 0 ,解得x3或x 1 ,则C UA {x|1 x3},集合B满足1 2x 20,2x 2x 2 20 0,解得x1,可知(CUA)B {x |1 x 3} .故选 D.2. 【答案】B【解析】由题可得 z i i2020 1 i (1 2i)(1 i) 3 1 i ,可知1 2i 1 2i555| z | (3)2 ( 1)2 10 .故选 B.5553. 【答案】A【解析】由偶函数定义可知,函数 f (x) x2 (a 1)x a 满足f (x) f (x) ,所以 x2 (a 1)x a x2 (a 1)x a 在 [2,2] 上恒成立,解得 a 1 ,所以 f (x) x2 1 ,当 f (x) 2 时,即 x2 1 2 ,解得 1 x 1,可知所求的概率为 P 1 .故选 A. 24. 【答案】B【解析】已知数列 an2n 1 ,其前 n项的和 Sn(2 11 22n 1)n n(n 2) ,则 1 1 1 ( 1 1 ) ,所以 1 1 1Sn n(n 2) 2 n n 2S1 S2Sn 1 (1 1 1 1 1 1 ) 1 (1 1 1 1 ) .故选 B.2 324n n 2 2 2 n 1 n 25. 【答案】D【解析】第一次执行, c 4,a 5,b 4,k 2 ;第二次执行,c 1,a 4,b 1,k 3 ;第三次执行, c 5,a 1,b 5,k 4 ;第四次执行, c 4,a 5,b 4,k 5 ;第五次执行,c 1,a 4,b 1,k 6 ;第六次执行, c 5,a 1,b 5,k 7 ;第七次执行, c 4,a 5,b 4,k 8 ;….故该循环具有周期性,且周期为 6,则输出的 c 的值为 4 .故选 D.6. 【答案】B【解析】设圆心到双曲线的渐近线的距离为 d ,由弦长公式可得,函数 f (x) 的最小值为 2 3 3 ,最大值为 2 3 3 .故选 D.449. 【答案】A【解析】解法一:设 D 是 ABC 的边 BC 的中点,连接GD ,因为G 是 ABC 的重心,所以 A,G,D 三点共线, AG 2 AD 2 331 (AB AC) 1 (AB AC) .又 H 是 BG 的中点,所以 AH 1 ( AB232 AG) 1 [ AB 1 (AB AC)] 1 (4AB AC),236则 AG·AH 1 (AB AC)·1 (4AB AC)36 1 (4 | AB |2 5 | AB |·| AC | cos BAC | AC |2) 18 1 (4 22 5 2 3 1 32) 20 .故选 A.1829解法二:以点 A 为原点建立平面直角坐标系如图,由已知可得 A(0,0),B(1, 3),C(3,0),G( 4 , 3 ),H (7 ,2 3 )3363 AG ( 4 , 3 ) , AH (7 ,2 3 ) ,3363 AG·AH 4 7 3 2 3 20 .故选 A. 36 3 3 910.【答案】A【解析】如图所示,2 2 d 2 2 ,解得 d 1,又双曲线 C 的渐近线方程为 bx ay 0 ,圆心坐标为 (0,2) ,故 | 0 2a | 1 ,即 2a 1 ,所以双曲线 C 的离a2 b2c心率 e c 2 .故选 B. a7. 【答案】A【解析】在 (2 x3)(x a)5 中,令 x 1 ,得展开式的各项系数和为(1 a)5 32 ,解得 a 1 ,故 (x 1)5 的展开式的通项 Tr1 C5r x5r .当 r 1 时 , 得 T2 C15x4 5x4 , 当 r 4 时 , 得 T5 C54x 5x , 故 (2 x3)(x 1)5 的展开式中 x4 的系数为 25 5 5 .故选 A.8. 【答案】D【解析】由 f (x) 3 cos(x )cos x 的图象过点 (0, 3) , 2得 cos 3 .0 π, 5π , f (x) 3 cos(x 5π)cos x266 3( 3 cos x 1 sin x) cos x 3 cos2 x 3 sin x cos x2222 3(1 cos 2x) 3 sin 2x 3 3 sin 2x 3cos 2x443 2 3 sin(2x π ) 3 3 sin(2x π ) 3 .点 ( π ,0) 不是函数42343f (x) 图象的对称中心,直线 x π 也不是函数 f (x) 图象的对称轴, 3由图知 tan NMF b ,tan FNO c , MFN NMF 90°,abMFN FNO 90°,NMF FNO , b c , ab则 b2 a2 c2 ac ,e2 e 1 0 ,得 e 5 1 .故选 A. 211.【答案】B【解析】由 a2 4ab 16b2 c 0 ,得 a2 4ab 16b2 c ,所以a2 4ab 16b2 12 a2·16b2 4ab 4ab ,可得 ab 的最大值cc ccc c cc为 1 ,当且仅当 a 4b 时取等号,且 c 16b2 ,则 c 4a 3244b 416b2 16b 32 4(b2 b 2) 4[(b 1)2 3(b 1) 4]4b 4b 1b 1 4[(b 1) 4 3] 4(2 (b 1)· 4 3) 4 ,当且仅当 b 1时b 1b 1取得最小值为 4.故选 B.理科数学答案第 1 页(共 3 页)12.【答案】B【解析】易知 f (0) 1 ,故函数 f (x) 有三个不同的零点,可以转化为 | 2x m | 1 有三个不同的非零实数根,即函数 y | 2x m | 与xy 1 (x 0) 的图象有三个不同的交点.易知,当 x m 时,直线x2y 2x m 与曲线 y 1 (x 0) 有且仅有一个交点,当 0 x m 时,x2直线 y 2x m 与曲线 y 1 (x 0) 必须有两个不同的交点.而当x直线y 2x m 与曲线y1 (x 0) x相切时,1 x22 ,解得x 2 ,此时 m 2 2 ,结合图象可知 m 2 2 .故选 B. 2二、填空题13.【答案】 26【解析】由题可得 23 3k 0 ,可得 k 2 ,则 a b (5,1) , a b 52 1 26 .14.【答案】 234【解析】由题得 x 3 4 a 6 , y 2.5 3 4 4.5 3.5 ,这组44数据的样本中心点是 (x,3.5) ,代入回归直线方程可得 3.5 0.7(2)由 b 2 , A π ,S 3ABC1 bc sin A 3 223,得 c 1 3 .-------------------------------------------------------------8 分M 是 AB 的中点, AB c 1 3, AM 1 3 ,-------------------------------------------------------10 分 2在 AMC 中,由余弦定理得, CM 2 b2 AM 2 2b AM cos A 4 (1 3 )2 2 2 1 3 1 4 3 .------------------------12 分222218.【解析】(1) 四边形 ABCD 是矩形, AB CD .CD 平面 DCFE,AB 平面 DCFE , AB 平面 DCFE .----------------------------------------------------2 分又 AB 平面 ABFE ,平面 ABFE 平面 DCFE EF , AB EF ,又 AB 平面 ABCD,EF 平面 ABCD ,EF 平面 ABCD .----------------------------------------------------5 分(2)过点 E 作 EO CD 于点 O ,平面 ABCD 平面 DCFE ,EO 平面 ABCD .过点 O 作 OH AD ,交 AB 于点 H ,四边形 ABCD 是矩形,OH CD .以 O 为坐标原点, OH ,OC,OE 所在直线分别为 x,y,z 轴,建立如图所示的空间直角坐标系.3 4 a 6 0.35 ,解得 a 5 ,所以样本的中位数为 4 5 4.5 ,42方差为 1 [(3 4.5)2 (4 4.5)2 (5 4.5)2 (6 4.5)2] 5 ,故样本44x 的方差与中位数的和为 23 . 415.【答案】 2【解析】由 S3 ,S9 ,S6 成等差数列,得 2S9 S3 S6 .设等比数列{ an }的公比 q 1 ,则 Sn na1 .由 2 9a1 3a1 6a1 ,解得 a1 0 .又因为a2a540,所以 q 1 .所以Sna1(1 qn ) 1 q,所以 2a1(1 q9) 1 qa1(1 q3) 1 qa1(1 q6) 1 q,解得q31( 2q3 1 舍去).又因为a2a5 4 ,即 a1q(1 q3) 4 ,所以 a1q 8 ,则 a8 a1q7 (a1q)·(q3)2 8 ( 1)2 2 .216.【答案】 21 3【解析】如图过等边三角形 ABD 的中心 F 作平面 ABD 的垂线 l ,取 BD 的中点 E ,过点 E 作平面 CBD 的垂线 l .设 l l G ,则点G 为四面体 ABCD 的外接球的球心.因为 ABD 是边长为 2 的等边三角形,所以 EF 3 .因为二面角 A BD C 的大小为150°,所 3以 GEF 60°.所以在 Rt EFG 中, GF EF·tan60°1 .所以四面体 ABCD 的外接球的半径为 GA GF 2 AF 2 1 4 21 .33设 BC 1,则 EF ED FC BC 1 ,AB 2BC 2 ,由(1)知, EF CD .在梯形 CDEF 中, EF ED FC 1, DC 2 , DO 1 ,EO 3 ,--------------------------------------------------7 分22于是 E(0,0, 3 ) , A(1, 1 ,0) , C(0,3 ,0) , F (0,1, 3 )2222则 AE (1,1 , 3 ) ,CF (0, 1 , 3 ) .-------------------------10 分2222设异面直线 AE 与 CF 所成的角为 ,则 cos AE·CF1 3 4 42.| AE || CF |24故异面直线 AE 与 CF 所成角的余弦值为 2 .-------------------12 分 419.【解析】(1)完成 2 2 列联表如下:前 20 名后 30 名总计男生82028女生121022总计203050三、解答题 17.【解析】(1) 4a cos2 B 2a b 2c ,2 2c b 2acosB ,--------------------------------------------------2 分 由正弦定理得, 2sinC sin B 2cos Bsin A ,又 C π A B , 2sin(A B) sin B 2cos Bsin A ,------------------------------4 分2sin Bcos A sin B . sin B 0 ,cos A 1 ,A π .-----------------------------------6 分 23--------------------------------------------------------------------------------2 分由列联表得 K 2 50 (8 10 20 12)2 3.463 . 28 22 20 303.463 2.706 , 在犯错误的概率不超过 0.1 的前提下,可以认为该班“成绩是否优等与性别有关”.--------------------------------5 分(2) 的可能取值为 0,1,2, P( 0) C36 5 , C83 14P( 1)C12C62 C8315 28,P(2)C22C16 C833 28.----------------------8分 的分布列为0125153P142828-------------------------------------------------------------------------------10 分理科数学答案第 2 页(共 3 页)E( ) 1 15 2 3 3 .-------------------------------------------12 分 28 28 420.【解析】(1) 抛物线 :x2 2 py( p 0) 的焦点为 F(0,1) ,抛物线 的方程为 x2 4y .-----------------------------------------2 分由直线 l1 的斜率为 k1 ,且过 F(0,1) ,得 l1 的方程为 y k1x 1 ,代 入 x2 4y ,化简得 x2 4k1x 4 0 , 设 A(x1 ,y1),B(x2 ,y2) ,则 x1 x2 4k1 , y1 y2 k1(x1 x2) 2 4k12 2 ,-------------------------------------4 分 | AB | y1 y2 2 4k12 4 .又 k1 3 ,| AB |16 .-------------------------------------------------6 分(2)设P( x0,x02 4),将的方程x2 4y 化为yx2 4,求导得 y x ,------------------------------------------------------------8 分 2斜率为 k2 的直线 l2 与 相切于点 P , k2x0 2,则P(2k2 ,k22 ) ,由(1)知 x1 x2 4k1 ,且 Q 为 AB 的中点,易得 Q(2k1 ,2k12 1) ,∵直线 PQ 过 (0,2) , k22 2 2k12 1 ,------------------------10 分2k22k1整理得 (k1k2 1)(k2 2k1) 0 ,l2 与 l1 不垂直,k1k2 1 0 ,则k2 2k1 0 ,即k1 k21 2.---------------------------------------------12分21.【解析】(1)由题可得 f (x) ex b ,当 b 0 时, f (x) 0 ,f (x) 在 (∞, ∞) 上单调递增;------------------------------------2 分 当 b 0 时,若 x ln(b) ,则 f (x) 0 , f (x) 在 (ln(b), ∞) 上单调递增,若 x ln(b) ,则 f (x) 0, f (x) 在 (∞,ln(b)) 上单调递减.------------------------------------------------------------------------4 分(2)令 g(x) ex bx 1 ln x(x 0) ,则 g(x) ex b 1 ,易知 xg(x) 单调递增且一定有大于 0 的零点,不妨设为 x0 ,则 g(x0) 0 ,即 ex0b1 x00,b1 x0 ex0,故若g(x)有两个零点,则g(x0) 0 ,即 ex0 bx0 1 ln x0e x0( 1 x0 ex0 ) x0 1 ln x0 ex0 ex0 x0 ln x0 0 ,--------------------------------------------------6 分令 h(x) ex exx ln x(x 0) ,则 h(x) ex x 1 0 , xh(x) 在 (0, ∞) 上单调递减.又 h(1) 0 ,ex0 ex0 x0 ln x0 0 的解集为 (1, ∞) , --------------------------------------------------------------------------------8 分b 1 ex0 ,b 1 e . x0当 b 1 e 时,有 ex bx 1 ln x x bx ln x ,则 g(eb) eb beb lneb (b 1)eb b ,----------------------------10 分令 m(x) (x 1)ex x (x 1)(ex 1) 1 ,由于 x 1 e ,x 1 2 e 0 , ex 1 ,故 m(x) (x 1)ex x 0 , g(eb) 0 ,故 g(eb)g(x0) 0,g(x) 在 (0,x0) 上有唯一零点, 另一方面,当 x ∞ 时, g(x) ∞ ,b 1 e .-----------12 分22.【解析】(1)曲线 C:(x 2)2 ( y 1)2 9 ,-----------------------2 分故 x2 y2 4x 2y 4 0 ,即曲线 C 的极坐标方程为 2 4 cos 2 sin 4 0 .-------4 分(2)由题可知直线 l 的斜率存在,否则无交点.设直线 l 的方程为 y 1 k(x 2) ,即 kx y 2k 1 0 .--------6 分而| AB | 2 ,则圆心到直线 l 的距离 d r2 AB 2 2 91 2 2 .--------------------------------------------------------------------------------8 分又 d | 4k | , | 4k | 2 2 ,解得 k 1 .k2 1k2 1直线 l 的方程为 x y 1 0 或 x y 3 0 .-------------------10 分23.【解析】(1)当 a 2 时,3,x 2 f (x) | x 2 | | x 1| 1 2x,1 x 2 .3,x 1 f (x) 1,当 x 2 时,不等式无解;--------------------------2 分当 1 x 2 时,令1 2x 1,解得 x 0 ,不等式的解集为1 x 0 ;当 x 1时, 3 1 ,符合题意. 综上可得,不等式 f (x) 1 的解集为 (∞,0] .---------------------5 分 (2) f (x) a2 1 0 恒成立等价于 f (x)max a2 1.| x a | | x 1| | (x a) (x 1) | | a 1| , | a 1| | x a | | x 1| | a 1| .---------------------------------8 分 | a 1| a2 1 ,a2 1 a 1 a2 1(a2 1 0) ,解得 a 1或 a 2 . 实数 a 的取值范围为 (∞,1] [2, ∞) .---------------------10 分理科数学答案第 3 页(共 3 页)。

2020年高考冲刺压轴卷理(数学)

2020年高考冲刺压轴卷理(数学)

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A ={x|2x>6},B ={x|2x<32},则A∩B= A.(3,4) B.(4,5) C.(3,+∞) D.(3,5) 2.复数2ii i--(i 为虚数单位)在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.“2a>8”是“a 2>9”的A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件 4.已知某几何体的三视图如图所示,若该几何体的体积为3π+6,则x 等于A.4B.5C.6D.7 5.若函数f(x)=sin(2x +φ)(-2π<φ<2π)的图象关于点(3π,0)对称,则f(6π)的值是 A.-12 B.32 C.-32 D.126.已知a 10a ·b =5102,且(b -a)·(b +a)=15,则向量a 在b 方向上的投影为 A.12B.225107.执行如图所示的程序框图,则输出的结果为A.2B.3C.4D.58.从0,1,2,3,4,5这6个数字中,任取3个组成一个无重复数字的三位数,则这样的三位数中偶数个数与奇数个数的比值为A.1B.32C.1312D.27239.在△ABC中,角A,B,C的对边分别为a,b,c,若b=l,c32sin(B+C)cosC=1-2cosAsinC,则△ABC的面积是A.34B.12C.34或32D.14或1210.设双曲线C:22221(0,0)x ya ba b-=>>的左、右焦点分别是F1,F2,过F1的直线交双曲线C的左支于M,N两点,若MF2=F1F2,且2MF1=NF1,则双曲线C的离心率是A.53B.32C.2D.5411.已知以正方体所有面的中心为顶点的多面体的各个顶点都在球O的球面上,且球O的表面积为20π,则该正方体的棱长为56 D.612.设函数f(x)的定义域为R,f'(x)是其导函数,若3f(x)+f'(x)>0,f(0)=1,则不等式f(x)>e-3x的解集是A.(0,+∞)B.(1,+∞)C.(-∞,0)D.(0,1)二、填空题:本题共4小题,每小题5分,共20分。

2020年高考(理科)数学预测押题密卷最后一卷 试题

2020年高考(理科)数学预测押题密卷最后一卷 试题

理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标 号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知集合2{|23}A x y x x ==--,全集U =R ,集合1{|0}22B x x =-,则()U A B C =( )A .[23),B .[13),C .(23),D .(13), 2. 已知i 为虚数单位,且复数z 满足2020(12)z i i i +=+,则||z 的值为( )A .15B .10 C .5D .23. 已知函数2()(1)f x x a x a =+-+为定义在[22]-,上的偶函数,则()2f x 在[22]-,上发生的概率为( )A .12B .13C .14D .164. 已知数列21n a n =+,其前n 项的和为n S ,则12111nS S S +++=( )A .1112n n -++ B .1111(1)2212n n +--++ C .1111212n n +--++D .1111(1)2212n n +-+++ 5. 执行如图的程序框图,输出的c 的值为( )A .5B .4C .5-D .4-6. 若双曲线22221(00)x y C a b a b-=>>:,的一条渐近线被圆22(2)2x y +-=截得的弦长为2,则双曲线C 的离心率为 ( )A .3B .2C .5D .25 7. 35(2)()x x a -+的展开式的各项系数和为32,则该展开式中4x 的系数是( )A .5B .10C .15D .20 8. 若函数()3cos()cos (0π)f x x x θθ=+<<的图象过点(0)32-,,则( )A .点(π3)0,是函数()f x 图象的对称中心B .直线π3x =是函数()f x 图象的对称轴 C .函数()f x 的最小值是3-D .函数()f x 的最大值是233- 9. 如图,已知G 是ABC 的重心,H 是BG 的中点,且2AB =,3AC =,60BAC ∠=°,则AG AH =·( )A .209B .2C .59D .1310. 已知椭圆22221(0)x y C a b a b+=>>:,点M N F 、、分别为椭圆C 的左顶点、上顶点、左焦点,若90MFN NMF ∠=∠+°,则椭圆C 的离心率是( )A .51-B .31-C .21-D .3 11. 已知正数a b c ,,满足224160a ab b c -+-=,当ab c取得最大值时,则43244c a b -++的最小值为( )A .2B .4C .12D .1612. 已知函数22212()212m x mx x f x m x mx x⎧-+-<⎪⎪=⎨⎪--⎪⎩,,.若函数()f x 有三个不同的零点,则实数m 的取值范围为( )A .(2)+,∞B .(22)+,∞C .(4)+,∞D .(42)+,∞ 二、填空题:本题共4小题,每小题5分,共20分。

2020高考理科数学经典押题(含答案)

2020高考理科数学经典押题(含答案)

2020高考数学经典押题(含答案)满分:100分,时间:60分钟一、选择题:本大题共8个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数满足,则()A . BCD . 2.已知,则A ∩B =()A .B .C .D . 3. 在中,角的对边分别为,若且,则()A .B .C .D . 4.某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为()A. B . C .D .5. 设满足约束条件,则的取值范围是()A .B .C .D . 6. 函数的部分图象大致是() z ()(1)1z i i +-=z =21222{|log (31)},{|4}A x y x B y x y ==-=+=1(0,)31[2,)3-1(,2]31(,2)3ABC ∆,,A B C ,,a b c sin 3sin ,A B c ==5cos 6C =a =348+6+6+8+,x y 22026020x y x y y --≤⎧⎪+-≥⎨⎪-≤⎩2y x z x y =-7[,1]2-7[2,]2-77[,]23--3[,1]2-()22x xe ef x x x --=+-7. 过双曲线的右焦点且垂直于轴的直线与双曲线交于两点,为虚轴上的一个端点,且为钝角三角形,则此双曲线离心率的取值范围为()A .B .C .D .8. 已知函数,若成立,则的最小值为() A . B . C . D .二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设平面向量与向量互相垂直,且,若,则.14.在二项式的展开式中,其3项为,则.15.如图,是正方体的棱上的一点,且平面,则异面直线与所成角的余弦值为.16. 已知点是抛物线上一点,为坐标原点,若是以点为圆心,的长为半径的圆与抛物线的两个公共点,且为等边三角形,则的值是.22221(0,0)x y a b a b-=>>x ,A B D ABD∆2))+∞U ()()231,ln 42x x f x eg x -==+()()f m g n =n m -1ln 22+ln 212ln 22+2ln 2m u r n r 2(11,2)m n -=-u r r 5m =u r n =r 6120x =E 1111ABCD A B C D -11C D 1//BD 1B CF 1BDCE A 2:2(0)C x py p =>O ,A B (0,8)M OA C ABO ∆p三、解答题(本大题共2小题,共40分.解答应写出文字说明、证明过程或演算步骤.)17. 已知正项数列满足,数列的前项和满足.(1)求数列,的通项公式;(2)求数列的前项和.18.在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数) (1)将,的方程化为普通方程,并说明它们分别表示什么曲线;(2)以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,已知直线的极坐标方程为,若上的点对应的参数为,点上在,点为的中点,求点到直线距离的最小值.{}n a 221111,n n n n a a a a a ++=+=-{}n b n n S 2n n S n a =+{}n a {}n b 11{}n n a b +n n T xOy 1C cos (1sin x y θθθ=⎧⎨=+⎩2C 2cos (sin x y ϕϕϕ=⎧⎨=⎩1C 2C x l (cos 2sin )4ρθθ-=1C P 2πθ=Q 2C M PQ M l2020高考数学经典押(答案)一、选择题1-5: ACB CA 6-8: D D A二、填空题13. 14. 15. 16. 三、解答题17.解:(1)因为,所以,,因为,所以,所以, 所以是以为首项,为公差的等差数列,所以,当时,,当时也满足,所以.(2)由(1)可知, 所以. 18.解:(1)的普通方程为,它表示以为圆心,为半径的圆,的普通方程为,它表示中心在原点,焦点在轴上的椭圆. (2)由已知得,设,则, 直线,点到直线的距离为 , 所以 ,即到直线的距离的最小值为. 52232211n n n n a a a a +++=-()()1110n n n n a a a a +++--=10,0n n a a +>>10n n a a ++≠11n n a a +-={}n a 11n a n =2n ≥12n n n b S S n -=-=1n =12b =2n b n =111111()2(1)21n n a b n n n n +==-++11111111[(1)()()()]22233412(1)n n T n n n =-+-+-++-=++L 1C 22(1)1x y +-=(0,1)12C 2214x y +=x (0,2)P (2cos ,sin )Q θθ1(cos ,1sin )2M θθ+:240l x y --=Ml d ==5d ≤=Ml 5。

2020版高考数学理科(人教B版)一轮复习高考大题专项1函数与导数的综合压轴大题Word版含解析

2020版高考数学理科(人教B版)一轮复习高考大题专项1函数与导数的综合压轴大题Word版含解析

高考大题专项一函数与导数的综合压轴大题突破 1 利用导数求极值、最值、参数范围x1.函数f(x)= (x-k)e .(1)求 f(x)的单调区间 ;(2)求 f(x)在区间 [0,1] 上的最小值 .2.(2021福建龙岩 4 月质检 ,21 改编 )函数 f(x)= (x-2)e x-a(x+ 2)2.求函数 g( x)=f (x)+ 3e x的极值点 .3.(2021山东师大附中一模,21)函数f(x)= (x-a)e x(a∈R) .(1)当 a= 2 时 ,求函数 f(x)在 x= 0 处的切线方程 ;(2)求 f(x)在区间 [1,2] 上的最小值 .4.(2021陕西咸阳一模,21改编)f(x)=e x-aln x(a∈ R ).当a=- 1时,假设不等式f(x)> e+m ( x-1)对任意x∈(1,+ ∞)恒成立 ,求实数 m 的取值范围 .5.设函数f(x)=x2+ax+b ,g( x)=e x(cx+d ).假设曲线y=f (x)和曲线y=g (x)都过点P(0,2),且在点P处有相同的切线 y= 4x+2.(1)求 a,b,c,d 的值 ;(2)假设 x≥ -2 时 ,f(x)≤ kg(x),求 k 的取值范围 .6.(2021河北江西南昌一模,21)函数f(x)= ln( ax)+bx 在点 (1,f(1)) 处的切线是y= 0.(1)求函数 f(x)的极值 ;-(2) 当f(x)+ x(m< 0)恒成立时 ,求实数 m 的取值范围 (e 为自然对数的底数).突破 2利用导数证明问题及讨论零点个数1.(2021全国3,文21)函数f(x)=-(1)求曲线 y=f (x)在点 (0,-1) 处的切线方程 ;(2)证明 :当 a≥ 1 时 ,f(x)+ e≥ 0.2.(2021河北保定一模,21 改编 )函数f(x)= ln x-(a∈R).假设 f(x)有两个极值点x1,x2,证明:f3.函数f(x)=ax 3-3x2+ 1,假设 f(x)存在唯一的零点 x0,且 x0> 0,求 a 的取值范围 .4.(2021安徽芜湖期末,21改编)函数f(x)=x3-aln x(a∈ R ).假设函数y=f (x)在区间(1,e]上存在两个不同零点 ,求实数 a 的取值范围 .5.(2021河南郑州一模,21)函数f(x)= ln x+,a∈R且 a≠0.(1)讨论函数 f(x)的单调性 ;x(2)当 x时,试判断函数g(x)= (ln x-1)e +x-m 的零点个数 .x 26.(2021河北衡水中学押题三,21)函数f( x)=e -x +a ,x∈ R,曲线y=f (x)的图象在点(0,f(0))处的切线方程为y=bx.(1)求函数 y=f (x)的解析式 ;(2)当 x∈R时 ,求证 :f(x) ≥-x2 +x;(3)假设 f(x)>kx 对任意的 x∈ (0,+ ∞)恒成立 ,求实数 k 的取值范围 .高考大题专项一函数与导数的综合突破1 利用导数求极值、最值、参数范围1.解(1)由题意知f'(x)= (x-k+ 1)e x.令 f' (x)= 0,得 x=k- 1.当 x∈ (-∞,k-1) 时 ,f'(x) <0,当 x∈( k-1,+∞)时 ,f'(x)> 0.所以 f(x)的单调递减区间是(-∞,k-1),单调递增区间是(k-1,+ ∞).(2)当 k-1≤ 0,即 k≤1 时 ,f(x)在 [0,1] 上单调递增 ,所以 f(x)在区间 [0,1] 上的最小值为f(0)=-k ;当 0<k- 1< 1,即 1<k< 2 时 ,f(x)在 [0,k-1] 上单调递减 ,在 [k-1,1] 上单调递增 ,所以 f(x)在区间 [0,1] 上的最小值为 f(k-1)=- e k- 1;当 k-1≥ 1,即 k≥ 2 时 ,f(x)在 [0,1] 上单调递减 ,所以 f(x)在区间 [0,1] 上的最小值为f(1)= (1-k)e.综上 ,当 k≤ 1 时 ,f(x)在[0,1] 上的最小值为f(0) =-k ;k-1当 1<k< 2 时 ,f(x) 在[0,1] 上的最小值为f( k-1)=- e;2.解由g(x)= (x+1)e x-a(x+ 2)2,得 g'(x)= (x+ 2)e x-2a(x+ 2)=( x+2)(e x-2a),(ⅰ)当 a≤ 0 时 ,在 ( -∞,-2)上 ,g'(x) < 0,在 (-2,+ ∞)上 ,g'( x)>0.(ⅱ)当 a> 0时,令 g'(x)= 0,解得 x=- 2 或 x= ln(2 a).①假设 a=,ln(2 a)=- 2,g'(x)≥ 0 恒成立 ;②假设 a>,ln(2 a)>- 2,在( -2,ln(2 a))上 ,g'( x)< 0;在 (-∞,-2)与 (ln(2 a),+ ∞) 上,g'(x)> 0.③假设 a<,ln(2 a)<- 2,在(ln(2 a),-2)上 ,g'( x)< 0;在 (-∞,ln(2a))与 (- 2,+ ∞) 上,g'(x)> 0.综上 ,当 a≤ 0 时 ,g(x)极小值点为 -2,无极大值点 ;当 0<a<时 ,g(x)极小值点为 -2,极大值点为 ln(2 a); 当 a= 时 ,g(x)无极值点 ;当 a>时 ,g(x)极小值点为 ln(2 a),极大值点为 -2.3.解(1)设切线的斜率为k.因为 a= 2,所以 f(x)= (x-2)e x,f'(x)= e x( x-1).所以 f(0)=- 2,k=f' (0)= e0 (0-1)=- 1.所以所求的切线方程为y=-x- 2,即 x+y+ 2= 0.(2)由题意得 f'(x)=e x(x-a+ 1),令 f'(x)= 0,可得 x=a- 1.①假设 a-1≤1,那么 a≤2,当 x∈ [1,2] 时 ,f'(x)≥ 0,那么 f(x)在 [1,2] 上单调递增 .所以②假设所以③假设所以f(x) min=f (1)= (1-a)e.a-1≥2,那么 a≥3,当 x∈ [1,2] 时 ,f'(x)≤ 0,那么 f(x)在 [1,2] 上单调递减 .21<a- 1< 2,那么 2<a< 3,f'(x),f(x)随 x 的变化情况如下表:x(1,a-1)a-1(a-1,2)f'(x)-0+f(x)单调递减极小值单调递增所以 f(x)的单调递减区间为[1,a- 1],单调递增区间为[a-1,2] .a-1综上所述 : 当 a≤ 2 时 ,f(x) min=f (1)= (1-a)e;当 a≥3 时 ,f(x)min=f (2)= (2-a)e2;当 2<a< 3 时 ,f(x)min=f (a-1)=- e a-1.4.解由f(x)= e x-aln x,原不等式即为e x+ ln x-e-m(x-1)> 0,记 F(x)= e x+ ln x-e-m(x-1),F(1)= 0,依题意有F(x)> 0 对任意 x∈ [1,+ ∞)恒成立 ,求导得 F' ( x)= e x+ -m,F' (1)= e x+ 1-m,F″ (x) = e x-,当 x>1 时 ,F″(x)> 0,那么 F' (x)在 (1,+∞)上单调递增 ,有 F' (x)>F' (1)= e x+ 1-m,假设 m≤ e+ 1,那么 F' (x) > 0,那么 F(x)在 (1,+ ∞)上单调递增 ,且 F(x)>F (1)= 0,适合题意 ;假设 m> e+ 1,那么F' (1)< 0,又 F' (ln m)=> 0,故存在 x1∈(1,ln m),使 F' (x)= 0,当 1<x<x 1时 ,F' (x)< 0,得 F(x)在 (1,x1)上单调递减 ,F(x)<F (1)= 0,舍去 ,综上 ,实数 m 的取值范围是m≤ e+ 1.5.解(1)由得f(0) =2,g(0)= 2,f'(0) =4,g'(0)= 4.而 f' (x)= 2x+a ,g'(x) =e x(cx+d+c ),故 b= 2,d= 2,a= 4,d+c= 4.从而 a= 4,b= 2,c= 2,d= 2.(2)由 (1) 知 ,f(x)=x 2+ 4x+2,g(x)= 2e x(x+1) .设函数 F(x)=kg (x)-f(x)= 2ke x(x+ 1)-x2-4x-2,那么 F' (x)= 2ke x(x+ 2) -2x-4= 2(x+2)(ke x-1) . 由题设可得 F(0) ≥ 0,即 k≥ 1.令 F' (x)= 0 得 x1=- ln k,x2=- 2.2①假设 1≤ k< e ,那么 -2<x 1≤ 0.从而当 x∈ (- 2,x1 )时 ,F' (x)< 0;当 x∈ (x1,+ ∞)时 ,F' (x)> 0.即 F(x)在 (-2,x1)单调递减 ,在 (x1,+∞) 单调递增 .故 F(x)在 [- 2,+ ∞)的最小值为 F(x1 ).而 F(x1)= 2x1+ 2- -4x1- 2=-x 1(x1+ 2)≥ 0.故当 x≥ -2 时 ,F(x)≥ 0,即 f(x)≤ kg(x)恒成立 .②假设 k=e2,那么 F' (x)= 2e2(x+2)(e x-e- 2).从而当 x>- 2 时 ,F' (x)> 0,即 F(x) 在(-2,+ ∞)单调递增 .而 F(-2)= 0,故当 x≥ -2 时 ,F(x)≥0,即 f(x)≤ kg(x)恒成立 .2- 2-22③假设k>e ,那么 F(-2)=- 2ke + 2=-2e(k-e ) <0.从而当 x≥ -2 时 ,f(x)≤ kg(x)不可能恒成立.综上 ,k 的取值范围是 [1,e2].6.解(1)∵f(x) =ln( ax)+bx ,∴f'(x)= +b= +b ,∵点 (1,f(1)) 处的切线是y= 0,∴f'(1)= 1+b= 0,且 f(1)= ln a+b= 0,∴a= e,b=- 1,即 f(x)= ln x-x+ 1(x> 0),∴f'(x)= -1=-,∴f(x)在 (0,1) 上递增 ,在 (1,+ ∞)上递减 .所以 f(x)的极大值为 f(1)= ln e-1= 0,无极小值 .(2)由 (1)f(x)= ln x-x+ 1,当-f( x)+ x(m< 0)恒成立时 ,即--2+ ln x-x+ 1+ x(m< 0)在 x∈(0,+ ∞)恒成立 ,同除以 x 得设 g(x)=,h(x)=-2,那么g'(x)=-,h'(x)=-,又∵m< 0,所以当 0<x< 1 时 ,g'(x)< 0,h'(x) > 0;当 x> 1 时 ,g'(x)> 0,h'(x)< 0.∴g(x)在 (0,1)上单调递减 ,在 (1,+ ∞)上单调递增 ,g(x)min=g (1)= ,h(x)在 (0,1)上单调递增 ,在 (1,+∞)上单调递减 ,h(x)max=h (1) = -1.∴g(x),h(x) 均在 x= 1 处取得最值 ,所以要使 g(x)≥ h(x)恒成立 ,只需 g(x)min≥ h(x)max ,即-1,解得 m≥ 1-e,又 m< 0,∴实数 m 的取值范围是[1-e,0).突破 2利用导数证明问题及讨论零点个数--因此曲线 y=f (x)在点 (0,-1)处的切线方程是 2x-y-1= 0.1.(1)解f' (x)=,f'(0)=2.(2)证明当 a≥ 1 时 ,f(x)+ e≥ (x2+x- 1+ e x+ 1)e-x.令 g(x)=x 2+x- 1+e x+1, 那么 g'(x)= 2x+ 1+ e x+ 1.当 x<- 1 时 ,g'(x)< 0,g(x)单调递减 ;当 x>- 1 时 ,g'(x)> 0,g(x)单调递增 ;所以 g(x)≥ g(-1)= 0.因此 f(x)+ e≥ 0.--2.证明f'(x) =(x> 0),令 p(x)=x 2+ (2-a)x+ 1,由 f(x) 在(0,+ ∞)有两个极值点 x1,x2,那么方程 p(x)= 0 在(0,+ ∞)有两个实根--得 a> 4,x1,x2,-∴f(x1)+f (x2)= ln x1-+ ln x2-= ln x1x2-=-a ,f=f -= ln---= ln-- (a-2),∴f=ln--a-2+= ln-+ 2.设 h(a)= ln-+ 2(a> 4),那么 h'(a)=-< 0,--∴h(a)在 (4,+ ∞)上为减函数 ,又 h(4)= 0,∴h(a) <0,∴f3.解法1函数f(x)的定义域为R ,当a= 0时,f(x)=- 3x2+ 1,有两个零点±,原函数草图∴a= 0 不合题意 ;当 a> 0 时 ,当 x→ -∞时 ,f(x)→ -∞,f(0)= 1,f( x)存在小于 0 的零点 x0,不合题意 ;当 a< 0 时 ,f'(x)= 3ax22∴在区间-内 f' (x)< 0;-6x,由 f'(x)= 3ax -6x=0,得 x1= 0,x2= < 0,在区间内 f'(x)> 0;在区间 (0,+ ∞)内 f'(x)< 0.∴f(x)在区间 -为减函数 ,在区间为增函数 ,在区间 (0,+∞)为减函数 .∴假设 f(x)存在唯一的零点x0,且 x0>0?f(x) min=f>0?+1> 0?< 1? a2> 4.∵a< 0,∴a<-2.解法 2 曲线 y=ax 3与曲线 y=3x2-1 仅在 y 轴右侧有一个公共点,当 a≥0 时 ,由图象知不符合题意 ;当 a< 0 时 ,设曲线 y=ax 3与曲线 y= 3x2-1 相切于点 ( x0,y0),-那么得 a=- 2,由图象知a<- 2 时符合题意 .解法 3 别离成a=-+ 3=-t3+3t,令y=a ,g(t)=-t 3+ 3t,g'( t)=- 3t2+ 3= 3(1-t2),当 t∈ (-1,1)时 ,g'(t)> 0,当 t> 1 或 t<- 1 时 ,g'(x)< 0.所以 g( t)在 (-∞,- 1)递减 ,在区间(-1,1)递增 ,在 (1,+ ∞)递减 ,所以当 t=- 1 时,g(t)min=- 2,由 g(t)=-t 3+ 3t 的图象可知 ,t= 1 时 ,g(t)max= 2.3,交点在第四象限 ,所x→ + ∞时 ,g(t)→ + ∞,当 a<- 2 时 ,直线 y=a 与 g(t)=-t + 3t 的图象只有一个交点以满足题意 .4.解由f(x)= 0,得a=在区间 (1,e] 上有两个不同实数解 ,即函数 y=a 的图象与函数 g(x)=的图象有两个不同的交点 .因为 g'(x)=-,令 g'(x)= 0 得 x=,所以当 x∈ (1,)时 ,g'(x)< 0,函数在 (1, ) 上单调递减 ,当 x∈ ( ,e]时 ,g'(x)> 0,函数在 (,e]上单调递增 ;那么 g(x)min=g()=3e,而 g()== 27 > 27,且 g(e)= e3< 27,要使函数 y=a的图象与函数g(x) = 的图象有两个不同的交点 ,∴a的取值范围为 (3e,e3].5.解(1)f' (x)=-(x>0),当 a< 0 时,f' (x)> 0 恒成立 ,函数 f( x)在 (0,+ ∞)上单调递增 ;当 a> 0 时 ,由 f' (x)> 0,得 x> ,由 f' (x)< 0,得 0<x<,函数单调递增区间为,单调递减区间为综上所述 ,当 a< 0 时 ,函数 f(x)的单调递增区间为(0,+ ∞),当 a> 0 时,函数 f(x) 的单调递增区间为,单调递减区间为(2)∵x时 ,函数 g(x)= (ln x-1)e x+x-m 的零点 ,即方程 (ln x-1)e x+x=m 的根 .令 h(x)= (ln x-1)e x+x ,h'( x)=- e x+ 1,由 (1)知当 a= 1 时 ,f(x)= ln x+ -1 在递减 ,在 [1,e] 上递增 ,∴f(x)≥f(1)= 0,+ ln x-1≥ 0 在 x上恒成立 ,∴h'(x) =x x- e + 1≥ 0+ 1>0,∴h(x)= (ln x-1)e +x 在x上单调递增 ,∴h(x)min=h =- 2∴当 m<- 2或 m>e 时,没有零点 ,当 -2m≤e 时有,h(x) max= e.一个零点 .6.(1)解根据题意,得f'(x)= e x-2x,那么 f' (0)= 1=b.由切线方程可得切点坐标为(0,0), 将其代入y=f ( x),得 a=- 1,故 f(x) =e x-x2-1.(2)证明令 g( x)=f (x)+x 2-x= e x-x-1.由 g'(x) = e x-1= 0,得 x=0, 当 x∈ (-∞,0)时 ,g'(x)< 0,y=g (x)单调递减 ;当 x∈ (0,+ ∞)时,g'(x)> 0,y=g (x)单调递增 .所以 g(x)min=g (0)= 0,2(3) 解 f( x)>kx 对任意的x∈ (0,+∞) 恒成立等价于>k 对任意的 x∈ (0,+ ∞)恒成立 .令φ(x)=,x> 0,得φ'(x)=------- -==由 (2)可知 ,当 x∈ (0,+ ∞)时 ,e x-x-1> 0 恒成立 ,令φ'(x)> 0,得 x> 1;令φ'(x)< 0,得 0<x<1.所以 y= φ(x)的单调增区间为 (1,+ ∞),单调减区间为 (0,1),故φ(x)min= φ(1)= e-2,所以 k< φ(x)min= e-2.所以实数 k 的取值范围为(-∞,e-2).。

2020届 全国名校高考冲刺压轴卷 数学理 (解析版)

2020届  全国名校高考冲刺压轴卷  数学理 (解析版)

2020届全国名校高考冲刺压轴卷数学理科一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知{}lg 0A x x =>,{}12B x x =-<,则A B =U ( ) A .{}11x x x <-≥或 B .{}13x x << C .{}3x x >D .{}1x x >-2.下列命题中正确的是( )A .若p q ∨为真命题,则p q ∧为真命题B .若0x >,则sin x x >恒成立C .命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()00,x ∀∉+∞,00ln 1x x ≠-”D .命题“若22x =,则2x =或2x =-”的逆否命题是“若2x ≠或2x ≠-,则22x ≠”3.设曲线C 是双曲线,则“C 的方程为2214y x -=”是“C 的渐近线方程为2y x =±”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件4.函数e 4xy x=的图象可能是( )A .B .C .D .5.已知函数()sin y A x b ωϕ=++的最大值为3,最小值为1-.两条对称轴间最短距离为2π,直线6x π=是其图象的一条对称轴,则符合条件的函数解析式为( )A .4sin 26y x π⎛⎫=+ ⎪⎝⎭B .2sin 216y x π⎛⎫=-++ ⎪⎝⎭C .2sin 3y x π⎛⎫=-+ ⎪⎝⎭D .2sin 213y x π⎛⎫=++ ⎪⎝⎭6.设0.1log 0.2a =, 1.1log 0.2b =,0.21.2c =,0.21.1d =则( )A .a b d c >>>B .c a d b >>>C .d c a b >>>D .c d a b >>>7.某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .16π3B .3π C .29π D .169π8.已知向量(1,3=-a ,()0,2=-b ,则a 与b 的夹角为( ) A .π6B .π3C .5π6D .2π39.在ABC △中,a ,b ,c 分别是角A ,B ,C 的对边,()()3a b c a c b ac +++-=,则角B =( ) A .2π3 B .π3 C .5π6D .π610.执行如图所示程序框图,输出的S =( )A .25B .9C .17D .2011.已知过点(),0A a 作曲线:e x C y x =⋅的切线有且仅有两条,则实数a 的取值范围是( ) A .()(),40,-∞-+∞U B .()0,+∞ C .()(),11,-∞-+∞U D .(),1-∞-12.已知函数()ln ,0e ,e x x f x e x x⎧<≤⎪=⎨>⎪⎩,若0a b c <<<且满足()()()f a f b f c ==,则()af b ()bf c +()cf a +的取值范围是( ) A .()1,+∞ B .()e,+∞C .11e 1e ⎛⎫++ ⎪⎝⎭,D .1e,2e e ⎛⎫+ ⎪⎝⎭二、填空题:本大题共4小题,每小题5分.13.已知直线l 、m 与平面α、β,l α⊂,m β⊂,则下列命题中正确的是_______(填写正确命题对应的序号).S =S +8开始 否T>S ?结束是 S =1,T=0,n =0 n==0n =n +2输出ST =T +2n①若l m ∥,则αβ∥;②若l m ⊥,则αβ⊥; ③若l β⊥,则αβ⊥;④若αβ⊥,则m α⊥,14.若x ,y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则2z x y =+的最小值为__________.15.费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形三个内角均小于120︒时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为120︒.根据以上性质,函数 ()f x______.16.已知ABC △中,AB AC =,点D 是AC 边的中点,线段BD x =,ABC △的面积2S =,则x 的取值范围是_________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)在ABC △中,角A 、B 、C 所对的边分别是a 、b 、c ,角A 、B 、C 成等差数列,b =(1)若3sin 4sin C A =,求c 的值; (2)求a c +的最大值. 18.(本小题满分12分)2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:(1(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加2022年北京冬奥会志愿者宣传活动.(i )问男、女学生各选取了多少人?(ii )若从这12人中随机选取3人到校广播站开展冬奥会及冰雪项目的宣传介绍,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X . 附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.19.(本小题满分12分)在四棱锥P ABCD -中,AD ⊥平面PDC ,PD DC ⊥,底面ABCD 是梯形,AB DC ∥,1AB AD PD ===,2CD =.(1)求证:平面PBC ⊥平面PBD ;(2)设Q 为棱PC 上一点,PQ PC λ=u u u r u u u r,试确定λ的值使得二面角Q BD P --为60︒.20.(本小题满分12分)已知椭圆()222:90C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 交于A 、B 两点,线段AB 的中点为M .(1)证明:直线OM 的斜率与l 的斜率的乘积为定值;(2)若l 过点,3m m ⎛⎫⎪⎝⎭,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求l 的斜率;若不能,说明理由.21.(本小题满分12分) 已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本题满分10分)【选修4-4:坐标系与参数方程】 平面直角坐标系中,直线l 的参数方程为131x t y t =+⎧⎪⎨=+⎪⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为22cos 1cos θρθ=-.(1)写出直线l 的普通方程与曲线C 的直角坐标方程;(2)已知与直线l 平行的直线l '过点()20M ,,且与曲线C 交于A ,B 两点,试求MA MB ⋅. 23.(本题满分10分)【选修4-5:不等式选讲】 已知函数()211f x x x =+--. (1)解不等式()2f x <;(2)若不等式()1123m f x x x -≥+-+-有解,求实数m 的取值范围.2019全国卷Ⅱ高考压轴卷数学理科答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.【解析】{}{}lg 01A x x x x =>=>,{}{}1213B x x x x =-<=-<<,则{}1A B x x =>-U .故选D . 2.【答案】B【解析】令()sin f x x x =-,()1cos 0f x x '=-≥恒成立,()sin f x x x =-在()0,+∞单调递增,∴()()00f x f >=,∴sin x x >,B 为真命题或者排除A 、C 、D .故选B .3.【答案】A【解析】若C 的方程为2214y x -=,则1a =,2b =,渐近线方程为b y x a=±,即为2y x =±,充分性成立,若渐近线方程为2y x =±,则双曲线方程为()2204y x λλ-=≠,∴“C 的方程为2214y x -=”是“C 的渐近线方程为2y x =±”的充分而不必要条件,故选A .4.【答案】C【解析】函数为奇函数,图象关于原点对称,排除B ,当1x =时,e14y =<,排除A ; 当x →+∞时,e4xx→+∞,排除D .故选C .5.【答案】B【解析】由31A b A b +=⎧⎨-+=-⎩,∴21A b =⎧⎨=⎩,又22T π=,∴T =π,∴2ω=,∴()2sin 21y x ϕ=++,又262k ϕππ⋅+=+π,k ∈Z ,∴6k ϕπ=+π,k ∈Z , ∴72sin 212sin 2166y x x ππ⎛⎫⎛⎫=++=-++ ⎪ ⎪⎝⎭⎝⎭,故选B . 6.【答案】D【解析】01a <<,0b <,1c >,1d >,由0.2y x =在R 上为增函数,∴c d >,故选D . 7.【答案】D【解析】4的D .8.【答案】A【解析】设向量a 与向量b 的夹角为[]()0,πθθ∈,则cos θ⋅==a b a b ,∴π6θ=.故选A . 9.【答案】B【解析】由()()3a b c a c b ac +++-=,可得222a c b ac +-=,根据余弦定理得2221cos 22a cb B ac +-==,∵()0,πB ∈,∴π3B =.故选B .【解析】按照程序框图依次执行为1S =,0n =,0T =;9S =,2n =,044T =+=; 17S =,4n =,41620T S =+=>,退出循环,输出17S =.故选C . 11.【答案】A【解析】设切点为()000,e x x x ,()1e xy x '=+,∴0001e x x x y x ='=+⋅,则切线方程为:()()00000e =1e x x y x x x x -+⋅-,切线过点(),0A a 代入得:()()00000e =1e x xx x a x -+⋅-,∴2001x a x =+,即方程2000x ax a --=有两个解,则有2400a a a ∆=+>⇒>或4a <-.故选A .12.【答案】D【解析】画出()f x 的图象,由0a b c <<<且()()()f a f b f c ==得:01a <<,1e b <<,e c >,ln ln a b -=,e ln b c=,∴1ab =,ln e c b =,()()()()1ln ln e af b bf c cf a a b c b b b b ⎛⎫++=++=++ ⎪⎝⎭,令()1ln e g b b b b ⎛⎫=++ ⎪⎝⎭,()1e b <<,则()21111ln g b b b b b b ⎛⎫⎛⎫'=-++⋅ ⎪ ⎪⎝⎭⎝⎭,()()211ln 1ln g b b b b '=++-,∵1e b <<,∴1ln 0b ->,ln 0b >,∴()0g b '>,则函数()g b 在区间()1,e 上单调递增,∴()()()1e g g b g <<,即11e ln e 2e e b b b ⎛⎫<++<+ ⎪⎝⎭,∴()()()af b bf c cf a ++的取值范围是1e,2e e ⎛⎫+ ⎪⎝⎭(以a 为变量时,注意a 的取值范围为11e a <<).故选D .二、填空题:本大题共4小题,每小题5分.13.【答案】③【解析】①如图所示,设c αβ=I ,l c ∥,m c ∥满足条件,但是α与β不平行,故①不正确;②假设αβ∥,l β'⊂,l l '∥,l m '⊥,则满足条件,但是α与β不垂直,故②不正确; ③由面面垂直的判定定理,若l β⊥,则αβ⊥,故③正确;④若αβ⊥,n αβ=I ,由面面垂直的性质定理知,m n ⊥时,m α⊥,故④不正确. 综上可知:只有③正确.故答案为③. 14.【答案】11-【解析】画出可行域如图所示,可知目标函数过点()4,3A --时取得最小值,()()min 24311z =⨯-+-=-. 15.【答案】23+【解析】由两点间的距离公式得()()()222222112x y x y x y -++++++-为点(),x y 到点()1,0、()1,0-、()0,2的距离之和,即求点(),x y 到点()1,0、()1,0-、()0,2的距离之和的最小值,取最小值时的这个点即为这三个点构成的三角形的费马点,容易求得最小值为2233322333++-=+.16.【答案】)3+⎡∞⎣,【解析】设BAC α∠=,BA c =,则21sin 22c α⋅=,∴2sin 4c α⋅=①在ABD △中,222cos 22c c BD c c α⎛⎫=+-⋅⋅ ⎪⎝⎭2225cos 4BD c c α=-②由①得24sin c α=③,把③代入②得:254cos sin BD αα-=,2sin 4cos 5BD αα+=, ()2245BD αϕ++=4245BD +,即49BD ≥,23BD ≥,则3BD ≥3sin 5α=,203c =. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17(本小题满分12分)【答案】(1)4;(2)【解析】(1)由角A ,B ,C 成等差数列,得2B A C =+,又A B C ++=π,得3B π=. 又由正弦定理,3sin 4sin C A =,得34c a =,即34a c =,由余弦定理,得2222cos b a c ac B =+-, 即22331132442c c c c ⎛⎫=+-⨯⨯⨯ ⎪⎝⎭,解得4c =. (2)由正弦定理得sin sin sin a c b A C B ==,∴a A,c C =,)()sin sin sin sin a c A C A A B +=+=++⎤⎦sin sin 36A A A π⎤π⎛⎫⎛⎫=++=+ ⎪ ⎪⎥⎝⎭⎝⎭⎦, 由203A π<<,知当62A ππ+=,即3A π=时,()max a c += 18.(本小题满分12分)【答案】(1)有99%的把握认为,收看开幕式与性别有关;(2)见解析. 【解析】(1)因为()22120602020207.5 6.63580408040K ⨯⨯-⨯==>⨯⨯⨯,所以有99%的把握认为,收看开幕式与性别有关.(2)(i )根据分层抽样方法得,男生31294⨯=人,女生11234⨯=人, 所以选取的12人中,男生有9人,女生有3人.(ii )由题意可知,X 的可能取值有0,1,2,3.()3093312C C 840220C P X ===,()2193312C C 1081220C P X ===,()1293312C C 272220C P X ===,()0393312C C 13220C P X ===,∴X 的分布列是:∴()8401232202202202204E X =⨯+⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析;(2)36λ=-.【解析】(1)证明∵AD ⊥平面PDC ,PD ⊂平面PDC ,DC ⊂平面PDC , ∴AD PD ⊥,AD DC ⊥,在梯形ABCD 中,过点作B 作BH CD ⊥于H ,在BCH △中,145BH CH BCH ==⇒∠=︒, 又在DAB △中,145AD AB ADB ==⇒∠=︒, ∴4590BDC DBC BC BD ∠=︒⇒∠=︒⇒⊥,①∵PD AD ⊥,PD DC ⊥,AD DC D =I ,AD ⊂平面ABCD ,DC ⊂平面ABCD , ∴PD ⊥平面ABCD ,∵BC ⊂平面ABCD ,∴PD BC ⊥,由①②,∵BD PD D =I ,BD ⊂平面PBD ,PD ⊂平面PBD ,∴BC ⊥平面PBD , ∵BC ⊂平面PBC ,∴平面PBC ⊥平面PBD ;(2)以D 为原点,DA ,DC ,DP 所在直线为x ,y ,z 轴建立空间直角坐标系(如图)则()0,0,1P ,()0,2,0C ,()1,0,0A ,()1,1,0B , 令()000,,Q x y z ,()000,,1PQ x y z =-u u u r ,()0,2,1PC =-u u u r, ∵PQ PC λ=u u u r u u u r,∴()()000,,10,2,1x y z λ-=-,∴()0,2,1Q λλ=-,∵BC ⊥平面PBD ,∴()1,1,0=-n 是平面PBD 的一个法向量, 设平面QBD 的法向量为(),,x y z =m ,则00DB DQ ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m ,即()0210x y y z λλ+=⎧⎪⎨+-=⎪⎩,即()21x y z y λλ=-⎧⎪⎨=⎪-⎩, 不妨令1y =,得21,1,1λλ⎛⎫=- ⎪-⎝⎭m ,∵二面角Q BD P --为60︒,∴1cos ,2⋅===⋅m n m n m n,解得3λ=±∵Q 在棱PC 上,∴01λ<<,故3λ=20.(本小题满分12分)【答案】(1)见解析;(2)四边形OAPB 能为平行四边形,当l的斜率为44四边形OAPB 为平行四边形.【解析】(1)设直线()0,0y kx b k b =+≠≠,()11,A x y ,()22,B x y ,(),M M M x y , 将y kx b =+代入2229x y m +=,得()2222920k x kbx b m +++-=, 故12229M x x kb x k +==-+,299M M by kx b k =+=+,于是直线OM 的斜率9M OM M y k x k ==-, 即9OM k k ⋅=-,所是命题得证.(2)四边形OAPB 能为平行四边形.∵直线l 过点,3m m ⎛⎫⎪⎝⎭,∴l 不过原点且与C 有两个交点的充要条件是0k >且3k ≠.由(1)得OM 的方程为9y x k=-.设点P 的横坐标为P x .由22299y x k x y m ⎧=-⎪⎨⎪+=⎩,得2222981P k m x k =+,即P x = 将点,3m m ⎛⎫⎪⎝⎭的坐标代入直线l 的方程得()33m k b -=,因此()()2339M mk k x k -=+,四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分, 即2P M x x =()()23239mk k k -=⨯+.解得14k =-24k =∵0i k >,3i k ≠,1i =,2,∴当l的斜率为44OAPB 为平行四边形.21.(本小题满分12分)【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x a f x x x x +-'=-+=, 令()0f x '=,则2220x x a +-=,480a ∆=+>时, 即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-, ①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞; ②当102a -<≤时,1220x x a =-≥,10x <,20x ≤, ()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增; 综上,当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+, 令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-, 当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1))11y x =-+,22y x =;(2)163. 【解析】(1)把直线l的参数方程化为普通方程为)11y x =-+. 由22cos 1cos θρθ=-,可得()221cos 2cos ρθρθ-=, ∴曲线C 的直角坐标方程为22y x =.(2)直线l 的倾斜角为3π,∴直线l '的倾斜角也为3π, 又直线l '过点()20M ,, ∴直线l '的参数方程为122x t y ⎧'=+⎪⎪⎨⎪'=⎪⎩(t '为参数),将其代入曲线C 的直角坐标方程可得234160t t ''--=,设点A ,B 对应的参数分别为1t ',2t '. 由一元二次方程的根与系数的关系知12163t t ''=-,1243t t ''+=. ∴163MA MB ⋅=. 23.(本小题满分10分)【答案】(1)243x x ⎧⎫-<<⎨⎬⎩⎭;(2)3m ≤-或5m ≥. 【解析】(1)()12,21211=3,122,1x x f x x x x x x x ⎧--<-⎪⎪⎪=+---≤≤⎨⎪+>⎪⎪⎩, ∴1222x x ⎧<-⎪⎨⎪--<⎩或11232x x ⎧-≤≤⎪⎨⎪<⎩或122x x >⎧⎨+<⎩,解得142x -<<-或1223x -≤<或无解, 综上,不等式()2f x <的解集是243x x ⎧⎫-<<⎨⎬⎩⎭. (2)()1232111232123f x x x x x x x x x +-+-=+--+-+-=++-()21234x x ≥+--=, 当1322x -≤≤时等号成立不等式()1123m f x x x -≥+-+-有解, ∴()min 1123m f x x x -≥⎡+-+-⎤⎣⎦, ∴14m -≥,∴14m -≤-或14m -≥,即3m ≤-或5m ≥,∴实数m 的取值范围是3m ≤-或5m ≥.。

2020高考数学(理)冲刺刷题首先练辑:第二部分 压轴题(一)

2020高考数学(理)冲刺刷题首先练辑:第二部分 压轴题(一)

压轴题(一)12.设P 为双曲线x 2a 2-y 2b 2=1右支上一点,F 1,F 2分别为该双曲线的左、右焦点,c ,e 分别表示该双曲线的半焦距和离心率.若PF 1→·PF 2→=0,直线PF 2交y 轴于点A ,则△AF 1P 的内切圆的半径为( )A .aB .bC .cD .e答案 A解析 因为PF 1→·PF 2→=0,所以△AF 1P 是直角三角形.设△AF 1P 的内切圆的半径是r ,则2r =|PF 1|+|P A |-|AF 1|=|PF 1|+|PA |-|AF 2|=|PF 1|-(|AF 2|-|P A |)=|PF 1|-|PF 2|=2a .所以r =a .16.(2019·湘赣十四校联考二)已知函数f (x )=sin x +2cos x 的图象向右平移φ个单位长度得到g (x )=2sin x +cos x 的图象,若x =φ为h (x )=sin x +a cos x 的一条对称轴,则a =________.答案 43解析 由题意,得f (x )=5sin(x +α),其中sin α=255,cos α=55.g (x )=5sin(x+β),其中sin β=55,cos β=255,∴α-φ=β+2k π,即φ=α-β-2k π,∴sin φ=sin(α-β)=sin αcos β-cos αsin β=35,cos φ=cos(α-β)=cos αcos β+sin αsin β=45,又x =φ是h (x )=sin x +a cos x 的一条对称轴,∴h (φ)=sin φ+a cos φ=35+45a =±1+a 2,即a =43.20.已知函数f (x )=12(x 2+2a ln x ).(1)讨论f(x)=12(x2+2a ln x),x∈(1,e)的单调性;(2)若存在x1,x2∈(1,e)(x1≠x2),使得f(x1)=f(x2)<0成立,求a的取值范围.解(1)由f(x)=12(x2+2a ln x),得f′(x)=x+ax=x2+ax(x>0),当a≥0时,f′(x)>0恒成立,所以f(x)在(1,e)上单调递增;当a<0时,f′(x)=0的解为x=-a(舍负),若-a≤1,即a∈[-1,0),则f(x)在(1,e)上单调递增;若-a≥e,即a∈(-∞,-e2],则f(x)在(1,e)上单调递减;若a∈(-e2,-1),则f(x)在(1,-a)上单调递减,在[-a,e)上单调递增.(2)由(1)可知,当a≤-e2或a≥-1时,函数f(x)在(1,e)上为单调函数,此时不存在x1,x2∈(1,e)(x1≠x2),使得f(x1)=f(x2)<0.当a∈(-e2,-1)时,f(x)在(1,-a]上单调递减,在[-a,e)上单调递增,所以f(x)在x=-a处取得极小值,f(x)极小值=f(-a)=12(-a+2a ln -a)=-12a+12a ln (-a),其中a∈(-e2,-1),令g(a)=-12a+12a ln (-a),a∈(-e2,-1),则g′(a)=-12+12ln (-a)+12=12ln (-a),a∈(-e2,-1),所以g′(a)>0,所以g(a)在(-e2,-1)上单调递增,且g(-e)=0,g(-e2)=-e22<0,所以当a∈(-e2,-e)时,f(x)极小值<0,此时存在x1,x2∈(1,e)(x1≠x2),使得f(x1)=f(x2)<0.21.某芯片代工厂生产某型号芯片每盒12片,每批生产若干盒,每片成本1元,每盒芯片需检验合格后方可出厂.检验方案是从每盒芯片随机取3片检验,若发现次品,就要把全盒12片产品全部检验,然后用合格品替换掉不合格品,方可出厂;若无次品,则认定该盒芯片合格,不再检验,可出厂.(1)若某盒芯片中有9片合格,3片不合格,求该盒芯片经一次检验即可出厂的概率?(2)若每片芯片售价10元,每片芯片检验费用1元,次品到达组装工厂被发现后,每片须由代工厂退赔10元,并补偿1片经检验合格的芯片给组装厂.设每片芯片不合格的概率为p (0<p <1),且相互独立.①若某盒12片芯片中恰有3片次品的概率为f (p ),求f (p )的最大值点p 0; ②若以①中的p 0作为p 的值,由于质检员操作疏忽,有一盒芯片未经检验就被贴上合格标签出厂到组装工厂,试确定这盒芯片最终利润X (单位:元)的期望.解 (1)设“该盒芯片经一次检验即可出厂”的事件为A ,则P (A )=C 39C 312=2155. 答:该盒芯片经一次检验即可出厂的概率为2155.(2)①某盒12片芯片中恰有3片次品的概率f (p )=C 312p 3(1-p )9=127C 312⎝ ⎛⎭⎪⎫3412, 当且仅当3p =1-p ,即p =14时取“=”号, 故f (p )的最大值点p 0=14. ②由题设,知p =p 0=14.设这盒芯片不合格品的个数为n ,则n ~B ⎝ ⎛⎭⎪⎫12,14, 故E (n )=12×14=3,则E (X )=120-12-30-3×2=72.所以这盒芯片最终利润X的期望是72元.。

2020年普通高等学校招生全国统一考试理科数学压轴试卷(一)

2020年普通高等学校招生全国统一考试理科数学压轴试卷(一)

2020年普通高等学校招生全国统一考试理科数学 压轴试卷(一)一、选择题1.已知集合{}3log M x y x ==和{}3xN y y ==,则下列结论正确的是( )A .M N =B .M N ⋂=∅C .M N ⋃=RD .M N Þ2.已知a 是实数,复数()21a i z i +=-在复平面内对应的点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.我国在贵州省平塘县境内修建的500米口径球面射电望远镜()FAST 是目前世界上最大单口径射电望远镜。

使用三年来,已发现132颗优质的脉冲星候选体,其中有93颗已被确认为新发现的脉冲星.脉冲星是上世纪60年代天文学的四大发现之一,脉冲星就是正在快速自转的中子星,每一颗脉冲星每两脉冲间隔时间(脉冲星的自转周期)是一定的,最小小到0.0014秒,最长的也不过11.765735秒.某一天文研究机构观测并统计了93颗已被确认为新发现的脉冲星的自转周期,绘制了如图的频率分布直方图.则在93颗新发现的脉冲星中,自转周期在2至10秒的颗数大约为( )A .47B .86C .79D .704.若3512a ⎛⎫= ⎪⎝⎭,1235b ⎛⎫= ⎪⎝⎭,351log 2c =,则下列结论正确的是( )A .b c a >>B .c a b >>C .a b c >>D .c b a >>5.在平面直角坐标系xOy 中,已知θ为锐角,若角45θ+︒的终边与圆22:1O x y +=交于点34,55A ⎛⎫- ⎪⎝⎭,则tan θ=( ) А.7B .17C .125D .5126.古代人家修建大门时,贴近门墙放置两个石墩.石墩其实算是门墩,又称门枕石,在最初的时候起支撑固定院门的作用,为的是让门栓基础稳固,防止大门前后晃动.不过后来不断演变,一是起到装饰作用,二是寓意“方方圆圆”.如图所示,粗实线画出的是某门墩的三视图,则该门墩从上到下分别是( )A .半圆柱和四棱台B .球的14和四棱台 C .半圆柱和四棱柱 D .球的14和四棱柱7.双曲线()2222:10,0x y C a b a b -=>>虚轴的一个端点为A ,左、右焦点分别为1F ,2F ,12AF F △的两边1AF ,2AF 分别与C 交于点M 、N ,若MN 是12AF F △的中位线,则C 的离心率是( ) A .2B .3C .2D .58.为阻击新型冠状病毒感染,某地红十字会将6名志愿者分配到甲、乙、丙三个交通要道测试过往行人的体温,将6名志愿者按1人、1人、4人进行分组,分配到甲、乙、丙三个交通要道,则不同的分配方案种数是( ) A .60B .90C .120D .1809.某纺织企业通过电脑设计各种美丽的布料图案,设计者考虑用一条长度为a 的线段EF ,其端点E 、F 在边长为3的正方形ABCD 的四条边上滑动,如图所示,当EF 绕着正方形的四边滑动一周时,以A 为原点,AB 、AD 所在直线分别为x 轴、y 轴,探究EF 的中点M 所形成的轨迹.其中2a =时,点M 的轨迹是( )A .B .C .D .10.抛物线()2:20C y px p =>的焦点为F ,准线为l ,过点F 的直线m 与抛物线C 及准线l 依次交于P 、Q 、R 三点,且4RQ QF =u u u r u u u r ,则PFFQ=( ) A .2B .43C .32D .5311.在正方体1111ABCD A B C D -中,异面直线a 和b 分别在上底面1111A B C D 和下底面ABCD 上运动,且a b ⊥.现有以下结论:( )①当1A D 与a 所成的角为60°时,1A D 与b 所成的角为60°;②当1A D 与b 所成的角为60°时,a 与侧面1ADD A ,所成的角为30°; ③1A D 与a 所成角的最小值为45°; ①1A D 与a 所成角的最大值为90°; A .①①B .①①C .①③①D .②③①12.已知函数()()2,2;9sin 2,2,x x f x x x -⎧≥⎪=⎨⎪-<⎩则满足方程()()4f x f x -=的解的个数是( )A .3B .5C .7D .9二、填空题13.已知x 、y 、满足不等式组22,0,0,x y x y +≥⎧⎪≥⎨⎪≥⎩则3z x y =+的最小值是______.14.已知()2,a k =,()1,2b =-,//a b ,则a b -=______.15.已知函数()()()sin 0,02f x x ωϕωϕπ=+><<满足:①()f x 的图象关于点,012π⎛⎫-⎪⎝⎭对称;②()f x 的图象关于直线6x π=对称.则满足①和①的ω,ϕ的一组值分别是______.16.在ABC △中,AB =2BC =,30ABC ∠=︒,则AC =______;将ABC △是绕着顶点C 旋转,若顶点C 到直线l 的距离为1,顶点A 、B 到直线l 的距离分别为1d 、2d ,则12d d +的最大值是______. 三、解答题17.已知等差数列{}n a 的前n 项和为n S ,且343a a +=,1025S =. (Ⅰ)求{}n a 的通项公式; (①)设2n an b =.(i )求证:数列{}n b 是等比数列;(ii )2n b 是否是数列{}n b 中的项?并说明理由.18.在三棱柱111ABC A B C -中,侧而11ACC A ⊥底面ABC ,11AA BC ==,12A B AC ==,AB =(Ⅰ)求证:1A A ⊥平面1A BC ;(①)设F 是AB 的中点,求二面角1F A C B --的余弦值.19.已知椭圆22:143x y C +=的左、右顶点分别为A 、B ,M 、N 是椭圆C 上不与顶点重合的两个动点,且直线AM 与NB 交于点P ,90MAN ∠=︒.(Ⅰ)求证:点P 的横坐标为定值; (Ⅱ)求证:NB MB k k ⋅为定值.20.某网络科技公司在年终总结大会上,为增添喜悦、和谐的气氛,设计了闯关游戏这一环节,闯关游戏必须闯过若干关口才能成功.其中第一关是闯关答题,分别设置“文史常识题”,“生活常识题”、“影视艺术常识题”这3道题目,规定有两种答题方案: 方案一:答题3道,至少有两道答对;方案二:在这3道题目中,随机选取2道,这2道都答对.方案一和方案二中只要完成一个,就能通过第一关.假设程序员甲和程序员乙答对这3道题的概率均为m ,n ,p (其中m ,n ,()0,1p ∈),且这3道题是否答对相互之间没有联系.程序员甲选择了方案一,程序员乙选择了方案二.(Ⅰ)若m n p ==.(i )分别用p 表示甲和乙各自通过第一关的概率;(ii )设甲和乙中通过第一关的人数为ξ,则是否存在唯一的p 的值0p ,使得()1E ξ=?并说明理由. (Ⅱ)甲和乙中,哪个通过第一关的把握性大? 21.已知函数()ln x af x x+=.(Ⅰ)判定()f x 零点的个数; (Ⅱ)当11ln 22a <+时,求证:()x f x e <. 22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,圆C的参数方程为,x a y αα⎧=+⎪⎨=⎪⎩(α为参数),直线l的参数方程为,,x y ⎧=⎪⎨=⎪⎩(t为参数),设原点O 在圆C 的内部,直线l 与圆C 交于M 、N 两点;以坐标原点O 为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求直线l 和圆C 的极坐标方程,并求a 的取值范围;Ⅱ)求证:22OM ON +为定值. 23.选修4-5:不等式选讲(Ⅰ)已知0x >,0y >,0z =,证明:222111y z x x y z x y z++≥++; (Ⅱ)已知1a >,1b >,1c >,且8abc =,若222log log log log log log b c a a a b b c c k ⋅+⋅+⋅≥恒成立,求实数k 的最大值.2020年普通高等学校招生全国统一考试 理科数学压轴试卷(一)1.A 【解析】()0,M =+∞,()0,N =+∞,所以M N =,故选A . 2.B 【解析】()()()()()()()22111111a i a i i z a a i i i i ++--===--+----.当10a -<,且()10a -+>时,a 无解;当10a -<,且()10a -+<时,解得1a >;当10a ->,且()10a -+<时,解得11a -<<;当10a ->,且()10a -+>时,解得1a <-.综上,选B .3.C 【解析】第一到第六组的频率依次为0.1,0.2,0.3,0.2,2α,0.05,其和为1,所以()210.10.20.30.20.05α=-++++,解得0.075α=,所以自转周期在2至10秒的大约有()9310.1579.0579⨯-=≈(颗).故选C . 4.D 【解析】考虑介值1212d ⎛⎫=⎪⎝⎭,根据指数函数的单调性,得132511122⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,即1d a >>;根据幂函数的单调性,得112213125⎛⎫⎛⎫<<⎪ ⎪⎝⎭⎝⎭,即1d b <<;根据对数函数的单调性.得335513log log 125c =>=,所以1c bd a >>>>,故选D . 5.A【解析】由已知,得()4tan 453θ+︒=-,则()()()41tan 45tan 453tan tan 4545741tan 45tan 4513θθθθ--+︒-︒=+︒-︒===⎡⎤⎣⎦++︒︒-,故选A . 6.D 【解析】该组合体上面为球的14,下面为四棱柱(为卧放的直四棱柱). 7.D 【解析】不妨设()0,A b ,()2,0F c ,则2AF 中点为,22c b N ⎛⎫⎪⎝⎭,代入C 的方程,得2222144c b a b -=,解得5ce a==.故选D . 8.B 【解析】4136232290C C A A =.故选B . 9.B 【解析】由题意,得12AM EF =,设()0,E m ,(),0F n ,(),M x y ,则2222112122x y m n +=+=⨯=,解得()2101y x x =-<≤,将函数()2101y x x =-<≤的图象(记为1C )关于直线32x =对称,可得函数()()21323y x x =--<≤的图象(记为2C );将1C 和2C 的图象分别关于直线32y =对称,可分别得到以正方形ABCD 的顶点D 、C 为圆心、1为半径的14圆弧.故选B .同理可得1a =时,对应3a =时,对应C ; 3.6a =时,对应D .10.D 【解析】如图所示,过P 分别作1PP l ⊥,2PP x ⊥轴,垂足分别为1P ,2P ;过Q 分别作1QQ l ⊥,2QQ x ⊥轴,垂足分别为1Q 、2Q ;设1RQQ θ∠=,则11cos 4QQ QF RQ RQ θ===;由1cos PP p PF θ=+及1PP PF =,解得43p PF =,同理可得45pFQ =,于是53PF FQ ==,故选D .11.C 【解析】如图所示,11A C D △和1A BD △均为正三角形,所以直线a 与11A C 重合或平行时,1A D 与a 所成的角为60°,此时若a b ⊥,则可使b 与BD 重合或平行,从而1A D 与b 所成的角为60°,则①正确;1A D 与b 所成的角为60°,此时若a b ⊥,a 与侧面11ADD A 所成11A D 重合时,1A D 与a 所角的大小为45°,则②错误;当a 与成角的最小值为45°.则③正确;当a 与11C D 重合时,1A D 与a 所成角的最大值为90°,则④正确.故选C .(),0,9sin ,0xx g x x x ⎧≥⎪=⎨⎪-<⎩的12.C 【解析】将()f x 的图象向左平移2个单位,得到图象,于是本题转化为求满足方程()()g x g x -=的解的个数.由于()sin 0y x x =>与()sin 0y x x =-<的图象关于y 轴对称.则可首先考虑()sin 0y x x =>与()09xy x =>的图象交点问题.如图所示,函数()sin 0y x x =>与()09xy x =>的图象有3个交点;其次,根据对称性,满足方程()()g x g x -=的解的个数有6个;最后考虑到0x =也满足()()g x g x -=,综上,满足方程()()g x g x -=的解的个数有7个,于是满足()()4f x f x -=的解有7个,故选C .13.1【解析】可行域如图所示,当直线3y x z =-+过点()0,1时,z 最小,且min 3011z =⨯+=.14.35【解析】由//a b ,得1220k -⨯-⨯=,解得4k =-,则()3,6a b -=-,于是35a b -=.15.2;6π 【解析】可将,012π⎛⎫-⎪⎝⎭和6x π=视为()f x 在一个周期内的相邻的对称中心与对称轴,则4612T πππ⎡⎤⎛⎫=-= ⎪⎢⎥⎝⎭⎣⎦,于是2ω=;将,012π⎛⎫- ⎪⎝⎭代入()sin 2y x ϕ=+,得sin 2012πϕ⎡⎤⎛⎫⨯-+= ⎪⎢⎥⎝⎭⎣⎦,结合02ϕπ<<,可取6πϕ=.16.24【解析】由余弦定理,得2222cos AC AB BC AB BC ABC =+-⨯∠,即21242232cos304AC =+-⨯⨯⨯︒=,则2AC =;在ABC △中,因为2BC AC ==,所以120ACB ∠=︒.设CA 与水平线m 所夹的角为()02θθπ≤≤,则()()()121sin 1sin 18012022sin 2sin 602sin 3cos d d AC BC θθθθθθ+=+++︒--︒=++︒-=++⎡⎤⎣⎦()22sin 60θ=+︒+,故最大值为4.17.解:(Ⅰ)设等差数列{}n a 的公差为d ,由题意,得111233,1091025,2a d a d a d +++=⎧⎪⎨⨯+=⎪⎩ 解得114a =,12d =, 所以,数列{}n a 的通项公式为()()*11211N 424n n a n n -=+-⨯=∈. (Ⅱ)(i )由2n a n b =,得112n a n b ++=,则111122222n n nn a a a n a n b b ++-+===,所以数列{}n b的等比数列. (ii )21422nn a n b -==,则22122n n b -=. 设2n b 是数列{}n b 中的第k 项,则21212224n k --=, 解得*41N 2n k -=∉, 故2n b 不是数列{}n b 中的项.18.解:(Ⅰ)在ABC △中,由1BC =,2AC =,AB =90ACB ∠=︒,即AC BC ⊥;在1A AB △中,同理可得11A A A B ⊥.因为侧面11ACC A ⊥底面ABC ,侧面11ACC A ⋂底面ABC AC =, 所以BC ⊥平面11ACC A ,又1A A ⊂平面11ACC A ,所以1BC A A ⊥, 又1A B BC B ⋂=,所以1A A ⊥平面1A BC .(Ⅱ)因为1A A ⊥平面1A BC ,1AC ⊂平面1A BC ,所以11A A A C ⊥. 在直角1AAC △中,由11AA =及2AC =,得160A AC ∠=︒; 作1A O AC ⊥于点O ,则1A O ⊥平面ABC ,12OA =,12A O =,32OC =.以O 为坐标原点,分别以OA u u u r 、1OA u u u r的方向为x 轴、z 轴的正方向,建立如图所示空间直角坐标系O xyz -.则1,0,02A ⎛⎫⎪⎝⎭,3,1,02B ⎛⎫- ⎪⎝⎭,3,0,02C ⎛⎫- ⎪⎝⎭,1A ⎛ ⎝⎭,11,,022F ⎛⎫- ⎪⎝⎭,从而112AA ⎛=- ⎝⎭u u u r ,11,,02CF ⎛⎫= ⎪⎝⎭u u u r,132CA ⎛= ⎝⎭. 设平面1A CF 的法向量为(),,n x y z =,则10,0,n CF n CA ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r即10,230,2x y x z ⎧+=⎪⎪⎨⎪=⎪⎩取1x =,则(1,2,n =-,而平面1A BC的法向量为112AA ⎛=- ⎝⎭u u u r ,所以111cos ,n AA n AA n AA ⋅===⋅u u u ru u u r u u u r , 因为二面角1F A C B --为锐角,故二面角1F A C B --的余弦值为2. 19.解:(Ⅰ)由题设知,直线MA 、NB 的斜率存在且均不为0,()2,0A -,()2,0B . 设直线AM 的方程为2x ty =-,由AM AN ⊥,可设直线NA 的斜率为NA k t =-,方程为12x y t=--.由2212,3412,x y tx y ⎧=--⎪⎨⎪+=⎩得()2243120t y ty ++=, 解得21243N t y t =-+,则2221126824343N t t x t t t -⎛⎫=-⋅--= ⎪++⎝⎭,即2226812,4343t t N t t ⎛⎫-- ⎪++⎝⎭. 直线NB 的斜率为222120343684243NBtt k t t t --+==--+,则直线BN 的方程为()324y x t=-. 将()324y x t=-代入2x ty =-,解得14x =-, 故点P 的横坐标为14-,是定值.(Ⅱ)由(Ⅰ),得3344NA NB k k t t ⋅=-⋅=-;设()11,M x y ,则22113412x y +=,即2211443x y -=-. 则2211112211113422443MA MBy y y y k k x x x y ⋅=⋅===-+---,所以3394416NA NB MA MB k k k k ⎛⎫⎛⎫⋅⋅⋅=-⨯-= ⎪ ⎪⎝⎭⎝⎭. 结合1NA MA k k ⋅=-,得916MB NB k k ⋅=-,为定值. 20.(Ⅰ)(i )设答对题目的个数为X ,由m n p ==,得()3,X B p :.甲通过第一关的概率为()223323133132P C p p C p p p =-+=-;乙通过第一关得到概率为22222111333P p p p p =⨯+⨯+⨯=. (ii )ξ的可能取值为0,1,2,则()()()12011P P P ξ==--,()()()1212111P P P P P ξ==-+-,()122P PP ξ==,所以()()()()()12121212120111112E P P P P P P PPP P ξ=⨯--+⨯-+-+⨯=+⎡⎤⎣⎦ 232233242p p p p p =-+=-.设()()2342101f p p p p =--<<,则()()2862430f p p p p p '=-=->,从而当01p <<时,()f p 为增函数,又()01f =-,()11f =,所以存在唯一的p 的值()00,1p ∈,使得()1E ξ=. (Ⅱ)设“答对文史常识题”、“答对生活常识题”、“答对影视艺术常识题”分别为事件A 、B 、C ,则()P A m =,()P B n =,()P C p =,甲通过第一关的概率为()()()()1P P ABC P ABC P ABC P ABC =+++()()()1112m np m n p mn p mnp mn mp np mnp =-+-+-+=++-.乙通过第一关的概率为()()()()21133P P AB P BC P AC mn np mp =++=++⎡⎤⎣⎦. 所以()()()12122333P P mn mp np mnp mn np mp mn np mp mnp -=++--++=++- ()()()211103mn p np m mp n =-+-+->⎡⎤⎣⎦, 即12P P >,甲通过第一关的把握性大.21.解:(Ⅰ)函数()f x 的定义域为()0,+∞,()()()12221ln 1ln 1ln ln a x x a x a x e x f x x x x -⋅-+⋅---'==-=-,当10a x e -<<时,()0f x '>;当1a x e->时,()0f x '<; 所以()f x 在()10,a e -上是增函数,在()1,a e-+∞上是减函数,所以1a x e -=是()f x 的极大值点,也是()f x 的最大值点,即()()11max 0a a f x f e e --==>.当1a x e ->时,()1ln ln 10a x a e a f x x x x-++=>=>; 又()1111ln 0a a a a e a f e e e ----+--+==-<,所以()f x 在()10,a e -上只有一个零点,在()1,a e -+∞上无零点,综上,()f x 只有一个零点.(Ⅱ)由()xf x e <,得ln x x a e x +<,即要证()x f x e <需证2ln xx a e x x +<. 设()2ln x a g x x+=,则()()2431212ln ln 22a x x x a x x g x x x -⎛⎫-⋅-+⋅ ⎪⎝⎭'==-,当1220a a e -<<时,()0g x '>;当122ax e ->时,()0g x '<;所以()g x 在1220,a e -⎛⎫ ⎪⎝⎭上是增函数,在122,a e -⎛⎫+∞ ⎪⎝⎭上是减函数,所以122a x e -=是()g x 的极大值点,也是()g x 的最大值点,即()121222122max 122ln 12aa a a e a g x g e e e ----⎛⎫+=== ⎪⎛⎫⎝⎭ ⎪⎝⎭. 设()()0xe h x x x =>,则()()21xx e h x x -'=, 当01x <<时,()0h x '<;当1x >时,()0h x '>;所以()h x 在()0,1上是减函数,在()1,+∞上是增函数,所以1x =是()h x 的极小值点,也是()h x 的最小值点,即()()min 1h x h e ==.综上,()()121ln 212121122a g x e e e h x ⎛⎫+- ⎪-⎝⎭≤<=≤, 故()x f x e <成立.22.解(Ⅰ)将直线l 的参数方程化为直角坐标方程,得y x =,所以直线l 的极坐标方程为()4R πθρ=∈;将圆C 的参数方程化为直角坐标方程,得()225x a y -+=,所以圆C 的极坐标方程为()222cos 50a a ρθ-+-=.由原点O 在圆C 的内部,得()22005a -+<,解得a <<,故a的取值范围是(.(Ⅱ)将4πθ=代入()222cos 50a a ρθρ-+-=,得2250a ρρ+-=.则12ρρ+,2125a ρρ=-, 所以())()222222212121222510OMON a ρρρρρρ+=+=+-=--=, 故22OM ON +为定值.23.(Ⅰ)证明:由0x >,0y >,得212y x y x +≥=,即212y x y x +≥, 同理212z y z y +≥,212x z x z+≥, 以上三式相加,得222111222y z x x y z x y z x y z +++++≥++(当且仅当x y z ==时取等号), 故222111y z x x y z x y z++≥++成立. (Ⅱ)解:222222222222log log log log log log log log log log log log b c a a b c a a b b c c b c a⋅+⋅+⋅=++ 222log 2log 2log 2log 2log 2log 2b c a a b c=++, 根据(1),得()2222222log 2log 2log 2111log log log log log 2log 2log 2log 2log 2log 2b c a a b c a b c a b c abc ++≥++=++= 2log 83==,所以,3k ≤,故实数k 的最大值为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.(本小题满分12分)(2019陕西咸阳一模)已知椭圆C :x 2a2+y 2=1(a >1)的上顶点为B ,右顶点为A ,直线AB 与圆M :(x -2)2+(y -1)2=1相切.(1)求椭圆C 的方程.(2)过点N (0,-12)且斜率为k 的直线l 与椭圆C 交于P ,Q 两点,求证:BP ⊥BQ .1.(1)解:由题意知,A (a ,0),B (0,1),则直线AB 的方程为x +ay -a =0. 由直线AB 与圆M :(x -2)2+(y -1)2=1相切,得圆心M 到直线AB 的距离d =21+a 2=1,求得a =3,故椭圆C 的方程为x 23+y 2=1.(2)证明:直线l 的方程为y =kx -12,P (x 1,y 1),Q (x 2,y 2),联立⎩⎨⎧y =kx -12,x23+y 2=1,消去y 整理得(4+12k 2)x 2-12kx -9=0.∴x 1+x 2=12k 4+12k 2,x 1x 2=-94+12k 2. 又BP →=(x 1,y 1-1),BQ →=(x 2,y 2-1),∴BP →·BQ →=x 1x 2+(y 1-1)(y 2-1)=x 1x 2+(kx 1-32)·(kx 2-32)=(1+k 2)x 1x 2-32k (x 1+x 2)+94=-9(1+k 2)4+12k 2-18k 24+12k 2+94=0,∴BP ⊥BQ .2.(本小题满分12分)(2019内蒙古一模)已知函数f (x )=2ax +bx -1-2ln x (a ∈R ). (1)当b =0时,确定函数f (x )的单调区间.(2)当x >y >e -1时,求证:e x ln(y +1)>e yln(x +1).2.(1)解:当b =0时,f ′(x )=2a -2x =2(ax -1)x(x >0).当a ≤0时,f ′(x )<0在(0,+∞)上恒成立. ∴函数f (x )在(0,+∞)上单调递减.当a >0时,由f ′(x )<0得0<x <1a ;由f ′(x )>0得x >1a .∴f (x )的单调递减区间为(0,1a ),单调递增区间为(1a,+∞),综上,当a ≤0时,f (x )的单调递减区间为(0,+∞),无单调递增区间,当a >0时,f (x )的单调递减区间为(0,1a ),单调递增区间为(1a,+∞).(2)证明:∵x >y >e -1,∴x +1>y +1>e ,即ln(x +1)>ln(y +1)>1. 欲证e x ln(y +1)>e y ln(x +1),即证明e x ln (x +1)>e yln (y +1).令g (x )=e xln (x +1),x ∈(e -1,+∞),则g ′(x )=e x [ln (x +1)-1x +1]ln 2(x +1).显然函数h (x )=ln(x +1)-1x +1在(e -1,+∞)上单调递增,∴h (x )>h (e -1)=1-1e>0,即g ′(x )>0,∴g (x )在(e -1,+∞)上单调递增,∴x >y >e -1时,g (x )>g (y ),即e x ln (x +1)>e yln (y +1),∴当x >y >e -1时,e x ln(y +1)>e y ln(x +1)成立.3.(本小题满分12分)(2019山西太原一模)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,右焦点为F 2(1,0),点B (1,32)在椭圆C 上.(1)求椭圆C 的方程.(2)若直线l :y =k (x -4)(k ≠0)与椭圆C 交于M ,N 两点,已知直线A 1M 与A 2N 相交于点G ,求证:点G 在某定直线上,并求出定直线的方程.3.(1)解:∵F 2(1,0),∴c =1.由题中已知条件知⎩⎨⎧a 2=1+b 2,1a 2+94b 2=1,∴a =2,b =3,∴椭圆C 的方程为x 24+y 23=1.(2)证明:由椭圆对称性知G 在x =1上,假设直线l 过椭圆上顶点,则M (0,3),∴k =-34,N (85,335),lA 1M :y =32(x +2),lA 2N :y =-332(x -2),∴G (1,332),∴G 在定直线x =1上.当M 不在椭圆顶点时,设M (x 1,y 1),N (x 2,y 2),由⎩⎪⎨⎪⎧y =k (x -4),x 24+y 23=1得(3+4k 2)x 2-32k 2x +64k 2-12=0, ∴x 1+x 2=32k 23+4k 2,x 1x 2=64k 2-123+4k 2,lA 1M :y =y 1x 1+2(x +2),lA 2N :y =y 2x 2-2(x -2).当x =1时,3y 1x 1+2=-y 2x 2-2,得2x 1x 2-5(x 1+x 2)+8=0,∴2×64k 2-123+4k 2-5×32k 23+4k 2+8(3+4k 2)3+4k 2=0显然成立,∴G 在定直线x =1上.综上,点G 在定直线x =1上.4.(本小题满分12分)(2019山东省实验中学等四校联考)已知函数f (x )=exx,g (x )=2(x-ln x ).(1)当x >0时,求证:f (x )>g (x ).(2)已知点P (x ,xf (x )),点Q (-sin x ,cos x ),设函数h (x )=OP →·OQ →,当x ∈[-π2,π2]时,试判断h (x )的零点个数.4.(1)证明:令φ(x )=f (x )-g (x )=e xx-2(x -ln x ),x >0,则φ′(x )=(x -1)(e x -2x )x 2.令G (x )=e x -2x (x >0),G ′(x )=e x -2(x >0),易得G (x )在(0,ln 2)上单调递减,在(ln 2,+∞)上单调递增,∴G (x )≥G (ln 2)=2-2ln 2>0,∴e x -2x >0在(0,+∞)恒成立. ∴φ(x )在(0,1)上单调递减,在(1,+∞)上单调递增. ∴φ(x )≥φ(1)=e -2>0,∴当x >0时,f (x )>g (x ). (2)解:∵点P (x ,xf (x )),点Q (-sin x ,cos x ),∴h (x )=OP →·OQ →=-x sin x +e x cos x ,h ′(x )=-sin x -x cos x +e x cos x -e x sin x =(e x -x )cos x -(e x +1)sin x .①当x ∈[-π2,0]时,可知e x >2x >x ,∴e x -x >0.∴(e x -x )cos x ≥0,(e x +1)sin x ≤0,∴h ′(x )=(e x -x )cos x -(e x +1)sin x ≥0.∴h (x )在[-π2,0]上单调递增,h (0)=1>0,h (-π2)<0.∴h (x )在[-π2,0]上有一个零点,②当x ∈(0,π4]时,cos x ≥sin x ,e x >x >0,∴e x cos x >x sin x ,∴h (x )=e x cos x -x sin x >0在(0,π4]上恒成立,∴h (x )在(0,π4]上无零点.③当x ∈(π4,π2]时,0<cos x <sin x ,h ′(x )=e x (cos x -sin x )-(x cos x +sin x )<0,∴h (x )在(π4,π2]上单调递减,h (π2)=-π2<0,h (π4)=22(e π4-π4)>0. ∴h (x )在(π4,π2]上存在一个零点.综上所述,h (x )在[-π2,π2]上的零点个数为2.[70分] 解答题标准练(一)1.(2019·广州模拟)已知{a n }是等差数列,且lg a 1=0,lg a 4=1. (1)求数列{a n }的通项公式;(2)若a 1,a k ,a 6是等比数列{b n }的前3项,求k 的值及数列{a n +b n }的前n 项和. 解 (1)数列{a n }是等差数列,设公差为d , 且lg a 1=0,lg a 4=1.则⎩⎪⎨⎪⎧a 1=1,a 1+3d =10, 解得d =3,所以a n =1+3(n -1)=3n -2.(2)若a 1,a k ,a 6是等比数列{b n }的前3项, 则a 2k =a 1·a 6, 根据等差数列的通项公式得到a k =3k -2,代入上式解得k =2;a 1,a 2,a 6是等比数列{b n }的前3项,a 1=1,a 2=4, 所以等比数列{b n }的公比为q =4. 由等比数列的通项公式得到b n =4n -1. 则a n +b n =3n -2+4n -1,故S n =(1+1)+(4+41)+…+(3n -2+4n -1) =n (3n -1)2+4n -14-1=32n2-12n+13(4n-1).2.(2019·马鞍山质检)如图,半圆柱O′O中,平面ABB′A′过上、下底面的圆心O′,O,点C,D分别在半圆弧AB,A′B′上,且»¼. AC B'D(1)求证:CD∥平面ABB′A′;(2)若2AC=AB=AA′,求二面角C-AD-B的余弦值.(1)证明如图,取»AB的中点M,∵OO′⊥平面ABC,∴OA,OM,OO′两两垂直,以O为坐标原点,OA,OM,OO′所在直线分别为x,y,z轴,建立空间直角坐标系O-xyz,连接OC,设OA =1,AA ′=t ,∠AOC =θ(0<θ<π),则A (1,0,0),B (-1,0,0),C (cos θ,sin θ,0),D (-cos θ,sin θ,t ),于是CD →=(-2cos θ,0,t ),而平面ABB ′A ′的一个法向量为OM →=(0,1,0), 由于CD →·OM →=0,CD ⊄平面ABB ′A ′, 所以CD ∥平面ABB ′A ′.(2)解 设OA =1,∵2AC =AB =AA ′,则C ⎝⎛⎭⎫12,32,0,D ⎝⎛⎭⎫-12,32,2,CD →=(-1,0,2),AC →=⎝⎛⎭⎫-12,32,0,BD →=⎝⎛⎭⎫12,32,2,设平面CAD 的法向量n 1=(x 1,y 1,z 1), 则⎩⎨⎧CD→·n 1=-x 1+2z 1=0,AC →·n 1=-12x 1+32y 1=0,不妨设x 1=23,得n 1=(23,2,3), 设平面BAD 的法向量n 2=(x 2,y 2,z 2), 则⎩⎨⎧BD →·n 2=12x 2+32y 2+2z 2=0,BA→·n 2=2x 2=0,不妨设y 2=4,得n 2=(0,4,-3), 所以cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=519·19=519, 又由图可知,二面角C -AD -B 为锐角, 故二面角C -AD -B 的余弦值为519.3.(2019·武邑调研)已知定点N (5,0),动点P 是圆M :(x +5)2+y 2=36上的任意一点,线段NP 的垂直平分线与半径MP 相交于点Q .(1)求|QM |+|QN |的值,并求动点Q 的轨迹C 的方程;(2)若圆x 2+y 2=4的切线l 与曲线C 相交于A ,B 两点,求△AOB 面积的最大值. 解 (1)由已知条件得|QN |=|QP |,又|QM |+|QP |=6,∴|QM |+|QN |=6>25,为定值.根据椭圆定义得,动点Q 的轨迹是以点M ,N 为焦点的椭圆. 且2a =6,即a =3,c =5,则b =2, ∴动点Q 的轨迹C 的方程为x 29+y 24=1.(2)由题可知直线l 不可能与x 轴平行, 则可设切线方程为x =ty +m , 由直线与圆相切,得|m |1+t2=2,∴m 2=4(1+t 2).由⎩⎪⎨⎪⎧x =ty +m ,x 29+y 24=1,消去x 得(4t 2+9)y 2+8tmy +4m 2-36=0, Δ=(8tm )2-4(4t 2+9)(4m 2-36) =144(4t 2-m 2+9)=144×5>0, 设A (x 1,y 1),B (x 2,y 2),∴y 1+y 2=-8tm4t 2+9,y 1y 2=4m 2-364t 2+9.∴|AB |=1+t 2|y 1-y 2| =1+t 2·(y 1+y 2)2-4y 1y 2 =1+t 2·1254t 2+9=12541+t 2+51+t 2≤12545=3, 当且仅当41+t 2=51+t 2,即t 2=14时等号成立.此时|m |=5,|AB |max =3,又∵S △AOB =12×2×|AB |=|AB |≤3,∴当|m|=5,|t|=12时,△AOB的面积最大,最大值为3.4.(2019·山东师范大学附属中学模拟)某读书协会共有1 200人,现收集了该协会20名成员每周的课外阅读时间(分钟),其中某一周的数据记录如下:75,60,35,100,90,50,85,170,65,70,125,75,70,85,155,110,75,130,80,100.对这20个数据按组距30进行分组,并统计整理,绘制了如下尚不完整的统计图表:阅读时间分组统计表(设阅读时间为x分钟).(1)写出m,n的值,请估计该读书协会中人均每周的课外阅读时长,以及该读书协会中一周阅读时长不少于90分钟的人数;(2)该读书协会拟发展新成员5人,记新成员中每周阅读时长在[60,90)之间的人数为X,以上述统计数据为参考,求X的分布列和期望;(3)以这20人为样本完成下面的2×2列联表,并回答能否有90%的把握认为“每周至少阅读120分钟与性别有关”?附:K2=n(ad-bc)2(a+c)(b+d)(a+b)(c+d).解(1)m=4,n=2,该读书协会中人均每周的课外阅读时长为45×220+75×1020+105×420+135×220+165×220=93(分钟),由样本估计总体,一周阅读时长不少于90分钟的人数为 1 200×4+2+220=480.(2)X ~B ⎝⎛⎭⎫5,12, 由题意知,X 的可能取值为0,1,2,3,4,5.且P (X =0)=C 05⎝⎛⎭⎫125=132,P (X =1)=C 15⎝⎛⎭⎫125=532, P (X =2)=C 25⎝⎛⎭⎫125=1032=516, P (X =3)=C 35⎝⎛⎭⎫125=1032=516, P (X =4)=C 45⎝⎛⎭⎫125=532,P (X =5)=C 55⎝⎛⎭⎫125=132, 所以X 的分布列如下:E (X )=5×12=2.5.(3)2×2列联表如下:k =20(3×8-1×8)24×16×11×9≈0.808<2.706,所以没有90%的把握认为“每周至少阅读120分钟与性别有关”.5.设函数f (x )=(x +1)ln x -a (x -1)(a ∈R ). (1)当a =1时,求f (x )的单调区间;(2)若f (x )≥0对任意x ∈[1,+∞)恒成立,求实数a 的取值范围;(3)当θ∈⎝⎛⎭⎫0,π2时,试比较12ln(tan θ)与tan ⎝⎛⎭⎫θ-π4的大小,并说明理由. 解 (1)当a =1时,f (x )=(x +1)ln x -(x -1), f ′(x )=ln x +1x,设g (x )=ln x +1x (x >0),则g ′(x )=x -1x 2,当x ∈(0,1)时,g ′(x )<0,g (x )单调递减, 当x ∈(1,+∞)时,g ′(x )>0,g (x )单调递增, g (x )min =g (1)=1>0,∴f ′(x )>0.故f (x )在区间(0,+∞)上单调递增, 无单调递减区间.(2)f ′(x )=ln x +1x +1-a =g (x )+1-a ,由(1)可知g (x )在区间[1,+∞)上单调递增, 则g (x )≥g (1)=1,即f ′(x )在区间[1,+∞)上单调递增,且f ′(1)=2-a , ①当a ≤2时,f ′(x )≥0, f (x )在区间[1,+∞)上单调递增, ∴f (x )≥f (1)=0满足条件;②当a >2时,设h (x )=ln x +1x +1-a (x ≥1),则h ′(x )=1x -1x 2=x -1x 2≥0(x ≥1),∴h (x )在区间[1,+∞)上单调递增, 且h (1)=2-a <0,h (e a )=1+e -a >0, ∴∃x 0∈[1,e a ],使得h (x 0)=0, ∴当x ∈[1,x 0)时,h (x )<0,f (x )单调递减, 即当x ∈[1,x 0)时,f (x )≤f (1)=0,不满足题意. 综上所述,实数a 的取值范围为(-∞,2].(3)由(2)可知,取a =2,当x >1时,f (x )=(x +1)ln x -2(x -1)>0, 即12ln x >x -1x +1, 当0<x <1时,1x >1,∴12ln 1x >1x -11x +1⇔ln x 2<x -1x +1, 又∵tan ⎝⎛⎭⎫θ-π4=tan θ-1tan θ+1,∴当0<θ<π4时,0<tan θ<1,12ln(tan θ)<tan ⎝⎛⎭⎫θ-π4; 当θ=π4时,tan θ=1,12ln(tan θ)=tan ⎝⎛⎭⎫θ-π4; 当π4<θ<π2时,tan θ>1, 12ln(tan θ)>tan ⎝⎛⎭⎫θ-π4. 综上,当θ∈⎝⎛⎭⎫0,π4时,12ln(tan θ)<tan ⎝⎛⎭⎫θ-π4; 当θ=π4时,12ln(tan θ)=tan ⎝⎛⎭⎫θ-π4; 当θ∈⎝⎛⎭⎫π4,π2时,12ln(tan θ)>tan ⎝⎛⎭⎫θ-π4. 6.在极坐标系中,曲线C 的极坐标方程为ρ=6sin θ,点P 的极坐标为⎝⎛⎭⎫2,π4,以极点为坐标原点,极轴为x 轴正半轴,建立平面直角坐标系. (1)求曲线C 的直角坐标方程和点P 的直角坐标;(2)过点P 的直线l 与曲线C 相交于A ,B 两点,若|P A |=2|PB |,求|AB |的值. 解 (1)由ρ=6sin θ,得ρ2=6ρsin θ, 又x =ρcos θ,y =ρsin θ, ∴x 2+y 2=6y ,即曲线C 的直角坐标方程为x 2+(y -3)2=9, 点P 的直角坐标为(1,1).(2)设过点P 的直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t cos θ,y =1+t sin θ(t 为参数), 将其代入x 2+y 2=6y ,得t 2+2(cos θ-2sin θ)t -4=0, 设A ,B 两点对应的参数分别为t 1,t 2, ∴t 1t 2=-4,∵|P A |=2|PB |,∴t 1=-2t 2,∴t 1=22,t 2=-2或t 1=-22,t 2=2, ∴|AB |=|t 1-t 2|=3 2.7.已知函数f (x )=|x -1|+|x -2|. (1)解不等式:f (x )≤x +3;(2)若不等式|m |·f (x )≥|m +2|-|3m -2|对任意m ∈R 恒成立,求x 的取值范围.解 (1)①由⎩⎪⎨⎪⎧x ≥2,2x -3≤x +3,得2≤x ≤6;②由⎩⎪⎨⎪⎧1<x <2,x -1+2-x ≤x +3,得1<x <2;③由⎩⎪⎨⎪⎧x ≤1,3-2x ≤x +3,得0≤x ≤1.由①②③可得x ∈[0,6]. (2)①当m =0时,0≥0,∴x ∈R ; ②当m ≠0时,即f (x )≥⎪⎪⎪⎪2m +1-⎪⎪⎪⎪2m -3对∀m ∈R ,m ≠0恒成立, ⎪⎪⎪⎪2m +1-⎪⎪⎪⎪2m -3≤⎪⎪⎪⎪⎝⎛⎭⎫2m +1-⎝⎛⎭⎫2m -3=4,∴f (x )=|x -1|+|x -2|≥4, 当x ≥2时,2x -3≥4,解得x ≥72;当1<x <2时,x -1+2-x ≥4,解得x ∈∅; 当x ≤1时,3-2x ≥4,解得x ≤-12,综上,x 的取值范围为⎝⎛⎦⎤-∞,-12∪⎣⎡⎭⎫72,+∞.数学的核心素养引领复习一、数学抽象、直观想象素养1 数学抽象例1 (2019·全国Ⅱ)设函数f (x )的定义域为R ,满足f (x +1)=2f (x ),且当x ∈(0,1]时,f (x )=x (x -1).若对任意x ∈(-∞,m ],都有f (x )≥-89,则m 的取值范围是( )A.⎝⎛⎦⎤-∞,94 B.⎝⎛⎦⎤-∞,73C.⎝⎛⎦⎤-∞,52D.⎝⎛⎦⎤-∞,83 答案 B解析 当-1<x ≤0时,0<x +1≤1,则f (x )=12 f (x +1)=12(x +1)x ;当1<x ≤2时,0<x -1≤1,则f (x )=2f (x -1)=2(x -1)(x -2);当2<x ≤3时,0<x -2≤1,则f (x )=2f (x -1)=22f (x -2)=22(x -2)(x -3),…,由此可得f (x )=⎩⎪⎨⎪⎧…,12(x +1)x ,-1<x ≤0,x (x -1),0<x ≤1,2(x -1)(x -2),1<x ≤2,22(x -2)(x -3),2<x ≤3,由此作出函数f (x )的图象,如图所示.由图可知当2<x ≤3时,令22(x -2)·(x -3)=-89,整理,得(3x -7)(3x -8)=0,解得x =73或x =83,将这两个值标注在图中.要使对任意x ∈(-∞,m ]都有f (x )≥-89,必有m ≤73,即实数m 的取值范围是⎝⎛⎦⎤-∞,73,故选B.1.如图表示的是一位骑自行车和一位骑摩托车的旅行者在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:①骑自行车者比骑摩托车者早出发3 h,晚到1 h;②骑自行车者是变速运动,骑摩托车者是匀速运动;③骑摩托车者在出发1.5 h后追上了骑自行车者;④骑摩托车者在出发1.5 h后与骑自行车者速度一样.其中,正确信息的序号是________.答案①②③解析看时间轴易知①正确;骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确,④错误.素养2直观想象例2(2019·全国Ⅲ)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD,M是线段ED的中点,则()A.BM=EN,且直线BM,EN是相交直线B.BM≠EN,且直线BM,EN是相交直线C.BM=EN,且直线BM,EN是异面直线D.BM≠EN,且直线BM,EN是异面直线答案 B解析取CD的中点O,连接ON,EO,因为△ECD为正三角形,所以EO⊥CD,又平面ECD⊥平面ABCD,平面ECD∩平面ABCD=CD,所以EO⊥平面ABCD.设正方形ABCD的边长为2,则EO=3,ON=1,所以EN2=EO2+ON2=4,得EN=2.过M作CD的垂线,垂足为P,连接BP,则MP=32,CP=32,所以BM2=MP2+BP2=⎝⎛⎭⎫322+⎝⎛⎭⎫322+22=7,得BM=7,所以BM≠EN.连接BD,BE,因为四边形ABCD为正方形,所以N为BD的中点,即EN,MB均在平面BDE内,所以直线BM,EN是相交直线.2.(2018·北京)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为()A.1B.2C.3D.4答案 C解析由三视图得到空间几何体,如图所示,则P A⊥平面ABCD,平面ABCD为直角梯形,P A=AB=AD=2,BC=1, 所以P A⊥AD,P A⊥AB,P A⊥BC.又BC⊥AB,AB∩P A=A,AB,P A⊂平面P AB,所以BC⊥平面P AB.又PB⊂平面P AB,所以BC⊥PB.在△PCD中,PD=22,PC=3,CD=5,所以△PCD为锐角三角形.所以侧面中的直角三角形为△P AB,△P AD,△PBC,共3个.故选C.二、逻辑推理、数学运算素养3逻辑推理例3(2019·全国Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高.乙:丙的成绩比我和甲的都高.丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、甲、丙C.丙、乙、甲D.甲、丙、乙答案 A解析由于三人成绩互不相同且只有一个人预测正确.若甲预测正确,则乙、丙预测错误,于是三人按成绩由高到低的次序为甲、乙、丙;若甲预测错误,则甲、乙按成绩由高到低的次序为乙、甲,再假设丙预测正确,则乙、丙按成绩由高到低的次序为丙、乙,于是甲、乙、丙按成绩由高到低排序为丙、乙、甲,从而乙的预测也正确,与事实矛盾;若甲、丙预测错误,则可推出乙的预测也错误.综上所述,三人按成绩由高到低的次序为甲、乙、丙.3.(2018·全国Ⅰ)已知双曲线C :x 23-y 2=1,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M ,N .若△OMN 为直角三角形,则|MN |等于( ) A.32 B.3 C.2 3 D.4 答案 B解析 由已知得双曲线的两条渐近线方程为y =±13 x .设两渐近线的夹角为2α,则有tan α=13=33, 所以α=30°.所以∠MON =2α=60°.又△OMN 为直角三角形,由于双曲线具有对称性,不妨设MN ⊥ON ,如图所示. 在Rt △ONF 中,|OF |=2,则|ON |= 3.则在Rt △OMN 中,|MN |=|ON |·tan 2α=3·tan 60°=3.素养4 数学运算例4 (2019·全国Ⅰ)已知非零向量a ,b 满足|a |=2|b |,且(a -b )⊥b ,则a 与b 的夹角为( ) A.π6 B.π3 C.2π3 D.5π6 答案 B解析 设a 与b 的夹角为α,∵(a -b )⊥b ,∴(a -b )·b =0,∴a ·b =b 2,∴|a |·|b |cos α=|b |2,又|a |=2|b |,∴cos α=12,∵α∈[0,π],∴α=π3,故选B.4.(2018·全国Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A.a +b <ab <0 B.ab <a +b <0 C.a +b <0<ab D.ab <0<a +b答案 B解析 ∵a =log 0.20.3>log 0.21=0, b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b =log 0.30.2+log 0.32=log 0.30.4, ∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +b ab<1,∴ab <a +b <0.三、数学建模、数据分析素养5 数学建模例5 (2019·全国Ⅰ)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-12⎝ ⎛⎭⎪⎫5-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105 cm,头顶至脖子下端的长度为26 cm,则其身高可能是( )A.165 cmB.175 cmC.185 cmD.190 cm答案 B解析若头顶至咽喉的长度为26 cm,则身高为26+26÷0.618+(26+26÷0.618) ÷0.618≈178(cm),此人头顶至脖子下端的长度为26 cm,即头顶至咽喉的长度小于26 cm,所以其身高小于178 cm,同理其身高也大于105÷0.618≈170(cm),故其身高可能是175 cm,故选B.5.(2019·北京)李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元,每笔订单顾客网上支付成功后,李明会得到支付款的80%.(1)当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付________元;(2)在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为________. 答案 130 15解析 (1)顾客一次购买草莓和西瓜各1盒,总价为60+80=140(元),又140>120,所以优惠10元,顾客实际需要付款130元.(2)设顾客一次购买的水果总价为m 元,由题意知,当0<m <120时,x =0,当m ≥120时,(m -x )×80%≥m ×70%,得x ≤m 8对任意m ≥120恒成立,又m8≥15,所以x 的最大值为15.素养6 数据分析例6 (2019·全国Ⅲ)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A,B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P (C )的估计值为0.70.(1)求乙离子残留百分比直方图中a ,b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表). 解 (1)由已知得0.70=a +0.20+0.15,故 a =0.35.b =1-0.05-0.15-0.70=0.10.(2)甲离子残留百分比的平均值的估计值为2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05. 乙离子残留百分比的平均值的估计值为3×0.05+4×0.10+5×0.15+6×0.35+7×0.20+8×0.15=6.00.6.某市一水电站的年发电量y (单位:亿千瓦时)与该市的年降雨量x (单位:毫米)有如下统计数据:(1)若从统计的5年中任取2年,求这2年的发电量都高于7.5 亿千瓦时的概率;(2)由表中数据求得线性回归方程为y ^=0.004x +a ^,该水电站计划2019年的发电量不低于8.6 亿千瓦时,现由气象部门获悉2019年的降雨量约为1 800 毫米,请你预测2019年能否完成发电任务?解 (1)从统计的5年发电量中任取2年,基本事件为{7.4,7.0},{7.4,9.2},{7.4,7.9},{7.4,10.0},{7.0,9.2},{7.0,7.9},{7.0,10.0},{9.2,7.9},{9.2,10.0},{7.9,10.0},共10个;其中这2年的发电量都高于7.5 亿千瓦时的基本事件为{9.2,7.9},{9.2,10.0},{7.9,10.0},共3个. 所以这2年发电量都高于7.5 亿千瓦时的概率为P =310.(2)因为x =1 500+1 400+1 900+1 600+2 1005=8 5005=1 700,y =7.4+7.0+9.2+7.9+10.05=41.55=8.3.又直线y ^=0.004x +a ^过点(x ,y ), 所以8.3=0.004×1 700+a ^, 解得a ^=1.5, 所以y ^=0.004x +1.5.当x =1 800时,y ^=0.004×1 800+1.5=8.7>8.6, 所以预测该水电站2019年能完成发电任务.。

相关文档
最新文档