高考理科数学压轴题及答案汇编

合集下载

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考数学(新高考压轴卷)(全解全析)

2024年高考压轴卷【新高考卷】数学·全解全析一、单选题1.已知集合105x A x x ⎧⎫+=≥⎨⎬-⎩⎭,(){}22log 16B x y x ==-,则()R A B ⋂=ð()A .()1,4-B .[]1,4-C .(]1,5-D .()4,52.宋代是中国瓷器的黄金时代,涌现出了五大名窑:汝窑、官窑、哥窑、钧窑、定窑.其中汝窑被认为是五大名窑之首.如图1,这是汝窑双耳罐,该汝窑双耳罐可近似看成由两个圆台拼接而成,其直观图如图2所示.已知该汝窑双耳罐下底面圆的直径是12厘米,中间圆的直径是20厘米,上底面圆的直径是8厘米,高是14厘米,且上、下两圆台的高之比是3:4,则该汝窑双耳罐的体积是()A .1784π3B .1884π3C .2304π3D .2504π33.如图,左车道有2辆汽车,右车道有3辆汽车等待合流,则合流结束时汽车通过顺序共有()种.A .10B .20C .60D .120【答案】A【分析】合流结束时5辆车需要5个位置,第一步从5个位置选2个位置安排左边的2辆汽车,第二步剩下3个位置安排右边的3辆汽车,从而由分步乘法计数原理可得结果.【详解】设左车辆汽车依次为12,A A ,右车辆汽车依次为123,,B B B ,则通过顺序的种数等价于将12,A A 安排在5个顺序中的某两个位置(保持12,A A 前后顺序不变),123,,B B B 安排在其余3个位置(保持123,,B B B 前后顺序不变),123,,B B B ,所以,合流结束时汽车通过顺序共有2353C C 10=.故选:A.4.已知等比数列{}n a 的各项均为负数,记其前n 项和为n S ,若6467813,8S S a a a -=-=-,则2a =()A .-8B .-16C .-32D .-485.已知圆C :22()1x y m +-=,直线l :()1210m x y m ++++=,则直线l 与圆C 有公共点的必要不充分条件是()A .11m -≤≤B .112m -≤≤C .10m -≤≤D .102m ≤≤6.已知函数2()log f x x =,则对任意实数,a b ,“0a b +≤”是“()()0f a f b +≤”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件故选:C.7.已知0.50.2a =,cos2b =,lg15c =,则()A .a b c <<B .c a b <<C .b c a <<D .b a c<<8.从椭圆22:1(0)x y C a b a b+=>>外一点()00,P x y 向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P关于椭圆C 的极线,其方程为00221x x y ya b+=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.已知非零复数1z ,2z 在复平面内对应的点分别为1Z ,2Z ,O 为坐标原点,则下列说法正确的是()A .若1211z z -=-,则12=z z B .若1212z z z z +=-,则120OZ OZ ⋅=C .若1212z z z z +=-,则120z z ⋅=D .若1212z z z z +=+,则存在实数t ,使得21z tz =10.已知四面体ABCD的一个平面展开图如图所示,其中四边形AEFD是边长为B,C分别为AE,FD的中点,BD=)⊥A.BE CDB.BE与平面DCE所成角的余弦值为15C.四面体ABCD的内切球半径为30D.四面体ABCD的外接球表面积为8π【点睛】11.对于数列{}n a (N n a +∈),定义k b 为1a ,2a ,…,k a 中最大值(1,2,,k n =⋅⋅⋅)(N n +∈),把数列{}n b 称为数列{}n a 的“M 值数列”.如数列2,2,3,7,6的“M 值数列”为2,2,3,7,7,则()A .若数列{}n a 是递减数列,则{}n b 为常数列B .若数列{}n a 是递增数列,则有n na b =C .满足{}n b 为2,3,3,5,5的所有数列{}n a 的个数为8D .若()1()2N n n a n -+=-∈,记n S 为{}n b 的前n 项和,则1001002(21)3S =-三、填空题12.已知向量()1,1,4a b == ,且b 在a 上的投影向量的坐标为()2,2--,则a 与b的夹角为.13.已知公比q 大于1的等比数列{}n a 满足135a a +=,22a =.设22log 7n n b a =-,则当5n ≥时,数列{}n b 的前n 项和n S =.14.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,过点2F 且斜率为34-的直线与C 交于,A B两点.若112AF F F ⊥,则C 的离心率为;线段AB 的垂直平分线与x 轴交于点D ,则22BF DF =.5.【点睛】方法点睛:椭圆求离心率或者范围关键是找到关于,a c 的齐次式求得.四、解答题15.如图,在平面四边形ABCD ,已知1BC =,3cos 5BCD ∠=-.(1)若AC 平分BCD ∠,且2AB =,求AC 的长;(2)若45CBD ∠=︒,求CD 的长.16.如图,在三棱柱111ABC A B C -中,ABC △是边长为2的正三角形,侧面11BB C C 是矩形,11AA A B =.(1)求证:三棱锥1A ABC -是正三棱锥;(2)若三棱柱111ABC A B C -的体积为221AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析(2)23【分析】(1)根据线面垂直的判定定理及性质定理,证明1A O ⊥平面ABC 即可;(2)建立空间直角坐标系,利用向量法求线面角正弦即可.【详解】(1)分别取AB ,BC 中点D ,E ,连接CD ,AE 交于点O ,则点O 为正三角形ABC 的中心.因为11AA A B CA CB ==,得1CD AB AD AB ⊥⊥,,又11,,A D CD D A D CD =⊂ 平面1A CD ,所以AB ⊥平面1A CD ,又1A O ⊂平面1A CD ,则1AB A O ⊥;取11B C 中点1E ,连接111A E E E ,,则四边形11AA E E 是平行四边形,因为侧面11BB C C 是矩形,所以1BC EE ⊥,又BC AE ⊥,又11,,EE AE E EE AE =⊂ 平面11AA E E ,所以BC ⊥平面11AA E E ,又1A O ⊂平面11AA E E ,则1BC A O ⊥;又AB BC B ⋂=,,AB BC ⊂平面ABC ,所以1A O ⊥平面ABC ,所以三棱锥1A ABC -是正三棱锥.17.某学校为了解本学期学生参加公益劳动的情况,从学校内随机抽取了500名高中学生进行在线调查,收集了他们参加公益劳动时间(单位:小时)分配情况等数据,并将样本数据分成[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],(12,14],(14,16],(16,18]九组,绘制成如图所示的频率分布直方图.(1)为进一步了解这500名学生参加公益劳动时间的分配情况,从参加公益劳动时间在(12,14],(14,16],(16,18]三组内的学生中,采用分层抽样的方法抽取了10人,现从这10人中随机抽取3人.记参加公益劳动时间在(14,16]内的学生人数为X ,求X 的分布列和期望;(2)以调查结果的频率估计概率,从该学校所有高中学生中随机抽取20名学生,用“20()P k ”表示这20名学生中恰有k 名学生参加公益劳动时间在(10,12](单位:小时)内的概率,其中0,1,2,,20k = .当20()P k 最大时,写出k 的值.18.已知双曲线(22:10,0x y C a b a b-=>>)的左右焦点分别为12,F F ,C 的右顶点到直线2:a l x c =的距离为1,双曲线右支上的点到1F 的最短距离为3(1)求双曲线C 的方程;(2)过2F 的直线与C 交于M 、N 两点,连接1MF 交l 于点Q ,证明:直线QN 过x 轴上一定点.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.19.函数()e xf x a x=-图像与x 轴的两交点为()()()1221,0,0A x B x x x >,(1)令()()ln h x f x x x =-+,若()h x 有两个零点,求实数a 的取值范围;(2)证明:121x x <;(3)证明:当5a ≥时,以AB 为直径的圆与直线)1y x =+恒有公共点.(参考数据:0.25 2.5e 1.3e 12.2≈≈,)。

高考数学压轴卷理含解析试题

高考数学压轴卷理含解析试题

卜人入州八九几市潮王学校〔全国卷Ⅰ〕2021年高考数学压轴卷理〔含解析〕一、选择题〔此题一共12道小题,每一小题5分,一共60分.在每一小题的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.集合{}{}228023A x x x B x x =+-≥=-<<,,那么A∩B=(). A.(2,3)B.[2,3)C.[-4,2]D.(-4,3)2.(1i)(2i)z =+-,那么2||z =〔〕 A.2i +B.3i +C.5D.103.假设向量a=1,2⎛ ⎝⎭,|b |=a ·(b -a )=2,那么向量a 与b 的夹角为() A.6πB.4π C.3π D.2π 4.某几何体的三视图如下列图,那么该几何体的体积为 A.8B.12C.16D.245.某批零件的长度误差〔单位:毫米〕服从正态分布()20,3N ,从中随机取一件,其长度误差落在区间〔3,6〕内的概率为〔〕〔附:假设随机变量ξ服从正态分布()2,Nμσ,那么()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=.〕A.6%B.19%C.28%D.34%6.我国古代名著庄子天下篇中有一句名言“一尺之棰,日取其半,万世不竭〞,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如下列图的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),那么①②③处可分别填入的是() A.17?,,+1is s i i i≤=-=B.1128?,,2is s i i i≤=-=C 17?,,+12is s i i i ≤=-= D.1128?,,22i s s i i i≤=-=7.变量x ,y 满足约束条件1031010x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,那么2z x y =+的最大值为〔〕 A.1 B.2 C.3 D.48.九章算术中有这样一个问题:今有竹九节,欲均减容之〔其意为:使容量均匀递减〕,上三节容四升,下三节容二升,中三节容几何?〔〕 A.二升B.三升C.四升D.五升9.在△ABC 中,角A 、B 、C 所对的边分别为a 、b 、c,3,sin a c b A ===cos 6a B π⎛⎫+ ⎪⎝⎭,那么b=() A.110..假设直线220(0,0)ax by a b -+=>>被圆014222=+-++y x y x 截得弦长为4,那么41a b +的最小值是〔〕A.9B.4C.12D.1411.抛物线2:2(0)C y px p =>的焦点为F,点(002p M x x ⎛⎫> ⎪⎝⎭是抛物线C 上一点,以点M 为圆心的圆与直线2px =交于E ,G 两点,假设1sin 3MFG ∠=,那么抛物线C 的方程是〔〕A.2y x = B.22y x =C.24y x = D.28y x =12.函数1,0(),0x x mf x e x -⎧=⎪=⎨⎪≠⎩,假设方程23()(23)()20mf x m f x -++=有5个解,那么m 的取值范围是〔〕A.(1,)+∞B.(0,1)(1,)⋃+∞C.31,2⎛⎫⎪⎝⎭D.331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭二、填空题〔此题一共4道小题,每一小题5分,一共20分〕13.()0,θπ∈,且sin()4πθ-=,那么tan2θ=________.14.设m 为正整数,()2mx y +展开式的二项式系数的最大值为()21m a x y ++,展开式的二项式系数的最大值为b ,假设158ab =,那么m=______.15.函数()42423,0,3,0,x x ax x f x x x ax x ⎧-->=⎨-+<⎩有四个零点,那么实数a 的取值范围是__________.16.如图,六棱锥P-ABCDEF 的底面是正六边形,PA ⊥平面ABC ,2PA AB =,给出以下结论: ①PB AE ⊥;②直线//BC 平面PAE ; ③平面PAE⊥平面PDE;④异面直线PD 与BC 所成角为45°;⑤直线PD 与平面PAB 其中正确的有_______〔把所有正确的序号都填上〕三.解答题〔本大题一一共6小题.解答题应写出文字说明、证明过程或者演算步骤〕17.〔本小题12分〕△ABC 中,内角A 、B 、C 所对的边分别为a 、b 、c ,24sin 4sin sin 22A BA B -+=〔1〕求角C 的大小; 〔2〕4b=,△ABC 的面积为6,求边长c 的值.18.〔本小题12分〕如图,在四棱锥P-ABCD 中,PD⊥平面ABCD ,122BC CD AB ===,∠ABC=∠BCD=90°,E 为PB 的中点。

2019年全国卷Ⅱ高考压轴卷数学理科Word版含解析

2019年全国卷Ⅱ高考压轴卷数学理科Word版含解析

fx
2
x1
y2
2
x1
y2
x2
2
y 2 的最小值为 ______ .
16.已知 △ABC 中, AB AC ,点 D 是 AC 边的中点,线段 BD x , △ABC 的面积 S 2 , 则 x 的取值范围是 _________. 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分 12 分)在 △ABC 中,角 A 、 B 、 C 所对的边分别是 a 、 b 、 c ,角 A 、 B 、
B. c a d b
C. d c a b
D. c d a b
7. 某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为(

A. 16π 3
B. 3
C. 2 9
D. 16 9
8.已知向量 a 1, 3 , b 0, 2 ,则 a 与 b 的夹角为(

A. π 6
B. π 3
C. 5π 6
D. 2 π 3
人中女生人数为 X ,写出 X 的分布列,并求 E X .
附: K 2
2
n ad bc
,其中 n a b c d .
abcd acbd
12 人参 设选取的 3
P K 2 k0
0.10
0.05
0.025
0.01
0.005
k0
2.706
3.841
5.024
6.635
7.879
19.(本小题满分 12 分) 在四棱锥 P ABCD 中, AD 平面 PDC , PD DC ,底面 ABCD 是梯形, AB∥DC ,
9.在 △ ABC 中, a , b , c 分别是角 A , B , C 的对边, a b c a c b 3ac ,则角 B

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)

高考数学压轴题100题汇总(含答案)1. 设函数f(x) = x^3 3x + 1,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 1和x = 1,极值分别为f(1) = 1和f(1) = 3。

2. 已知等差数列{an}的前n项和为Sn = n^2 + n,求该数列的通项公式。

答案:an = 2n + 1。

3. 已知三角形ABC中,AB = AC = 5,BC = 8,求三角形ABC的面积。

答案:三角形ABC的面积为12。

4. 设直线y = kx + b与圆x^2 + y^2 = 1相切,求k和b的值。

答案:k = ±√3/3,b = ±√6/3。

5. 已知函数f(x) = log2(x^2 + 1),求f(x)的导数。

答案:f'(x) = 2x/(x^2 + 1)ln2。

6. 已知向量a = (2, 3),向量b = (1, 4),求向量a和向量b的夹角。

答案:向量a和向量b的夹角为arccos(1/√5)。

7. 已知矩阵A = [1 2; 3 4],求矩阵A的逆矩阵。

答案:矩阵A的逆矩阵为[4 2; 3 1]。

8. 已知函数f(x) = x^3 6x^2 + 9x + 1,求f(x)的零点。

答案:f(x)的零点为x = 1和x = 3。

9. 已知函数f(x) = sin(x) cos(x),求f(x)在区间[0, π/2]上的最大值。

答案:f(x)在区间[0, π/2]上的最大值为√2。

10. 已知函数f(x) = x^2 + 4x + 4,求f(x)的顶点坐标。

答案:f(x)的顶点坐标为(2, 0)。

高考数学压轴题100题汇总(含答案)11. 已知函数f(x) = e^x 2x,求f(x)的导数。

答案:f'(x) = e^x 2。

12. 已知函数f(x) = x^2 4x + 4,求f(x)的极值点和极值。

答案:f(x)的极值点为x = 2,极值为f(2) = 0。

2019-2020年高考压轴卷理科数学含解析

2019-2020年高考压轴卷理科数学含解析

2019-2020年高考压轴卷理科数学含解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={0,1,2},B={x|x=2a ,a ∈A},则A ∩B 中元素的个数为( ) A.0 B.1 C.2 D.3 2. 复数21i z ()i=-,则复数1z +在复平面上对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.已知直线l ⊥平面α,直线m ∥平面β,则“//αβ”是“l m ⊥”的 (A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D)既非充分也非必要条件4. 设S n 为等差数列{a n }的前n 项和,若a 1=1,a 3=5,S k+2﹣S k =36,则k 的值为( ) A . 8 B .7 C .6 D . 55.如图是某一几何体的三视图,则这个几何体的体积为( )A .4 B .8 C .16 D .20 6.一个算法的程序框图如图所示,如果输入的x 的值为2014,则输出的i 的结果为( )A.3B.5C.6D.87.函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象如图所示,其中A,B两点之间的距离为5,则f(x)的递增区间是()A.[6K-1,6K+2](K∈Z)B. [6k-4,6k-1] (K∈Z)C.[3k-1,3k+2] (K∈Z)D.[3k-4,3k-1] (K∈Z)8. .在边长为1的正方形OABC中任取一点P,则点P恰好落在正方形与曲线围成的区域内(阴影部分)的概率为()A.B.C.D.9.已知抛物线22(0)y px p =>的焦点F 与双曲22145x y -=的右焦点重合,抛物线的准线与x 轴的交点为K ,点A 在抛物线上且AK =,则A 点的横坐标为(A)10.已知函数f (x )对任意x ∈R 都有f (x+6)+f (x )=2f (3),y=f (x ﹣1)的图象关于点(1,0)对称,则f (2013)=( )A.10B.-5C.5D.0二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置. 11.(3x+)6的展开式中常数项为 (用数字作答).12. 若等边△ABC 的边长为1,平面内一点M 满足,则= .13. 设x ,y 满足约束条件,若目标函数z=ax+by (a >0,b >0)的最大值为12,则+的最小值为( ) A . 4 B .C .1 D .214.设f (x )是定义在R 上的奇函数,且当x ≥0时,f (x )=x 2,若对任意x ∈[a ,a+2],不等式f (x+a )≥f (3x+1)恒成立,则实数a 的取值范围是 ________ .15. 已知集合A={f (x )|f 2(x )﹣f 2(y )=f (x+y )•f (x ﹣y ),x 、y ∈R},有下列命题: ①若f (x )=,则f (x )∈A ; ②若f (x )=kx ,则f (x )∈A ;③若f (x )∈A ,则y=f (x )可为奇函数; ④若f (x )∈A ,则对任意不等实数x 1,x 2,总有成立.其中所有正确命题的序号是 ______ .(填上所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.16.在△ABC 中,已知A=4π,cos B =. (I)求cosC 的值;(Ⅱ)若D 为AB 的中点,求CD 的长.17.如图,已知PA ⊥平面ABC ,等腰直角三角形ABC 中,AB=BC=2,AB ⊥BC ,AD ⊥PB 于D ,AE ⊥PC 于E . (Ⅰ)求证:PC ⊥DE ;(Ⅱ)若直线AB 与平面ADE 所成角的正弦值为,求PA 的值.18. 在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为x 、y ,设O 为坐标原点,点P 的坐标为(2,)x x y --,记2OP ξ=. (I )求随机变量ξ的最大值,并求事件“ξ取得最大值”的概率;(Ⅱ)求随机变量ξ的分布列和数学期望. 19. 设数列{}n a 的前n 项和为n S ,点(,)n n a S 在直线312y x =-上. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)在n a 与1n a +之间插入n 个数,使这2n +个数组成公差为n d 的等差数列, 求数列1n d ⎧⎫⎪⎨⎬⎪⎭⎩的前n 项和n T ,并求使-184055327n n n T +≤⨯成立的正整数n 的最大值. 20. 给定椭圆C :,称圆心在坐标原点O ,半径为的圆是椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是.(1)若椭圆C 上一动点M 1满足||+||=4,求椭圆C 及其“伴随圆”的方程;(2)在(1)的条件下,过点P (0,t )(t <0)作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随圆”所得弦长为2,求P 点的坐标;(3)已知m+n=﹣(0,π)),是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点(m ,m 2),(n ,n 2)的直线的最短距离.若存在,求出a ,b 的值;若不存在,请说明理由. 21.已知函数f (x )=ax 2﹣(2a+1)x+2lnx (a >0). (Ⅰ) 若a ≠,求函数f (x )的单调区间;(Ⅱ)当<a <1时,判断函数f (x )在区间[1,2]上有无零点?写出推理过程.KS5U2014山东省高考压轴卷理科数学参考答案1.【KS5U 答案】C【KS5U 解析】:由A={0,1,2},B={x|x=2a ,a ∈A}={0,2,4}, 所以A ∩B={0,1,2}∩{0,2,4}={0,2}. 所以A ∩B 中元素的个数为2. 故选C .2. 【KS5U 答案】D【KS5U 解析】因为22211()1(1)22i i z ii i i -====----,所以1112z i +=-,所以复数1z +在复平面上对应的点位于第四象限. 3. 【KS5U 答案】A.【KS5U 解析】当//αβ时,由l ⊥平面α得,l β⊥,又直线m ∥平面β,所以l m ⊥。

压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)

压轴题05 立体几何压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用-理)

压轴题05立体几何压轴题题型/考向一:点、线、面间的位置关系和空间几何体的体积、表面积题型/考向二:外接球、内切球等相关问题题型/考向三:平行关系、垂直关系、二面角等相关问题一、空间几何体的体积、表面积热点一空间几何体的侧面积、表面积柱体、锥体、台体和球的表面积公式:(1)若圆柱的底面半径为r,母线长为l,则S侧=2πrl,S表=2πr(r+l).(2)若圆锥的底面半径为r,母线长为l,则S侧=πrl,S表=πr(r+l).(3)若圆台的上、下底面半径分别为r′,r,则S侧=π(r+r′)l,S表=π(r2+r′2+r′l +rl).(4)若球的半径为R,则它的表面积S=4πR2.热点二空间几何体的体积柱体、锥体、台体和球的体积公式:(1)V柱体=Sh(S为底面面积,h为高);Sh(S为底面面积,h为高);(2)V锥体=13(S上+S下+S上S下)h(S上、S下分别为上、下底面面积,h为高);(3)V台体=13(4)V球=4πR3.3二、外接球、内切球问题类型一外接球问题考向1墙角模型墙角模型是三棱锥有一条侧棱垂直于底面且底面是直角三角形模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长.长方体同一顶点的三条棱长分别为a,b,c,外接球半径为R.则(2R)2=a2+b2+c2,即2R=a2+b2+c2.常见的有以下三种类型:考向2对棱相等模型对棱相等模型是三棱锥的三组对棱长分别相等模型,用构造法(构造长方体)解决,外接球的直径等于长方体的体对角线长,如图所示,(2R )2=a 2+b 2+c 2(长方体的长、宽高分别为a ,b ,c ),即R 2=18(x 2+y 2+z 2),如图.考向3汉堡模型汉堡模型是直三棱柱、圆柱的外接球模型,模型如下,由对称性可知,球心O 的位置是△ABC 的外心O 1与△A 1B 1C 1的外心O 2的连线的中点,算出小圆O 1的半径AO 1=r ,OO 1=h 2,所以R 2=r 2+h 24.考向4垂面模型垂面模型是有一条侧棱垂直底面的棱锥模型,可补为直棱柱内接于球;如图所示,由对称性可知球心O 的位置是△CBD 的外心O 1与△AB 2D 2的外心O 2连线的中点,算出小圆O1的半径CO1=r,OO1=h2,则R=r2+h24.类型二内切球问题内切球问题的解法(以三棱锥为例)第一步:先求出四个表面的面积和整个锥体的体积;第二步:设内切球的半径为r,建立等式V P-ABC=V O-ABC+V O-P AB+V O-P AC+V O-PBC⇒V P-ABC=13S△ABC·r+13S△P AB·r+13S△P AC·r+13S PBC·r=13(S△ABC+S△P AB+S△P AC+S△PBC)r;第三步:解出r=3V P-ABCS△ABC+S△P AB+S△P AC+S△PBC.类型三球的截面问题解决球的截面问题抓住以下几个方面:(1)球心到截面圆的距离;(2)截面圆的半径;(3)直角三角形(球心到截面圆的距离、截面圆的半径、球的半径构成的直角三角形).三、平行关系和垂直关系的证明、二面角等热点一空间线、面位置关系的判定判断空间线、面位置关系的常用方法(1)根据空间线面平行、垂直的判定定理和性质定理逐项判断,解决问题.(2)利用直线的方向向量、平面的法向量判断.(3)必要时可以借助空间几何模型,如从长方体、四面体等模型中观察线、面的位置关系,并结合有关定理进行判断.热点二几何法证明平行、垂直1.直线、平面平行的判定及其性质(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α.(2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b.(3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β.(4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.2.直线、平面垂直的判定及其性质(1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α.(2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b.(3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β.(4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.热点三空间向量法证明平行、垂直1.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,在平面α内的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.2.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.四、空间角、距离问题热点一异面直线所成的角求异面直线所成角的方法方法一:综合法.步骤为:①利用定义构造角,可固定一条直线,平移另一条直线,或将两条直线同时平移到某个特殊的位置;②证明找到(或作出)的角即为所求角;③通过解三角形来求角.方法二:空间向量法.步骤为:①求出直线a ,b 的方向向量,分别记为m ,n ;②计算cos 〈m ,n 〉=m ·n|m ||n |;③利用cos θ=|cos 〈m ,n 〉|,以及θ,π2,求出角θ.热点二直线与平面所成的角求直线与平面所成角的方法方法一:几何法.步骤为:①找出直线l 在平面α上的射影;②证明所找的角就是所求的角;③把这个角置于一个三角形中,通过解三角形来求角.方法二:空间向量法.步骤为:①求出平面α的法向量n 与直线AB 的方向向量AB →;②计算cos 〈AB →,n 〉=AB →·n |AB →||n |;③利用sin θ=|cos 〈AB →,n 〉|,以及θ∈0,π2,求出角θ.热点三平面与平面的夹角求平面与平面的夹角方法方法一:几何法.步骤为:①找出二面角的平面角(以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角就是二面角的平面角);②证明所找的角就是要求的角;③把这个平面角置于一个三角形中,通过解三角形来求角.求二面角的平面角的口诀:点在棱上,边在面内,垂直于棱,大小确定.方法二:空间向量法.步骤为:①求两个平面α,β的法向量m ,n ;②计算cos 〈m ,n 〉=m ·n|m |·|n |;③设两个平面的夹角为θ,则cos θ=|cos 〈m ,n 〉|.热点四距离问题1.空间中点、线、面距离的相互转化关系2.空间距离的求解方法有:(1)作垂线段;(2)等体积法;(3)等价转化;(4)空间向量法.一、单选题1.在正方体1111ABCD A B C D -中,直线m 、n 分别在平面ABCD 和11ABB A 内,且m n ⊥,则下列命题中正确的是()A .若m 垂直于AB ,则n 垂直于AB B .若m 垂直于AB ,则n 不垂直于ABC .若m 不垂直于AB ,则n 垂直于ABD .若m 不垂直于AB ,则n 不垂直于AB【答案】C【详解】AB 选项,若m 垂直于AB ,由面ABCD ⊥面11ABB A ,面ABCD ⋂面11ABB A AB =,可得m 垂直于面11ABB A ,即面11ABB A 内的所有直线均与m 垂直,而n 可能垂直于AB ,也可能不垂直于AB ,故A 错误,B 错误;CD 选项,若m 不垂直于AB ,则,BC m 为面ABCD 内的两条相交直线,由题可知BC n ⊥,m n ⊥,则n 垂直面ABCD ,又AB ⊂面ABCD ,所以n 垂直于AB ,故C 正确,D 错误.故选:C2.在中国古代数学经典著作《九章算术》中,称图中的多面体ABCDEF 为“刍甍”.书中描述了刍甍的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()216V AB EF AD h =+⨯⨯,其中h 是刍甍的高,即点F 到平面ABCD 的距离.若底面ABCD 是边长为4的正方形,2EF =,且//EF AB ,ADE V 和BCF △是等腰三角形,90AED BFC ∠=∠= ,则该刍甍的体积为()A .3B .3C .D .403【答案】B【详解】如图所示,设点F 在底面的射影为G ,,H M 分别为,BC AD 的中点,连接,,EM FH MH ,则FG 即为刍甍的高,-P ABC 面积恰为该容器的表面积)展开后是如图所示的边长为10的正方形123APP P (其中点B 为23P P 中点,点C为12PP 中点),则该玩具的体积为()A .6253B .1253C .125D .2503【答案】B【详解】该玩具为三棱锥-P ABC ,即三棱锥A PBC -,则PA ⊥底面PBC ,且10PA =,PBC 面积为252,所以12512510323P ABC V -=⨯⨯=.故选:B.4.攒尖是中国古代建筑中屋顶的一种结构形式,宋代称为撮尖,清代称攒尖.通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.如图所示的建筑屋顶是圆形攒尖,可近似看作一个圆锥,已知其轴截面(过圆锥旋转轴的截面)是底边长为6m ,腰长为5m 的等腰三角形,则该屋顶的体积约为()A .38πmB .39πmC .310πmD .312πm 【答案】D【详解】如图所示为该圆锥轴截面,由题知该圆锥的底面半径为15.已知为两条不同的直线,,为两个不同的平面,则下列命题中正确的是()A .若//,//a b b α,则//a αB .若//,,//a b a b αβ⊥,则αβ⊥C .若//,//,//a b αβαβ,则//a bD .若//,//,a b αβαβ⊥,则a b⊥【答案】B【详解】对于A ,若//,//a b b α,则//a α或a α⊂,故A 错误;对于B ,若//,//a b b β,则a β⊂或//a β,若a β⊂,因为a α⊥,则αβ⊥,若//a β,如图所示,则在平面β一定存在一条直线//m a ,因为a α⊥,所以m α⊥,又m β⊂,所以αβ⊥,综上若//,,//a b a b αβ⊥,则αβ⊥,故B 正确;对于C ,若//,//,//a b αβαβ,则直线,a b 相交或平行或异面,故C 错误;对于D ,若//,//,a b αβαβ⊥,则直线,a b 相交或平行或异面,故D 错误.故选:B.6.在直三棱柱111ABC A B C -中,ABC 为等腰直角三角形,若三棱柱111ABC A B C -的体积为32,则该三棱柱外接球表面积的最小值为()A .12πB .24πC .48πD .96π7.已知三棱锥-P ABC 中,底面ABC 是边长为的正三角形,点P 在底面上的射影为底面的中心,且三棱锥-P ABC 外接球的表面积为18π,球心在三棱锥-P ABC 内,则二面角P AB C --的平面角的余弦值为()A .12B .13C 22D 即PDC ∠为二面角P AB C --的平面角,由23AB =,得22OC OD ==,显然三棱锥线段PO 上,由三棱锥-P ABC 的外接球的表面积为8.已知三棱锥-P ABC 的四个顶点都在球O的球面上,4PB PC AB AC ====,2PA BC ==,则球O 的表面积为()A .316π15B .79π15C .158π5D .79π5而,,AB AC A AB AC =⊂ 平面ABC ,因此在等腰ABC 中,4,2AB AC BC ===,则215sin 1cos ABC ABC ∠=-∠=,二、多选题9.已知直线a ,b ,c 两两异面,且a c ⊥,b c ⊥,下列说法正确的是()A .存在平面α,β,使a α⊂,b β⊂,且c α⊥,c β⊥B .存在平面α,β,使a α⊂,b β⊂,且c α∥,c β∥C .存在平面γ,使a γ∥,b γ∥,且c γ⊥D .存在唯一的平面γ,使c γ⊂,且a ,b 与γ所成角相等【答案】ABC【详解】对于A,平移直线b 到与直线a 相交,设平移后的直线为b ',因为b c ⊥,所以b c '⊥,设直线,a b '确定的平面为α,则a c ⊥,b c '⊥,直线b '和a 相交,所以c α⊥,同理可得:c β⊥,故A 对;对于B,平移直线c 到与直线a 相交,设平移后的直线为c ',设直线,a c '确定的平面为α,因为c //c ',且α⊄c ,所以c α∥,同理可得:c β∥,故B 对;对于C,同时平移直线b 和直线a ,令平移后的直线相交,设平移后的直线为,a b '''',因为a c ⊥,b c ⊥,所以a c ''⊥,b c ''⊥,设直线,a b ''''确定的平面为γ,则a γ∥,b γ∥,且c γ⊥,故C 对;对于D ,由对称性可知,存在两个平面γ,使c γ⊂,且a ,b 与γ所成角相等,故D 错误;故选:ABC.10.已知正方体1111ABCD A B C D -的外接球表面积为12π,,,M N P 分别在线段1BB ,1CC ,1DD 上,且,,,A M N P 四点共面,则().A .AP MN=B .若四边形AMNP 为菱形,则其面积的最大值为C .四边形AMNP 在平面11AAD D 与平面11CC D D 内的正投影面积之和的最大值为6D .四边形AMNP 在平面11AA D D 与平面11CC D D 内的正投影面积之积的最大值为4设正方体1111ABCD A B C D -依题意,234π()12π2a ⋅=,解得因为平面11BCC B ∥平面ADD则M 在平面11AA D D 上的投影落在设为H ,则四边形AGHP 为四边形AMNP 由于,AM PN GM HN ==,则(当1x y ==时取“=”),故C 错误,D 正确,故选:ABD三、解答题11.如图,四棱锥S ABCD -的底面为菱形,60BAD ∠=︒,2AB =,4SD =,SD ⊥平面ABCD ,点E 在棱SB 上.(1)证明:AC DE ⊥;(2)若三棱锥E ABC -,求点E 到平面SAC 的距离.【详解】(1)证明:如图,连接BD ,因为四边形ABCD 为菱形,所以AC BD ⊥,因为SD ⊥平面ABCD ,AC ⊂平面ABCD ,所以SD AC ⊥,又因为SD BD D = ,所以AC ⊥平面SBD ,又因为DE ⊂平面SBD ,所以AC DE ⊥.(2)解:设点E 到平面ABC 则三棱锥E ABC -的体积V (11sin 18032AB BC =⨯⨯⨯⨯︒-12.如图,在三棱锥A BCD -中,平面ABD ⊥平面BCD ,,AB AD O =为BD 的中点.(1)证明:OA CD ⊥;(2)已知OCD 是边长为1的等边三角形,已知点E 在棱AD 的中点,且二面角E BC D --的大小为45 ,求三棱锥A BCD -的体积.【详解】(1)证明:AB AD = ,O 为BD 的中点,AO BD ∴⊥,又平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,AO ⊂平面BCD ,所以AO ⊥平面BCD ,又CD ⊂平面BCD ,AO CD ∴⊥.(2)取OD 的中点F ,因为OCD 为等边三角形,所以CF OD ⊥,过O 作//OM CF ,与BC 交于M ,则OM OD ⊥,由(1)可知OA ⊥平面BCD ,设OA a =,因为OA ⊥平面BCD ,所以设平面BCE 的一个法向量为n =3300x y n BC ⎧+=⎪⎧⋅= ○热○点○题○型二外接球、内切球等相关问题一、单选题1.已知ABC 是边长为3的等边三角形,其顶点都在球O 的球面上,若球O 的体积为323π,则球心O 到平面ABC 的距离为()A B .32C .1D 因为ABC 是边长为3的等边三角形,且所以13O B =,又因为球O 的体积为32π2.已知三棱锥-P ABC 的底面ABC 是边长为1的正三角形,侧棱,,PA PB PC 两两垂直,若此三棱锥的四个顶点都在同一个球面上,则该球的表面积是()A .3πB .πC .3π4D .3π23.一个圆锥的底面圆和顶点都恰好在一个球面上,且这个球的半径为5,则这个圆锥的体积的最大值时,圆锥的底面半径为()A .103B .2C .3D 【答案】C【详解】解:如图,设圆锥的底面半径为r ,球半径5R =,球心为O .过圆锥的顶点P 作底面的垂线2125OO r =-.所以圆锥的高h PO =4.已知圆锥的侧面积为2π,母线与底面所成角的余弦值为2,则该圆锥的内切球的体积为()A .4π3B .43π9C.27D5.如图,几何体Ω为一个圆柱和圆锥的组合体,圆锥的底面和圆柱的一个底面重合,圆锥的顶点为A ,圆柱的上、下底面的圆心分别为B 、C ,若该几何体Ω存在外接球(即圆锥的顶点与底面圆周在球面上,且圆柱的底面圆周也在球面上).已知24BC AB ==,则该组合体的体积等于()A .56πB .70π3C .48πD .64π【答案】A【详解】设该组合体外接球的球心为O ,半径为R ,易知球心在BC 中点,则224R AO ==+=.6.已知矩形ABCD的顶点都在球心为的体积为43,则球O的表面积为()A.76πB.112πC D.3故球的表面积为:2476πR π=,故选:A .7.水平桌面上放置了4个半径为2的小球,4个小球的球心构成正方形,且相邻的两个小球相切.若用一个半球形的容器罩住四个小球,则半球形容器内壁的半径的最小值为()A .4B .2C .2D .6此时,如上图示,O 为半球的球心,体的体对角线,且该小球与半球球面上的切点与8.已知三棱锥-PABC的四个顶点均在球的球面上,,PB AC== PC AB=Q为球O的球面上一动点,则点Q到平面PAB 的最大距离为()A2211BC2211D2223BD BE AB∴+==,BD2226BD BE BF∴++=,∴球在PAB中,cosABABP∠=二、填空题9.在三棱锥-P ABC 中,PA ⊥平面ABC ,14AB AC PA AB AC ⊥=+=,,,当三棱锥的体积最大时,三棱锥-P ABC 外接球的体积为______.则三棱锥-P ABC 外接球的直径为2R PA =因此,三棱锥-P ABC 外接球的体积为34π3R10.如图,在直三棱柱111中,1.设为1的中点,三棱锥D ABC -的体积为94,平面1A BC ⊥平面11ABB A ,则三棱柱111ABC A B C -外接球的表面积为______.【答案】27π【详解】取1A B 的中点E ,连接AE ,如图.因为1AA AB =,所以1AE A B ⊥.又面1A BC ⊥面11ABB A ,面1A BC ⋂面111ABB A A B =,且AE ⊂面11ABB A ,所以⊥AE 面1A BC ,BC ⊂面1A BC ,所以AE BC ⊥.在直三棱柱111ABC A B C -中,1BB ⊥面ABC ,BC ⊂面ABC ,所以1BB BC ⊥.又AE ,1BB ⊂面11ABB A ,且AE ,1BB 相交,所以BC ⊥面11ABB A ,AB ⊂面11ABB A ,所以BC AB ⊥.11.如图,直三棱柱111的六个顶点都在半径为1的半球面上,,侧面11BCC B 是半球底面圆的内接正方形,则直三棱柱111ABC A B C -的体积为___________.12.如图所示的由4个直角三角形组成的各边长均相等的六边形是某棱锥的侧面展开图,若该六边形的面积为12+,则该棱锥的内切球半径为___.由题意,侧面展开图的面积由,PD AD PD DC ⊥⊥,○热○点○题○型三平面关系、垂直关系、二面角等相关问题1.已知多面体ABCDEF 中,四边形CDEF 是边长为4的正方形,四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,36BE AB ==,4=AD .(1)求证:平面ADF ⊥平面BCE ;(2)求直线AF 与平面BCF 所成角的正弦值.【详解】(1)因为四边形CDEF 是边长为4的正方形,所以CE ⊥DF ,ED ⊥DC ,因为四边形ABCD 是直角梯形,90ADC DAB ∠=∠=︒,所以AD ⊥CD ,AB ⊥AD ,故直线AF与平面BCF所成角的正弦值为-PA 2.如图,在四棱锥P ABCD平面PAD⊥平面ABCD.Array(1)证明:平面CDM⊥平面PAB;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD ,求三棱锥P MCD -的体积.【详解】(1)取AD 中点为N ,连接PN ,因为PAD 为等边三角形,所以PN AD ^,且平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =,PN ⊂面PAD ,所以PN ^平面ABCD ,又AB ⊂平面ABCD ,所以PN AB ⊥,又因为PD AB ⊥,PN PD P = ,,PN PD ⊂平面PAD ,所以AB ⊥平面PAD ,又因为DM ⊂平面PAD ,所以AB DM ⊥,因为M 为AP 中点,所以DM PA ⊥,且PA AB A = ,,PA PB ⊂平面PAD ,所以DM ⊥平面PAB ,且DM ⊂平面CDM ,所以平面CDM ⊥平面PAB .(2)由(1)可知,PN AB ⊥且PD AB ⊥,PN PD P = ,所以AB ⊥平面PAD ,△为边长为6的等边三角形,E为BD的中点,F为AE的三等分点,且2AF FE ABD=.(1)求证://FM 面ABC ;(2)若二面角A BD C --的平面角的大小为23π,求直线EM 与面ABD 所成角的正弦值.【详解】(1)在BE 上取一点N ,使得12BN NE =,连接FN ,NM ,∵6BD =,∴116BN BD ==,2NE =,3ED =,∵12AF FE =,∴12BN AF NE FE ==,则FN AB ∥,又FN ⊄面ABC ,AB ⊂面ABC ,∴FN ∥面ABC ,∵15BN CM ND MD ==,∴NM BC ∥.∵NM ⊄面ABC ,BC ⊂面ABC ,∴NM ∥面ABC ,∵FN NM N = ,,FN NM ⊂面FNM ,∴面FNM ∥面ABC ,又FM ⊂面FNM ,4.已知底面是正方形,平面,,,点E 、F 分别为线段PB 、CQ 的中点.(1)求证://EF平面PADQ ;(2)求平面PCQ 与平面CDQ 夹角的余弦值;(3)线段PC 上是否存在点M ,使得直线AM 与平面PCQ 所成角的正弦值是7,若存在求出PM MC的值,若不存在,说明理由.【详解】(1)证明:法一:分别取AB 、CD 的中点G 、H ,连接EG 、GH 、FH ,由题意可知点E 、F 分别为线段PB 、CQ 的中点.所以//EG PA ,//FH QD ,因为//PA DQ ,所以//EG FH ,所以点E 、G 、H 、F 四点共面,因为G 、H 分别为AB 、CD 的中点,所以//GH AD ,因为AD ⊂平面ADQP ,GH ⊄平面ADQP ,所以//GH 平面ADQP ,又因为//FH QD ,QD ⊂平面ADQP ,FH ⊄平面ADQP ,所以//FH 平面ADQP ,法二:因为ABCD 为正方形,且以点A 为坐标原点,以AB 、空间直角坐标系,则()0,0,3P 、()3,3,0C 、()0,3,1Q 所以()0,3,1EF =- ,易知平面PADQ 所以0a EF ⋅= ,所以E F a ⊥ ,EF ⊄ADQP EF所在平面和圆所在的平面互相垂直,已知2,1AB EF ==.(1)求证:平面DAF ⊥平面CBF ;(2)当AD 的长为何值时,二面角C EF B --的大小为60︒?设()0AD t t =>,则(1,0,C -∴(1,0,0)EF = ,33,22CF ⎛= ⎝6.如图,在三棱柱111中,四边形11是边长为4的菱形,AB BC =,点D 为棱AC 上的动点(不与A 、C 重合),平面1B BD 与棱11AC 交于点E .(1)求证1BB DE //;(2)若平面ABC ⊥平面11AAC C ,160A AC ∠= ,判断是否存在点D 使得平面11A ABB 与平面1B BDE 所成的锐二面角为π3,并说明理由.【详解】(1)11//BB CC ,且1BB ⊂/平面11ACC A ,1CC ⊂平面11ACC A ,∴1//BB 平面11ACC A ,又∵1BB ⊂平面1B BD ,且平面1B BD 平面11ACC A DE =,∴1BB DE //;(2)连接1AC ,取AC 中点O ,连接1AO ,BO ,在菱形11ACC A 中,160A AC ∠=︒,∴1A AC △是等边三角形,又∵O 为AC 中点,∴1A O ⊥∵平面ABC ⊥平面11ACC A ,平面ABC ⋂平面11ACC A AC =∴1A O ⊥平面ABC ,OB ⊂平面。

2021-2022年高考压轴卷数学(理科)含解析

2021-2022年高考压轴卷数学(理科)含解析

2021年高考压轴卷数学(理科)含解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1.已知,其中是实数,是虚数单位,则的共轭复数为()A. B. C. D.2.已知函数,,且,,,则的值为A.正B.负C.零D.可正可负3.已知某几何体的三视图如下,则该几何体体积为()A.4+ B.4+ C.4+ D.4+4.如图所示为函数π()2sin()(0,0)2f x xωϕωϕ=+>≤≤的部分图像,其中A,B两点之间的距离为5,那么( )A.-1 B.C.D.15.(5分)已知两条不重合的直线m、n和两个不重合的平面α、β,有下列命题:①若m⊥n,m⊥α,则n∥α;②若m⊥α,n⊥β,m∥n,则α∥β;③若m、n是两条异面直线,mα,nβ,m∥β,n∥α,则α∥β;④若α⊥β,α∩β=m,nβ,n⊥m,则n⊥α.其中正确命题的个数是()A.1B.2C.3D.46.设函数是定义在上的可导函数,其导函数为,且有,则不等式的解集为A. B.C. D.7.已知F1(﹣c,0),F2(c,0)为椭圆的两个焦点,P为椭圆上一点且,则此椭圆离心率的取值范围是()A.B.C.D.8.已知定义在R上的偶函数f(x)满足f(1+x)=f(1﹣x),且x∈[0,1]时,,则方程在区间[﹣3,3]上的根的个数为()A.5B.4C.3D.2二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡的相应位置.9.已知集合{}{}22,1,3,3,21,1A a aB a a a=+-=--+,若,则实数的值为________________.10.已知如图所示的流程图(未完成),设当箭头a指向①时输出的结果S=m,当箭头a指向②时,输出的结果S=n,求m+n的值.11.若是等差数列的前项和,且,则的值为.12.展开式中有理项共有项.13.在平面直角坐标系中,过坐标原点的一条直线与函数的图象交于P、Q两点,则线段PQ长的最小值是_______14.设a∈R,若x>0时均有[(a﹣1)x﹣1](x2﹣ax﹣1)≥0,则a=.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.15.已知向量)4cos,4(cos),1,4sin3(2xxnxm==.记(I)求的周期;(Ⅱ)在ABC中,角A、B、C的对边分别是a、b、c,且满足(2a—c)B=b,若,试判断ABC的形状.16.在一次对某班42名学生参加课外篮球、排球兴趣小组(每人参加且只参加一个兴趣小组)情况调查中,经统计得到如下2×2列联表:(单位:人)篮球排球总计男同学16 6 22女同学8 12 20总计24 18 42(Ⅰ)据此判断是否有95%的把握认为参加“篮球小组”或“排球小组”与性别有关? (Ⅱ)在统计结果中,如果不考虑性别因素,按分层抽样的方法从两个兴趣小组中随机抽取7名同学进行座谈.已知甲、乙、丙三人都参加“排球小组”. ①求在甲被抽中的条件下,乙丙也都被抽中的概率;②设乙、丙两人中被抽中的人数为X ,求X 的分布列及数学期望E(X). 下面临界值表供参考:0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828参考公式:2()()()()()n ad bc K a b c d a c b d -=++++命题意图:考查分类变量的独立性检验,条件概率,随机变量的分布列、数学期望等,中等题.17.已知正四棱柱中,. (Ⅰ)求证:;(Ⅱ)求二面角的余弦值;(Ⅲ)在线段上是否存在点,使得平面平面,若存在,求出的值;若不存在,请说明理由.18.已知椭圆的左右焦点分别为,点为短轴的一个端点,. (Ⅰ)求椭圆的方程;(Ⅱ)如图,过右焦点,且斜率为的直线与椭圆相交于两点,为椭圆的右顶点,直线分别交直线于点,线段的中点为,记直线的斜率为. 求证: 为定值.19.已知数列的各项均为正数,记,,342(),1,2,n C n a a a n +=+++= .(Ⅰ)若,且对任意,三个数组成等差数列,求数列的通项公式.(Ⅱ)证明:数列是公比为的等比数列的充分必要条件是:对任意,三个数组成公比为的等比数列.20.已知函数().(Ⅰ)当时,求的图象在处的切线方程;(Ⅱ)若函数在上有两个零点,求实数的取值范围;(Ⅲ)若函数的图象与轴有两个不同的交点,且, 求证:(其中是的导函数).xx北京市高考压轴卷数学理word版参考答案1.【答案】D【解析】1()1,2,1,12xx xi yi x yi=-=-∴==+故选D.2.【答案】B【解析】∵,∴函数在R上是减函数且是奇函数,∵,∴,∴,∴,∴,同理:,,∴.3.【答案】A【解析】该几何体是一个圆柱与一个长方体的组成,其中重叠了一部分,所以该几何体的体积为52213422πππ⨯⨯+-=+.故选A.4.【答案】A.【解析】5.【答案】C【解析】①若m⊥n,m⊥α,则n可能在平面α内,故①错误②∵m⊥α,m∥n,∴n⊥α,又∵n⊥β,∴α∥β,故②正确③过直线m作平面γ交平面β与直线c,∵m、n是两条异面直线,∴设n∩c=O,∵m∥β,mγ,γ∩β=c∴m∥c,∵mα,cα,∴c∥α,∵nβ,cβ,n∩c=O,c∥α,n∥α∴α∥β;故③正确④由面面垂直的性质定理:∵α⊥β,α∩β=m,nβ,n⊥m,∴n⊥α.故④正确故正确命题有三个,故选C6.【答案】C.【解析】由,得:,即,令,则当时,,即在是减函数,,,,在是减函数,所以由得,,即,故选7.【答案】C.【解析】设P(m,n ),=(﹣c﹣m,﹣n)•(c﹣m,﹣n)=m2﹣c2+n2,∴m2+n2=2c2,n2=2c2﹣m2①.把P(m,n )代入椭圆得b2m2+a2n2=a2b2②,把①代入②得m2=≥0,∴a2b2≤2a2c2,b2≤2c2,a2﹣c2≤2c2,∴≥.又m2≤a2,∴≤a2,∴≤0,a2﹣2c2≥0,∴≤.综上,≤≤,故选C.8.【答案】A.【解析】由f(1+x)=f(1﹣x)可得函数f(x)的图象关于x=1对称,方程在区间[﹣3,3]根的个数等价于f(x)与y=图象的交点的个数,而函数y=图象可看作y=的图象向下平移1个单位得到,作出它们的图象如图:可得两函数的图象有5个交点,故选A【解析】①若a-3=-3,则a=0,此时:}1,1,3{},3,1,0{--=-=B A ,,与题意不符,舍 ②若2a-1=-3,则a=-1,此时: }2,4,3{},3,1,0{--=-=B A ,,a=-1 ③若a2+1=-3,则a 不存在 综上可知:a=-1 10. 【答案】20.【解析】当箭头指向①时,计算S 和i 如下. i =1,S =0,S =1; i =2,S =0,S =2; i =3,S =0,S =3; i =4,S =0,S =4; i =5,S =0,S =5; i =6结束. ∴S=m =5.当箭头指向②时,计算S 和i 如下. i =1,S =0, S =1; i =2,S =3; i =3,S =6; i =4,S =10; i =5,S =15; i =6结束. ∴S=n =15. ∴m+n =20. 11. 【答案】44【解析】由83456786520S S a a a a a a -=++++==,解得,又由611111611211()114422a a a S a ⨯+====【解析】展开式通项公式为T r+1==若为有理项时,则为整数,∴r=0、6、12,故展开式中有理项共有3项, 故答案为:3 13.【答案】4.【解析】设过坐标原点的一条直线方程为,因为与函数的图象交于P 、Q 两点,所以,且联列解得22,2,,2P k Q k k k ⎛⎫⎛⎫-- ⎪ ⎪ ⎪ ⎪⎝⎝,所以()222122284PQ kk k k ⎛⎫⎛⎫=+=+≥ ⎪ ⎪ ⎪⎝⎭⎝⎭14. 【答案】【解析】(1)a=1时,代入题中不等式明显不成立.(2)a ≠1,构造函数y 1=(a ﹣1)x ﹣1,y 2=x 2﹣ax ﹣1,它们都过定点P (0,﹣1). 考查函数y 1=(a ﹣1)x ﹣1:令y=0,得M (,0), ∴a >1;考查函数y 2=x 2﹣ax ﹣1,显然过点M (,0),代入得:,解之得:a=,或a=0(舍去). 故答案为:15. 【解析】2311()3cos cos cos 4442222xx x x x f x +=++ (I )(Ⅱ 根据正弦定理知:()2cos cos (2sin sin )cos sin cos a c B b C A C B B C -=⇒-=12sin cos sin()sin cos 23A B B C A B B π⇒=+=⇒=⇒= ∵ ∴ 113sin 262263A A πππ+⎛⎫+++= ⎪⎝⎭或或而,所以,因此ABC 为等边三角形.……………12分 16. 【解析】(Ⅰ)由表中数据得K 2的观测值k 42×(16×12-8×6)224×18×20×2225255≈4.582>3.841. ……2分所以,据此统计有95%的把握认为参加“篮球小组”或“排球小组”与性别有关.……4分 (Ⅱ)①由题可知在“排球小组”的18位同学中,要选取3位同学. 方法一:令事件A 为“甲被抽到”;事件B 为“乙丙被抽到”,则 P(A∩B),P(A).所以P(B|A)P(A∩B )P(A)217×16 1136. ……7分方法二:令事件C 为“在甲被抽到的条件下,乙丙也被抽到”, 则P(C)217×161136.②由题知X 的可能值为0,1,2.依题意P(X0)3551;P(X1)517;P(X2)151.从而X 的分布列为……10分 于是E(X)0×3551+1×517+2×151175113. ……12分17. 【解析】证明:(Ⅰ)因为为正四棱柱,所以平面,且为正方形. ………1分 因为平面,所以. ………2分 因为,所以平面. ………3分因为平面,所以. ………4分 (Ⅱ) 如图,以为原点建立空间直角坐标系.则11(0,0,0),(2,0,0),(2,2,0),(0,2,0),(2,0,4),(2,2,4),D A B C A B………5分所以111(2,0,0),(0,2,4)D A DC ==-. 设平面的法向量. 所以 .即……6分 令,则. 所以.由(Ⅰ)可知平面的法向量为.……7分所以10cos ,5522DB <>==⋅n . ……8分 因为二面角为钝二面角,所以二面角的余弦值为. ………9分 (Ⅲ)设为线段上一点,且.因为2221222(,2,),(,2,4)CP x y z PC x y z =-=---.所以222222(,2,)(,2,4)x y z x y z λ-=---. ………10分 即.所以. ………11分 设平面的法向量. 因为4(0,2,),(2,2,0)1DP DB λλ==+,所以 .即3333420,1220y z x y λλ⎧+=⎪+⎨⎪+=⎩. ………12分 令,则.所以. ………13分若平面平面,则. 即,解得.所以当时,平面平面. ………14分18. 【解析】(Ⅰ)由条件…………2分故所求椭圆方程为. …………4分 (Ⅱ)设过点的直线方程为:. …………5分由22(1),143y k x x y =-⎧⎪⎨+=⎪⎩可得:01248)34(2222=-+-+k x k x k …………6分因为点在椭圆内,所以直线和椭圆都相交,即恒成立. 设点,则34124,34822212221+-=+=+k k x x k k x x . …………8分因为直线的方程为:,直线的方程为:, ………9分 令,可得,,所以点的坐标. ………10分直线的斜率为12121()0222'31y y x x k +---=-122112121212()42()4x y x y y y x x x x +-+=⋅-++ 1212121223()4142()4kx x k x x k x x x x -++=⋅-++ …………12分 2222222241282341434341284244343k k k k k k k k k k k -⋅-⋅+++=⋅--⋅+++所以为定值. …………13分19. 【解析】 (Ⅰ) 因为对任意,三个数是等差数列,所以()()()()B n A n C n B n -=-. ………1分 所以, ………2分 即. ………3分所以数列是首项为1,公差为4的等差数列. ………4分 所以1(1)443n a n n =+-⨯=-. ………5分 (Ⅱ)(1)充分性:若对于任意,三个数组成公比为的等比数列,则()(),()()B n qA n C n qB n ==. ………6分所以[]()()()(),C n B n q B n A n -=-得即. ………7分因为当时,由可得, ………8分所以. 因为,所以.即数列是首项为,公比为的等比数列, ………9分 (2)必要性:若数列是公比为的等比数列,则对任意,有 . ………10分 因为,所以均大于.于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ ………11分 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++ ………12分即==,所以三个数组成公比为的等比数列.………13分综上所述,数列是公比为的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数组成公比为的等比数列. ………14分20. 【解析】(Ⅰ)当时,,,切点坐标为,切线的斜率,则切线方程为,即. ···························································································· 2分(Ⅱ),则22(1)(1)()2x x g x x xx-+-'=-=,∵,故时,.当时,;当时,.故在处取得极大值. ··················································································································· 4分 又,,,则,∴在上的最小值是. ··················································································································· 6分 在上有两个零点的条件是解得,∴实数的取值范围是. ··············································································································· 8分(Ⅲ)∵的图象与轴交于两个不同的点, ∴方程的两个根为,则两式相减得1212122(ln ln )()x x a x x x x -=+--.又,,则1212124()()2x x f x x a x x +'=-+++. 下证(*),即证明,,∵,∴,即证明在上恒成立.·································································································· 10分∵22222(1)2(1)114(1)()(1)(1)(1)t t t u t t t tt t t -+---'=+=-=+++,又,∴, ∴在上是增函数,则,从而知, 故(*)式<0,即成立………….12分。

高考数学压轴题精选100题汇总(含答案)

高考数学压轴题精选100题汇总(含答案)

7. 已知动圆过定点 P(1,0),且与定直线 L:x=-1 相切,点 C 在 l 上. (1)求动圆圆心的轨迹 M 的方 程; (2)设过点 P,且斜率为 3 的直线与曲线 M 相交于 A, B 两点. (i)问:△ABC 能否为正三角形?若能,求点 C 的坐标;若不能,说明理由 (ii)当△ABC 为钝角三角形时,求这种点 C 的纵坐标的取值范围.
1
1
n 1 1
(Ⅱ)已知各项不为零的数列an 满足 4Sn f ( ) 1 ,求证: ln

an
an1
n
an
(Ⅲ)设 bn 1 , Tn 为数列bn 的前 n 项和,求证: T2008 1 ln 2008 T2007 .
ba b a
2
(1)求椭圆的方程;
(2)若直线 AB 过椭圆的焦点 F(0,c),(c 为半焦距),求直线 AB 的斜率 k 的值;
(3)试问:△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.
5.已知数列{an}中各项为: 12、1122、111222、……、111 22 2 ……
n
T 2n 1 .
n
3
26. 对于函数 f (x) ,若存在 x0 R ,使 f (x0 ) x0 成立,则称 x0 为 f (x) 的不动点.如果函数
f (x) x2 a (b, c N*) 有且仅有两个不动点 0 、 2 ,且 f (2) 1 .
bx c
2
(Ⅰ)试求函数 f (x) 的单调区间;
a2 a3
an1 3
14.已知函数gx a2 x3 a x 2 cxa 0,
32
(I)当a 1 时,若函数 gx在区间1,1上是增函数,求实数c的取值范围;

全国卷Ⅰ2024年高考数学压轴卷理含解析

全国卷Ⅰ2024年高考数学压轴卷理含解析

(全国卷Ⅰ)2024年高考数学压轴卷 理(含解析)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合402x A x x ⎧-⎫=∈≥⎨⎬+⎩⎭Z,1244x B x ⎧⎫=≤≤⎨⎬⎩⎭,则A B =( )A .{}12 x x -≤≤B .{}1,0,1,2-C .{}2,1,0,1,2--D .{}0,1,22.已知a 是实数,i1ia +-是纯虚数,则a 等于( ) A.B .1-CD .13.“0a ≤”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件4.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点到渐近线的距离等于实轴长,则此双曲线的离心率为( )ABCD5.若221m n >>,则( ) A .11m n> B .1122log log m n >C .()ln 0m n ->D .1m n -π>6.已知平面对量a ,b,满意(=a ,3=b ,()2⊥-a a b ,则-=a b ( ) A .2B .3C .4D .67.执行右边的程序框图,输出的2018ln =S ,则m 的值为( ) A .2024 B .2024 C .2024D .20248.据统计,连续熬夜48小时诱发心脏病的概率为0055.,连续熬夜72小时诱发心脏病的概率为019.,现有一人已连续熬夜48小时未诱发心脏病,则他还能接着连续熬夜24小时不诱发心脏病的概率为( )A .67B .335C .1135D .019.9.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+ 10.将()2sin22cos21f x x x =-+的图像向左平移π4个单位,再向下平移1个单位,得到函数()y g x =的图像,则下列关于函数()y g x =的说法错误的是( )A .函数()y g x =的最小正周期是πB .函数()y g x =的一条对称轴是π8x = C .函数()y g x =的一个零点是3π8D .函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上单调递减11.焦点为F 的抛物线2:8C y x =的准线与x 轴交于点A ,点M 在抛物线C 上,则当MA MF取得最大值时,直线M A 的方程为( ) A .2y x =+或2y x =-- B .2y x =+ C .22y x =+或22y x =-+D .22y x =-+12.定义在R 上的函数()f x 满意()()22f x f x +=,且当[]2,4x ∈时,()224,232,34x x x f x x x x⎧-+≤≤⎪=⎨+<≤⎪⎩,()1g x ax =+,对[]12,0x ∀∈-,[]22,1x ∃∈-使得()()21g x f x =,则实数a 的取值范围为( )A .11,,88⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭ B .11,00,48⎡⎫⎛⎤-⎪ ⎢⎥⎣⎭⎝⎦C .(]0,8D .11,,48⎛⎤-∞-+∞ ⎥⎪⎝⎦⎡⎫⎢⎣⎭二、填空题:本大题共4小题,每小题5分.13.已知1sin )1lg()(2++-+=x x x x f 若21)(=αf 则=-)(αf 14.在()311nx x x ⎛⎫++ ⎪⎝⎭的绽开式中,各项系数之和为256,则x 项的系数是__________. 15.知变量x ,y 满意条件236y xx y y x ≤+≥≥-⎧⎪⎨⎪⎩,则目标函数223x y z x y-=+的最大值为16.如图,在ABC △中,3sin23ABC ∠=,点D 在线段AC 上,且2AD DC =,433BD =,则ABC △的面积的最大值为__________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知公差不为零的等差数列{}n a 和等比数列{}n b 满意:113a b ==,24b a =, 且1a ,4a ,13a 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)令nn na cb =,求数列{}n c 的前n 项和n S . 18.(本小题满分12分)某市实行“中学生诗词大赛”,分初赛和复赛两个阶段进行,规定:初赛成果大于90分的具有复赛资格,某校有800名学生参与了初赛,全部学生的成果均在区间(]30,150内,其频率分布直方图如图.(1)求获得复赛资格的人数;(2)从初赛得分在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人参与学校座谈沟通,那么从得分在区间(]110,130与(]130,150各抽取多少人?(3)从(2)抽取的7人中,选出3人参与全市座谈沟通,设X 表示得分在区间(]130,150中参与全市座谈沟通的人数,求X 的分布列及数学期望()E X .19.(本小题满分12分)如图,底面ABCD 是边长为3的正方形,DE ⊥平面ABCD ,//AF DE ,3DE AF =,BE 与平面ABCD 所成角为60︒.(1)求证:AC ⊥平面BDE ; (2)求二面角F BE D --的余弦值.20.(本小题满分12分)过抛物线22(0)x py p =>的焦点F 的直线与抛物线在第一象限的交点为A ,与抛物线准线的交点为B ,点A 在抛物线准线上的射影为C ,若AF FB =,ABC △的面积为83(1)求抛物线的标准方程;(2)过焦点F 的直线与抛物线交于M ,N 两点,抛物线在M ,N 点处的切线分别为1l ,2l ,且1l 与2l 相交于P 点,1l 与x 轴交于Q 点,求证:2FQ l ∥.21.(本小题满分12分) 设函数()(2ln 1f x x x x =-++. (1)探究函数()f x 的单调性;(2)若0x ≥时,恒有()3f x ax ≤,试求a 的取值范围;请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,圆C 的一般方程为2246120x y x y +--+=.在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为πsin 4ρθ⎛⎫=+= ⎪⎝⎭(1)写出圆C 的参数方程和直线l 的直角坐标方程;(2)设直线l 与x 轴和y 轴的交点分别为A ,B ,P 为圆C 上的随意一点,求PA PB ⋅的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 设函数()21f x x =-.(1)设()()15f x f x ++<的解集为A ,求集合A ;(2)已知m 为(1)中集合A 中的最大整数,且a b c m ++=(其中a ,b ,c 为正实数),求证:1118a b ca b c---⋅⋅≥.2024全国卷Ⅰ高考压轴卷数学理科答案解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B【解析】集合{}{}40241,0,1,2,3,42x A x x x x ⎧-⎫=∈≥=∈-<≤=-⎨⎬+⎩⎭ZZ ,{}14224B x x x x ⎧⎫=≤≤=-≤≤⎨⎬⎩⎭,则{}1,0,1,2AB =-,故选B .2.【答案】D 【解析】i 1i a +-是纯虚数,i 1+(+1)i=1i 2a a a +--,则要求实部为0,即1a =.故选D . 3.【答案】C .【解析】当0a =时,()|(1)|||f x ax x x =-=在区间(0,)+∞上单调递增;当0a <时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上单调递增,如图1-7(a)所示;当0a >时,结合函数2()|(1)|||f x ax x ax x =-=-的图像知函数在(0,)+∞上先增后减再增,不符合条件,如图1-7(b)所示.所以要使函数()|(1)|f x ax x =-在(0,)+∞上单调递增,只需0a ≥,即“0a ≥”是“函数()|(1)|f x ax x =-在区间(0,)+∞内单调递增”的充要条件.故选C.4.【答案】C【解析】由题意可设双曲线C 的右焦点(),0F c ,渐进线的方程为by x a=±,可得2d b a ===,可得c =,可得离心率ce a=C .5.【答案】D【解析】因为221m n >>,所以由指数函数的单调性可得0m n >>, 因为0m n >>,所以可解除选项A ,B ;32m =,1n =时,可解除选项C , 由指数函数的性质可推断1m n -π>正确,故选D . 6.【答案】B【解析】由题意可得:2=a ,且:()20⋅-=a a b ,即220-⋅=a a b ,420-⋅=a b ,2⋅=a b ,由平面对量模的计算公式可得:3-=a b .故选B .7.【答案】B【解析】第一次循环,2,2ln ==i S 其次次循环,3,3ln ln 2ln 12ln 3232==+=+=⎰i x dx xS 第三次循环,4,4ln ln 2ln 13ln 4343==+=+=⎰i x dx xS 第四次循环,5,5ln ln 4ln 14ln 5454==+=+=⎰i x dx xS ……推理可得m=2024,故选B .8.【答案】A【解析】设事务A 为48h 发病,事务B 为72h 发病,由题意可知:()0055P A =.,()019P B =.,则()0945P A =.,()081P B =., 由条件概率公式可得:()()()()()0816|09457P AB P B P B A P A P A ====...故选A . 9.【答案】C【解析】视察三视图可知,几何体是一个圆锥的14与三棱锥的组合体,其中圆锥的底面半径为1,高为1.三棱锥的底面是两直角边分别为1,2的直角三角形,高为1.则几何体的体积21111π1π111213432123V =⨯⨯⨯⨯+⨯⨯⨯⨯=+.故本题答案选C .10.【答案】D【解析】由题意可知:()2sin22cos212sin 4π21f x x x x ⎛⎫=-+=-+ ⎪⎝⎭,图像向左平移π4个单位,再向下平移1个单位的函数解析式为: ()ππ2sin 2112sin 244π4g x x x ⎡⎤⎛⎫⎛⎫=+-+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.则函数()g x 的最小正周期为2ππ2T ==,A 选项说法正确; 当π8x =时,22ππ4x +=,函数()y g x =的一条对称轴是π8x =,B 选项说法正确; 当3π8x =时,2π4πx +=,函数()y g x =的一个零点是3π8,C 选项说法正确; 若5π,128πx ⎡⎤∈⎢⎥⎣⎦,则5π3π2,4122πx ⎡⎤+∈⎢⎥⎣⎦,函数()y g x =在区间5π,128π⎡⎤⎢⎥⎣⎦上不单调,D 选项说法错误;故选D . 11.【答案】A 【解析】过M 作MP 与准线垂直,垂足为P ,则11cos cos MA MA MFMPAMP MAF ===∠∠,则当MA MF取得最大值时,M AF ∠必需取得最大值,此时直线AM 与抛物线相切,可设切线方程为()2y k x =+与28y x =联立,消去y 得28160ky y k -+=,所以264640k ∆=-=,得1k =±.则直线方程为2y x =+或2y x =--.故本题答案选A .12.【答案】D【解析】因为()f x 在[]2,3上单调递减,在(]3,4上单调递增,所以()f x 在[]2,3上的值域是[]3,4,在(]3,4上的值域是119,32⎛⎤ ⎥⎝⎦,所以函数()f x 在[]2,4上的值域是93,2⎡⎤⎢⎥⎣⎦,因为()()22f x f x +=,所以()()()112424f x f x f x =+=+, 所以()f x 在[]2,0-上的值域是39,48⎡⎤⎢⎥⎣⎦,当0a >时,()g x 为增函数,()g x 在[]2,1-上的值域为[]21,1a a -++, 所以3214918a a ≥-+≤+⎧⎪⎪⎨⎪⎪⎩,解得18a ≥;当0a <时,()g x 为减函数,()g x 在[]2,1-上的值域为[]1,21a a +-+, 所以3149218a a ≥+⎧⎪≤+⎨-⎪⎪⎪⎩,解得14a ≤-,当0a =时,()g x 为常函数,值域为{}1,不符合题意,综上,a 的范围是11,,48⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭,故选D . 二、填空题:本大题共4小题,每小题5分. 13. 【答案】23【解析】解析:因为1sin )1lg()(2++-+=x x x x f 的定义域为R,关于原点对称,21sin )1lg(1sin )1lg()()(22=+-++++++-+=-+)(x x x x x x f f αα故221)(=+-αf 则=-)(αf 2314.【答案】7【解析】令1x =可得各项系数和:()31112561n⎛+⨯= ⎝,据此可得:7n =,73x x ⎛+ ⎝绽开式的通项公式为:()721732177C C r r rr r r T xx x --+==, 令72102r -=可得:6r =,令72112r -=可得:407r =,不是整数解,据此可得:x 项的系数是67C 7=. 15.3【解析】作出236y x x y y x ≤+≥≥-⎧⎪⎨⎪⎩,表示的可行域,如图变形目标函数,()()()2222223,1,32cos 31x y x y z x yx y θ-⋅-===++-⋅+,其中θ为向量)3,1=-a 与(),x y =b 的夹角,由图可知,()2,0=b 时θ有最小值6π, (),x y =b 在直线y x =上时,θ有最大值56412π+=ππ,即5612θπ≤≤π,5612θπ≤≤π, 目标函数223x y z x y-=+3C .16.【答案】32 【解析】由3sin2ABC ∠=可得:6cos 2ABC ∠=, 则22sin 2sin cos 22ABC ABC ABC ∠∠∠==. 由32sin2ABC ∠<452ABC ∠<︒,则90ABC ∠<︒,由同角三角函数基本关系可知:1cos 3ABC ∠=. 设AB x =,BC y =,()30,0,0AC z x y z =>>>,在ABD △中由余弦定理可得:()22162cos z x BDA +-∠=,在CBD △中由余弦定理可得:2216cos z y BDC +-∠=由于180BDA BDC ∠+∠=︒,故cos cos BDA BDC ∠=-∠,()222216162z x z y +-+-=22216620z x y +--=.①在ABC △中,由余弦定理可知:()2221233x y xy z +-⨯=,则:2222246339z x y xy =+-,代入①式整理计算可得:2214416339x y xy ++=,由均值不等式的结论可得:4161699xy xy ≥=,故9xy ≤,当且仅当x =y =时等号成立,据此可知ABC △面积的最大值为:()max max 11sin 922S AB BC ABC =⨯⨯⨯∠=⨯= 三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【答案】(1)()32121n a n n =+-=+,3n n b =;(2)223n nn S +=-. 【解析】(1)设{}n a 的公差为d ,则由已知得21134a a a =,即()()2331233d d +=+,解之得:2d =或0d =(舍),所以()32121n a n n =+-=+; 因为249b a ==,所以{}n b 的公比3q =,所以3n n b =. (2)由(1)可知213n nn c +=, 所以23357213333n n n S +=++++...,21572133333n n n S -+=++++...,所以12111211112121243323234133333313n n n n n n n n n S --⎛⎫⋅- ⎪+++⎛⎫⎝⎭=++++-=+-=- ⎪⎝⎭-...,所以223n n n S +=-.18.(本小题满分12分)【答案】(1)520人;(2)5人,2人;(3)()67E X =.【解析】(1)由题意知[)90,110之间的频率为:()1200.00250.0050.007520.01250.3-⨯++⨯+=,()0.30.01250.0050200.65++⨯=,获得参赛资格的人数为8000.65520⨯=人.(2)在区间(]110,130与(]130,150,0.0125:0.00505:2=,在区间(]110,150的参赛者中,利用分层抽样的方法随机抽取7人,分在区间(]110,130与(]130,150各抽取5人,2人.结果是5人,2人.(3)X 的可能取值为0,1,2,则:()305237C C 20C 7P X ===;()215237C C 41C 7P X ===;()125237C C 12C 7P X ===;故X 的分布列为:()20127777E X =⨯+⨯+⨯=.19.(本小题满分12分)【答案】(1)见解析(2(1)证明:∵DE ⊥平面ABCD ,AC ⊂平面ABCD ,∴DE AC ⊥,又∵底面ABCD 是正方形,∴AC BD ⊥.∵BD DE D =,∴AC ⊥平面BDE .(2)解:∵DA ,DC ,DE 两两垂直,∴建立如图所示的空间直角坐标系D xyz -,∵BE 与平面ABCD 所成角为60︒,即60DBE ∠=︒,∴3ED DB=, 由3AD =,可知32BD =36DE =6AF = 则(3,0,0)A ,6)F ,(0,0,36)E ,(3,3,0)B ,(0,3,0)C , ∴(0,6)BF =-,(3,0,26)EF =-.设平面BEF 的一个法向量为(,,)n x y z =,则0,0,n BF n EF ⎧⋅=⎪⎨⋅=⎪⎩即360,360,y z x z ⎧-=⎪⎨-=⎪⎩ 令6z =(4,2,6)n =. ∵AC ⊥平面BDE ,∴CA 为平面BDE 的一个法向量,∴(3,3,0)CA =-,∴||13cos ,||||3226n CA n CA n CA ⋅<>===⋅⨯ ∵二面角F BE D --为锐角,∴二面角F BE D --的余弦值为1313. 20.(本小题满分12分) 【答案】(1)24x y =;(2)证明见解析.【解析】(1)因为AF FB =,所以F 到准线的距离即为三角形ABC △的中位线的长,所以2AC p =,依据抛物线的定义AC AF =,所以24AB AC p ==,()()224223BC p p =-,1223832ABC S p =⋅⋅=△ 解得2p =,所以抛物线的标准方程为24x y =.(2)易知直线MN 的斜率存在,设直线:1MN y kx =+,设()11,M x y ,()22,N x y联立24 1x y y kx =+⎧⎪⎨⎪⎩=消去y 得2440x kx --=,得124x x =-, 24x y =,'2x y =,设()11,M x y ,()22,N x y ,111:22l y y xx +=,222:22l y y xx +=,()22212212112121121212442,22,12444p p p x x y y x x x x x x x x y x y x x x x ⎛⎫- ⎪-++⎝⎭===+⋅===---, 得P 点坐标21,12x x P +⎛⎫- ⎪⎝⎭,由111:22l y y xx +=,得1,02x Q ⎛⎫ ⎪⎝⎭, 12QF k x =-,221141222l x k x x -==⋅=-,所以2QF l k k =,即2PQ l ∥. 21.(本小题满分12分)【答案】(1)增函数;(2)1,6⎡⎫+∞⎪⎢⎣⎭;(3)见解析. 【解析】(1)函数()f x 的定义域为R .由()'10f x =≥,知()f x 是实数集R 上的增函数.(2)令()()(33ln g x f x ax x x ax =-=--,则()2131'ax g x --,令())2131h x ax =--,则()()23169169'x a ax a x ax h x ⎡⎤----==.(i )当16a ≥时,()'0h x ≤,从而()h x 是[)0,+∞上的减函数, 留意到()00h =,则0x ≥时,()0h x ≤,所以()'0g x ≤,进而()g x 是[)0,+∞上的减函数,留意到()00g =,则0x ≥时,()0g x ≤时,即()3f x ax ≤.(ii )当106a <<时,在⎡⎢⎣上,总有()'0h x >,从而知,当x ⎡∈⎢⎣⎭时,()3f x ax >; (iii )当0a ≤时,()'0h x >,同理可知()3f x ax >,综上,所求a 的取值范围是1,6⎡⎫+∞⎪⎢⎣⎭. 请考生在22、23两题中任选一题作答,假如多做,则按所做的第一题记分.22.(本小题满分10分)【答案】(1)2cos 3sin x y θθ+=+⎧⎨⎩=,20x y +-=;(2)44PA PB -⋅≤+ 【解析】(1)圆C 的参数方程为2cos 3sin x y θθ+=+⎧⎨⎩=(θ为参数). 直线l 的直角坐标方程为20x y +-=.(2)由直线l 的方程20x y +-=可得点()2,0A ,点()0,2B . 设点(),P x y ,则()()222,,2222412PA PB x y x y x y x y x y ⋅=--⋅--=+--=+-.由(1)知2cos 3sin x y θθ+=+⎧⎨⎩=,则()4sin 2cos 44PA PB θθθϕ⋅=++=++.因为θ∈R ,所以44PA PB -≤⋅≤+23.(本小题满分10分)【答案】(1)55|44A x x ⎧⎫=-<<⎨⎬⎩⎭;(2)见解析.【解析】(1)()()15f x f x ++<即21215x x -++<, 当12x <-时,不等式化为12215x x ---<,∴5142x -<<-; 当1122x -≤≤时,不等式化为12215x x -++<,不等式恒成立; 当12x >时,不等式化为21215x x -++<,∴1524x <<. 综上,集合55|44A x x ⎧⎫=-<<⎨⎬⎩⎭.(2)由(1)知1m =,则1a b c ++=.则1a b c a a -+=1b b -≥1c c -≥则1118a b c a b c ---⋅⋅≥=,即8M ≥.。

高考数学压轴题及答案汇总

高考数学压轴题及答案汇总

高考数学压轴题及答案汇总1500字以下是一些高考数学压轴题及答案的汇总,共1500字。

1. 题目:已知直角三角形的斜边长为10cm,一条直角边长为6cm,求另一条直角边的长度。

答案:使用勾股定理,可得另一条直角边长为8cm。

2. 题目:已知函数f(x) = 2x^2 + 3x - 5,求f(-1)的值。

答案:将x替换为-1,计算f(-1) = 2(-1)^2 + 3(-1) - 5,最终结果为-10。

3. 题目:已知正方形ABCD的边长为8cm,E是BC的中点,连接AE并延长至F,求BF的长度。

答案:由于E是BC的中点,所以BE的长度为4cm。

注意到三角形AEF是等腰直角三角形,所以AE = AF。

又有AB = AE + EB,所以AE = AB - EB = 8 - 4 = 4cm。

根据勾股定理,可得BF的长度为4√2 cm。

4. 题目:若a是一个大于1的正整数,且满足a^2 - 3a + 2 = 0,求a的值。

答案:将方程重新组织,得到a^2 - 2a - a + 2 = 0,进一步化简为a(a - 2) - 1(a - 2) = 0。

根据因式分解,可得(a - 2)(a - 1) = 0。

因此,a的值可以是2或1。

5. 题目:已知点A(1,2)和B(4,5),求线段AB的中点坐标。

答案:线段AB的中点坐标可以通过求AB的横坐标和纵坐标的平均值来得到。

横坐标的平均值为(1 + 4) / 2 = 2.5,纵坐标的平均值为(2 + 5) / 2 = 3.5。

因此,线段AB 的中点坐标为(2.5, 3.5)。

6. 题目:已知等差数列的首项为a,公差为d,若其第5项为11,第8项为20,求a 和d的值。

答案:设等差数列的第1项为a,公差为d,则第5项可以表示为a + 4d,第8项可以表示为a + 7d。

根据已知条件,可列出以下两个方程:a + 4d = 11,a + 7d = 20。

解这个方程组,可得a = 1,d = 2。

2023高考压轴卷——数学(理)(全国乙卷)含解析

2023高考压轴卷——数学(理)(全国乙卷)含解析

KS5U2023全国乙卷高考压轴卷数学试题(理科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合1282x A x ⎧⎫=<<⎨⎬⎩⎭∣,{}1,0,1,2B =-,则A B = ()A.{}2 B.{}1,0- C.{}0,1,2 D.{}1,0,1,2-2.设命题:p x ∀∈R ,e 1x x ≥+,则p ⌝是()A.x ∀∈R ,e 1≤+x x B.x ∀∈R ,e 1x x <+C.x ∃∈R ,e 1≤+x x D.x ∃∈R ,e 1x x <+3.已知复数z 满足()1i 2i z -=-,则复数z 的虚部为()A.12B.1i 2C.32D.3i 24.已知△ABC 中,D 为BC 边上一点,且13BD BC =,则AD =()A.1233AC AB +B.2133AC AB +C.1344AC AB +D.3144AC AB +5.已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为()A.6B.3π3C.D.π36.如图为甲,乙两位同学在5次数学测试中成绩的茎叶图,已知两位同学的平均成绩相等,则甲同学成绩的方差为()A.4B.2C.D.7.已知30,10,0,0,x y x y x y +-≤⎧⎪-+≥⎨⎪≥≥⎩则x +2y 的最大值为()A.2B.3C.5D.68.函数()4ee x xf x +-=-(e 是自然对数的底数)的图象关于()A.直线e x =-对称B.点(e,0)-对称C.直线2x =-对称D.点(2,0)-对称9.已知数列{}n a 的前n 项和122n n S +=-,若()*5,p q p q +=∈N ,则p q a a =()A.8B.16C.32D.6410.已知点(),P x y 到点()1F 和点)2F 的距离之和为4,则xy ()A.有最大值1B.有最大值4C.有最小值1D.有最小值4-11.如图,在正方体1111ABCD A B C D -中,点M ,N 分别是1A D ,1D B 的中点,则下述结论中正确的个数为()①MN ∥平面ABCD ;②平面1A ND ⊥平面1D MB ;③直线MN 与11B D 所成的角为45︒;④直线1D B 与平面1A ND 所成的角为45︒.A.1B.2C.3D.412.在数学中,布劳威尔不动点定理是拓扑学里一个非常重要的不动点定理,它可应用到有限维空间,并且是构成一般不动点定理的基石.简单地讲就是对于满足一定条件的连续函数()f x ,存在点0x ,使得()00f x x =,那么我们称该函数为“不动点”函数.若函数()()e ln xf x x a x =-为“不动点”函数,则实数a 的取值范围是()A.(],0-∞ B.1,e⎛⎤-∞ ⎥⎝⎦C.(],1-∞ D.(],e -∞二、填空题:本题共4小题,每小题5分,共20分.13.已知函数()()2sin 0,08f x A x A πωω⎛⎫=+>> ⎪⎝⎭的图象关于点,22π⎛⎫⎪⎝⎭中心对称,其最小正周期为T ,且322T ππ<<,则ω的值为______.14.已知点()1,0A ,()2,2B ,C 为y 轴上一点,若π4BAC ∠=,则⋅= AB AC ______.15.3D 打印是快速成型技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层打印的方式来构造物体的技术.如图所示的塔筒为3D 线的一部分围绕其旋转轴逐层旋转打印得到的,已知该塔筒(数据均以外壁即塔筒外侧表面计算)的上底直径为6cm ,下底直径为9cm ,高为9cm ,则喉部(最细处)的直径为______cm .16.在数列{}n a 中,11a =,()()*212nn n a a n ++-=∈N .记n S 是数列{}n a 的前n 项和,则4n S =______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答.(一)必考题:共60分.17.在ABC ∆中,角A ,B ,C 所对的边分别为a ,b ,c ,()sin 2cos cos 02B C B C π⎛⎫+++= ⎪⎝⎭,(1)求证:B C =;(2)若3cos 5A =,ABC ∆的外接圆面积为254π,求ABC ∆的周长.18.研究表明,温度的突然变化会引起机体产生呼吸道上皮组织的生理不良反应,从而导致呼吸系统疾病的发生或恶化.某中学数学建模社团成员欲研究昼夜温差大小与该校高三学生患感冒人数多少之间的关系,他们记录了某周连续六天的温差,并到校医务室查阅了这六天中每天高三学生新增患感冒而就诊的人数,得到资料如下:日期第一天第二天第三天第四天第五天第六天昼夜温差x(℃)47891412新增就诊人数y(位)1y2y3y4y5y6y参考数据:6213160iiy==∑,()216256iiy y=-=∑.(1)已知第一天新增患感冒而就诊的学生中有7位女生,从第一天新增的患感冒而就诊的学生中随机抽取3位,若抽取的3人中至少有一位男生的概率为1724,求1y的值;(2)已知两个变量x与y之间的样本相关系数1516r=,请用最小二乘法求出y关于x的经验回归方程ˆˆˆy bx a=+,据此估计昼夜温差为15℃时,该校新增患感冒的学生数(结果保留整数).参考公式:()()()121ni iiniix x y ybx x==--=-∑∑,()()ni ix x y yr--=∑.19.如图,△ABC是正三角形,在等腰梯形ABEF中,//AB EF,12AF EF BE AB===.平面ABC⊥平面ABEF,M,N分别是AF,CE的中点,4CE=.(1)证明://MN平面ABC;(2)求二面角--M AB N的余弦值.20.已知函数()ln e 2e e xf x a x x a =+-+.(1)当e a =时,求曲线() y f x =在点()()1,1f 处的切线方程;(2)若a 为整数,当1x ≥时,()0f x ≥,求a 的最小值.21.已知椭圆()2222:10+x y C a b a b=>>的左焦点为F ,右顶点为A ,离心率为12,M 为椭圆C 上一动点,FAM△面积的最大值为332.(1)求椭圆C 的标准方程;(2)过点M 的直线:1l y kx =+与椭圆C 的另一个交点为N ,P 为线段MN 的中点,射线OP 与椭圆交于点D .点Q 为直线OP 上一动点,且2OP OQ OD ⋅=,求证:点Q 在定直线上.(二)选考题:共10分.请考生在22~23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),()2,4为曲线C 上一点的坐标.(1)将曲线C 的参数方程化为普通方程;(2)过点O 任意作两条相互垂直的射线分别与曲线C 交于点A ,B ,以直线OA 的斜率k 为参数,求线段AB 的中点M 的轨迹的参数方程,并化为普通方程.[选修4—5:不等式选讲](10分)23.已知函数()21f x x a x =++-.(1)当1a =时,求()f x 的最小值;(2)若0a >,0b >时,对任意[]1,2x ∈使得不等式()21f x x b >-+恒成立,证明:2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭.【KS5U 答案1】C【分析】由指数函数的单调性得{}13A x x =-<<,后由交集定义可得KS5U 答案.【KS5U 解析】13128222132x x x -<<⇔<<⇔<-<<,则{}13A x x =-<<,又{}1,0,1,2B =-,则A B = {}0,1,2.故选:C【KS5U 答案2】D【分析】先仔细审题,抓住题目中的关键信息之后再动,原题让我们选择一个全称命题的否定,任意和存在是一对,要注意互相变化,大于等于的否定是小于.【KS5U 解析】x ∀∈R ,e 1x x ≥+的否定是x ∃∈R ,e 1x x <+.故选:D 【KS5U 答案3】A【分析】根据复数的除法运算可求得31i 22z =+,即可求得结果.【KS5U 解析】由()1i 2i z -=-可得()()()()222i 1i 2i 22i i i 31i 1i 1i 1i 1i 22z -+-+--====+--+-,所以复数z 的虚部为12.故选:A 【KS5U 答案4】A【分析】利用向量的线性运算即可求得.【KS5U 解析】在△ABC 中,BC AC AB=-.因为13BD BC =,所以()1133B AC AB D BC ==- .所以()112333AD AB BD AB A A C AB C AB =++-==+.故选:A 【KS5U 答案5】B【分析】由侧面展开图求得母线长后求得圆锥的高,再由体积公式计算.【KS5U 解析】设圆锥母线长为l ,高为h ,底面半径为1r =,则由2π1πl ⨯=得2l =,所以h ==所以2211ππ1π333V r h ==⨯=.故选:B .【KS5U 答案6】B【分析】由平均数相等求出m ,再求方差.【KS5U 解析】由80290392180290329189055m ⨯+⨯++++⨯+⨯++++==可得,8m =,即甲同学成绩的方差为()22221211225+++=,故选:B 【KS5U 答案7】C【分析】作出可行域,根据简单线性规划求解即可.【KS5U 解析】作出可行域如图:由2z x y =+可得:122zy x =-+,平移直线12y x =-经过点A 时,z 有最大值,由3010x y x y +-=⎧⎨-+=⎩解得(1,2)A ,max 145z =+=.故选:C【KS5U 答案8】D【分析】根据对称性进行检验.【KS5U 解析】由题意()()2e 2e 42e 42e 2e eee e x x x xf x -----+--++--=-=-,它与()f x 之间没有恒等关系,相加也不为0,AB 均错,而44(4)4(4)e e e e ()x x x x f x f x --+----+--=-=-=-,所以()f x 的图象关于点(2,0)-对称.故选:D .【KS5U 答案9】C【分析】当1n =时,由122n n S +=-可得1a ,当2n ≥时,1n n n a S S -=-,验证1a 是否适合可得通项公式,代入通项公式求解可得结果.【KS5U 解析】解:当1n =时,211222a S ==-=,当2n ≥时,()1122222n n n n n n a S S +-=-=---=,12a = ,符合上式,∴数列{}n a 的通项公式为:2n n a =,5222232p q q p q p a a +=⋅===,故选:C.【KS5U 答案10】A【分析】根据题意,求出点P 的轨迹方程,利用三角换元法即可求解.【KS5U 解析】因为点(),P x y 到点()1F 和点)2F 的距离之和为4,所以点P 的轨迹是以()1F ,)2F 为焦点的椭圆,且长轴长24a =,焦距21c b ==,所以点P 的轨迹方程为2214x y +=,设(2cos ,sin ),(02π)P θθθ≤≤,则[]2cos sin sin21,1xy θθθ==∈-,所以xy 有最大值1,故选:A.【KS5U 答案11】C【分析】建立空间直角坐标系,利用法向量的性质,结合空间向量夹角公式逐一判断即可.【KS5U 解析】建立如下图所示的空间直角坐标系,设该正方体的棱长为2,111(0,0,0),(2,0,2),(2,2,0),(0,0,2),(2,2,2),(1,0,1),(1,1,1)D A B D B M N ,由正方体的性质可知:1D D ⊥平面ABCD ,则平面ABCD 的法向量为1(0,0,2)DD =,(0,1,0)MN =,因为10D D MN ⋅= ,所以1D D MN ⊥ ,而MN ⊄平面ABCD ,因此MN ∥平面ABCD ,故①对;设平面1A ND 的法向量为(,,)m x y z = ,(1,1,1)DN =,1(2,0,2)DA = ,所以有1100(1,0,1)2200m DN m DN x y z m x z m DA m DA ⎧⎧⊥⋅=++=⎧⎪⎪⇒⇒⇒=-⎨⎨⎨+=⊥⋅=⎩⎪⎪⎩⎩,同理可求出平面1D MB 的法向量(1,0,1)n =,因为110m n ⋅=-= ,所以m n ⊥,因此平面1A ND ⊥平面1D MB ,故②正确;因为(0,1,0)MN =,11(2,2,0)B D =-- ,所以11cos ,2MN B D 〈〉=-,因为异面直线所成的角范围为(0,90] ,所以直线MN 与11B D 所成的角为45︒,故③正确;设直线1D B 与平面1A ND 所成的角为θ,因为1(2,2,2)D B =- ,平面1A ND 的法向量为(1,0,1)m =-,所以11162sin cos ,32D B m D B m D B mθ⋅=〈〉===≠⋅ ,所以直线1D B 与平面1A ND 所成的角不是45︒,因此④错误,一共有3个结论正确,故选:C 【KS5U 答案12】B【分析】根据题意列出关于0x 和a 的等式,然后分离参数,转化为两个函数有交点.【KS5U 解析】由题意得若函数()()e ln xf x x a x =-为不动点函数则满足()()00000e ln x f x x a x x =-=,即00ln 1x ae x =+,即00ln 1x x a e +=设()ln 1xx g x e+=,()()()()()21ln 1ln 1ln 1x x xx x x e e x x g x e e ''--+⋅-+'==设()()2111ln 1,0h x x h x x x x'=--=--<,所以()h x 在()0+∞,单调递减,且()10h =()0,1x ∈,()()0,0h x g x '>>所以()g x 在()01,上单调递增,()()()1,,0,0x h x g x ∞+<'∈<,所以()g x 在()1,+∞上单调递减,所以()1max ln111g x e e+==当()10,,ln 10,0,xx x e e ⎛⎫∈+<> ⎪⎝⎭则()0g x <,当()1,,ln 10,0,xx x e e⎛⎫∈+∞+>> ⎪⎝⎭则()0g x >所以()g x的图像为:要想00ln 1x x a e +=成立,则y a =与()g x 有交点,所以()max1a g x e≤=,故选:B 【KS5U 答案13】54【KS5U 解析】根据题意,()2sin cos 28242A A f x A x x ππωω⎛⎫⎛⎫=+=-++ ⎪ ⎪⎝⎭⎝⎭,因为图象关于点,22π⎛⎫⎪⎝⎭中心对称,分析可得22A =,所以4A =()2cos 224f x x πω⎛⎫=-++ ⎪⎝⎭,()2242k k πππωπ⨯+=+∈Z ,所以()14k k ω=+∈Z ,又因为最小正周期为T ,且322T ππ<<,所以可得23222πππω<<,则223ω<<,所以ω的值为1.【KS5U 答案14】5【分析】设(0,)C y ,利用余弦定理求C 点坐标,然后利用数量积的坐标表示求解即可.【KS5U 解析】设(0,)C y,所以AB ==AC ==,BC ==,因为π4BAC ∠=,所以由余弦定理得222π2cos 4BC AB AC AB AC =+-,即224851y y y -+=++3y =,所以(0,3)C ,所以(1,2)AB =,(1,3)AC =- ,所以1(1)235AB AC ⋅=⨯-+⨯= ,故KS5U 答案为:5【KS5U 答案15】【分析】由已知,根据题意,以最细处所在的直线为x 轴,其垂直平分线为y 轴建立平面直角坐标系,设出双曲线方程,并根据离心率表示出,a b 之间的关系,由题意底直径为6cm ,所以双曲线过点()3,m ,下底直径为9cm ,高为9cm ,所以双曲线过点9,92m ⎛⎫- ⎪⎝⎭,代入双曲线方程即可求解方程从而得到喉部(最细处)的直径.【KS5U 解析】由已知,以最细处所在的直线为x 轴,其垂直平分线为y 轴建立平面直角坐标系,设双曲线方程为()222210,0x y a b a b -=>>,由已知可得,c e a ==,且222c a b =+,所以224a b =,所以双曲线方程为222214x y a a-=,底直径为6cm ,所以双曲线过点()3,m ,下底直径为9cm ,高为9cm ,所以双曲线过点9,92m ⎛⎫-⎪⎝⎭,代入双曲线方程得:()222222914819414m a a m aa ⎧-=⎪⎪⎨⎪--=⎪⎩,解得:2m a =⎧⎪⎨=⎪⎩,所以喉部(最细处)的直径为cm.故KS5U答案为:【KS5U 答案16】242n n+【分析】根据当n 为奇数时,22n n a a +-=,当n 为偶数时,22n n a a ++=,分组求和即可.【KS5U 解析】由题知,11a =,2(1)2nn n a a ++-=,当n 为奇数时,22n n a a +-=,所以奇数项构成等差数列,首项为1,公差为2,当n 为偶数时,22n n a a ++=,所以2468......2a a a a =++==,所以4135412464(......)(......)n n n S a a a a a a a a -=+++++++++22(21)1222422n n n n n n -=⨯+⨯+⨯=+故KS5U 答案为:242n n+【KS5U 答案17】(1)见证明;(2)4.【分析】(1)由()sin 2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭,利用诱导公式、两角和与差的正弦公式化简可得sin()0B C -=,从而可得结论;(2)利用圆的面积公式可求得三角形外接圆半径52R =,利用同角三角函数的关系与正弦定理可得2sin 4a R A ==,结合(1),利用余弦定理列方程求得b c ==,从而可得结果.【KS5U 解析】(1)∵sin()2cos cos 02B C B C π⎛⎫+++=⎪⎝⎭,∴sin()2sin cos 0B C B C +-=,∴sin cos cos sin 2sin cos 0B C B C B C +-=,∴cos sin sin cos 0B C B C -=,∴sin()0B C -=.∴在ABC ∆中,B C =,(2)设ABC ∆的外接圆半径为R ,由已知得2254R ππ=,∴52R =,∵3cos 5A =,0A π<<,∴4sin 5A =,∴2sin 4a R A ==,∵BC =,∴b c =,由2222cos a b c bc A =+-⋅得2261625b b =-,解得b =,∴4a b c ++=,∴ABC ∆的周长为4.【KS5U 答案18】(1)110y =,(2)33人【分析】(1)根据题意由1373C 1C y -求解;(2)根据样本相关系数1516r =,求得()()61i i i x x y y =--∑,再利用公式求得ˆˆ,b a 即可.【小问1KS5U 解析】解:∵1373C 171C 24y -=,∴()()11176571224y y y ⨯⨯=--,∴()()111127201098y y y --==⨯⨯,∴110y =.【小问2KS5U 解析】∵6154i i x ==∑,∴9=x ,∴()62164i i x x =-=∑.∵()()()()6611581616iiiii x x y y x x y y r =----==⨯∑∑,∴()()61815i i i x x y y =--=⨯∑,∴()()()12181515ˆ648niii ni i x x y y bx x ==--⨯===-∑∑.又∵()6666222221111266256iii i i i i i y y yy y y y y ====-=-⋅+=-=∑∑∑∑,解得22y =.∴1541ˆˆ22988ay bx =-=-⨯=,∴4115ˆ88yx =+,当15x =时,4115ˆ153388y=+⨯≈,∴可以估计,昼夜温差为15℃时,该校新增患感冒的学生数为33人.【KS5U 答案19】【分析】(1)取CF 的中点D ,连接DM ,DN ,证明平面//MND 平面ABC ,原题即得证;(2)取AB 的中点O ,连接OC ,OE .求出122AF EF EB AB ====,取EF 的中点P ,连接OP ,以O 为原点,OP ,OB ,OC 所在直线分别为x ,y ,z 轴,建立直角坐标系如图所示.利用向量法求解.【小问1KS5U 解析】解:取CF 的中点D ,连接DM ,DN ,∵M ,N 分别是AF ,CE 的中点,∴//DM AC ,//DN EF ,又∵DM ⊄平面ABC ,AC ⊂平面ABC ,∴//DM 平面ABC .又//EF AB ,∴//DN AB ,同理可得,//DN 平面ABC .∵DM ⊂平面MND ,DN ⊂平面MND ,DM DN D = ,∴平面//MND 平面ABC .∵MN ⊂平面MND ,∴//MN 平面ABC.【小问2KS5U 解析】取AB 的中点O ,连接OC ,OE .由已知得//,OA EF OA EF =,∴OAFE 是平行四边形,∴//,//OE AF OE AF .∵△ABC 是正三角形,∴OC AB ⊥,∵平面ABC⊥平面ABEF ,平面ABC ⋂平面ABEF AB =,∴OC ⊥平面ABEF ,又OE ⊂平面ABEF ,∴OC OE ⊥.设12AF EF EB AB a ====,OC =.在Rt COE 中,由222OC OE CE +=,解得2a =,即122AF EF EB AB ====,取EF 的中点P ,连接OP ,则OP AB ⊥,以O 为原点,OP ,OB ,OC 所在直线分别为x ,y ,z 轴,建立直角坐标系如图所示.则()0,2,0A -,(0,0,C,)E,31,22N ⎛ ⎝,()0,2,0OA =-,1,22ON ⎛= ⎝ ,由已知易得,平面ABM的一个法向量为(0,0,OC = ,设平面ABN 的法向量为(),,n x y z = ,则0,0,OA n ON n ⎧⋅=⎪⎨⋅=⎪⎩ 即20,310,22y x y z -=⎧+=⎩取2x =,则平面ABN 的一个法向量为()2,0,1n =-,∴cos ,5OC n OC n OC n ⋅==-,∵二面角--M AB N 为锐角,∴二面角--M AB N 的余弦值为55.【KS5U 答案20】(1)2e e y =-,(2)2【分析】(1)根据导数的几何意义求出切线的斜率及切点即可求解KS5U 答案;(2)根据导函数分子部分的最小值与零比较分类讨论,分别分e a ≥、2a =、1a ≤讨论即可.【小问1KS5U 解析】当e a =时,()2eln e 2e e xf x x =+-+,所以2(1)e e f =-,又因为()ee 2e xf x x=+-,其中0x >,则在点(1,(1))f 处的切线斜率(1)0k f '==,所以切线方程为2e e y =-【小问2KS5U 解析】由题知(e 2e)()x a x f x x+-'=,其中1x ≥,设()(e 2e)x g x a x =+-,则()(1)e 2e x g x x '=+-,可知()g x '为[1,)+∞上的增函数,则()(1)0g x g ''≥=,所以()g x 为[1,)+∞上的增函数,则min ()(1)e g x g a ==-.①当e 0a -≥,即e a ≥时,()0g x ≥,即()0f x '≥,所以()f x 为[1,)+∞上的增函数,则()(1)e e>0f x f a ≥=-,由于a 为整数,可知3a ≥时,()0f x ≥恒成立,符合题意.②当2a =时,()2ln e 2e 2e xf x x x =+-+,()2(e 2e)xg x x =+-,则()g x 的最小值为min ()(1)2e<0g x g ==-,又2(2)22(e 2e)>0g =+-,由于()g x 为[1,)+∞上的增函数,则存在0(1,2)x ∈使得0()0g x =(即02e 2e x x =-),当01x x <<时,()0g x <,即()0f x '<,()f x 为减函数;当0x x >时,()0g x >,即()0f x '>,()f x 为增函数,则00000001()()2ln e 2e 2e=2(ln e 2e)x f x f x x x x x x ==+-+--+极小值,其中0(1,2)x ∈,令1()ln e 2e(1<<2)u x x x x x =--+,则22211e 1()e=<2)x x u x x x x x-++'=+-,当12x <<时,()0u x '<,()u x 在(1,2)上单调递减,则1()(2)ln 202u x u >=->,即0()()0f x f x =>极小值.所以2a =也符合题意.③当1a ≤时,min ()(1)e<0g x g a ==-,由于()g x 为(1,)+∞上的增函数,则存在实数1m >,且(1,)x m ∈,使得()0g x <,即()0f x '<,故()f x 为(1,)m 上的减函数,则当(1,)x m ∈时,()(1)(1)e 0f x f a <=-≤,故1a ≤不符合题意,舍去.综上所述,a 的最小值为2.【KS5U 答案21】【分析】(1)按照题目所给的条件即可求解;(2)作图,联立方程,将M ,N ,P ,Q ,D 的坐标用斜率k 表示出来,(3)按照向量数量积的运算规则即可.【小问1KS5U 解析】设椭圆的半焦距为c ,由椭圆的几何性质知,当点M 位于椭圆的短轴端点时,FAM △的面积取得最大值,此时1()2FAMSa cb =+,1()22a cb ∴+=,()a c b ∴+=.由离心率12c a =得2a c =,b ∴=,解得1c =,2a =,b =,∴椭圆C 的标准方程为22143x y +=;【小问2KS5U解析】由题意作下图:设()11,M x y ,()22,N x y .由221143y kx x y =+⎧⎪⎨+=⎪⎩得()2234880k x kx ++-=.∵点(0,1)在这个椭圆内部,所以0∆>,122843k x x k +=-+,122843x x k =-+,()212122286224343k y y k x x k k ∴+=++=-+=++,∴点P 的坐标为2243,4343k k k ⎛⎫- ⎪++⎝⎭当0k ≠时,直线OP 的斜率为34k -,∴直线OP 的方程为34y x k =-,即43kx y =-,将直线OP 的方程代入椭圆方程得22943Dy k =+,2221643D k x k =+,设点4,3k Q y y ⎛⎫-⎪⎝⎭,由2OP OQ OD ⋅= 得22222443169433434343k kk y y k k k k ⎛⎫-⋅-+⋅=+ ⎪++++⎝⎭,化简得()222216916943343k k y k k ++⋅=++,化简得3y =,∴点Q 在直线3y =上,当直线l 的斜率0k =时,此时(0,1)P,D ,由2OP OQ OD ⋅=得(0,3)Q ,也满足条件,∴点Q 在直线3y =上;综上,椭圆C 的标准方程为22143x y +=,点Q 在直线3y =上.【KS5U 答案22】(1)2x y =,(2)221x y =-【分析】(1)根据曲线C 的参数方程为222x pty pt=⎧⎨=⎩(t 为参数),消去参数t 求解;(2)设OA 的斜率为k ,方程为y kx =,则OB 的方程为:1=-y x k,分别与抛物线方程联立,求得A ,B 的坐标,再利用中点坐标求解.【小问1KS5U 解析】解:因为曲线C 的参数方程为222x pt y pt =⎧⎨=⎩(t 为参数),消去参数t 可得:22x py =,将点()2,4代入可得12p =,所以曲线C 的普通方程为:2x y =;【小问2KS5U 解析】由已知得:OA ,OB 的斜率存在且不为0,设OA 的斜率为k ,方程为y kx =,则OB 的方程为:1=-y x k ,联立方程2,,y kx x y =⎧⎨=⎩可得:()2,A k k ,同理可得:211,B k k ⎛⎫- ⎪⎝⎭,设(),M x y ,所以2211,211,2x k k y k k ⎧⎛⎫=- ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩所以22214222x k y k=+-=-,所以221x y =-即为点M 轨迹的普通方程.【KS5U 答案23】【分析】(1)分段求解()f x 的最小值和范围,即可求得结果;(2)转化()21f x x b >-+为233a b x x +>-+,结合二次函数在区间上的最值,利用不等式,即可证明.【小问1KS5U 解析】当1a =时,()121f x x x =++-,当1x ≤-,()31f x x =-+,()min ()14f x f =-=;当11x -<<,()3f x x =-+,()()2,4f x ∈;当1x ≥,()31f x x =-,()min ()12f x f ==;∴当1a =时,()f x 的最小值为2.【小问2KS5U 解析】0a >,0b >,当12x ≤≤时,2211x a x x b ++->-+可化为233a b x x +>-+,令()233h x x x =-+,[]1,2x ∈,()()()max 121h x h h ===,∴1a b +>∴22222111()122222a b a b a b a b a b +⎛⎫⎛⎫+++=++++≥+++ ⎪ ⎪⎝⎭⎝⎭,当且仅当a b =时取得等号;又当1a b +>时,2()122a b a b ++++2>,故2211222a b ⎛⎫⎛⎫+++> ⎪ ⎪⎝⎭⎝⎭.。

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学

高考数学高三模拟考试试卷压轴题普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是复合题目要求的。

1.1212ii+=-() A .4355i --B .4355i -+C .3455i --D .3455i -+2.已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .43.函数()2x xe ef x x --=的图象大致是()4.已知向量a b ,满足,1a =,1a b ⋅=-,则()2a a b ⋅-=()A .4B .3C .2D .05.双曲线()2222100x y a b a b-=>,>的离心力为3,则其渐近线方程为()A .2y x =±B .3y x =±C .2y x =±D .3y x =± 6.在ABC △中,5cos2C =,1BC =,5AC =,则AB =() A .42B .30 C .29 D .257.为计算11111123499100S =-+-+⋅⋅⋅+-,设计了右侧的程序框图,则在空白框中应填入()A .1i i =+B .2i i =+C .3i i =+D .4i i =+8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如30723=+.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是() A .112B .114C .115D .1189.在长方体1111ABCD A B C D -中,1AB BC ==,1AA =1AD 与1DB 所成角的余弦值为()A .15BCD10.若()cos sin f x x x =-在[]a a -,是减函数,则a 的最大值是()A .4πB .2πC .43πD .π 11.已知()f x 是定义域为()-∞+∞,的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()12350f f f f +++⋅⋅⋅+=()A .50-B .0C .2D .5012.已知1F ,2F 是椭圆()2222:10x y C a b a b+=>>的左、右焦点交点,A 是C 的左顶点,点P 在过A 且的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为() A .23B .12C .13D .14 二、填空题,本题共4小题,每小题5分,共20分.13.曲线()2ln 1y x =+在点()00,处的切线方程为__________.14.若x y ,满足约束条件25023050x y x y x +-⎧⎪-+⎨⎪-⎩≥≥≤,则z x y =+的最大值为_________.15.已知sin cos 1αβ+=,cos sin 0αβ+=,则()sin αβ+=__________. 16.已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为_________.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。

数学高考压轴题含答案

数学高考压轴题含答案

数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。

2024年新高考数学选填压轴题汇编二(解析版)

2024年新高考数学选填压轴题汇编二(解析版)

2024年新高考数学选填压轴题汇编(二)一、单选题1.(2023·广东东莞·高三校考阶段练习)已知a=e0.1,b=1110,c=101.9,则()A.c>b>aB.b>a>cC.a>b>cD.a>c>b【答案】C【解析】由ln a=ln e0.1=0.1,ln b=ln 1110=ln1.1,则ln a-ln b=0.1-ln1.1=0.1-ln1+0.1,令f x =x-ln1+x,f x =1-11+x=x1+x,当x∈0,+∞时,f x >0,则f x 单调递增,即f0.1>f0 =0,故0.1-ln1.1>0,可得ln a>ln b,即a>b;由b10=111010=1+0.110=1+C1100.1+C2100.12+⋯+C10100.110=1+10×0.1+C2100.12+⋯+C10100.110=2+C2100.12+⋯+C10100.110>2,且c10=1.9<2,则b10>c10,即b>c.综上,a>b>c.故选:C.2.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)已知数列a n的前n项和为S n,且a1=4,a n +a n+1=4n+2n∈N*,则使得S n>2023成立的n的最小值为()A.32B.33C.44D.45【答案】D【解析】a n+a n+1=4n+2①,当n≥2时,a n-1+a n=4n-1+2②,两式相减得a n+1-a n-1=4,当n为奇数时,a n为等差数列,首项为4,公差为4,所以a n=4+4n-12=2n+2,a n+a n+1=4n+2中,令n=1得a1+a2=6,故a2=6-4=2,故当n为偶数时,a n为等差数列,首项为2,公差为4,所以a n=2+4n2-1=2n-2,所以当n为奇数时,S n=a1+a3+⋯+a n+a2+a4+⋯+a n-1=n+124+2n+2+n-122+2n-42=n2+n+2,当n为偶数时,S n=a1+a3+⋯+a n-1+a2+a4+⋯+a n=n24+2n+n22+2n-22=n2+n,当n为奇数时,令n2+n+2>2023,解得n≥45,当n为偶数时,令n2+n>2023,解得n≥46,所以S n>2023成立的n的最小值为45.故选:D3.(2023·广东·高三统考阶段练习)数列a n满足a n+1=2a n-14a n+2,且a1=1,则数列a n的前2024项的和S2024=()A.-2536B.-2538C.-17716D.-17718【答案】C【解析】由题意知:a1=1,a2=2-14+2=16,a3=2×16-14×16+2=-14,a4=2×-14-14×-14+2=-32,a5=2×-32-14×-32+2=1,.....,易知数列a n是周期为4的数列,S2024=506×1+16-14-32=-17716.故选:C.4.(2023·广东·高三统考阶段练习)已知a,b,c均大于1,满足2a-1a-1=2+log2a,3b-2b-1=3+log3b,4c-3c-1=4+log4c,则下列不等式成立的是()A.c<b<aB.a<b<cC.a<c<bD.c<a<b 【答案】B【解析】∵2a-1a-1=2+log2a⇒1a-1=log2a,3b-2 b-1=3+log3b⇒1b-1=log3b,4c-3 c-1=4+log4c⇒1c-1=log4c,∴考虑y=1x-1x>1和y=log m x m=2,3,4的图象相交,在同一平面直角坐标系中画出y=log2x、y=log3x、y=log4x与y=1x-1x>1的图象如下:根据图象可知a<b<c.故选:B.5.(2023·广东佛山·高三校考阶段练习)已知函数f(x)=x2-8x+8,x≥02x+4,x<0.若互不相等的实根x1,x2,x3满足f x1=f x2=f x3,则x1+x2+x3的范围是()A.(2,8)B.(-8,4)C.(-6,0)D.(-6,8)【答案】A【解析】根据函数的解析式可得如下图象若互不相等的实根x 1,x 2,x 3满足f x 1 =f x 2 =f x 3 ,根据图象可得x 2与x 3关于x =4,则x 2+x 3=8,当2x 1+4=-8时,则x 1=-6是满足题意的x 1的最小值,且x 1满足-6<x 1<0,则x 1+x 2+x 3的范围是(2,8).故选:A .6.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x 的定义域为R ,设f x 的导数是f x ,且f x ⋅f x +sin x >0恒成立,则()A.f π2<f -π2 B.f π2>f -π2 C.f π2 <f -π2D.f π2 >f -π2 【答案】D【解析】设g x =f 2x -2cos x ,则g x =2f x ⋅f x +2sin x >0,故y =g x 在定义域R 上是增函数,所以g π2 >g -π2,即f 2π2 >f 2-π2 ,所以f π2 >f -π2 .故选:D .7.(2023·湖南长沙·高三湖南师大附中校考阶段练习)若正三棱锥P -ABC 满足AB +AC +AP=1,则其体积的最大值为()A.172B.184C.196D.1108【答案】C【解析】设正三棱锥的底边长为a ,侧棱长为b ,1=AB +AC +AP 2=AB 2+AC 2+AP 2+2AB ⋅AC +2AC ⋅AP +2AB ⋅AP ,=a 2+a 2+b 2+a 2+2ab ⋅b 2+a 2-b 22ab +2ab ⋅b 2+a 2-b 22ab=5a 2+b 2⇒b 2=1-5a 2,设该三棱锥的高为h ,由正弦定理可知:AO =12⋅a sin π3=33a ,所以h =PO =b 2-13a 2,又V P -ABC =13⋅S △ABC ⋅h =13⋅34a 2⋅b 2-13a 2=1123a 4-16a 6.由3a 4-16a 6>0⇒0<a <34设f x =3x 4-16x 60<x <34,f x =12x 3-96x 5=12x 31-8x 2 ,当x ∈0,24 时,fx >0,f x 单调递增,当x ∈24,34时,fx <0,f x 单调递减,y =f x 在0,34 上存在唯一的极大值点x =24,且在x =24时取得最大值为164.故正三棱锥P -ABC 体积的最大值为196,故选:C 8.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是A.0,18B.0,14 ∪58,1C.0,58D.0,18 ∪14,58【答案】D【解析】由题设有f (x )=1-cos 2ωx +12sin ωx -12=22sin ωx -π4,令f x =0,则有ωx -π4=k π,k ∈Z 即x =k π+π4ω,k ∈Z .因为f (x )在区间(π,2π)内没有零点,故存在整数k ,使得k π+π4ω≤π<2π<k π+5π4ω,即ω≥k +14ω≤k 2+58,因为ω>0,所以k ≥-1且k +14≤k 2+58,故k =-1或k =0,所以0<ω≤18或14≤ω≤58,故选:D .9.(2023·湖南长沙·高三长郡中学校考阶段练习)已知函数f (x )=x 2-x 2-a2x -4 在区间-∞,-2 ,3,+∞ 上都单调递增,则实数a 的取值范围是()A.0<a ≤23 B.0<a ≤4C.0<a ≤43D.0<a ≤83【答案】D【解析】设g (x )=x 2-a 2x -4,其判别式Δ=a 24+16>0,∴函数g (x )一定有两个零点,设g (x )的两个零点为x 1,x 2且x 1<x 2,由x 2-a2x -4=0,得x 1=a2-a 24+162,x 2=a2+a 24+162,∴f (x )=a 2x +4,x <x 12x 2-a 2x -4,x 1≤x ≤x 2a 2x +4,x >x 2,①当a ≤0时,f (x )在-∞,x 1 上单调递减或为常函数,从而f (x )在-∞,-2 不可能单调递增,故a >0;②当a >0时,g -2 =a >0,故x 1>-2,则-2<x 1<0,∵f (x )在-∞,x 1 上单调递增,∴f (x )在-∞,-2 上也单调递增,g (3)=-32a -1<0,3<x 2,由f (x )在a 8,x 2和x 2,+∞ 上都单调递增,且函数的图象是连续的,∴f (x )在a 8,+∞ 上单调递增,欲使f (x )在3,+∞ 上单调递增,只需a8≤3,得a ≤83,综上:实数a 的范围是0<a ≤83.故选:D .10.(2023·湖南益阳·高三统考阶段练习)若m >0,双曲线C 1:x 2m -y 22=1与双曲线C 2:x 28-y 2m=1的离心率分别为e 1,e 2,则()A.e 1e 2的最小值为94B.e 1e 2的最小值为32C.e 1e 2的最大值为94D.e 1e 2的最大值为32【答案】B【解析】由题意可得e 21=m +2m ,e 22=8+m 8,则e 1e 2 2=m +2m ⋅8+m 8=54+2m +m8,由基本不等式,e 1e 2 2=54+2m +m 8≥54+214=94,即e 1e 2≥32,当且仅当2m =m 8,即m =4时等号成立,故e 1e 2的最小值为32.故选:B .11.(2023·湖南益阳·高三统考阶段练习)给定事件A ,B ,C ,且P C >0,则下列结论:①若P A >0,P B>0且A ,B 互斥,则A ,B 不可能相互独立;②若P A C +P B C =1,则A ,B 互为对立事件;③若P ABC =P A P B P C ,则A ,B ,C 两两独立;④若P AB=P A -P A P B ,则A ,B 相互独立.其中正确的结论有()A.1个 B.2个C.3个D.4个【答案】B【解析】对于①,若A ,B 互斥,则P AB =0,又P A P B >0,∴P AB ≠P A P B ,∴A ,B 不相互独立,①正确;对于②,∵P A C +P B C =P AC P C +P BCP C=1,∴P AC +P BC =P C ;扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于一点”,则P AC =P A =46=23,P BC =P B =16,P C =56,满足P AC +P BC =P C ,但A ,B 不是对立事件,②错误;对于③,扔一枚骰子,记事件A 为“点数大于两点”;事件B 为“点数大于五点”;事件C 为“点数大于六点”,则P A =46=23,P B =16,P C =0,P ABC =0,P AB =P B =16,满足P ABC =P A P B P C ,此时P AB ≠P A P B ,∴事件A ,B 不相互独立,③错误;对于④,∵A =AB ∪AB ,事件AB 与AB 互斥,∴P A =P AB +P AB,又P AB=P A -P A P B ,∴P A -P AB =P A -P A P B ,即P AB =P A P B ,∴事件A ,B 相互独立,④正确.故选:B .12.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3+3x 2+x +1,设数列a n 的通项公式为a n =-2n +9,则f a 1 +f a 2 +⋯+f a 9 =()A.36B.24C.20D.18【答案】D【解析】f x =x 3+3x 2+x +1=x +1 3-2x +1 +2,所以曲线f x 的对称中心为-1,2 ,即f x +f -2-x =4,因为a n =-2n +9,易知数列a n 为等差数列,a 5=-1,a 1+a 9=a 2+a 8=a 3+a 7=a 4+a 6=2a 5=-2,所以f a 1 +f a 9 =f a 2 +f a 8=f a 3 +f a 7 =f a 4 +f a 6 =4,所以f a 1 +f a 2 +⋯+f a 9 =4×4+2=18.故选:D .13.(2023·湖南长沙·高三长郡中学校联考阶段练习)在矩形ABCD 中,AB =3,AD =4,现将△ABD 沿BD 折起成△A 1BD ,折起过程中,当A 1B ⊥CD 时,四面体A 1BCD 体积为()A.2B.372C.37D.972【答案】B【解析】由题可知A 1B ⊥A 1D ,A 1B ⊥CD ,又A 1D ∩CD =D ,A 1D ,CD ⊂平面A 1CD ,故A 1B ⊥平面A 1CD ,又A 1C ⊂平面A 1CD ,所以A 1B ⊥A 1C ,即此时△A 1BC 为直角三角形,因为A 1B =CD =3,AD =BC =4,所以A 1C =7,又BC ⊥CD ,A 1B ∩BC =B ,A 1B ,BC ⊂平面A 1BC ,所以CD ⊥平面A 1BC ,所以四面体A 1BCD 的体积为13×3×12×3×7=372.故选:B .14.(2023·湖南长沙·高三长郡中学校联考阶段练习)在三角形ABC 中,AB ⋅AC =0,BC=6,AO=12AB +AC ,BA 在BC 上的投影向量为56BC ,则AO ⋅BC =()A.-12 B.-6C.12D.18【答案】A【解析】由题意,∠BAC =90°,O 为BC 中点,由BA 在BC 上的投影向量为BA cos B ⋅BCBC=56BC,即BAcos B BC=56,又BC =6,所以BA ⋅BC =BA BC cos B =56BC2=30,所以AO ⋅BC =BO -BA ⋅BC =BO ⋅BC -BA ⋅BC=3×6-30=-12.故选:A .15.(2023·湖南株洲·高三株洲二中校考开学考试)如图,在xOy 平面上有一系列点P 1x 1,y 1 ,P 2x 2,y 2 ,⋯,P nx n ,y n ⋯,对每个正整数n ,点P n 位于函数y =x 2x ≥0 的图像上,以点P n 为圆心的⊙P n 都与x 轴相切,且⊙P n 与⊙P n +1外切.若x 1=1,且x n +1<x n n ∈N * ,T n =x n x n +1,T n 的前n 项之和为S n ,则S 20=()A.3940B.4041C.8041D.2041【答案】D【解析】因为⊙P n 与⊙P n +1外切,且都与x 轴相切,所以x n -x n +12+y n -y n +1 2=y n +y n +1,即x n -x n +1 2+y n -y n +1 2=y n +y n +1 2,所以x n -x n +1 2=4y n y n +1=4x 2n x 2n +1,因为x n +1<x n n ∈N * ,所以x n -x n +1=2x n x n +1,所以1x n +1-1x n=2,所以数列1x n 为等差数列,首项1x 1=1,公差d =2,所以1x n=1+n -1 ×2=2n -1,所以x n =12n -1n ∈N * ,所以T n =x n x n +1=12n -1×12n +1=12n -1-12n +1 ×12,所以S n =12×1-13+13-15+⋯+12n -1-12n +1 =12×1-12n +1 =n2n +1n ∈N *所以S 20=2020×2+1=2041,故选:D16.(2023·湖南株洲·高三株洲二中校考开学考试)已知定义在R 上的可导函数f x 满足xf x +f x <xf x ,若y =f x -3 -1e是奇函数,则不等式xf x +3e x +2>0的解集是()A.-∞,-2B.-∞,-3C.-2,+∞D.-3,+∞【答案】B【解析】构造函数g x =x ⋅f x e x ,依题意可知g x =f x +xf x -xf x e x<0,所以g x 在R 上单调递减.由于y =f x -3 -1e是奇函数,所以当x =0时,y =f -3 -1e =0,所以f -3 =1e ,所以g -3 =-3⋅f -3e -3=-3⋅1e e-3=-3e 2,由xf x +3e x +2>0得e x g x +3e x +2>0,即g x >-3e 2=g -3 ,所以x <-3,故不等式的解集为-∞,-3 .故选:B17.(2023·湖南·高三临澧县第一中学校联考开学考试)已知圆台O 1O 2的上底面圆O 1的半径为2,下底面圆O 2的半径为6,圆台的体积为104π,且它的两个底面圆周都在球O 的球面上,则OO 1OO 2=( ).A.3B.4C.15D.17【答案】D【解析】设圆台的高为h ,依题意V =134π+36π+12π h =104π,解得h =6.设O 1O =x ,则22+x 2=62+6-x 2,解得x =173,故OO 1OO 2=1736-173=17.故选:D .18.(2023·湖南·高三临澧县第一中学校联考开学考试)已知sin α-β =13,则当函数f x =79sin x -sin 2α-2β cos x 取得最小值时,sin x =( ).A.-79B.-19C.19D.79【答案】A【解析】依题意,cos 2α-β =1-2sin 2a -β =79,所以f x =sin x cos 2α-2β -cos x sin 2α-2β=sin x -2α-β ,当x -2α-β =-π2+2k πk ∈Z ,即x =2α-β -π2+2k πk ∈Z ,f x 取最小值,此时sin x =-cos 2α-β =-79,故选:A .19.(2023·湖南衡阳·高三衡阳市八中校考开学考试)已知函数f x =4ex 21+ln2x,则不等式f x >e 2x 的解集是()A.0,1B.12e ,14C.1e ,1D.12e ,12【答案】D【解析】不等式4ex 21+ln2x >e 2x 可整理为2ex 1+ln2x >e 2x 2x ,令g x =e xx,定义域为0,+∞ ,则原不等式可看成g 1+ln2x >g 2x ,g x =e x x -1 x 2,令g x >0,解得x >1,令gx <0,解得0<x <1,所以g x 在0,1 上单调递减,1,+∞ 上单调递增,令h x =1+ln2x -2x ,则h x =1x -2=1-2x x ,令h x >0,则0<x <12,令h x <0,则x >12,所以h x 在0,12 上单调递增,12,+∞ 上单调递减,且h 12 =0,所以h x ≤0,即1+ln2x -2x ≤0,即1+ln2x ≤2x ,当0<x <12时,1+ln2x <1,2x <1,所以1+ln2x <2x0<1+ln2x <10<2x <1,解得12e <x <12;当x >12时,1+ln2x >1,2x >1,所以1+ln2x >2x ,不成立;综上可得,不等式f x >e 2x 的解集为12e ,12.故选:D .二、多选题20.(2023·广东东莞·高三校考阶段练习)已知四面体ABCD 的所有棱长均为2,则下列结论正确的是()A.异面直线AC 与BD 所成角为60°B.点A 到平面BCD 的距离为263C.四面体ABCD 的外接球体积为6πD.动点P 在平面BCD 上,且AP 与AC 所成角为60°,则点P 的轨迹是椭圆【答案】BC【解析】在正四面体中通过线面垂直可证得AC ⊥BD ,通过计算可验证BC ,通过轨迹法可求得P 的轨迹为双曲线方程即可得D 错误.取BD 中点E ,连接AE ,CE ,可得BD ⊥面ACE ,则AC ⊥BD ,故A 错误;在四面体ABCD 中,过点A 作AF ⊥面BCD 于点F ,则F 为为底面正三角形BCD 的重心,因为所有棱长均为2,AF =AB 2-BF 2=236,即点A 到平面BCD 的距离为263,故B 正确;设O 为正四面体的中心则OF 为内切球的半径,OA 我外接球的半径,因为V A -BCD =13S △BCD ⋅AF =4×13S △BCD ⋅OF ,所以AF =4OF ,即OF =66,AO =62,所以四面体ABCD 的外接球体积V =43πR 3=43πOA 3=6π,故C 正确;建系如图:A 0,0,263 ,C 0,233,0 ,设P (x ,y ,0),则AP =x ,y ,-263 ,AC =0,233,-263 因为AP ⋅AC =AP AC cos60°,所以233y +249=x 2+y 2+83×129+247×12,即233y +83=x 2+y 2+83,平方化简可得:x 2-y 23-3239y -409-0,可知点P 的轨迹为双曲线,故D 错误.故选:BC .21.(2023·广东梅州·高三梅州市梅江区梅州中学校考阶段练习)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;⋯;第n n ∈N * 次得到数列1,x 1,x 2,x 3,⋯,x k ,2;⋯记a n =1+x 1+x 2+⋯+x k +2,数列a n 的前n 项为S n ,则()A.k +1=2n B.a n +1=3a n -3C.a n =32n 2+3n D.S n =343n +1+2n -3 【答案】ABD【解析】由题意可知,第1次得到数列1,3,2,此时k =1第2次得到数列1,4,3,5,2,此时k =3第3次得到数列1, 5,4,7,3,8,5,7,2,此时k =7第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k =15第n 次得到数列1,x 1,x 2,x 3,⋯,x k ,2此时k =2n -1所以k +1=2n ,故A 项正确;结合A 项中列出的数列可得:a 1=3+3a 2=3+3+9a 3=3+3+9+27a 4=3+3+9+27+81 ⇒a n =3+31+32+⋯+3n (n ∈N *)用等比数列求和可得a n =3+33n -12则a n +1=3+33n +1-1 2=3+3n +2-32=3n +22+32又3a n -3=33+33n -1 2-3=9+3n +22-92-3=3n +22+32所以a n +1=3a n -3,故B 项正确;由B 项分析可知a n =3+33n -1 2=323n +1即a n ≠32n 2+3n ,故C 项错误.S n =a 1+a 2+a 3+⋯+a n=322+332+⋯+3n +12 +32n =321-3n 1-32+32n=3n +24+3n 2-94=343n +1+2n -3 ,故D 项正确.故选:ABD .22.(2023·广东·高三统考阶段练习)已知O 为坐标原点,F 为抛物线E :y 2=2x 的焦点,过点P (2,0)的直线交E 于A ,B 两点,直线AF ,BF 分别交E 于C ,D ,则()A.E 的准线方程为x =-12B.∠AOB =90°C.FA +FB 的最小值为4D.AC +2BD 的最小值为3+3664【答案】ABD【解析】对于A ,由题意p =1,所以E 的准线方程为x =-12,故A 正确:对于B ,设A y 212,y 1 ,B y 222,y 2,设直线AB :x =my +2,与抛物线联立可得y 2-2my -4=0,Δ>0⇒m ∈R ,y 1y 2=-4,所以OA ⋅OB =y 1y 24y 1y 2+4 =0,所以∠AOB =90°,故B 正确;对于C ,FA +FB =y 21+y 222+1≥y 1y 2 +1=5>4,故C 错误;对于D ,设直线AC :x =ty +12,与抛物线联立可得y 2-2ty -1=0,Δ>0⇒t ∈R ,y 1y C =-1,同理y 2y D =-1,所以y C =-1y 1,y D =-1y 2,所以x C =y 2C2=12⋅1y 21,x D =y 2D 2=12⋅1y 22所以AC =x A +x C +1=1+12y 21+1y 21 ,BD =x B +x D +1=1+12y 22+1y 22,y 1y 2=-4,所以AC +2BD =3+916y 21+332y 21≥3+3664,当且仅当y 21=2663时等号成立,故D 正确.故选:ABD .23.(2023·广东·高三统考阶段练习)已知函数f x =ae x -x 2+x ln x -ax ,则()A.当a =0时,f x 单调递减 B.当a =1时,f x >0C.若f x 有且仅有一个零点,则a ≤1 D.若f x ≥0,则a ≥1e -1【答案】ABD【解析】当a =0时,f x =x ln x -x 2,f x =1+ln x -2x x >0 ,设g x =1+ln x -2x ,则g x =1x -2=1-2xx,当x ∈0,12 时,g x >0,f x 单调递增,当x ∈12,+∞ 时,g x <0,f x 单调递减,当x =12时,f x 取得最大值,因为f 12 =1+ln 12-2×12=-ln2<0,所以fx <0,f x 单调递减,故A 正确;当a =1时,f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1t =m x =x -ln x ,则m x =1-1x =x -1x,当x ∈0,1 时,m x <0,m x 单调递减,当x ∈(1,+∞)时,m x >0,m x 单调递增,当x =1时,m x 取得最小值,m 1 =1,所以t =m x ≥1.设h (t )=e t -t -1,h (t )=e t -1,因为t ≥1,所以h (t )=e t -1≥e -1>0,h (t )单调递增,所以h (t )≥h 1 =e -2>0,所以f x =e x +x ln x -x 2=x e x -ln x -(x -ln x )-1 =xh m (x ) >0,故B 正确;f x =x ae x -ln x -(x -ln x )-a ,若f x =0,则ae x -ln x -(x -ln x )-a =0,设t =m x =x -ln x ≥1,即a =te t -1,设F (t )=t e t -1,则F(t )=(1-t )e t -1e t -12,因为t ≥1,所以(1-t )e t -1<0,F (t )<0,F (t )单调递减,若f x 有且仅有一个零点,则t =1,此时a =1e -1,故C 错误;若f x ≥0,则ae t -t -a ≥0,即a ≥te t -1=F t ,因为F t 单调递减,所以a ≥F (1)=1e -1,故D 正确.故选:ABD .24.(2023·广东佛山·高三校考阶段练习)我们知道,函数y =f (x )的图象关系坐标原点成中心对称图形的充要条件是函数y =f (x )为奇函数. 有同学发现可以将其推广为:函数y =f (x )的图象关于点P (a ,b )成中心对称图形的充要条件是函数y =f (x +a )-b 为奇函数. 现在已知,函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,则()A.f (2)=0B.f (1)=3C.对任意x ∈R ,有f (2+x )+f (2-x )=0D.存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0【答案】ACD【解析】由题意,因为函数f (x )=x 3+mx 2+nx +2的图像关于点(2,0)对称,所以函数y =f x +2 为奇函数,所以f x +2 +f -x +2 =0,故C 正确;又y =f x +2 =x 3+m +6 x 2+12+4m +n x +4m +2n +10,则f x +2 +f -x +2 =2m +6 x 2+24m +2n +10 =0,所以m +6=04m +2n +10=0,解得m =-6n =7 ,所以f x =x 3-6x 2+7x +2,f x +2 =x 3-5x ,则f 2 =0,f 1 =4,故A 正确,B 错误;令f 2+x -f 2-x =0,则2x 3-10x =0,解得x =0或±5,所以存在非零实数x 0,使f 2+x 0 -f 2-x 0 =0,故D 正确.故选:ACD .25.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知函数f x =sin ωx +φ ω>0 满足f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,则下列结论正确的是()A.f x 0+12 =1B.若x 0=0,则f x =sin πx +π4 C.f x 的最小正周期为4 D.f x 在0,2024 上的零点个数最少为1012个【答案】AC【解析】A ,由题意f x 在x 0,x 0+1 的区间中点处取得最大值,即f x 0+12=1,正确;B ,假设若x 0=0,则f x =sin πx +π4成立,由A 知f 12 =1,而f 12=sin π2+π4 =22≠1,故假设不成立,则错误;C ,f x 0 =f x 0+1 =22,且f x 在x 0,x 0+1 上有最大值,无最小值,令ωx 0+φ=2k π+π4,ωx 0+1 +φ=2k π+3π4,k ∈Z ,则两式相减,得ω=π2,即函数的最小正周期T =2πω=4,故正确;D ,因为T =4,所以函数f x 在区间0,2024 上的长度恰好为506个周期,当f 0 =0,即φ=k π,k ∈Z 时,f x 在区间0,2024 上的零点个数至少为506×2-1=1011个,故错误.故选:AC .26.(2023·湖南长沙·高三湖南师大附中校考阶段练习)已知直线y =a 与曲线y =xe x相交于A ,B 两点,与曲线y =ln xx相交于B ,C 两点,A ,B ,C 的横坐标分别为x 1,x 2,x 3.则()A.x 2=ae x 2B.x 2=ln x 1C.x 3=ex 2D.x 1+x 3>2x 2【答案】ACD 【解析】设f x =x e x ,得fx =1-x ex ,令f x =0,可得x =1,当x <1时,f x >0,则函数f x 单调递增,当x >1时,f x <0,则函数f x 单调递减,则当x =1时,f x 有极大值,即最大值f x max =f 1 =1e.设g x =ln x x ,得g x =1-ln xx2,令g x =0,则x =e ,当x <e 时,g x >0,则函数g x 单调递增,当x >e 时,g x <0,则函数g x 单调递减,则当x =e 时,g x 有极大值,即最大值g x max =f e =1e,从而可得0<x 1<1<x 2<e <x 3.由x 2ex 2=a ,得x 2=ae x2,故A 正确;由x 1e x 1=ln x 2x 2,得x 1e x 1=ln x 2e ln x 2,即f x 1 =f ln x 2 ,又0<x 1<1<x 2<e ,得0<ln x 2<1,又f x 在0,1 上单调递增,则x 1=ln x 2,故B 错误;由x 2e x 2=ln x 3x 3,得ln e x2ex 2=ln x 3x 3,即g e x 2=g x 3 .又1<x 2<e <x 3,得e x 2>e ,又g x 在e ,+∞ 上单调递减,则e x 2=x 3,故C 正确;由前面知x 1=ln x 2,e x 2=x 3,得x 1x 3=e x2ln x 2,又由x 2ex 2=ln x 2x 2=a ,得e x2=x 2a ,ln x 2=ax 2,则x 1x 3=x 22,x 1+x 3>2x 1x 3=2x 2.故D 正确.故选:ACD .27.(2023·湖南长沙·高三长郡中学校考阶段练习)由两个全等的正四棱台组合而得到的几何体1如图1,沿着BB 1和DD 1分别作上底面的垂面,垂面经过棱EP ,PH ,HQ ,QE 的中点F ,G ,M ,N ,则两个垂面之间的几何体2如图2所示,若EN =AB =EA =2,则()A.BB 1=22B.FG ⎳ACC.BD ⊥平面BFB 1GD.几何体2的表面积为163+8【答案】ABC【解析】将几何体1与几何体2合并在一起,连接BB 1,FG ,PQ ,EH ,AC ,BD ,记FG ∩PQ =K ,易得K ∈BB 1,对于A ,因为在正四棱台ABCD -EPHQ 中,AB ⎳EP ,F 是EP 的中点,所以AB ⎳EF ,又N 是EQ 的中点,EN =2,所以EQ =4,则EP =4,EF =2,又AB =2,所以AB =EF ,所以四边形ABFE 是平行四边形,则BF =AE =2,同理:B 1F =B 1G =BG =2,所以四形边B 1FBG 是边长为2菱形,在边长为4的正方形EPHQ 中,HE =42,因为F ,G 是EP ,PH 的中点,所以FG ⎳EH ,FG =12EH =22,所以BB 1=222-2222=22,故A 正确;对于B ,因为在正四棱台ABCD -EPHQ 中,面ABCD ⎳面EPHQ ,又面AEHC ∩面ABCD =AC ,面AEHC ∩面EPHQ =EH ,所以AC ⎳EH ,又FG ⎳EH ,所以FG ⎳AC ,故B 正确;对于C ,在四边形EPHQ 中,由比例易得PK =14PQ =2,由对称性可知BK =12B 1B =2,而PB =2,所以PK 2+BK 2=PB 2,则PK ⊥BK ,即PQ ⊥BK ,而由选项B 同理可证BD ⎳PQ ,所以BD ⊥BK ,因为在正方形ABCD 中,BD ⊥AC ,而FG ⎳AC ,所以BD ⊥FG ,因为BK ∩FG =K ,BK ,FG ⊂面BFB 1G ,所以BD ⊥面BFB 1G ,对于D ,由选项A 易知四边形BGB 1F 是边长为2的正方形,上下底面也是边长为2的正方形,四边形ABFE 是边长为2的菱形,其高为22-4-222=3,所以几何体2是由4个边长为2正方形和8个上述菱形组合而成,所以其表面积为4×22+8×2×3=16+163,故D 错误.故选:ABC .28.(2023·湖南长沙·高三长郡中学校考阶段练习)已知随机变量ξ~B (2n ,p ),n ∈N *,n ≥2,0<p <1,记f (t )=P (ξ=t ),其中t ∈N ,t ≤2n ,则()A.2nt =0f (t ) =1 B.2nt =0tf (t ) =2npC.n t =0f (2t )<12<nt =1f (2t -1) D.若np =6,则f (t )≤f (12)【答案】ABD【解析】对于A ,2nt =0f (t )=2nt =0P (ξ=t )=1,所以A 正确;对于B ,因为2nt =0t f (t )=E (ξ)=2np ,所以B 正确;对于C ,当p =q =12时,n t =0f (2t )=nt =1f (2t -1)=12,所以C 错误;对于D ,因为(2n +1)p =12+p ,所以当t =12时,f (t )最大,所以D 正确;证明如下:若ξ~B (n ,p ),则P (ξ=k )P (ξ=k -1)=C k n p k(1-p )n -k C k -1n p k -1(1-p )n -k +1=(n -k +1)pk (1-p ),若P (ξ=k )>P (ξ=k -1),则(n -k +1)pk (1-p )>1,解得k <(n +1)p ,故当k <(n +1)p 时,P (ξ=k )单调递增,当k >(n +1)p 时,P (ξ=k )单调递减,即当(n +1)p 为整数时,k =(n +1)p 或k =(n +1)p -1时,P (ξ=k )取得最大值,当(n +1)p 不为整数,k 为(n +1)p 的整数部分时,P (ξ=k )取得最大值.故选:ABD .29.(2023·湖南长沙·高三长郡中学校考阶段练习)已知ab ≠0,函数f x =e ax +x 2+bx ,则()A.对任意a ,b ,f x 存在唯一极值点B.对任意a ,b ,曲线y =f x 过原点的切线有两条C.当a +b =-2时,f x 存在零点D.当a +b >0时,f x 的最小值为1【答案】ABD【解析】对于A ,由已知ab ≠0,函数f x =e ax +x 2+bx ,可得f x =ae ax +2x +b ,令g x =ae ax +2x +b ,∴g x =a 2e ax +2>0,则g x 即f x =ae ax +2x +b 在R 上单调递增,令f x =ae ax +2x +b =0,则ae ax =-2x -b ,当a >0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:当a <0时,作出函数y =ae ax ,y =-2x -b 的大致图象如图:可知y =ae ax ,y =-2x -b 的图象总有一个交点,即f x =ae ax +2x +b =0总有一个根x 0,当x <x 0时,f x <0;当x >x 0时,f x >0,此时f x 存在唯一极小值点,A 正确;对于B ,由于f 0 =1,故原点不在曲线f x =e ax +x 2+bx 上,且f x =ae ax +2x +b ,设切点为(m ,n ),n =e am+m 2+bm ,则fm =ae am+2m +b =n m =e am +m 2+bm m,即ae am+m=e amm,即eam(am-1)+m2=0,令h(m)=e am(am-1)+m2,h (m)=ae am(am-1)+ae am+2m=m(a2e am+2),当m<0时,h (m)<0,h(m)在(-∞,0)上单调递减,当m>0时,h (m)>0,h(m)在(0,+∞)上单调递增,故h(m)min=h(0)=-1,当m→-∞时,e am(am-1)的值趋近于0,m2趋近于无穷大,故h(m)趋近于正无穷大,当m→+∞时,e am(am-1)的值趋近于正无穷大,m2趋近于无穷大,故h(m)趋近于正无穷大,故h(m)在(-∞,0)和(0,+∞)上各有一个零点,即e am(am-1)+m2=0有两个解,故对任意a,b,曲线y=f x 过原点的切线有两条,B正确;对于C,当a+b=-2时,b=-2-a,f x =e ax+x2-(a+2)x,故f x =ae ax+2x-a-2,该函数为R上单调增函数,f 0 =-2<0,f 1 =ae a-a=a(e a-1)>0,故∃s∈(0,1),使得f s =0,即e as=-2as+1+2a,结合A的分析可知,f(x)的极小值也即最小值为f(s)=e as+s2-(a+2)s=-2as+1+2a+s2-(a+2)s,令m(s)=-2as+1+2a+s2-(a+2)s,则m s =2s-a+2a+2,且为增函数,当a<0时,m (0)=-a+2a+2≥22-2>0,当且仅当a=-2时取等号,故当s>0时,m s >m 0 >0,则f(s)在(0,1)上单调递增,故f(s)>f(0)=2a+1,令a=-3,则f(0)=2a+1=13>0,∴f(s)>f(0)>0,此时f(x)的最小值为f(s)>0,f x 无零点,C错误;对于D,当a+b>0时,f x为偶函数,考虑x>0视情况;此时f x=f(x)=e ax+x2+bx,(x>0),f (x)=ae ax+2x+b,结合A的分析可知f (x)=ae ax+2x+b在R上单调递增,f (0)=a+b>0,故x>0时,f (x)>f (0)>0,则f(x)在(0,+∞)上单调递增,故f(x)在(-∞,0)上单调递减,f x为偶函数,故f xmin=f(0)=1,D正确,故选:ABD30.(2023·湖南益阳·高三统考阶段练习)已知函数f x =e x-1,x≥0x2+2x,x<0,则()A.f x 有两个零点B.直线y=x与f x 的图象有两个交点C.直线y=12与f x 的图象有四个交点D.存在两点a,b,-2-a,ba>0,b>0同时在f x 的图象上【答案】ABD【解析】画出f x 的图象,如下:A 选项,f x 有两个零点,即-2和0,A 正确;B 选项,当x ≥0时,f x =e x -1,则f x =e x ,令f x =e x =1,解得x =0,又f 0 =0,故y =e x -1在x =0的切线方程为y =x ,令m x =e x -1-x ,x >0,则m x =e x -1>0,故m x =e x -1-x 在0,+∞ 上单调递增,故m x >m 0 =0,即e x -1>x 在0,+∞ 上恒成立,故y =e x -1在x ∈0,+∞ 上与y =x 只有一个交点,当x <0时,f x =x 2+2x ,联立y =x ,可得x 2+2x =x ,解得x =-1或0(舍去),结合函数图象,可知直线y =x 与f x 的图象有两个交点,B 正确;C 选项,在同一坐标系内画出f x 与直线y =12的图象,可知直线y =12与f x 的图象有2个交点,C 错误;D 选项,点a ,b ,-2-a ,b a >0,b >0 是关于x =-1对称的两点,因为a >0,b >0,故a ,b 是位于第一象限的点,-2-a ,b 位于第二象限,-2-a ,b 在f x =x2+2x ,x <-2上,要想满足a ,b 同时在f x 的图象上,只需g x =x 2+2x ,x >0与h x =e x -1,x >0在第一象限内有交点,因为g 1 =3,h 1 =e -1,故g 1 >h 1 ,又g 3 =15,h 3 =e 3-1,故g 3 <h 3 ,两函数均在0,+∞ 单调递增,故一定存在x 0∈1,3 ,使得g x 0 =h x 0 ,D 正确.故选:ABD31.(2023·湖南益阳·高三统考阶段练习)在棱长为2的正方体ABCD -A 1B 1C 1D 1中,P ,Q 分别是线段A 1B ,B 1D 1上的点,则下列结论正确的是()A.三棱锥P -CB 1D 1的体积是43B.线段PQ 的长的取值范围是233,23C.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与平面AC 所成的角为π6D.若P ,Q 分别是线段A 1B ,B 1D 1的中点,则PQ 与直线AC 所成的角为π3【答案】AC【解析】建立如图所示空间直角坐标系:因为棱长为2,所以A 2,0,0 ,B (2,2,0),C (0,2,0),A (2,0,2),D (0,0,2),A B =(0,2,-2),DC =(0,2,-2),AC =(-2,2,0),对于A ,∵A B =(0,2,-2),D C =(0,2,-2),∴A B =D C,则A B ⎳D C,所以A B ⎳D C ,又A B ⊄平面CB D ,D C ⊂平面CB D ,所以A B ⎳平面CB D ,又点P ∈A B ,故点P 到平面CB D 的距离等价于点B 到平面CB D 的距离,所以V P -CB 1D 1=V B -CB 1D 1=V D 1-BCB 1=13×2×2=43,故A 正确;对于B ,设P (2,m ,2-m ),Q (n ,n ,2),m ,n ∈[0,2]则PQ =n -22+n -m 2+m 2=2m 2+2n 2-2mn -2n +4=2m -n 2 2+32n -232+103,故m =n2n =23及m =13n =23时,PQ min =103=303≠233,故B 错误;对于C ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),取平面AC 的法向量n=(0,0,1),设θ为PQ 与平面AC 所成的角,则sin θ=cos PQ , n =PQ ⋅nPQ n=12=22,所以θ=π4,即PQ 与平面AC 所成的角为π4,故C 错误;对于D ,若P ,Q 分别是线段A 1B ,B 1D 1的中点,则P (2,1,1),Q (1,1,2),PQ =(-1,0,1),则PQ ⋅AC =(-1,0,1)⋅(-2,2,0)=2,则cos PQ ,AC =PQ ⋅ACPQ AC=22×22=12,则PQ ,AC =π3,即PQ 与直线AC 所成的角为π3,故D 正确.故选:AD .32.(2023·湖南永州·高三校联考开学考试)已知函数f x =x 3-3x ,x <02x-2,x ≥0,若关于x 的方程f 2x -2a +1 f x +a2+a =0有6个不同的实根,则实数a 可能的取值有()A.-12B.12C.34D.2【答案】BC【解析】当x <0时,f x =x 3-3x ,则f x =3x 2-3=3x -1 x +1 ,当x ∈-∞,-1 时,f x >0,f x 单调递增,当x ∈-1,0 时,f x <0,f x 单调递减,作出f x 的图象,如图所示,f 2x -2a +1 f x +a 2+a =f x -a f x -a -1 =0,即f x =a 与f x =a +1共六个不等实根,由图可知f x =2时,x =-1或x =2,即f x =2有两个根,若使f x =a 与f x =a +1共六个不等实根,只需满足0<a <20<a +1<2 ,即0<a <1.故选:BC .33.(2023·湖南长沙·高三长郡中学校联考阶段练习)若数列a n 中任意连续三项a i ,a i +1,a i +2,均满足a i -a i +2 a i +2-a i +1 >0,则称数列a n 为跳跃数列.则下列结论正确的是()A.等比数列:1,-13,19,-127,181,⋯是跳跃数列B.数列a n 的通项公式为a n =cos n π2n ∈N *,数列a n 是跳跃数列C.等差数列不可能是跳跃数列D.等比数列是跳跃数列的充要条件是该等比数列的公比q ∈-1,0 【答案】ACD【解析】对于选项A ,由跳跃数列定义知,等比数列:1,-13,19,-127,181,⋯是跳跃数列,故A 正确;对于选项B ,数列的前三项为a 1=0,a 2=-1,a 3=0,不符合跳跃数列的定义,故B 错误;对于选项C ,当等差数列公差d >0时,它是单调递增数列;公差d <0时,它是单调递减数列;公差d =0时,它是常数列,所以等差数列不可能是跳跃数列,故C 正确;对于选项D ,等比数列a n 是跳跃数列,则a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,整理得q +1 q (q -1)2<0,即-1<q <0,若比数列a n 的公比-1<q <0,则q +1 q (q -1)2<0,可得a i -a i +2 a i +2-a i +1 =a 2i 1-q 2 q 2-q >0,所以等比数列a n 是跳跃数列,故D 正确.故选:ACD .34.(2023·湖南长沙·高三长郡中学校联考阶段练习)已知函数f x 的定义域为R ,函数f x 的图象关于点1,0 对称,且满足f x +3 =f 1-x ,则下列结论正确的是()A.函数f x +1 是奇函数B.函数f x 的图象关于y 轴对称C.函数f x 是最小正周期为2的周期函数D.若函数g x 满足g x +f x +3 =2,则2024k =1g k =4048【答案】ABD【解析】因为函数f x 的图象关于点1,0 对称,所以f x +1 =-f 1-x ,所以函数f x +1 是奇函数,故A 正确;因为f x +1 =-f 1-x ,所以f x +2 =-f -x ,又f x +3 =f 1-x ,所以f x +3 =-f x +1 ,所以f x +2 =-f x ,所以f -x =f x ,所以f x 为偶函数.故B 正确;因为f x +4 =-f x +2 =f x ,所以f x 是最小正周期为4的周期函数,故C 错误;因为g x +f x +3 =2,所以g x =2-f x +3 ,那么g x +4 =2-f x +7 =2-f x +3 =g x ,所以g x 也是周期为4的函数,g 1 +g 2 +g 3 +g 4 =2-f 4 +2-f 5 +2-f 6 +2-f 7 =8-f 4 +f 5 +f 6 +f 7 ,因为f x +2 =-f x ,所以f 4 +f 6 =0,f 5 +f 7 =0,所以g 1 +g 2 +g 3 +g 4 =8,所以2024i =1g k =506g 1 +g 2 +g 3 +g 4 =4048,故D 正确.故选:ABD .35.(2023·湖南株洲·高三校考阶段练习)如图,在正方体ABCD -A 1B 1C 1D 1中,AD =4,点E ,F 分别为A 1B 1,BC 的中点,点P 满足AP =λAD +μAA 1,λ∈0,1,μ∈ 0,1 ,则下列说法正确的是()A.若λ+μ=1,则四面体PEFD 1的体积为定值B.若λ=12,μ=14,则C 1P ⊥平面EFD 1C.平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为5+42+35D.若λ=1,μ=0,则四面体PEFD 1外接球的表面积为344π9【答案】BD【解析】如图1,取AB 的中点G ,连接DG ,易得D 1E ∥DG ,取CD 的中点H ,连接BH ,易得BH ∥DG ,再取CH 的中点M ,连接FM ,D 1M ,则FM ∥BH ,所以FM ∥D 1E ,则FM 是平面EFD 1与正方体底面ABCD 的交线,延长MF ,与AB 的延长线交于N ,连接EN ,交BB 1于P ,则BB 1=3BP ,且五边形D 1EPFM 即平面EFD 1交正方体ABCD -A 1B 1C 1D 1的截面,由F 是BC 中点且BN ⎳CM 得BN =CM =12CH =12B 1E ,又由BN ⎳B 1E 得BP =12B 1P =13BB 1,从而可计算得ED 1=25,D 1M =5,MF =5,EP =103,PF =2133,所以平面EFD 1截正方体ABCD -A 1B 1C 1D 1所得的截面的周长为253+2133+35,故C 错误.对于A ,因为AP =λAD +μAA 1 ,λ+μ=1,所以P ,D ,A 1三点共线,所以点P 在A 1D 上,因为A 1D 与平面EFD 1不平行,所以四面体PEFD 1的体积不为定值,A 错误.对于B ,如图2,以A 为原点,分别以AB ,AD ,AA 1所在直线为x ,y ,z 轴建立空间直角坐标系,则AP =12AD+14AA 1 =0,2,1 ,C 1P =C 1A +AP =-4,-2,-3 ,D 1E =2,-4,0 ,EF =2,2,-4 ,则C 1P ⋅D 1E =0,C 1P ⋅EF =0,C 1P是平面EFD 1的一个法向量,所以C 1P ⊥平面EFD 1,故B 正确.对于D ,若λ=1,μ=0,则点P 即点D .易知EG ⎳DD 1,DD 1⊥D 1E (由DD 1⊥平面A 1B 1C 1D 1可得),同理EG ⊥D 1E ,即四边形EGDD 1是矩形,则四面体PEFD 1的外接球与四棱锥F -ED 1DG 的外接球相同,在△GFD 中,GF =22,GD =25,FD =25,在图3四棱锥F -DD 1EG 中,取U 是GF 中点,则DU ⊥GF ,△DGF 的外心T 在DU 上,sin ∠DGU =(25)2-(2)225=31010,则△GFD 外接圆的半径为DT =2531010×12=523,设DE ∩GD 1=S ,取GD 中点Q ,连接QT ,QS ,则QT ⊥GD ,同样由DD 1⊥平面DGF ,QT ⊂平面DGF ,得DD 1⊥QT ,而DG 与DD 1是平面DD 1EG 内两相交直线,因此有TQ ⊥平面DD 1EG ,同理可证SQ ⊥平面DGF ,得SQ ⊥QT ,作矩形SQTO ,可得OT =SQ =12DD 1=2,OS ⊥平面DD 1EG ,OT ⊥平面DGF ,从而知O 是四棱锥F -ED 1DG 的外接球的球心,所以四面体PEFD 1外接球的半径R =OD =DT 2+OT 2=5232+22=863,即四面体PEFD 1外接球的表面积为344π9,D 正确.故选:BD .36.(2023·湖南株洲·高三株洲二中校考开学考试)已知数列a n 满足a 1=1,a n +1=2a n ln a n +1 +1,则下列说法正确的有()A.2a 3a 1+a 2<5 B.a n +1-a 2n ≤a 2n +1C.若n ≥2,则34≤ni =11a i +1<1D.ni =1ln a i +1 ≤2n -1 ln2【答案】BCD【解析】a 2=2a 1ln a 1+1 +1=3,a 3=2a 2ln a 2+1 +1=6ln3+7,则2a 3-5a 1+a 2 =12ln3-6>0,又a 1+a 2>0,所以2a 3a 1+a 2>5,A 不正确.令函数f x =x -ln x -1,则f x =1-1x,则f x 在0,1 上单调递减,在1,+∞ 上单调递增,f x ≥f 1 =0,即x ≥ln x +1,又易得a n 是递增数列,a n ≥a 1=1,故a n ≥ln a n +1,所以a n +1≤2a 2n +1,B 正确.易知a n 是递增数列,所以a n ≥a 1=1,则ln a n +1≥1,a n +1=2a n ln a n +1 +1≥2a n +1,则a n +1+1≥2a n +1 ,即a n +1+1a n +1≥2,所以a n +1a n -1+1⋅a n -1+1a n -2+1⋯⋯⋅a 2a 1≥2n -1,即a n +1≥2n -1a 1+1 =2n ,所以1a n +1≤12n,所以ni =11a i +1≤12+122+⋯+12n =121-12n1-12=1-12n<1,而当n ≥2时,则有ni =11a i +1≥1a 1+1+1a 2+1=34,C 正确.令函数g x =2ln x -x +1x ,则gx =2x -1-1x 2=-x 2+2x -1x 2≤0,所以g x 在0,+∞ 上单调递减,所以当x ≥1时,g x ≤g 1 =0,则ln x ≤12x -1x,所以a n +1≤2a n 12a n -1a n+1+1=a 2n +2a n ,a n +1+1≤a n +1 2,ln a n +1+1 ln a n +1 ≤2,ln a n +1 ln a n -1+1⋅ln a n -1+1 ln a n -2+1 ⋅⋯⋅ln a 2+1ln a 1+1≤2n -1,ln a n +1 ≤2n -1ln a 1+1 =2n -1ln2,所以∑ni =1ln a i +1 ≤(1+2+⋯+2n -1 ln2=2n -1 ln2,D 正确.故选:BCD .37.(2023·湖南·高三临澧县第一中学校联考开学考试)已知函数f x ,g x 是定义在R 上的非常数函数,f x +1 的图象关于原点对称,且f x +g 1-x =4,f x +1 +g x -2 =4,则( ).A.f x 为奇函数 B.f x 为偶函数C.2024k =1f k =0D.2024k =1g k =8096【答案】BCD【解析】因为f x +1 的图象关于原点对称,故f 1+x +f 1-x =0,即f x +f 2-x =0①,f x +1 +g x -2 =4中,用3-x 代替x 得f 4-x +g 1-x =4,而f x +g 1-x =4,故f 4-x +g 1-x =4f x +g 1-x =4,两式相减可得f x =f 4-x ,即f x +2 =f 2-x ②,由①②可得f x =-f x +2 =f x +4 ③,故f x 的周期为4,所以f -x =f 4-x =f x ,故f x 为偶函数,因为f x 不是常数函数,所以f x 不是奇函数,故A 错误,B 正确.由①可得,f x +f x -2 =0,故f 1 +f 3 =0,f 2 +f 4 =0,于是2024k =1f k =506f 1 +f 2 +f 3 +f 4 =0,故C 正确.由f x +g 1-x =4可得f 1-x +g 1-1+x =4,即f 1-x +g x =4,因为f x 为偶函数,且f x =-f x -2 ,所以f -x =-f x -2 ,f 1-x =-f -1+x -2 =。

2019-2020年高考压轴卷 数学理. 含解析

2019-2020年高考压轴卷 数学理. 含解析

2019-2020年高考压轴卷数学理. 含解析本试卷分第I卷和第II卷两部分.第I卷1至3页,第II卷4至6页,满分150.考生注意:1.答题前,考生务必将自己的准考号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第II卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并交回.第Ⅰ卷(共40分)一.选择题:本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,集合,集合,则集合为()A. B. C. D.【命题意图】本题考查集合的运算等基础知识,意在考查运算求解能力.【答案】C.【解析】由题意得,,,∴,故选C.2.一个几何体的三视图如图所示,则该几何体的体积是()A.64 B.72 C.80 D.112【命题意图】本题考查三视图与空间几何体的体积等基础知识,意在考查空间想象能力与运算求解能力.【答案】C.3.已知,,则“”是“”的( )A. 充分必要条件B. 充分不必要条件C. 必要不充分条件D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设,,显然是偶函数,且在上单调递增,故在上单调递减,∴,故是充分必要条件,故选A. 4.满足下列条件的函数中,为偶函数的是( ) A. B. C. D.【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力. 【答案】D.5.设,为正实数,,,则=( ) A. B. C.D.或【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 【答案】B.【解析】2323()4()()44()a b ab a b ab ab -=⇒+=+,故112222a b a b ab++≤⇒≤ 2322()44()1184()82()()a b ab ab ab ab ab ab ab ab++⇒≤⇒=+≤⇒+≤,而事实上, ∴,∴,故选B.6.已知点是双曲线C :左支上一点,,是双曲线的左、右两个焦点,且,与两条渐近线相交于,两点(如图),点恰好平分线段,则双曲线的离心率是( ) A. B.2 C. D.【命题意图】本题考查双曲线的标准方程及其性质等基础知识知识,意在考查运算求解能力. 【答案】A.7.如图,在棱长为1的正方体中,为棱中点,点在侧面内运动,若,则动点的轨迹所在曲线为( )A.直线B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识,意在考查空间想象能力. 【答案】C.【解析】易得平面,所有满足的所有点在以为轴线,以所在直线为母线的圆锥面上,∴点的轨迹为该圆锥面与平面的交线,而已知平行于圆锥面轴线的平面截圆锥面得到的图形是双曲线,∴点的轨迹是双曲线,故选C.8.已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(),若数列满足,数列的前项和为,则( )A. B. C. D.【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 【答案】A.第Ⅱ卷(共110分)二.填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.9.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,的取值范围是________.【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力. 【答案】,.【解析】将圆的一般方程化为标准方程,,∴圆心坐标, 而,∴的范围是,故填:,.10.已知函数,,则 ,的值域为 .【命题意图】本题考查分段函数的函数值与值域等基础知识,意在考查分类讨论的数学思想与运算求解能力. 【答案】,.11.已知函数,则的值是_______,的最小正周期是______.【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力. 【答案】,.【解析】∵,∴,又∵221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴的定义域为(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++,,将的图象如下图画出,从而可知其最小正周期为,故填:,.12.设,实数,满足23603260y m x y x y ≥⎧⎪-+≥⎨⎪--≤⎩,若,则实数的取值范围是___________.【命题意图】本题考查二元不等式(组)表示平面区域以及含参范围等基础知识,意在考查数形结合的数学思想与运算求解能力. 【答案】.13.要使关于的不等式恰好只有一个解,则_________.【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力. 【答案】.【解析】分析题意得,问题等价于只有一解,即只有一解, ∴28022a a ∆=-=⇒=±,故填:.14.已知,为实数,代数式2222)3(9)2(1y x x y ++-++-+的最小值是 .【命题意图】本题考查两点之间距离公式的运用基础知识,意在考查构造的数学思想与运算求解能力. 【答案】.15.已知平面向量,的夹角为,,向量,的夹角为,,则与的夹角为__________,的最大值为.【命题意图】本题考查平面向量数量积综合运用等基础知识,意在考查数形结合的数学思想与运算求解能力.【答案】,.三.解答题 :本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.16.(本题满分14分)在中,角,,所对的边分别为,已知cos (cos 3sin )cos 0C A A B +-=. (1)求角的大小; (2)若,求的取值范围.【命题意图】本题考查三角函数及其变换、正、余弦定理等基础知识,意在考查运算求解能力.【答案】(1);(2).17.(本题满分15分)如图,已知长方形中,,,为的中点,将沿折起,使得平面平面. (1)求证:;(2)若,当二面角大小为时,求的值.【命题意图】本题考查空间点、线、面位置关系,二面角等基础知识,意在考查空间想象能力和运算求解能力.【答案】(1)详见解析;(2).【解析】(1)由于,,则,又∵平面平面,平面平面=,平面,∴平面,…………3分又∵平面,∴有;……………6分18.(本题满分15分)已知函数,当时,恒成立.(1)若,,求实数的取值范围;(2)若,当时,求的最大值.【命题意图】本题考查函数单调性与最值,分段函数,不等式性质等基础知识,意在考查推理论证能力,分析问题和解决问题的能力.【答案】(1);(2).(1)由且,得4)2()(222b b b x b bx x x f -++=++=, 当时,,得,…………3分故的对称轴,当时,2min max ()()124()(1)11b b f x f b f x f ⎧=-=-≥-⎪⎨⎪=-=≤⎩,………… 5分 解得,综上,实数的取值范围为;…………7分,…………13分且当,,时,若,则恒成立,且当时,取到最大值.的最大值为2.…………15分19.(本题满分15分)设点是椭圆上任意一点,过点作椭圆的切线,与椭圆交于,两点.(1)求证:;(2)的面积是否为定值?若是,求出这个定值;若不是,请说明理由.【命题意图】本题考查椭圆的几何性质,直线与椭圆的位置关系等基础知识,意在考查解析几何的基本思想方法和综合解题能力.【答案】(1)详见解析;(2)详见解析.∴点为线段中点,;…………7分(2)若直线斜率不存在,则,与椭圆方程联立可得,,,故,…………9分若直线斜率存在,由(1)可得,,141141222212+-+=-+=k t k x x k AB ,…………11分点到直线的距离,…………13分∴12212-=⋅=∆t d AB S OAB ,综上,的面积为定值.…………15分 20.(本题满分15分)正项数列满足,.(1)证明:对任意的,;(2)记数列的前项和为,证明:对任意的,.【命题意图】本题考查数列的递推公式与单调性,不等式性质等基础知识,意在考查推理论证能力,分析和解决问题的能力.【答案】(1)详见解析;(2)详见解析.温馨提示:最好仔细阅读后才下载使用,万分感谢!。

高考理科数学压轴小题特训72题(选择52题填空20题)---含答案与解析

高考理科数学压轴小题特训72题(选择52题填空20题)---含答案与解析

一、选择题1.点P 是椭圆221259y x +=上一点,F 是椭圆的右焦点,()142OQ OP OF OQ =+=,,则点P 到抛物线215y x =的准线的距离为( )A .154B .152C.15 D .102.用4种颜色给正四棱锥的五个顶点涂色,同一条棱的两个顶点涂不同的颜色,则符合条件的所有涂法共有( ) A .24种B .48种C.64种D .72种3.设函数()()()21ln 31f x g x ax x ==-+,,若对任意1[0)x ∈+∞,,都存在2x ∈R ,使得)()(f 21x g x =,则实数a 的最大值为( ) A .94B .2 C.92D .44.若存在两个正实数x y ,,使得等式()()324ln ln 0x a y ex y x +--=成立,其中e 为自然对数的底数,则实数a 的取值范围是( )A .()0-∞,B .30]2e (,C.3[)2e +∞, D .()30[)2e -∞+∞,,5.已知函数mx x g x x x f +=+=22log )(,1)(,若对]4,1[],2,1[21∈∃∈∀x x ,使得)()(21x g x f ≥,则m 的取值范围是( )A .45-≤m B .2≤m C .43≤m D .0≤m6.已知b a ,为正实数,直线a x y -=与曲线)ln(b x y +=相切,则b a -22的取值范围是( ) A .),0(+∞ B .(0,1) C .)21,0( D .),1[+∞ 7.若函数⎪⎩⎪⎨⎧>+-≤+=)0(431),0(3)(3x a x x x x x f x 在定义域上恰有三个零点,则实数a 的取值范围是( )A .3160<<a B .316<a C .0<a 或316>a D .316≤a 8.已知函数()21,g x a x x e e e ⎛⎫=-≤≤ ⎪⎝⎭为自然对数的底数与()2ln h x x =的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .211,2e ⎡⎤+⎢⎥⎣⎦ B .21,2e ⎡⎤-⎣⎦ C .2212,2e e ⎡⎤+-⎢⎥⎣⎦ D .)22,e ⎡-+∞⎣ 9.如图,在OMN ∆中,,A B 分别是,OM ON 的中点,若(),OP xOA yOB x y R =+∈,且点P落在四边形ABNM 内(含边界),则12y x y +++的取值范围是( )A .12,33⎡⎤⎢⎥⎣⎦B .13,34⎡⎤⎢⎥⎣⎦C .13,44⎡⎤⎢⎥⎣⎦D .12,43⎡⎤⎢⎥⎣⎦10.当x ,y 满足不等式组22,4,72x y y x x y +≤⎧⎪-≤⎨⎪-≤⎩时,22kx y -≤-≤恒成立,则实数k 的取值范围是( )A .[]1,1--B .[]2,0-C .13,55⎡⎤-⎢⎥⎣⎦ D .1,05⎡⎤-⎢⎥⎣⎦11.已知函数223(0),()(0),x x x x f x ax e ⎧->⎪=⎨<⎪⎩的图象上存在两点关于y 轴对称,则实数a 的取值范围是( )A .[-3,1]B .(-3,1) C.3[]e D .132[,9]e e --- 12.圆222240x y ax a +++-=和圆2224140x y b y b +--+=恰有三条公切线,若,a R b R ∈∈,且0ab ≠,则2211a b +的最小值为A .1B .3C .19D .4913.已知过定点()2,0P 的直线l与曲线y =相交于,A B 两点,O 为坐标原点,当AOB∆的面积取最大值时,直线l 的倾斜角为A .150 B .135 C .120 D .10514.N 为圆221x y +=上的一个动点,平面内动点00(,)M x y 满足01y ≥且030OMN ∠= (O 为坐标原点),则动点M 运动的区域面积为A.83π- B.43π C.23π D.43π15.已知函数)()(()(321x x x x x x x f ---=)(其中321x x x <<),)12s i n(3)(++=x x x g ,且函数)(x f 的两个极值点为)(,βαβα<.设2,23221x x x x +=+=μλ,则 A .)()()()(μβλαg g g g <<< B .)()()()(μβαλg g g g <<<C .)()()()(βμαλg g g g <<<D .)()()()(βμλαg g g g <<<16.设双曲线)0,0(12222>>=-b a b y a x 的右焦点为F ,过点F 作x 轴的垂线交两渐近线于点B A ,两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若)R ∈+=μλμλ,,8522=+μλ,则双曲线的离心率为( )A .332B .553C .223D .8917. 一个函数f (x ),如果对任意一个三角形,只要它的三边长a ,b ,c 都在f (x )的定义域内,就有f (a ),f (b ),f (c )也是某个三角形的三边长,则称f (x )为“三角保型函数”,给出下列函数: ①f (x )=;②f (x )=x 2;③f (x )=2x ;④f (x )=lgx ,其中是“三角保型函数”的是( )A .①②B .①③C .②③④D .③④18.双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,M ,N 两点在双曲线C 上,且MN ∥F 1F 2,12||4||F F MN =,线段F 1N 交双曲线C 于点Q ,且1||||F Q QN =,则双曲线C 的离心率为A .2 BCDA. 9B.C. D.320. 已知函数()f x 与函数()()21g x x =-的图象关于y 轴对称,若存在a R ∈,使[]1,x m ∈()1m >时,()4f x a x +≤成立,则m 的最大值为A.3B.6C.9D.1221.已知函数()31,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()0f x a -=的四个根分别为1234,,,x x x x ,且1234x x x x <<<,则()2343121x x x x x ++的取值范围是( )A.71,62⎡⎫-⎪⎢⎣⎭ B. 71,62⎛⎫- ⎪⎝⎭C. 71,3⎡⎫-⎪⎢⎣⎭D. 71,3⎛⎫- ⎪⎝⎭22.已知函数⎪⎩⎪⎨⎧<-+-+≥-+=0)3()4(0)1()(2222x a x a a x x a k kx x f ,,,其中a R ∈,若对10x ∀≠, 212()x x x ∃≠,使得)()(21x f x f =成立,则实数k 的最小值为A .8-B .6-C .6D .823.已知定义在R 上的偶函数()f x 满足()()4f x f x-=,且(]1,3x ∈-时,()21c o s ,132,11,x x f x x x π⎧+<≤⎪=⎨⎪-<≤⎩,则()()lg g x f x x =-的零点个数是A.9B.10C.18D.2024.函数)(x f y =为定义在R 上的减函数,函数)1(-=x f y 的图像关于点(1,0)对称, ,x y满足不等式0)2()2(22≤-+-y y f x x f ,(1,2),(,)M N x y ,O 为坐标原点,则当41≤≤x 时,OM ON ⋅的取值范围为 ( )A .[)+∞,12 B .[]3,0 C .[]12,3 D .[]12,025.已知函数()()21(0)()110xx f x f x x ⎧-≤⎪=⎨-+>⎪⎩,把函数()()g x f x x =-的零点按从小到大的顺序排列成一个数列,则该数列的前n 项的和nS ,则10S =( )A .15B .22C .45D . 5026. 定义在R 上的函数()f x 满足在区间[)1,1-上,(),102,015x m x f x x x --≤<⎧⎪=⎨-≤<⎪⎩, 其中m R ∈,若5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f m =( )A .85-B .25-C .35D .7527. 设直线,l m 分别是函数()ln ,01ln ,1x x f x x x -<<⎧=⎨>⎩图象上在点,M N 处的切线, 已知l 与m互相垂直, 且分别与y 轴相交于点,A B ,点P 是函数()(),1y f x x =>图象上的任意一点, 则PAB ∆的面积的取值范围是( )A .()0,1 B .()0,2 C .()2,+∞ D .()1,+∞28.已知A 、B 是双曲线()2222:100y x C a b a b -=>>,的两个焦点,若在双曲线上存在点P 满足2PA PB AB+≤,则双曲线C 的离心率e 的取值范围是( )A .12e <≤B .2e ≥C.1e <≤D .e ≥29.已知函数()y f x =的定义域为()0+∞,,当1x >时,()0f x >,对任意的()0x y ∈+∞,,,()()()f x f y f x y +=⋅成立,若数列{}n a 满足()11a f =,且()()()*121N n n f a f a n +=+∈,则2017a 的值为( ) A .20141a- B .20151a- C .20161a- D .20171a-30.已知函数()()21ln ,22x x f x g x e -=+=,若()()g m f n =成立,则n m -的最小值为( )A .1ln 2-B .ln 2 C.3 D .23e -31.已知向量a 与向量b 的夹角为23π,且2a b ==,又向量c xa yb =+(x R ∈且0x ≠,y R ∈),则xc 的最大值为( ) AB C .13D .332.已知函数()()()11 232 [2)x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,,,则函数()()cos g x f x x π=-在区间[]08,内所有零点的和为( ) A .16B . 30C .32D . 4033.设22(2,cos )a λλα=+-,(,sin )2mb m α=+,其中λ、m 、α为实数,若2a b =,则m λ的取值范围是( )A .(,1]-∞ B.[-6,1] C .[-1,6] D .[4,8]34.定义在(0,)2π上的函数()f x ,'()f x 是它的导函数,且恒有'()()tan f x f x x >成立.则有( )A ()()63f ππ<B ()2cos1(1)6f f π> C .2()()46f ππ<D ()()43f ππ<35.已知函数()sin ()f x x x x R =+∈,且22(23)(41)0f y y f x x -++-+≤,则当1y ≥时,11x y x +++的取值范围是( )A .57[,]44B .7[0,]4 C .57[,]43 D .7[1,]3 36.设定义在()0,+∞上的单调函数()f x ,对任意的()0,x ∈+∞都有()2log 3f f x x -=⎡⎤⎣⎦.若方程()()f x f x a '+=有两个不同的实数根,则实数a 的取值范围是( )A .()1,+∞B .12,ln 2⎛⎫++∞ ⎪⎝⎭C .13,2ln 2⎛⎫-+∞ ⎪⎝⎭ D .()3,+∞ 37.已知双曲线Γ:22221y x a b -=(0a >0b >)的上焦点为(0,)F c (0c >),M 是双曲线下支上的一点,线段MF 与圆2222039c a x y y +-+=相切于点D ,且||3||MF DF =,则双曲线Γ的渐进线方程为( ) A .40x y ±=B .40x y ±=C .20x y ±=D .20x y ±=38. 已知()32log ,031108,333x x f x x x x ⎧<≤⎪=⎨-+>⎪⎩,,,,a b c d是互不相同的正数, 且()()()()f a f b f c f d ===,则,,,a b c d 的取值范围是( )A .()18,28 B .()18,25 C .()20,25 D .()21,2439.已知数列{}n a满足()*11n a n N +=∈,则使不等式20162016a >成立的所有正整数1a 的集合为( )A .{}*111|2016,a a a N ≥∈ B .{}*111|2015,a a a N ≥∈C .{}*111|2014,a a a N ≥∈ D .{}*111|2013,a a a N ≥∈ 40.在等腰梯形ABCD 中,//AB CD ,且2,1,2A B A D C D x ===,其中()0,1x ∈,以,A B 为焦点且过点D 的双曲线的离心率为1e ,以,C D 为焦点且过点A 的椭圆的离心率为2e ,若对任意()0,1x ∈,不等式12t e e <+恒成立,则t 的最大值是( )A B C .2 D41.已知函数2()cos ()1(0,0,0)2f x A x A πϖϕϖϕ=++>><<的最大值为3,()f x 的图象与y 轴的交点坐标为(0,2),其相邻两条对称轴间的距离为2,则(1)(2)(3)(2016)f f f f ++++的值为( )A .2468B .3501 C.4032 D .573942.已知三角形ABC 内的一点D 满足2DA DB DB DC DC DA ===-,且||||||DA DB DC ==.平面ABC 内的动点P ,M 满足||1AP =,PM MC =,则2||BM 的最大值是( )A .494 B .434 C. 374+ D .374+43.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()(3)0f x f x -++=;当(0,3)x ∈时,ln ()e xf x x =,其中e 是自然对数的底数,且 2.72e ≈,则方程6()0f x x -=在[-9,9]上的解的个数为( )A .4B .5C .6D .7 44.设D 是函数()y f x =定义域内的一个区间,若存在0x D∈,使()00f x x =-,则称x 是()f x 的一个“次不动点”,也称()f x 在区间D 上存在“次不动点”,若函数()2532f x ax x a =--+在区间[]1,4上存在“次不动点”,则实数a 的取值范围是( )A .(),0-∞B .10,2⎛⎫ ⎪⎝⎭C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎤-∞ ⎥⎝⎦ 45. 设函数())3lnf x x x =+且)233ln 113a a f a ⎛⎫--<- ⎪-⎝⎭,则实数a 的取值范围为( )A .()3,+∞ B.)+∞ C.) D.(()3,+∞46. 设函数()()x x f x e x ae =-(其中e 为自然对数的底数)恰有两个极值点()1212,x x x x <,则下列说法不正确的是( )A .102a <<B .110x -<<C .()1102f x -<< D .()()120f x f x +>47.已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是A.7,4⎛⎫+∞⎪⎝⎭ B.7,4⎛⎫-∞ ⎪⎝⎭ C.70,4⎛⎫ ⎪⎝⎭ D.7,24⎛⎫ ⎪⎝⎭48. 已知e 为自然对数的底数,若对任意的[0,1]x ∈,总存在唯一的[1,1]y ∈-,使得20y x y e a +-=成立,则实数a 的取值范围是A .[1,]eB .1(1,]e e+C .(1,]eD .1[1,]e e+49.已知是定义在上的增函数,函数的图象关于点对称,若对任意的,等式恒成立,则的取值范围是( )A .B .C .D .50. 若函数x a x x e x f x -++-=)212()(2恒有两个零点,则a 的取值范围为( ) (A)()1,0 (B) ()1,∞- (C))21,(e -∞ (D) ),21(+∞e51..已知函数()31,0log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若方程()0f x a -=的四个根分别为1234,,,x x x x ,且1234x x x x <<<,则()2343121x x x x x ++的取值范围是( )A.71,62⎡⎫-⎪⎢⎣⎭B. 71,62⎛⎫- ⎪⎝⎭C. 71,3⎡⎫-⎪⎢⎣⎭D. 71,3⎛⎫- ⎪⎝⎭ 52. 定义在R 上的奇函数()y f x =满足(3)0f =,且当0x >时,不等式()()f x xf x '>-恒成立,则函数()()lg |1|g x xf x x =++的零点的个数为( ) A .1B .2C .3D .4二、填空题1.已知函数()22sin cos 44f x x x x ππ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭,则()f x 在02x π⎡⎤∈⎢⎥⎣⎦,上的最大值与最小值之差为 . 2.设函数()f x 对任意实数x 满足()()1f x f x =-+,且当01x ≤≤时,()()1f x x x =-,若关于x的方程()f x kx=有3个不同的实数根,则k 的取值范围是 .3.若曲线xx x f ln 21)(2+-=在其定义域内的一个子区间)2,2(+-k k 内不是单调函数,则实数k 的取值范围是______.4.已知函数()()2lg ,064,0x x f x x x x ⎧-<⎪=⎨-+≥⎪⎩,若关于x 的方程()()210f x bf x -+=有8个不同根,则实数b 的取值范围是______________. 5.已知00(,)x y 是直线21x y k +=-与圆22223x y k k +=+-的公共点,则00x y 的取值范围是__________.6.已知平行四边形ABCD 的中心为)3,0(,两条邻边所在的直线方程分别为0243=-+y x ,022=++y x ,在平行四边形ABCD 内有一面积为S 的圆,则S 的最大值是7.已知动点(),P x y 在椭圆2212516x y +=上,过坐标原点的直线BC 与椭圆相交,交点为,,B C 点Q 是三角形PBC 内一点,且满足∆∆∆==QPB QPC QBCS S S , 若点A 的坐标为()3,0,1,0=⋅=AM QM AM ,则QM的最小值是8. 已知正方形ABCD 的边长为2,点E 为AB 的中点.以A 为圆心,AE 为半径,作弧交AD于点F ,若P 为劣弧EF 上的动点,则PC PD 的最小值为___________.9. 已知函数xx a x f 22)(1+=+在]3,21[-上单调递增,则实数a 的取值范围_________.10.已知曲线y=x+lnx 在点(1,1)处的切线与曲线y=ax 2+(a+2)x+1相切,则a= .11. 定义在R 上的函数)(x f 是奇函数且满足)()23(x f x f =-,3)2(-=-f ,数列}{n a 满足11-=a ,且12+=n a n S nn ,n S为数列}{n a 的前n 项和,则)()(65a f a f += .12.已知0(21)nn a x dx =+⎰,数列1{}na 的前n项和为n S ,数列{}n b 的通项公式为*∈-=N n n b n ,35,则n n b S 的最小值为 .13.已知ABC △的三个内角A ,B ,C 的对边分别为a ,b ,c ,若2a =,3A π=,且()sin sin 2B C B --=,则ABC △面积为.14.已知三棱锥S ABC -的顶点都在球O 的球面上,ABC ∆是边长为2的正三角形,SC 为球O 的直径,且4SC =,则此三棱锥的体积为________.15.若存在实数a 、b 使得直线1ax by +=与线段AB (其中(1,0)A ,(2,1)B )只有一个公共点,且不等式2222120()sin cos p a b θθ+≥+对于任意(0,)2πθ∈成立,则正实数p 的取值范围为________.16.已知2,0,()ln(1),0x ax x f x x x ⎧+≤=⎨+>⎩,()2()F x f x x =-有2个零点,则实数a 的取值范围是 .17. 对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:3331373152,39,4,5171119⎧⎧⎧⎪⎪⎪⎪⎪⎪⎨⎨⎨⎪⎪⎪⎪⎪⎪⎩⎩⎩仿此,若3m 的“分裂”数中有一个是73,则m 的值为_____________.18.已知函数321()3f x x x ax =++,若1()x g x e =,对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f xg x ≤成立,则实数a 的取值范围是________.19.设数列{}n a 的各项均为正数,前n 项和为n S ,对于任意的n N +∈,2,,n n n a S a 成等差数列,设数列{}n b 的前n 项和为n T ,且2(ln )nn n x b a =,若对任意的实数(]1,x e ∈(e 是自然对数的底)和任意正整数n ,总有n T r <()r N +∈.则r 的最小值为 . 20. 在△ABC 中,,,a b c 分别为内角,,A B C 的对边,4a c +=,()2cos tansin 2BA A -=,则△ABC 的面积的最大值为 .一.选择题答案与解析1.B .解析:设()5cos 3sin P αα,,由()142OQ OP OF OQ =+=,,得2245cos 3cos 1622αα+⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即216cos 40cos 390αα+-=,解得3cos 4α=或13cos 4α=-(舍去),即点P 的横坐标为154,故点P 到抛物线215y x =的距离为152.2.D .解析:法一:假设四种颜色为红、黑、白、黄,先考虑三点S 、A 、B 的涂色方法,有432⨯⨯种方法,若C 点与A 不同色,则C 、D 点只有1种涂色的方法,有24种涂法,若C 点与A 同色,则D 点有2种涂色的方法,共48种涂法,所以不同的涂法共有72种.法二:用3种颜色涂色时,即AC 、BD 同色,共有3424A =种涂色的方法,用4种颜色时,有AD 和BC 同色2种情况,共有44248A =,故共有72种.3.A ,设()()2l n 31g x a x x =-+的值域为A ,因为函数()1f x =在[0)+∞,上的值域为(0]-∞,,所以(0]A -∞⊆,,因此()231h x ax x =-+至少要取遍(01],中的每一个数,又()01h =,于是,实数a 需要满足0a ≤或0940a a >⎧⎨∆=-≥⎩,解得94a ≤.4.D ,由题意知()342lnxa y ex y x =-,设()012y t t t t e x =>≠≠且,,则()342ln a e t t =-,()122ln 3e t t a =-,令()()()2ln 0f t e t t f t =-≠,,则()()2'1ln ef t t t =-+,令21ln e t t =+,得2t =,由数形结合可知,当t e >时,()'0f t <,当0t e <<时,()'0f t >,所以()f t e ≤,且()0f t ≠,所以1203ea <≤或10a <,解得0a <或32a e ≥. 5. C 6. C 7. A , 8B ,9C10.D ,不等式组表示的平面区域为三角形ABC ,()2,2A -,()5,1B --,()20C ,.则由2222k -≤--≤,2512k -≤-+≤,222k -≤≤得15k -≤≤.11.D 设(,)(0)P x y x >是()f x 上一点,则点P 关于原点的对称点为'(,)P x y -,于是223x ax x e -=-,∴2(23)(0)x a e x x x -=->,令2()(23)x x e x x ϕ-=-, 则22'()(23)(43)(273)(21)(3)x x x x x e x x e x e x x e x x ϕ----=--+-=--+=---, ∴()x ϕ在1[,3]2上是增函数,在1[0,]2与[3,)+∞上是减函数, 又32x ≥时,()0x ϕ≥,121()2e ϕ-=-,3(3)9e ϕ-=,∴1329e a e ---≤≤.12-14 AAA 15.D 16.A 17B 解:任给三角形,设它的三边长分别为a ,b ,c ,则a+b>c ,不妨假设a ≤c ,b ≤c , 对于①,f (x )=,由a+b >c ,可得a+2+b >c ,两边开方得+>,因此函数f (x )=是“保三角形函数”.对于②,f (x )=x 2,3,3,5可作为一个三角形的三边长,但32+32<52,不存在三角形以32,32,52为三边长,故f (x )=x 2不是“保三角形函数”. 对于③,f (x )=2x ,由于f (a )+f (b )=2(a+b )>2c=f (c ), 所以f (x )=2x 是“保三角形函数”.对于④,f (x )=lgx ,1,2,2可以作为一个三角形的三边长,但lg1=0,不能作三角形边长,故f (x )=lgx 不是“保三角形函数”.故选:B .18D ,19C , 20C ; 21. A 22D ;23C ;24. 【答案】D试题分析:因为函数)1(-=x f y 的图像关于点(1,0)对称,所以()y f x =的图象关于原点对称,即函数()y f x =为奇函数,由0)2()2(22≤-+-y y f x x f 得 222(2)(2)(2)f x x f y y f y y -≤--=-,所以2222x x y y -≥-, 所以222214x x y y x ⎧-≥-⎨≤≤⎩,即()(2)014x y x y x -+-≥⎧⎨≤≤⎩,画出可行域如图,可得=x+2y ∈[0,12].故选D .25.【答案】C试题分析:根据函数的解析式,画出图像,由图像易知这10 个零点为0,1,2,3,……,9,所以10S =45. 26B ; 27D28.解析:设点P 是双曲线左支上的点,并设双曲线左顶点为E .则2PA PB AB+≤,化为42PO c≤(2c 为双曲线的焦距),12PO c ≤,容易证明PO a ≥,于是122a c e ≤≥,.故选B .29.解析:∵()()()f x f y f x y +=⋅,∴()()()111f f f +=,∴()10f =,()110a f ==,设120x x <<,211x x >,∵()()()f x f y f x y +=⋅,∴()()22110x f x f x f x ⎛⎫-=> ⎪⎝⎭,∴()()21f x f x >,所以()y f x =为增函数.()()()()()11121210121n n n n n n a f a f a f a f a f f a +++⎛⎫=+-+=== ⎪+⎝⎭,,1121n n a a +=+,121n n a a +=+, ()1121n n a a ++=+,112n n a -+=,121n n a -=-,∴2016201721a =- 30 B ,31A , 32C ,33B , 34A ,35A ,36B ,37D ,38D,39A ,40B, 41C ,42A43. D 依题意,2(1ln )'()e x f x x -=,故函数()f x 在(0,)e 上单调递增,在(,3)e 上单调递减,故当(0,3)x ∈时,max ()()1f x f e ==,又函数()f x 是定义在R 上的奇函数,且0x >时,()(3)0f x f x -++=,即(3)()f x f x +=,且(0)0f =;由6()0f x x -=可知,()6xf x =.在同一直角坐标系中,作出函数()y f x =与6xy =在[-9,9]上的图象如下图所示.44.D ,45C ,46D ,47D ,48B , 49C ,50C ,51A ,52C一.填空题答案与解析1.解析:()2sin 22cos 22sin 226f x x x x x x ππ⎛⎫⎛⎫=++=+=+ ⎪ ⎪⎝⎭⎝⎭,当02x π⎡⎤∈⎢⎥⎣⎦,时,72666x πππ⎡⎤+∈⎢⎥⎣⎦,,故1sin 2162x π⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,,即函数()f x 的值域为[]12-,,故答案为3.2.(){5132--+,,因为()()1f x f x =-+,所以()()2f x f x +=,即()f x 是以2为周期的函数. 当[]01x ∈,时,()()1f x x x =-,当[]10x ∈-,时,[]101x +∈,,所以()()()11f x f x x x =-+=+,当[]23x ∈,时,[]201x -∈,,则()()()()223f x f x x x =-=--,当[]21x ∈--,时,[]201x +∈,,则()()()()212f x f x x x =+=-++,当[]01x ∈,时,()()1f x x x =-,()()'21'01f x x f =-+=,.当[]23x ∈,时,由256y x x y kx ⎧=-+-⎨=⎩,消去y 得,()()225605460x k x k +-+=∆=--⨯=,,解得)55k k =-=+,当[]21x ∈--,时,由232y x x y kx⎧=---⎨=⎩,消去y 得,()()223203420x k x k +++=∆=+-⨯=,,解得)33k k =-+=--.数形结合知,(){5132k ∈--+,.3. 32<<k 4.1724b <≤5.1111[44-+2222k -≤≤+,由00222002123x y k x y k k +=-⎧⎪⎨+=+-⎪⎩得20031(1)22x y k =-+,∴00111144x y -+≤≤,∴1111[44-+.6、4π 7、38.5-9.[﹣1,1] 10、 8 11、 3 12、-2513或 14 324, 15 [1,+∞)16.1,2⎛⎤-∞ ⎥⎝⎦ 17. 9 18. (8]-∞- 对任意11[,2]2x ∈,存在21[,2]2x ∈,使12'()()f xg x ≤,∴maxmax ['()][()]f x g x ≤,2'()(1)1f x x a =++-在1[,2]2上单调递增,∴max '()'(2)8f x f a==+,()g x 在1[,2]2上单调递减,则max 1()()2g x g e ==,∴8a e +≤,则8a e ≤-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学压轴题(21)(本小题满分12分)已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点的距离的最大值为3,最小值为1. (I)求椭圆C 的标准方程;(II)若直线:l y kx m =+与椭圆C 相交于A,B 两点(A,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.(22)(本小题满分14分)设函数2()ln(1)f x x b x =++,其中0b ≠. (I)当12b >时,判断函数()f x 在定义域上的单调性; (II)求函数()f x 的极值点;(III)证明对任意的正整数n ,不等式23111ln(1)n n n+>-都成立.(21)解:(I)由题意设椭圆的标准方程为22221(0)x y a b a b+=>>3,1a c a c +=-=,22,1,3a c b === 221.43x y ∴+= (II)设1122(,),(,)A x y B x y ,由22143y kx mx y =+⎧⎪⎨+=⎪⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->.212122284(3),.3434mk m x x x x k k -+=-⋅=++22221212121223(4)()()().34m k y y kx m kx m k x x mk x x m k-⋅=+⋅+=+++=+ Q 以AB 为直径的圆过椭圆的右顶点(2,0),D 1AD BD k k ⋅=-,1212122x x ∴⋅=---,1212122()40y y x x x x +-++=, 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,2271640m mk k ++=,解得1222,7k m k m =-=-,且满足22340k m +->. 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0).7综上可知,直线l 过定点,定点坐标为2(,0).7(22)解:(I) 函数2()ln(1)f x x b x =++的定义域为()1,-+∞.222'()211b x x bf x x x x ++=+=++,令2()22g x x x b =++,则()g x 在1,2⎛⎫-+∞ ⎪⎝⎭上递增,在11,2⎛⎫-- ⎪⎝⎭上递减,min 11()()22g x g b =-=-+.当12b >时,min 1()02g x b =-+>,2()220g x x x b =++>在()1,-+∞上恒成立. '()0,f x ∴>即当12b >时,函数()f x 在定义域()1,-+∞上单调递增。

(II )分以下几种情形讨论:(1)由(I )知当12b >时函数()f x 无极值点. (2)当12b =时,212()2'()1x f x x +=+, 11,2x ⎛⎫∴∈-- ⎪⎝⎭时,'()0,f x >,2x ∈-+∞ ⎪⎝⎭时,'()0,f x >12b ∴=时,函数()f x 在()1,-+∞上无极值点。

(3)当12b <时,解'()0f x =得两个不同解112x -=212x -+=.当0b <时,1112x -=<-,2112x -+=>-,()()121,,1,,x x ∴∉-+∞∈-+∞此时()f x 在()1,-+∞上有唯一的极小值点212x -+=.当102b <<时,()12,1,,x x ∈-+∞ '()f x 在()()121,,,x x -+∞都大于0 ,'()f x 在12(,)x x 上小于0 ,此时()f x 有一个极大值点112x --=和一个极小值点212x -+=.综上可知,0b <时,()f x 在()1,-+∞上有唯一的极小值点212x -+=;102b <<时,()f x 有一个极大值点112x -=和一个极小值点212x -+=;12b ≥时,函数()f x 在()1,-+∞上无极值点。

(III ) 当1b =-时,2()ln(1).f x x x =-+ 令332()()ln(1),h x x f x x x x =-=-++则32'3(1)()1x x h x x +-=+在[)0,+∞上恒正,()h x ∴在[)0,+∞上单调递增,当()0,x ∈+∞时,恒有()(0)0h x h >=.即当()0,x ∈+∞时,有32ln(1)0,x x x -++>23ln(1)x x x +>-,对任意正整数n ,取1x n =得23111ln(1)n n n+>-(21)(本小题满分12分) 已知函数1()ln(1),(1)nf x a x x =+--其中n ∈N*,a 为常数.(Ⅰ)当n =2时,求函数f (x )的极值;(Ⅱ)当a =1时,证明:对任意的正整数n , 当x ≥2时,有f (x )≤x -1.(22)(本小题满分14分) 如图,设抛物线方程为x 2=2py (p >0),M 为 直线y = -2p 上任意一点,过M 引抛物线的切线,切点分别为A ,B . (Ⅰ)求证:A ,M ,B 三点的横坐标成等差数列; (Ⅱ)已知当M 点的坐标为(2,-2p )时,410AB =,求此时抛物线的方程;(Ⅲ)是否存在点M ,使得点C 关于直线AB 的对称点D 在抛物线22(0)x py p =>上,其中,点C 满足OC OA OB=+u u u r u u u r u u u r(O 为坐标原点).若存在,求出所有适合题意的点M 的坐标;若不存在,请说明理由.(21)(Ⅰ)解:由已知得函数f (x )的定义域为{x |x >1},当n =2时,21()ln(1),(1)f x a x x =+-- 所以 232(1)().(1)a x f x x --'=- (1)当a >0时,由()0f x '=得121x a =+>1,221x a=-<1, 此时 123()()()(1)a x x x x f x x ---'=-.当x ∈(1,x 1)时,()0,()f x f x '<单调递减; 当x ∈(x 1+∞)时,()0,()f x f x '>单调递增.(2)当a ≤0时,()0f x '<恒成立,所以f (x )无极值. 综上所述,n =2时,当a >0时,f (x )在1x =+处取得极小值,极小值为2(1(1ln ).2a f a+=+ 当a ≤0时,f (x )无极值. (Ⅱ)证法一:因为a =1,所以1()ln(1).(1)nf x x x =+-- 当n 为偶数时,令1()1ln(1),(1)ng x x x x =-----则 1112()10,(2)11(1)(1)n n n x ng x x x x x x ++-'=+-=+>≥----.所以当x ∈[2,+∞]时,g(x)单调递增, 又 g (2)=0 因此1()1ln(1)(1)ng x x x x =-----≥g(2)=0恒成立, 所以f (x )≤x-1成立.当n 为奇数时, 要证()f x ≤x-1,由于1(1)nx -<0,所以只需证ln(x -1) ≤x -1,令 h (x )=x -1-ln(x -1), 则 12()111x h x x x -'=-=--≥0(x ≥2), 所以 当x ∈[2,+∞]时,()1ln(1)h x x x =---单调递增,又h (2)=1>0, 所以当x ≥2时,恒有h (x ) >0,即ln (x -1)<x-1命题成立.综上所述,结论成立. 证法二:当a =1时,1()ln(1).(1)nf x x x =+-- 当x ≥2,时,对任意的正整数n ,恒有1(1)nx -≤1,故只需证明1+ln(x -1) ≤x -1.令[)()1(1ln(1))2ln(1),2,h x x x x x x =--+-=---∈+∞则12()1,11x h x x x -'=-=-- 当x ≥2时,()h x '≥0,故h (x )在[)2,+∞上单调递增, 因此 当x ≥2时,h (x )≥h (2)=0,即1+ln(x -1) ≤x -1成立.故 当x ≥2时,有1ln(1)(1)nx x +--≤x -1. 即f (x )≤x -1.(22)(Ⅰ)证明:由题意设221212120(,),(,),,(,2).22x x A x B x x x M x p p p-<由22x py =得22x y p =,则,xy p'=所以12,.MA MB x x k k p p==因此直线MA 的方程为102(),x y p x x p +=- 直线MB 的方程为202().x y p x x p+=-所以211102(),2x xp x x p p+=-①222202().2x xp x x p p+=- ②由①、②得212120,2x x x x x +=+- 因此 1202x x x +=,即0122.x x x =+ 所以A 、M 、B 三点的横坐标成等差数列.(Ⅱ)解:由(Ⅰ)知,当x 0=2时, 将其代入①、②并整理得: 2211440,x x p --=2222440,x x p --=所以 x 1、x 2是方程22440x x p --=的两根,因此212124,4,x x x x p +==-又22210122122,2ABx x x x x p p k x x p p-+===-所以2.AB k p=由弦长公式得AB ==又AB = 所以p =1或p =2,因此所求抛物线方程为22x y =或24.x y =(Ⅲ)解:设D (x 3,y 3),由题意得C (x 1+ x 2, y 1+ y 2),则CD 的中点坐标为123123(,),22x x x y y y Q ++++设直线AB 的方程为011(),x y y x x p-=-由点Q 在直线AB 上,并注意到点1212(,)22x x y y ++也在直线AB 上,代入得033.x y x p=若D (x 3,y 3)在抛物线上,则2330322,x py x x ==因此 x 3=0或x 3=2x 0.即D (0,0)或2002(2,).x D x p(1)当x 0=0时,则12020x x x +==,此时,点M (0,-2p )适合题意.(2)当00x ≠,对于D (0,0),此时2212222212120002(2,),,224CDx x x x x x pC x k px px +++==又0,AB x k p=AB ⊥CD , 所以222201212201,44AB CDx x x x x k k p px p++===-g g 即222124,x x p +=-矛盾.对于2002(2,),x D x p 因为22120(2,),2x x C x p+此时直线CD 平行于y 轴, 又00,AB x k p=≠ 所以 直线AB 与直线CD 不垂直,与题设矛盾, 所以00x ≠时,不存在符合题意的M 点. 综上所述,仅存在一点M (0,-2p )适合题意.(21)(本小题满分12分)两县城A 和B 相距20km ,现计划在两县城外以AB 为直径的半圆弧上选择一点C 建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A 和城B 的总影响度为城A 与城B 的影响度之和,记C 点到城A 的距离为x km ,建在C 处的垃圾处理厂对城A 和城B 的总影响度为y,统计调查表明:垃圾处理厂对城A 的影响度与所选地点到城A 的距离的平方成反比,比例系数为4;对城B 的影响度与所选地点到城B 的距离的平方成反比,比例系数为k ,当垃圾处理厂建在的中点时,对城A 和城B 的总影响度为0.065.(I )将y 表示成x 的函数;(Ⅱ)讨论(I )中函数的单调性,并判断弧上是否存在一点,使建在此处的垃圾处理厂对城A 和城B 的总影响度最小?若存在,求出该点到城A 的距离;若不存在,说明理由。

相关文档
最新文档