【推荐】九年级(初三)数学上册第二十四章圆专题强化七不规则图形面积的求法习题讲义新人教版
九年级数学上册第二十四章圆典型例题(带答案)
九年级数学上册第二十四章圆典型例题单选题1、如图,在⊙O中,CD是直径,AB是弦,AB⊥CD于E,AB=8,OD=5,则CE的长为()A.4B.2C.√2D.1答案:B分析:连接OA,如图,先根据垂径定理得到AE=BE=4,再利用勾股定理计算出OE=3,然后计算OC﹣OE即可.解:连接OA,如图,∵AB⊥CD,∴AE=BE=1AB=4,2在Rt△OAE中,OE=√OA2−AE2=√52−42=3,∴CE=OC﹣OE=5﹣3=2.故选:B.小提示:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理,掌握垂径定理是解题的关键.2、已知⊙O的半径为3,OA=5,则点A和⊙O的位置关系是()A.点A在圆上B.点A在圆外C.点A在圆内D.不确定答案:B分析:根据点与圆的位置关系的判定方法进行判断,OA小于半径则在圆内,OA等于半径则在圆上,OA大于半径则在圆外.解:∵⊙O的半径为3,OA=5,即A与点O的距离大于圆的半径,所以点A与⊙O外.故选:B.小提示:本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.3、如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4√2,DE=4,则BC的长是()A.1B.√2C.2D.4答案:C分析:根据垂径定理求出OD的长,再根据中位线求出BC=2OD即可.设OD=x,则OE=OA=DE-OD=4-x.∵AB是⊙O的直径,OD垂直于弦AC于点,AC=4√2∴AD =DC =12AC =2√2 ∴OD 是△ABC 的中位线∴BC =2OD∵OA 2=OD 2+AD 2∴(4−x)2=x 2+(2√2)2,解得x =1∴BC =2OD =2x =2故选:C小提示:本题考查垂径定理、中位线的性质,根据垂径定理结合勾股定理求出OD 的长是解题的关键.4、如图,CD 是⊙O 的直径,弦AB ⊥CD 于点E ,则下列结论不一定成立的是( )A .AE =BEB .OE =DEC .AC⌢=BC ⌢D .AD ⌢=BD ⌢ 答案:B分析:根据垂径定理即可判断.解:∵CD 是⊙O 的直径,弦AB ⊥CD 于点E ,∴AE =EB ,AC⌢=BC ⌢, AD ⌢=BD ⌢. 故选:B .小提示:本题主要考查垂径定理,掌握垂径定理是解题的关键.5、斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为( )A .54B .2C .52D .4答案:A分析:根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可. 解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长l =2π×5×14=52π设圆锥底面半径为r ,则2πr =52π ∴r =54故选:A .小提示:本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.6、如图,正五边形ABCDE 和正三角形AMN 都是⊙O 的内接多边形,则∠BOM 的度数是( )A .36°B .45°C .48°D .60°答案:C分析:如图,连接AO .利用正多边形的性质求出∠AOM ,∠AOB ,可得结论.解:如图,连接AO.∵△AMN是等边三角形,∴∠ANM=60°,∴∠AOM=2∠ANM=120°,∵ABCDE是正五边形,=72°,∴∠AOB=360°5∴∠BOM=120°−72°=48°.故选:C.小提示:本题考查正多边形与圆,等边三角形的性质,圆周角定理等知识,解题的关键是熟练掌握正多边形的性质,属于中考常考题型.7、如图,斗笠是一种遮挡阳光和蔽雨的编结帽,它可近似看成一个圆锥,已知该斗笠的侧面积为550πcm2,AB是斗笠的母线,长为25cm,AO为斗笠的高,BC为斗笠末端各点所在圆的直径,则OC的值为()A.22B.23C.24D.25答案:A分析:根据圆锥的侧面积和母线可得底面圆的周长,进而可得底面圆的半径.解:∵侧面积为550π cm2,母线长为25cm,∴1×l×25=550π解得l=44π,2∵2πr=44π,∴OC=r=22,故选:A.小提示:本题考查圆锥的计算,根据侧面积和母线得到底面圆的半径是解题关键.8、如图,正五边形ABCDE内接于⊙O,则正五边形中心角∠COD的度数是()A.76°B.72°C.60°D.36°答案:B计算即可.分析:根据正多边形的中心角的计算公式:360°n解:∵五边形ABCDE是⊙O的内接正五边形,∴五边形ABCDE的中心角∠COD的度数为360°=72°,5故选:B.小提示:本题考查的是正多边形和圆,掌握正多边形的中心角的计算公式:360°是解题的关键.n9、如图,公园内有一个半径为18米的圆形草坪,从A地走到B地有观赏路(劣弧AB)和便民路(线段AB).已知A、B是圆上的点,O为圆心,∠AOB=120°,小强从A走到B,走便民路比走观赏路少走()米.A .6π−6√3B .6π−9√3C .12π−9√3D .12π−18√3答案:D分析:作OC ⊥AB 于C ,如图,根据垂径定理得到AC =BC ,再利用等腰三角形的性质和三角形内角和计算出∠A ,从而得到OC 和AC ,可得AB ,然后利用弧长公式计算出AB⌢的长,最后求它们的差即可. 解:作OC ⊥AB 于C ,如图,则AC =BC ,∵OA =OB ,∴∠A =∠B =12(180°-∠AOB )=30°, 在Rt △AOC 中,OC =12OA =9, AC =√182−92=9√3,∴AB =2AC =18√3,又∵AB ⌢=120×π×18180=12π,∴走便民路比走观赏路少走12π−18√3米,故选D .小提示:本题考查了垂径定理:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.10、在锐角△ABC中,∠ACB=60°,∠BAC、∠ABC的角平分线AD、BE交于点M,则下列结论中错误的是()A.∠AMB=120°B.ME=MDC.AE+BD=AB D.点M关于AC的对称点一定在△ABC的外接圆上答案:D分析:利用三角形内角和定理以及角平分线的定义求出∠MAB+∠MBA=60°,推出∠AMB=120°,可判断A,证明C,E,M,D四点共圆,利用圆周角定理可判断B;在AB上取一点T,使得AT=AE,利用全等三角形的性质证明BD=BT,可判断C;无法判断∠M′与∠ABC互补,可判断D.解:如图,∵∠ACB=60°,∴∠CAB+∠CBA=120°,∵AD,BE分别是∠CAB,∠CBA的角平分线,∴∠MAB+∠MBA=1(∠CAB+∠CBA)=60°,2∴∠AMB=180°-(∠MAB+∠MBA)=120°,故A符合题意,∵∠EMD=∠AMB=120°,∴∠EMD+∠ECD=180°,∴C,E,M,D四点共圆,∵∠MCE=∠MCD,∴EM⌢=DM⌢,∴EM=DM,故B符合题意,∵四边形CEMD是⊙O的内接四边形,∴∠AME=∠ACB=60°=∠BMD,在AB上取一点T,使得AT=AE,在△AME和△AMT中,{AE=AT∠MAE=∠MATAM=AM,∴△AME≌△AMT(SAS),∴∠AME=∠AMT=60°,EM=MT,∴∠BMD=∠BMT=60°,MT=MD,在△BMD和△BMT中,{MD=MT∠BMD=∠BMTBM=BM,∴△BMD≌△BMT,∴BD=BT,∴AB=AT+TB=AE+BD,故C符合题意,∵M,M′关于AC对称,∴∠M′=∠AMC,∵∠AMC=180°−12(∠CAB+∠ACB)=180°−12(180°−∠ABC)=90°+12∠ABC,∴∠M′与∠ABC不一定互补,∴点M′不一定在△ABC的外接圆上,故D不符合题意,故选D.小提示:本题考查三角形的外接圆,四点共圆,圆周角定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.填空题11、如图,已知A为半径为3的⊙O上的一个定点,B为⊙O上的一个动点(点B与A不重合),连接AB,以AB为边作正三角形ABC.当点B运动时,点C也随之变化,则O、C两点之间的距离的最大值是______.答案:6分析:连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.证明△BAO≌△CAN(SAS),推出OB=CN=3,推出OC≤ON+CN=6,可得结论.解:如图,连接OB,OC,OA,在优弧AB上取点N,使得AN=AO.∵OA=ON,OA=AN,∴AO=ON=AN,∴△OAN是等边三角形,∴∠OAN=60°,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BAC=∠OAN=60°,∴∠BAO=∠CAN,∴△BAO≌△CAN(SAS),∴OB=CN=3,∵OC≤ON+CN=6,∴OC的最大值为6,所以答案是:6.小提示:本题考查了等边三角形的性质,圆的相关性质,垂径定理,利用两地之间线段最短是本题的解题关键.12、一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB=12cm,BC=5cm,则圆形镜面的半径为__________.cm答案:132分析:连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),cm,所以圆形镜面的半径为132cm.所以答案是:132小提示:本题考查了圆周角定理,圆心角、弧、弦之间的关系和勾股定理等知识点,能根据圆周角定理得出AC 是圆形镜面的直径是解此题的关键.13、如图所示的网格中,每个小正方形的边长均为1,点A ,B ,D 均在小正方形的顶点上,且点B ,C 在AD⌢上,∠BAC =22.5°,则BC⌢的长为__________.答案:5π4 分析:先找到AD̂的圆心O ,得到∠BOC =45°,利用弧长公式即可求解. 解:连接AD ,作线段AB 、AD 的垂直平分线,交点即为AD̂的圆心O , 从图中可得:AD̂的半径为OB =5, 连接OC ,∵∠BAC =22.5°,∴∠BOC =2×22.5°=45°,BC ̂的长为45×π×5180=5π4. .所以答案是:5π4.小提示:本题考查了弧长公式,找到AD̂的圆心是解题的关键. 14、如图,正六边形ABCDEF 的边长为4,以A 为圆心,AC 的长为半径画弧,得EC⌢,连接AC 、AE ,用图中阴影部分作一个圆锥的侧面,则这个圆锥的底面半径为______.答案:2√33分析:由正六边形ABCDEF的边长为4,可得AB=BC=4,∠ABC=∠BAF=120°,进而求出∠BAC=30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH=12AC,BH=2.在Rt△ABH中,由勾股定理求得AH=2√3,得到AC=4√3.根据扇形的面积公式可得到阴影部分的面积,即是圆锥的侧面积,最后根据圆锥的侧面积公式求解底面半径即可.解:∵正六边形ABCDEF的边长为4,∴AB=BC=4,∠ABC=∠BAF=(6−2)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°−∠ABC)=30°,如图,过B作BH⊥AC于H,∴AH=CH=12AC,BH=12AB=12×4=2,在Rt△ABH中,AH=√AB2−BH2=√42−22=2√3,∴AC=2AH=4√3,同理可求∠EAF=30°,∴∠CAE=∠BAF−∠BAC−∠EAF=120°−30°−30°=60°,∴S扇形CAE =60π⋅(4√3)2360=8π,∴S圆锥侧=S扇形CAE=8π,∵S 圆锥侧=πrl =πr ⋅AC =4√3πr ,∴4√3πr =8π,∴r =2√33, 所以答案是:2√33.小提示:本题考查的是正六边形的性质、扇形面积的计算、等腰三角形的性质、勾股定理、圆锥的侧面积,掌握扇形面积公式和圆锥侧面积公式是解题的关键.15、刘徽是我国魏晋时期卓越的数学家,他在《九章算术》中提出了“割圆术”,利用圆的内接正多边形逐步逼近圆来近似计算圆的面积,如图,若用圆的内接正十二边形的面积S 1来近似估计⊙O 的面积S ,设⊙O 的半径为1,则S −S 1=__________.答案:π−3分析:如图,过点A 作AC ⊥OB ,垂足为C ,先求出圆的面积,再求出△ABC 面积,继而求得正十二边形的面积即可求得答案.如图,过点A 作AC ⊥OB ,垂足为C ,∵⊙O 的半径为1,∴⊙O 的面积S =π,OA=OB=1,∴圆的内接正十二边形的中心角为∠AOB=360°12=30°,∴AC=12OB=12,∴S △AOB =12OB•AC=14, ∴圆的内接正十二边形的面积S 1=12S △AOB =3,∴则S −S 1=π−3,故答案为π−3.小提示:本题考查了正多边形与圆,正确的求出正十二边形的面积是解题的关键.解答题16、如图,CD 与EF 是⊙O 的直径,连接CE 、CF ,延长CE 到A ,连接AD 并延长,交CF 的延长线于点B ,过点F 作⊙O 的切线交AB 于点G ,点D 是AB 的中点.(1)求证:EF ∥AB ;(2)若AC =3,CD =2.5,求FG 的长.答案:(1)见解析;(2)65分析:(1)连接DE ,根据CD 和EF 都是⊙O 的直径得到∠DEA =∠ECF =90°,根据直角三角形的性质得到CD =AD =BD ,利用等腰三角形三线合一的性质推出∠ADE =∠CDE ,进而得到∠ADE =∠OED ,即可得到EF ∥AB ;(2)根据直角三角形斜边上的中线求得AB=2CD=5,勾股定理求得BC=4,由(1)可得EF=12AB,根据切线的性质可得FG⊥AB,根据sinB=FGBF =ACAB,代入数值,即可得到FC.(1)证明:连接DE,∵CD和EF都是⊙O的直径,∴∠DEA=∠ECF=90°,∵D是AB的中点,∴CD=AD=BD,∴∠ADE=∠CDE,∵OD=OE,∴∠OED=∠CDE,∴∠ADE=∠OED,∴EF∥AB;(2)连接DF,∵CD是⊙O的直径,∴∠DFC=90°,∴∠DFC=∠FCE=∠CED=90°,∴四边形CEDF是矩形,∴FC=DE,DE∥BC,∴AEEC =ADDB=1,∴AE=CE,∴DE是△ABC的中位线,∴DE=12BC,∵AB=2CD=5,AC=3,∴BC=√AB2−AC2=√52−32=4,∴FC=2.∴BF=BC−FC=4−2=2∵FG是⊙O的切线,∴GF⊥EF∵EF∥AB∴FG⊥AB∴∠BGF=∠BCA=90°∴sinB=FGBF =ACAB∴FG2=35∴FG=65小提示:此题考查了圆周角定理,矩形的判定定理及性质定理,勾股定理,三角形中位线的性质,熟记圆周角定理是解题的关键.17、如图,D是△ABC的BC边上一点,连结AD,作△ABD的外接圆O,将△ADC沿直线AD折叠,点C的对应点E 落在⊙O 上.(1)若∠ABC =30°,如图1.①求∠ACB 的度数.②若AD =DE ,求∠EAB 的度数.(2)若AD⌢=BE ⌢,AC =4,CD =2,如图2.求BC 的长. 答案:(1)①30°,②60°;(2)BC =6分析:(1)①根据折叠的性质可得∠ACD =∠AED ,根据等弧所对的圆周角即可求解;②根据等边对等角可得∠DAE =∠DEA ,根据(1)的结论可得∠ACB =∠ABC ,进而根据折叠的性质求得∠CAE =60°,进而根据∠CAB −∠CAE 即可求得∠BAE ,(2)根据AD⌢+DE ⌢=BE ⌢+DE ⌢,可得AE ⌢=DB ⌢,AE =BE ,根据折叠的性质可得DB =AE =4,进而即可求解.(1)①∵AD⌢=AD ⌢,∠ABC =30°, ∴∠AED =∠ABD =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠ACB =∠AED =30° ;②∵ AD =DE ,∴∠DAE =∠DEA ,∵∠DEA =∠DBA ,∴∠DAE =30°,∵将△ADC 沿直线AD 折叠,点C 的对应点E 落在⊙O 上,∴∠DAE =∠DAC =30°,△ABC 中,∠ABC =∠ACB =30°,则∠CAB =180°−∠ABC −∠ACB =120°,∵∠CAE =∠CAD +∠EAD =60°,∴∠EAB =∠CAB −∠CAE =120°−60°=60°,∴∠EAB =60°,(2)∵ AD⌢=BE ⌢ ∴AD⌢+DE ⌢=BE ⌢+DE ⌢ ∴AE⌢=DB ⌢ ∴AE =BE∵折叠∴AC =AE∴DB =AE =4∵CD =2∴BC =CD +DB =4+2=6小提示:本题考查了折叠的性质,同弧或等弧所对的圆周角相等,弧与弦的关系,三角形内角和定理的应用,综合运用以上知识是解题的关键.18、如图,C ,D 是以AB 为直径的半圆上的两点,∠CAB =∠DBA ,连结BC ,CD .(1)求证:CD ∥AB .(2)若AB =4,∠ACD =30°,求阴影部分的面积.答案:(1)答案见解析(2)23π 分析:(1)根据同弧所对的圆周角相等得到∠ACD =∠DBA ,根据 ∠CAB =∠DBA 得到∠CAB =∠ACD ,进而得到结论;(2)连结OC ,OD ,证明所求的阴影部分面积与扇形COD 的面积相等,继而得到结论.(1)证明:∵AD ⌒=AD ⌒,∴∠ACD =∠DBA ,又∵∠CAB =∠DBA ,∴∠CAB =∠ACD ,∴CD ∥AB ;(2)解:如图,连结OC ,OD .∵∠ACD =30°,∴∠ACD =∠CAB =30°,∴∠AOD =∠COB =60°,∴∠COD =180°-∠AOD -∠COB =60°.∵CD ∥AB ,∴S △DOC =S △DBC ,∴S 阴影=S 弓形COD +S △DOC =S 弓形COD +S △DBC=S 扇形COD ,∵AB =4,∴OA =2,∴S 扇形COD=nπr 2360=60×π×22360=23π.∴S阴影=2π.3小提示:本题主要考查扇形的面积,同弧所对的圆周角相等,平行线的判定,掌握定理以及公式是解题的关键.。
人教版初中九年级数学上册第二十四章《圆》经典题(含答案解析)
一、选择题1.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 2.如图,在半径为8的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,30D ︒∠=,下列结论不正确的是( )A .OA BC ⊥B .83BC = C .四边形ABOC 是菱形D .扇形OAC 的面积为643π 3.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 4.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,∠POB =40°,则∠CBD 的度数是( )A .50°B .45°C .35°D .40°5.中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花,图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到12AC BD cm ==,C ,D 两点之间的距离为3cm ,圆心角为60︒,则图中摆盘的面积是( )A .212cm πB .224cm πC .236cm πD .248cm π 6.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 7.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .8.点A ,B 的坐标分别为A (4,0),B (0,4),点C 为坐标平面内一点,BC ﹦2,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A.22+1 B.22+2 C.42+1 D.42-29.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD的中点.若∠=︒,则B的度数是()A50A.50︒B.55︒C.60︒D.65︒10.如图,⊙O的半径为1,点 O到直线a的距离为2,点 P是直线a上的一个动点,PA 切⊙O于点 A,则 PA的最小值是()A.1 B.3C.2 D.511.如图,在△ABC中,(1)作AB和BC的垂直平分线交于点O;(2)以点O为圆心,OA长为半径作圆;(3)⊙O分别与AB和BC的垂直平分线交于点M,N;(4)连接AM,AN,CM,其中AN与CM交于点P.根据以上作图过程及所作图形,下列四个结论:①BC=2NC;②AB=2AM;③点P是△ABC的内心;④∠MON+2∠MPN=360°.其中正确结论的个数是( )A .1B .2C .3D .412.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .23 13.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150°14.在△ABC 中,∠ACB 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作弧BAC ,如图所示.若AB=4,AC=2,图中两个新月形面积分别为S 1,S 2,两个弓形面积分别为S 3,S 4,S 1-S 2=14π,则S 3-S 4的值是( )A .294πB .234πC .114πD .54π 15.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE= D .BC=2CE 二、填空题16.已知半径为5的圆O 中,弦AB =8,则以AB 为底边的等腰三角形腰长为___________.17.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.18.已知一个圆锥形纸帽的底面半径为5cm ,母线长为10cm ,则该圆锥的侧面积为_____cm 2(结果保留π)19.如图,把边长为12的正三角形ABC 纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK ,则剪去的小正三角形的边长为__________________.20.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.21.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.22.如图,已知AD 为半圆形O 的直径,点B ,C 在半圆形上,AB BC =,30BAC ∠=︒,8AD =,则AC 的长为________.23.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.24.如图,AB 是O 的直径,O 交BC 的中点于D ,DE AC ⊥于E ,连接AD ,则下列结论正确的有______(填序号) ①AD BC ⊥;②EDA B ∠=∠;③12OA AC =;④DE 是O 的切线.25.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.26.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为 _____.三、解答题27.已知:△ABC .(1)求作:△ABC 的外接圆⊙O (要求:尺规作图,保留作图痕迹,不写作法); (2)若已知△ABC 的外接圆的圆心O 到BC 边的距离OD =8,BC =12,求⊙O 的半径.28.如图,已知直线l 与⊙O 相离,过圆心O 画OA ⊥l 于点A ,交⊙O 于点P 且OA =5,点B 为⊙O 上一点BP 的延长线交直线l 于点C 且AB=AC .(1)判断AB 与⊙O 有怎样的位置关系,并说明理由;(2)若25PC =,求⊙O 的半径.29.如图,AB 是⊙O 的直径,弦CD AB ⊥于点H ,30A ∠=︒,43CD =,求⊙O 的半径的长.30.如图,半径为2的⊙O 与正五边形ABCDE 的边AB 、AE 相切于点M 、N ,求劣弧MN 的长度.。
专题训练(九) 求不规则图形面积的常用方法
专题训练(九) 求不规则图形面积的常用方法
(2)设 BC 的中点为 O,由(1)可知点 O 为圆心,连接 OA,OD. ∵∠ABD=30°,∴∠AOD=60°. 根据“同底等高的三角形的面积相等”可得 S△ABD=S△OAD, ∴S 阴影=S 扇形 OAD=60×36π0×32=32π.
专题训练(九) 求不规则图形面积的常用方法
本课件仅供交流学习使用,严禁用于任何商业用途
全品作业本
数学
九年级 上册
新课标(RJ)
第二十四章 圆
第二十四章 圆
专题训练(九) 求不规则图形面积的常用方法
专题训练(九) 求不规则图形面积的常用方法
方法一 用旋转求图形的面积
1.当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻
璃上的雨刷.如图 9-ZT-1 是某汽车的一个雨刷的转动示意图,雨
解:将小圆向右平移,使两圆变成同心圆,如图,连接 OB,过点 O 作 OC⊥AB 于 点 C,则 AC=BC=12. ∵AB 是大半圆的弦且与小半圆相切, ∴OC 为小圆的半径, ∴S 阴影=S 大半圆-S 小半圆=12π·OB2-12π·OC2=12π(OB2-OC2)=12π·BC2=72π.
专题训练(九) 求不规则图形面积的常用方法
专题训练(九) 求不规则图形面积的常用方法
方法二 用平移求图形的面积
2.如图 9-ZT-2 是两个半圆,点 O 为大半圆的圆心,AB 是大半圆 的弦且与小半圆相切,AB=24,求图中阴影部分的面积.
图9-ZT-2
专题训练(九) 求不规则图形面积的常用方法
[解析] 将小圆向右平移,使它的圆心与大圆的圆心重合,于是阴影部分的面 积可转化为大半圆的面积减去小半圆的面积.
难点解析-人教版九年级数学上册第二十四章圆专题攻克试题(含答案解析版)
人教版九年级数学上册第二十四章圆专题攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,AB、AC为O的切线,B、C为切点,点D为弧BC上一点,过点D作O的切线分别交AB=,则AEF的周长等于().AB、AC于E、F,若6A.6B.12C.9D.182、已知⊙O的半径为4,点O到直线m的距离为d,若直线m与⊙O公共点的个数为2个,则d可取()A.5 B.4.5 C.4 D.03、如图,⊙O中,弦AB⊥CD,垂足为E,F为CBD的中点,连接AF、BF、AC,AF交CD于M,过F作FH⊥AC,垂足为G,以下结论:①CF DF=;②HC=BF:③MF=FC:④DF AH BF AF+=+,其中成立的个数是()A .1个B .2个C .3个D .4个4、如图,在四边形ABCD 中,60,90,2,3,A B D BC CD ∠=∠=∠===则AB =( )A .4B .5C .D 5、如图,PA 、PB 分别切O 于点A 、B ,点C 为优弧AB 上一点,若ACB APB ∠=∠,则ACB ∠的度数为( )A .67.5︒B .62︒C .60︒D .58︒6、一个商标图案如图中阴影部分,在长方形ABCD 中,8cm AB =,4cm BC =,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积是( )A .()2216cm π+B .()228cm π+C .()2416cm π+D .()248cm π+ 7、在⊙O 中按如下步骤作图:(1)作⊙O 的直径AD ;(2)以点D 为圆心,DO 长为半径画弧,交⊙O 于B ,C 两点;(3)连接DB ,DC ,AB ,AC ,BC .根据以上作图过程及所作图形,下列四个结论中错误的是( )A .∠ABD =90°B .∠BAD =∠CBDC .AD ⊥BC D .AC =2CD8、如图,在ABC ∆中,90BAC ∠=︒,AB =AC =5,点D 在AC 上,且2AD =,点E 是AB 上的动点,连结DE ,点F ,G 分别是BC ,DE 的中点,连接AG ,FG ,当AG =FG 时,线段DE 长为( )A B C D .49、若某圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r ,那么圆锥的高为( )A .12rB .rCD .2r10、如图,⊙O 的半径为5cm ,直线l 到点O 的距离OM =3cm ,点A 在l 上,AM =3.8cm ,则点A 与⊙O 的位置关系是( )A .在⊙O 内B .在⊙O 上C .在⊙O 外D .以上都有可能第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,直线y =﹣34x +6与x 轴、y 轴分别交于A 、B 两点,点P 是以C (﹣1,0)为圆心,1为半径的圆上一点,连接PA ,PB ,则△PAB 面积的最大值为_____.2、如图,圆锥的母线长OA=6,底面圆的半径为32,一只小虫在圆线底面的点A 处绕圆锥侧面一周又回到点A 处,则小虫所走的最短路程为___________(结果保留根号)3、如图,矩形ABCD 的对角线AC ,BD 交于点O ,分别以点A ,C 为圆心,AO 长为半径画弧,分别交AB ,CD 于点E ,F .若BD =4,∠CAB =36°,则图中阴影部分的面积为___________.(结果保留π).4、如图,在Rt AOB 中,90AOB ︒∠=,3OA =,2OB =,将Rt AOB 绕O 顺时针旋转90︒后得Rt FOE ,将线段EF 绕点E 逆时针旋转90︒后得线段ED ,分别以O ,E 为圆心,OA 、ED 长为半径画弧AF 和弧DF ,连接AD ,则图中阴影部分面积是________.5、如图,已知O 的半径为2,ABC ∆内接于O ,135ACB ∠=,则AB =__________.三、解答题(5小题,每小题10分,共计50分)1、如图,点A ,B ,C ,D 在⊙O 上,AB =CD .求证:(1)AC =BD ;(2)△ABE ∽△DCE .2、如图,在ABC 中,∠ABC =45°,AB AC =,以AB 为直径的⊙O 与边BC 交于点D .(1)判断直线AC 与⊙O 的位置关系,并说明理由;(2)若4AB =,求图中阴影部分的面积.3、(1)课本再现:在O 中,AOB ∠是AB 所对的圆心角,C ∠是AB 所对的圆周角,我们在数学课上探索两者之间的关系时,要根据圆心O 与C ∠的位置关系进行分类.图1是其中一种情况,请你在图2和图3中画出其它两种情况的图形,并从三种位置关系中任选一种情况证明12∠=∠C AOB ;(2)知识应用:如图4,若O 的半径为2,,PA PB 分别与O 相切于点A ,B ,60C ∠=°,求PA 的长.4、如图,AB 为O 的直径,射线AD 交O 于点F ,点C 为劣弧BF 的中点,过点C 作CE AD ⊥,垂足为E ,连接AC .(1)求证:CE 是O 的切线;(2)若30,4BAC AB ∠=︒=,求阴影部分的面积.5、如图,AD BC =,比较AB 与CD 的长度,并证明你的结论.-参考答案-一、单选题1、B【解析】【分析】由切线长定理可得,,AB AC DE BE FC FD ===,然后根据线段之间的转化即可求得AEF 的周长.【详解】∵AB 、AC 为O 的切线,所以AB AC =,又∵EF 为O 的切线,∴,DE BE FC FD ==,∴AEF 的周长6612AE AF EF AE DE AF DF AB AC =++=+++=+=+=.故选:B .【考点】此题考查了圆中切线长定理的运用,解题的关键是熟练掌握切线长定理.2、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m 与⊙O 公共点的个数为2个∴直线与圆相交∴d<半径=4故选D .【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d >r.3、C【解析】【分析】根据弧,弦,圆心角之间的关系,圆周角定理以及三角形内角和定理一一判断即可.【详解】解:∵F为CBD的中点,∴CF DF=,故①正确,∴∠FCM=∠FAC,∵∠FCG=∠ACM+∠FCM,∠AME=∠FMC=∠ACM+∠FAC,∴∠AME=∠FMC=∠FCG>∠FCM,∴FC>FM,故③错误,∵AB⊥CD,FH⊥AC,∴∠AEM=∠CGF=90°,∴∠CFH+∠FCG=90°,∠BAF+∠AME=90°,∴∠CFH=∠BAF,∴CF BF=,∴HC=BF,故②正确,∵∠AGF=90°,∴∠CAF+∠AFH=90°,∴AH CF+=180°,∴CH AF+=180°,∴AH CF AH DF CH AF AF BF+=+=+=+,故④正确,故选:C.【点评】本题考查圆心角,弧,弦之间的关系,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考选择题中的压轴题.4、D【解析】【分析】延长AD,BC交于点E,则∠E=30°,先在Rt△CDE中,求得CE的长,然后在Rt△ABE中,根据∠E 的正切函数求得AB的长【详解】如图,延长AD,BC交于点E,则∠E=30°,在Rt△CDE中,CE=2CD=6(30°锐角所对直角边等于斜边的一半),∴BE=BC+CE=8,在Rt△ABE故选D.【考点】本题考查了解直角三角形,特殊角的三角函数值,解此题的关键在于构造一个直角三角形,然后利用锐角三角函数进行解答.5、C【解析】【分析】要求∠ACB的度数,只需根据圆周角定理构造它所对的弧所对的圆心角,即连接OA,OB;再根据切线的性质以及四边形的内角和定理即可求解.【详解】解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥AP,OB⊥BP,∴∠PAO=∠PBO=90°,∴∠AOB+∠APB=180°,∵∠AOB=2∠ACB,∠ACB=∠APB,∴3∠ACB=180°,∴∠ACB=60°,故选:C.【考点】此题考查了切线的性质,圆周角定理,以及四边形的内角和,熟练掌握切线的性质是解本题的关键.6、D【解析】【分析】根据题意作辅助线DE 、EF 使BCEF 为一矩形,从图中可以看出阴影部分的面积=三角形的面积-(正方形的面积-扇形的面积),依据面积公式进行计算即可得出答案.【详解】解:作辅助线DE 、EF 使BCEF 为一矩形.则S △CEF =(8+4)×4÷2=24cm 2,S 正方形ADEF =4×4=16cm 2,S 扇形ADF =9016063π⨯=4πcm 2, ∴阴影部分的面积=24-(16-4π)=()248cm π+.故选:D .【考点】本题主要考查扇形的面积计算,解题的关键是作出辅助线并从图中看出阴影部分的面积是由哪几部分组成的.7、D【解析】【分析】根据作图过程可知:AD 是⊙O 的直径,BD =CD ,根据垂径定理即可判断A 、B 、C 正确,再根据DC =OD ,可得AD =2CD ,进而可判断D 选项.【详解】解:根据作图过程可知:AD是⊙O的直径,∴∠ABD=90°,∴A选项正确;∵BD=CD,∴BD=CD,∴∠BAD=∠CBD,∴B选项正确;根据垂径定理,得AD⊥BC,∴C选项正确;∵DC=OD,∴AD=2CD,∴D选项错误.故选:D.【考点】本题考查作图-复杂作图、含30度角的直角三角形、垂径定理、圆周角定理,解决本题的关键是熟练掌握相关知识点.8、A【解析】【分析】连接DF,EF,过点F作FN⊥AC,FM⊥AB,结合直角三角形斜边中线等于斜边的一半求得点A,D,F,E四点共圆,∠DFE=90°,然后根据勾股定理及正方形的判定和性质求得AE的长度,从而求解.【详解】解:连接DF ,EF ,过点F 作FN ⊥AC ,FM ⊥AB∵在ABC ∆中,90BAC ∠=︒,点G 是DE 的中点,∴AG =DG =EG又∵AG =FG∴点A ,D ,F ,E 四点共圆,且DE 是圆的直径∴∠DFE =90°∵在Rt △ABC 中,AB =AC =5,点F 是BC 的中点,∴CF =BF =12BC =FN =FM =52 又∵FN ⊥AC ,FM ⊥AB ,90BAC ∠=︒∴四边形NAMF 是正方形∴AN =AM =FN =52又∵90NFD DFM ∠+∠=︒,90DFM MFE ∠+∠=︒∴NFD MFE ∠=∠∴△NFD ≌△MFE∴ME =DN =AN -AD =12∴AE =AM +ME =3∴在Rt △DAE 中,DE =故选:A .【考点】本题考查直径所对的圆周角是90°,四点共圆及正方形的判定和性质和用勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.9、C【解析】【分析】设圆锥母线长为R,由题意易得圆锥的母线长为22rR rππ==,然后根据勾股定理可求解.【详解】解:设圆锥母线长为R,由题意得:∵圆锥的侧面展开图是一个半圆,已知圆锥的底面半径为r,∴根据圆锥侧面展开图的弧长和圆锥底面圆的周长相等可得:1802180Rrππ=,∴22rR rππ==,;故选C.【考点】本题主要考查圆锥侧面展开图及弧长计算公式,熟练掌握圆锥的特征及弧长计算公式是解题的关键.10、A【解析】【详解】如图,连接OA,则在直角△OMA中,根据勾股定理得到<.5∴点A与⊙O的位置关系是:点A在⊙O内.故选A.二、填空题1、32【解析】【分析】如图,作CH⊥AB于H交⊙O于E、F,求出A、B的坐标,根据勾股定理求出AB,再由S△ABC=12 AB•CH=1OB•AC求出点C到AB的距离CH,即可求出圆C上点到AB的最大距离,根据面积公式求出2即可.【详解】如图,作CH⊥AB于H交⊙O于E、F,∵直线y=﹣34x+6与x轴、y轴分别交于A、B两点,∴当y=0时,可得0=﹣34x+6,解得:x=8,∴A(8,0),当x=0时,得y=6,∴B(0,6),∴OA=8,OB=6,∴AB=10,∵C(﹣1,0),∴AC=8+1=9,∴S△ABC=12AB•CH=12OB•AC,∴1069CH⨯=⨯,∴CH=5.4,∴FH=CH+CF=5.4+1=6.4,即⊙C上到AB的最大距离为6.4,∴△PAB面积的最大值=12×10×6.4=32,故答案为32.【考点】本题考查了三角形的面积,勾股定理、三角形等面积法求高、求圆心到直线的距离等知识,解此题的关键是求出圆上的点到直线AB的最大距离.2、【解析】【分析】利用圆锥的底面周长等于侧面展开图的弧长可得圆锥侧面展开图的圆心角,求出侧面展开图中两点间的距离即为最短距离.【详解】∵底面圆的半径为32,∴圆锥的底面周长为2π×32=3π,设圆锥的侧面展开图的圆心角为n.∴63 180nππ⨯=,解得n=90°,如图,AA′的长就是小虫所走的最短路程,∵∠O=90°,OA′=OA=6,.故答案为:【考点】本题考查了圆锥的计算,考查圆锥侧面展开图中两点间距离的求法;把立体几何转化为平面几何来求是解决本题的突破点.3、4 5π【解析】【分析】利用矩形的性质求得OA=OC=OB=OD=2,再利用扇形的面积公式求解即可.【详解】解:∵矩形ABCD的对角线AC,BD交于点O,且BD=4,∴AC=BD=4,OA=OC=OB=OD=2,∴22362423605AOES Sππ⨯⨯===阴影扇形,故答案为:45π.【考点】本题考查了矩形的性质,扇形的面积等知识,正确的识别图形是解题的关键.4、8π-【解析】【分析】作DH ⊥AE 于H ,根据勾股定理求出AB ,根据阴影部分面积=△ADE 的面积+△EOF 的面积+扇形AOF 的面积-扇形DEF 的面积计算即可得到答案.【详解】解:作DH ⊥AE 于H ,∵∠AOB =90°,OA =3,OB =2,∴AB =由旋转得△EOF ≌△BOA ,∴∠OAB =∠EFO ,∵∠FEO +∠EFO =∠FEO +∠HED =90°,∴∠EFO =∠HED ,∴∠HED =∠OAB ,∵∠DHE =∠AOB =90°,DE AB ==∴△DHE ≌△BOA (AAS ),∴DH =OB =1,325AE AO OE =+=+=,∴阴影部分面积=△ADE 的面积+△EOF 的面积+扇形AOF 的面积-扇形DEF 的面积21190390135232822360360πππ⨯⨯=⨯⨯+⨯⨯+-=-, 故答案为:8π-.本题考查的是扇形面积的计算、旋转的性质、全等三角形的判定和性质,掌握扇形的面积公式和旋转的性质是解题的关键.5、【解析】【详解】分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.详解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=2,故答案为点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题1、 (1)见解析(2)见解析【分析】(1)两个等弧同时加上一段弧后两弧仍然相等;再通过同弧所对的弦相等证明即可;(2)根据同弧所对的圆周角相等,对顶角相等即可证明相似.(1)∵AB =CD∴AB AD +=CD AD +∴BAD ADC =∴BD =AC(2)∵∠B =∠C;∠AEB =∠DEC∴△ABE ∽△DCE【考点】本题考查等弧所对弦相等、所对圆周角相等,掌握这些是本题关键.2、 (1)证明见解析(2)6π-【解析】【分析】(1)利用等腰三角形的性质与三角形的内角和定理证明,AB AC ⊥ 从而可得结论;(2)如图,记BC 与O 的交点为M ,连接OM ,先证明290,AOM ABC 90,BOM 再利用阴影部分的面积等于三角形ABC 的面积减去三角形BOM 的面积,减去扇形AOM 的面积即可.(1)证明: ∠ABC =45°,AB AC =,45,ACB ABC90,BAC ∴∠=︒ 即,BA AC A 在O 上,AC ∴为O 的切线.(2)如图,记BC 与O 的交点为M ,连接OM ,45ABC ∠=︒ ,290,AOM ABC 90,BOM4AB =,2OA ∴=, 1144822ABC S AB AC ,12222BOM S , 2902360AOM S 扇形, 826S 阴影.【考点】本题考查的是等腰三角形的性质,切线的判定,扇形面积的计算,掌握“切线的判定方法与割补法求解不规则图形面积的方法”是解本题的关键.3、(1)见解析;(2)【解析】【分析】(1)①如图2,当点O在∠ACB的内部,作直径,根据三角形外角的性质和等腰三角形的性质可得结论;②如图3,当O在∠ACB的外部时,作直径CD,同理可理结论;(2)如图4,先根据(1)中的结论可得∠AOB=120°,由切线的性质可得∠OAP=∠OBP=90°,可得∠OPA=30°,从而得PA的长.【详解】解:(1)①如图2,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD+∠BOD=2∠ACO+2∠BCO=2∠ACB,∴∠ACB=1∠AOB;2如图3,连接CO,并延长CO交⊙O于点D,∵OA=OC=OB,∴∠A=∠ACO,∠B=∠BCO,∵∠AOD=∠A+∠ACO=2∠ACO,∠BOD=∠B+∠BCO=2∠BCO,∴∠AOB=∠AOD-∠BOD=2∠ACO-2∠BCO=2∠ACB,∴∠ACB=12∠AOB;(2)如图4,连接OA,OB,OP,∵∠C=60°,∴∠AOB=2∠C=120°,∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∠APO=∠BPO=12∠APB=12(180°-120°)=30°,∵OA=2,∴OP=2OA=4,∴PA=【考点】本题考查了切线长定理,圆周角定理等知识,掌握证明圆周角定理的方法是解本题的关键.4、(1)证明见解析;(2)23π.【解析】【分析】(1)连接BF,证明BF//CE,连接OC,证明OC⊥CE即可得到结论;(2)连接OF,求出扇形FOC的面积即可得到阴影部分的面积.【详解】(1)连接BF,AB是O的直径,90AFB∴∠=︒,即BF AD⊥,CE AD⊥,//BF CE∴连接OC,∵点C 为劣弧BF 的中点,OC BF ∴⊥,∵//BF CE ,OC CE ∴⊥∵OC 是O 的半径,∴CE 是O 的切线;(2)连接OFOA OC =,30BAC ∠=︒,60BOC ∴∠=︒∵点C 为劣弧BF 的中点,FC BC ∴=,60FOC BOC ∴∠=∠=︒,4AB =,2FO OC OB ∴===,∴S 扇形FOC =260223603ππ⋅⨯=, 即阴影部分的面积为:23π. 【考点】本题主要考查了切线的判定以及扇形面积的求法,熟练掌握切线的判定定理以及扇形面积的求法是解答此题的关键.5、DC =AB ,见解析.【解析】【分析】根据圆心角、弧、弦的关系,由AD=BC解得AD=BC,继而得到DC=AB.【详解】解:DC=AB,证明如下:∵AD=BC,∴AD=BC,∴AD+AC=BC+AC,即DC=AB.【考点】本题考查圆心角、弧、弦的关系,在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.。
九年级数学上册第二十四章圆必练题总结(带答案)
九年级数学上册第二十四章圆必练题总结单选题1、如图,点A 是⊙O 外一点,过点A 作⊙O 的切线AB 、AC ,切点分别为B 、C 两点,连结AC 并延长交BO 的延长线于点D .若AB =3,BD =4,则⊙O 的半径为( )A .94B .83C .52D .32答案:D分析:连接OC ,根据题意得到RtΔABD 、RtΔCOD ,由切线长定理求得AC =AB =3,最后根据勾股定理在RtΔABD 、RtΔCOD 中求解即可.解:连接OC ,如图所示:∵点A 是⊙O 外一点,过点A 作⊙O 的切线AB 、AC ,切点分别为B 、C 两点,∴OC ⊥AD ,BD ⊥AB ,∴AC =AB =3,在RtΔABD 中,∠ABD =90°,AB =3,BD =4,由勾股定理得AD =5,∴CD =AD −AC =5−3=2,设半径OC =OB =r ,则OD =BD −OB =4−r ,在RtΔCOD 中,∠OCD =90°,CD =2,OC =r ,OD =4−r ,由勾股定理知CD2+OC2=OD2,得r2+22=(4−r)2,即8r=12,,解得r=32故选:D.小提示:本题考查在圆背景下利用勾股定理求线段长,掌握切线的性质、切线长定理以及在直角三角形中根据勾股定理列方程求解问题是解题关键.2、如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°答案:C分析:首先连接CD,由AD是⊙O的直径,根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理,可得∠D=∠B=20°,再用三角形内角和定理求得答案.解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°.∵∠D=∠B=20°,∴∠CAD=180°−90°−∠D=180°−90°−20°=70°.故选:C.小提示:本题考查了圆周角定理、三角形的内角和定理.熟练掌握圆周角定理是解此题的关键.3、小王不慎把一面圆形镜子打碎了,其中三块如图所示,三块碎片中最有可能配到与原来一样大小的圆形镜子的碎片是()A.①B.②C.③D.都不能答案:B分析:要确定圆的大小需知道其半径.根据垂径定理知第②块可确定半径的大小.解:第②块出现两条完整的弦,作出这两条弦的垂直平分线,两条垂直平分线的交点就是圆心,进而可得到半径的长.故选:B.小提示:本题考查了垂径定理的应用,确定圆的条件,解题的关键是熟练掌握:圆上任意两弦的垂直平分线的交点即为该圆的圆心.4、如图,在平面直角坐标系中,△ABC为直角三角形,∠ABC=90°,AB⊥x轴,M为Rt△ABC的外心.若点A的坐标为(3,4),点M的坐标为(﹣1,1),则点B的坐标为()A.(3,﹣1)B.(3,﹣2)C.(3,﹣3)D.(3,﹣4)答案:B分析:根据M为直角三角形的外心.∠ABC=90°,得出点M为AC中点,利用中点坐标公式求出点C(-5,-2),根据AB⊥x轴,得出点A,B的横坐标相同都是3,根据BC∥x轴,得出点B、C的纵坐标相同都是-2即可.解:∵M为Rt△ABC的外心.∠ABC=90°,∴点M为AC中点,∵点A的坐标为(3,4),点M的坐标为(﹣1,1),设点C横坐标为(x,y),∴x+32=−1,y+42=1,解得x=-5,y=-2,∴点C(-5,-2),∵AB⊥x轴,∴点A,B的横坐标相同都是3,∵∠ABC=90°,∴BC∥x轴,∴点B、C的纵坐标相同都是-2,∴点B(3,-2).故选:B.小提示:本题考查直角三角形的外心,中点坐标公式,平行x轴或y轴的点坐标特征,掌握直角三角形的外心的性质,中点坐标公式,平行x轴或y轴的点坐标特征是解题关键.5、如图,⊙O是等边三角形ABC的外接圆,若⊙O的半径为2,则△ABC的面积为()A.√32B.√3C.2√3D.3√3答案:D分析:过点O作OH⊥BC于点H,根据等边三角形的性质即可求出OH和BH的长,再根据垂径定理求出BC的长,最后运用三角形面积公式求解即可.解:过点O作OH⊥BC于点H,连接AO,BO,∵△ABC 是等边三角形,∴∠ABC =60°,∵O 为三角形外心,∴∠OAH =30°,∴OH =12OB =1,∴BH =√BO 2−OH 2=√3,AH =-AO +OH =2+1=3∴BC =2BH =2√3∴S ΔABC =12BC ×AH =12×2√3×3=3√3故选:D小提示:本题考查了等边三角形的性质、含30°角的直角三角形的性质,熟练掌握等边三角形的性质,并能进行推理计算是解决问题的关键.6、将一张正方形的透明纸片ABCD 和⊙O 按如图位置叠放,顶点A 、D 在⊙O 上,边AB 、BC 、CD 分别与⊙O 相交于点E 、F 、G 、H ,则下列弧长关系中正确的是( )A .AD⌢=AE ⌢B .AD ⌢=AF ⌢ C .AF⌢=DG ⌢D .AF ⌢=DH ⌢ 答案:C分析:连接AF,DG ,根据弦与弧的关系,只要比较弦长即可比较弧长的大小即可求解.如图,连接AF,DG ,过点O 作NM ⊥AD ,交AD 于M ,交BC 于N ,则MN ⊥BC ,∵四边形ABCD 是正方形,∴AD =AB =BC =CD ,∠B =∠C ,∴ AM =MD ,∴四边形AMNB,MNCD 是矩形,∴NB =AM =MD =NC ,∴FN =GN ,∴FB =GC ,∴Rt △ABF ≌Rt △CDG ,∴ AF =DG ,A. ∵AD >AE ,∴ AD⌢>AE ⌢,故该选项不正确,不符合题意; B. ∵AD =AB <AF ,∴AD⌢<AF ⌢,故该选项不正确,不符合题意; C. ∵ AF =DG ,∴ AF⌢=DG ⌢,故该选项正确,符合题意; D.∵DH <DC <DG =AF ,∴ AF⌢>DH ⌢,故该选项不正确,不符合题意; 故选:C.小提示:本题考查了弦与弧的关系,掌握同圆或等圆中,等弦对等弧是解题的关键.7、如图,点E 是△ABC 的内心,AE 的延长线和△ABC 的外接圆相交于点D ,与BC 相交于点G ,则下列结论:①∠BAD =∠CAD ;②若∠BAC =60°,则∠BEC =120°;③若点G 为BC 的中点,则∠BGD =90°;④BD =DE .其中一定正确的个数是( )A .1B .2C .3D .4答案:D分析:根据点E 是△ABC 的内心,可得∠BAD =∠CAD ,故①正确;连接BE ,CE ,可得∠ABC +∠ACB =2(∠CBE +∠BCE ),从而得到∠CBE +∠BCE =60°,进而得到∠BEC =120°,故②正确; ∠BAD =∠CAD ,得出BD⌢=CD ⌢,再由点G 为BC 的中点,则∠BGD =90°成立,故③正确;根据点E 是△ABC 的内心和三角形的外角的性质,可得∠BED =12(∠BAC +∠ABC ),再由圆周角定理可得∠DBE =12(∠BAC +∠ABC ),从而得到∠DBE =∠BED ,故④正确;即可求解.解:∵点E 是△ABC 的内心,∴∠BAD =∠CAD ,故①正确;如图,连接BE ,CE ,∵点E 是△ABC 的内心,∴∠ABC =2∠CBE ,∠ACB =2∠BCE ,∴∠ABC +∠ACB =2(∠CBE +∠BCE ),∵∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠CBE+∠BCE=60°,∴∠BEC=120°,故②正确;∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD⌢=CD⌢,∵点G为BC的中点,∴线段AD经过圆心O,∴∠BGD=90°成立,故③正确;∵点E是△ABC的内心,∴∠BAD=∠CAD=12∠BAC,∠ABE=∠CBE=12∠ABC,∵∠BED=∠BAD+∠ABE,∴∠BED=12(∠BAC+∠ABC),∵∠CBD=∠CAD,∴∠DBE=∠CBE+∠CBD=∠CBE+∠CAD,∴∠DBE=12(∠BAC+∠ABC),∴∠DBE=∠BED,∴BD=DE,故④正确;∴正确的有4个.故选:D小提示:本题主要考查了三角形的内心问题,圆周角定理,三角形的内角和等知识,熟练掌握三角形的内心问题,圆周角定理,三角形的内角和等知识是解题的关键.8、如图,从一个边长为2m的正六边形ABCDEF铁皮上剪出一个扇形CAE,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为()A .√32mB .√33mC .√34mD .√3m答案:B分析:先求出扇形的半径R 与弧长,再利用扇形弧长与所围成的圆锥的底面周长的关系求出圆锥的底面半径r . 解:过B 作BM ⊥AC 于M ,∵六边形ABCDEF 为正六边形,∴ AB =BC =CD =DE =2m ,∠ABC =∠BCD =∠CDE =120°,∴ ∠BCA =∠DCE =180°−120°2=30°,∠ACE =180°−30°−30°=60°, ∴ BM =12BC =1m ,AM =√BC 2−BM 2=√22−12=√3m ,∵ AB =BC ,BM ⊥AC ,∴ AC =2CM =2√3m ,∴ AE ⌢=60360×2π×2√3=2πr , 解得r =√33. 故选:B . 小提示:本题考查了正多边形内角和定理,圆、扇形、圆锥的相关计算,掌握扇形所围的圆锥与扇形之间的等量关系是解决本题的关键.9、如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为()A.π3cm2B.π4cm2C.(π3−√38)cm2D.π6cm2答案:B分析:根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=12cm,∴B′C′=√32cm,∴S扇形B′OB=120π×12360=π3cm2,S扇形C′OC=120π×1 4360=π12cm2,∴阴影部分面积=S扇形B′OB+S△B′C′O-S△BCO-S扇形C′OC=S扇形B′OB-S扇形C′OC=π3−π12=π4cm2;故选:B.小提示:此题考查了旋转的性质和扇形的面积公式,掌握直角三角形的性质和扇形的面积公式是本题的关键.10、如图,在以AB为直径的⊙O中,点C为圆上的一点,BC⌢=2AC⌢,弦CD⊥AB于点E,弦AF交CE于点H,交BC于点G,若点H是AG的中点,则∠CBF的度数为()A.18°B.21°C.22.5°D.30°答案:D分析:由圆周角定理可求∠ACB=90°,由弧的关系得出角的关系,进而可求∠ABC=30°,∠CAB=60°,由直角三角形的性质可求∠CAH=∠ACE=30°,即可求解.解:∵AB是直径,∴∠ACB=90°,∴∠ABC+∠CAB=90°,∵BC⌢=2AC⌢,∴∠CAB=2∠ABC,∴∠ABC=30°,∠CAB=60°,∵CD⊥AB,∴∠AEC=90°,∴∠ACE=30°,∵点H是AG的中点,∠ACB=90°,∴AH=CH=HG,∴∠CAH=∠ACE=30°,∵∠CAF=∠CBF,∴∠CBF=30°,故选:D.小提示:本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB的度数是本题的关键.填空题11、如图,在平面直角坐标系xOy中,点A,B,C的横、纵坐标都为整数,过这三个点作一条圆弧,则此圆弧的圆心坐标为_______.答案:(2,1)分析:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.解:根据垂径定理的推论:弦的垂直平分线必过圆心,可以作弦AB和BC的垂直平分线,交点即为圆心.如图所示,则圆心是(2,1).故答案为(2,1).小提示:本题考查垂径定理的应用,解答此题的关键是熟知垂径定理,即“垂直于弦的直径平分弦”.12、如图1,把一个半径是7cm的圆分成20等份,然后把它剪开,按照图2的形状拼起来,拼成图形的周长是___________cm.答案:57.96分析:由圆的面积推导过程可知:将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,从而可知这个长方形的周长,据此可得答案.因为将圆拼成近似的长方形后,长方形的长就等于圆的周长的一半,宽就等于圆的半径,所以这个长方形的周长就比原来圆的周长多出了两个半径的长度,即多出了一个直径的长度,即:3.14×2×7+7×2=57.96.所以答案是:57.96.小提示:本题考查了图形的拼接,解答的主要依据是圆的面积的推导过程.13、已知圆锥的高为8cm,母线长为10cm,则其侧面展开图的面积为_______.答案:60πcm2分析:利用勾股定理易得圆锥的底面半径,那么圆锥的侧面积=底面周长×母线长÷2.解:圆锥的高为8cm,母线长为10cm,由勾股定理得,底面半径=6cm,底面周长=12πcm,×12π×10=60πcm2.侧面展开图的面积=12所以答案是:60πcm2.小提示:本题利用了勾股定理,圆的周长公式和扇形面积公式求解.14、如图,作⊙O的任意一条直经FC,分别以F、C为圆心,以FO的长为半径作弧,与⊙O相交于点E、A和D、B,顺次连接AB,BC,CD,DE,EF,FA,得到六边形ABCDEF,则⊙O的面积与阴影区域的面积的比值为______;答案:2√3π3分析:可将图中阴影部分的面积转化为两个等边三角形的面积之和,设⊙O的半径与等边三角形的边长为a,分别表示出圆的面积和两个等边三角形的面积,即可求解连接OE,OD,OB,OA,由题可得:EF=OF=OE=FA=OA=AB=OB=BC=OC=CD=OD∴△EFO,△OFA,△OAB,△OBC,△OCD,△ODE为边长相等的等边三角形∴可将图中阴影部分的面积转化为△ODE和△OAB的面积之和,如图所示:设⊙O的半径与等边三角形的边长为a,∴⊙O的面积为S=πr2=πa2∵等边△OED与等边△OAB的边长为a∴S△OED=S△OAB=√3a2 4∴S阴=S△OED+S△OAB=√3a22∴⊙O的面积与阴影部分的面积比为SS阴2√3a22=2√3π3所以答案是:2√3π3.小提示:本题考查了图形的面积转换,等边三角形面积以及圆面积的求法,将不规则图形的面积转换成规则图形的面积是解题关键.15、如图,在⊙O中,OA=3,∠C=45°,则图中阴影部分的面积是_________.(结果保留π)答案:9π4−92分析:由∠C=45°,根据圆周角定理得出∠AOB=90°,根据S阴影=S扇形AOB-S△AOB可得出结论.解:∵∠C=45°,∴∠AOB=90°,∴S阴影=S扇形AOB-S△AOB=90×π×32360−12×3×3=9π4−92,所以答案是:9π4−92.小提示:本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.解答题16、如图,在△ABC中,以AB为直径作⊙O,交BC于点D,交AC于点E,且BD=CD,过点D作⊙O的切线交AC于点F,过点D作AB的垂线,交AB于点G,交⊙O于点H.(1)求证:DF⊥AC;(2)若OG=1,求AE的长.答案:(1)证明见解析(2)AE=2分析:(1)根据切线,得到∠ODF=90°;连接OD,通过证OD是△ABC的中位线,证OD∥AC,进而得到∠CFD=∠ODF=90°,即可证明;(2)连接DE,分别证AC= AB=2OB,CD=DE,得到CF=BG,CF=EF,再利用AE=AC−CF−EF=2OB−2BG= 2OG,即可求解.(1)证明:∵过点D作⊙O的切线交AC于点F,∴∠ODF=90°,连接OD,∵BD=CD,OA=OB,∴OD是△ABC的中位线,∴OD∥AC,∴∠CFD=∠ODF=90°,∴DF⊥AC.(2)解:设圆与AC 相交于点E ,连接DE ,由(1)可知,OD ∥AC ,∴∠ODB =∠C ,∵OD =OB ,∴∠ODB =∠ABC ,∴∠C =∠ABC ,∴AC = AB =2OB ,∵在Rt △CFD 和Rt △BGD 中,{∠DFC =∠DGB =90°∠C =∠ABCCD =BD, ∴Rt △CFD ≌Rt △BGD(AAS),∴CF =BG ,又∵四边形ABDE 是圆内接四边形,∴∠AED +∠ABC =180°,又∵∠AED +∠CED =180°,∴∠ABC =∠CED ,∴∠C =∠CED ,∴CD =DE ,又∵DF ⊥AC ,∴CF =EF ,∴AE =AC −CF −EF =2OB −2BG ,即AE =2(OB −BG)=2OG =2.小提示:本题考查圆、全等三角形和等腰三角形的相关知识.包括圆的切线,圆内接四边形;以及全等三角形的判定和性质,等腰三角形的判定和性质,综合性强.熟练掌握圆、全等三角形和等腰三角形的判定和性质是本题解题的关键.17、如图,⊙O 的直径AB 为10cm ,弦AC 为6cm,∠ACB 的平分线交⊙O 于点D .(1)求AD 的长;(2)试探究CA 、CB 、CD 之间的等量关系,并证明你的结论;(3)连接OD,P 为半圆ADB 上任意一点,过P 点作PE ⊥OD 于点E ,设ΔOPE 的内心为M ,当点P 在半圆上从点B 运动到点A 时,求内心M 所经过的路径长答案:(1)5√2;(2)CA +CB =√2CD ,证明见解析;(3)5√22π. 分析:(1)根据直径所对的角是90°,判断△ABC 和△ABD 是直角三角形,根据圆周角∠ACB 的平分线交O 于D ,判断△ADB 为等腰直角三角形,然后根据勾股定理求出值;(2)延长CA 到F ,使AF=CB ,可证△CDF 为等腰直角三角形,从而得到CA 、CB 、CD 之间的等量关系;(3)作辅助线,连接OM ,PM,正确构造图形,确定M 的运动轨迹是圆弧形,先求OD ⏜的长度,再得到点M 经过路径的长.解:(1)∵AB 是直径∴∠ADB =90°∵CD 是∠ACB 的平分线∴∠ACD =∠BCD∴AD=BD 在RtΔABD中,AD2+BD2=AB2∴AD=BD=√22AB=√22×10=5√2(2)CA+CB=√2CD,证明如下延长CA到F,使AF=CB,连接DF∵∠CBD+∠CAD=180°,∠FAD+∠CAD=180°∴∠CBD=∠FAD又AD=BD,AF=BC∴ΔADF≌ΔBDC,∴CD=FD,∠CDF=90°,ΔCDF为等腰直角三角形∴CA+CB=CF=√2CD(3)连接OM、PM∵PE⊥OD∴∠PEO=90°∵点M为ΔOPE的内心∴∠OMP=135°∵OD=OP,∠DOM=∠POM,OM=OM∴ΔOMD≌ΔOMP∴∠OMD=∠OMP=135°∴所以点M 在以OD 为弦,并且所对的圆周角为135°的两段劣弧上(分OD 左右两种情况);设OMD 所在圆的圆心O′∵∠OMD =135°∴∠OO′D =90°∴O′O =√22OD =5√22 弧OD ⏜的长为90π×5√22180=5√24π ∴点M 经过路径长为2×5√24π=5√22π小提示:本题综合考查了圆周角定理,全等三角形,等腰直角三角形,圆弧的长,勾股定理等知识,解答此题要抓住三个关键,(1)判断出ABC 和 △ABD 是直角三角形,以便利用勾股定理;(2)判断出线段△CDF 和△ABD 是等腰直角三角形,然后将各种线段转化到等腰直角三角形中利用勾股定理解答,(3)通过作辅助线,正确构造图形,确定M 的运动轨迹是圆弧形,再利用弧长公式解答.18、用反证法证明:一条线段只有一个中点.答案:见解析.分析:首先假设结论的反面:一条线段可以有多个中点,不妨设有两个,根据中点的定义得出矛盾,即可证得.解:已知:一条线段AB,点M为AB的中点.求证:线段AB只有一个中点M,证明:假设线段AB有两个中点,分别为点M、N,不妨设点M在点N的左边,则AM<AN,又∵AM=1AB=AN,2这与AM<AN矛盾,∴假设不成立,线段AB只有一个中点M.∴一条线段只有一个中点.小提示:本题主要考查了反证法,正确理解反证法的基本思想是解题的关键.。
人教版九年级数学上册第二十四章 专题训练求不规则图形面积的三种方法
求不规则图形面积的三种方法方法一 用割补法求图形的面积1.如图1,已知⊙O 的半径是2,点A ,B ,C 在⊙O 上,若四边形OABC 为菱形,则图中阴影部分的面积为( )A .23π-2 3B .23π- 3C .43π-2 3D .43π- 3图1 图22.如图2,在△ABC 中,∠ACB =90°,AC =BC =2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A′B′C′,其中点B 的运动路径为BB′︵,则图中阴影部分的面积为________.3.如图3,△ABC 是等腰直角三角形,∠ACB =90°,AC =BC =2,把△ABC 绕点A 按顺时针方向旋转45°后得到△AB′C′,则线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积是________.图34.如图4,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A ,D 两点,交AC 于点E ,交AB 于点F.(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2 cm ,E 是AD ︵的中点,求阴影部分的面积(结果保留π和根号).图4方法二 用平移、旋转、对称转化求图形的面积5.如图5,正方形ABCD 内接于⊙O ,⊙O 的半径为2,以点A 为圆心,AC 长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为() A.4π-4 B.4π-8 C.8π-4 D.8π-8图5 图66.[如图6,CD为大半圆的直径,小半圆的圆心O1在线段CD上,大半圆O的弦AB 与小半圆O1交于点E,F,AB=6 cm,EF=2 cm,且AB∥CD,则阴影部分的面积为________cm2.7.当汽车在雨天行驶时,司机为了看清楚道路,要启动前方挡风玻璃上的雨刷.图7是某汽车的一个雨刷的转动示意图,雨刷杆AB与雨刷CD在B处固定连接(不能转动),当杆AB绕点A转动90°时,雨刷CD扫过的面积是图中阴影部分的面积,现量得CD=80 cm,∠DBA=20°,AC=115 cm,DA=35 cm,试从以上信息中选择所需要的数据,求出雨刷扫过的面积.图78.如图8,在正方形ABCD中,AD=2,E是AB的中点,将△BEC绕点B逆时针旋转90°后,点E落在CB的延长线上的点F处,点C落在点A处.再将线段AF绕点F顺时针旋转90°得线段FG,连接EF,CG.(1)求证:EF∥CG;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.图8方法三 用等积变形求图形的面积9.如图9,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,CD =2 3,则图中阴影部分的面积为( )图9A .4πB .2πC .πD .2π310.如图10,点A ,B ,C ,D 均在圆上,AD ∥BC ,BD 平分∠ABC , ∠BAD =120°,四边形ABCD 的周长为15.(1)求此圆的半径; (2)求图中阴影部分的面积.图1011.如图11,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.图11详解详析1.[解析]C如图所示,连接OB和AC交于点D.∵圆的半径为2,∴OB=OA=OC=2.又∵四边形OABC 是菱形,∴OB ⊥AC ,OD =12OB =1.在Rt △COD 中,利用勾股定理可知CD =22-12=3,∴AC =2CD =2 3, ∴∠COD =60°,∠AOC =2∠COD =120°, ∴S 菱形ABCO =12OB ·AC =12×2×2 3=2 3,S 扇形AOC =120×π×22360=4π3,∴图中阴影部分的面积为S 扇形AOC -S 菱形ABCO =43π-2 3.故选C.2.[答案]54π-32[解析] 连接DB ,DB ′,过点D 作DE ⊥A ′B ′.△ABC 绕AC 的中点D 逆时针旋转90°得到△A ′B ′C ′,此时点A ′在斜边AB 上,CA ′⊥AB ,DB ′=12+22=5,A ′B ′=22+22=2 2,DE =22,∴S 阴=90π×5360-1×2÷2-(2 2-2)×22÷2=54π-32. 3.[答案]12π[解析]∵△ABC 是等腰直角三角形,∴∠BAC =45°,AB =2AC =2 2.∵△ABC 绕点A 按顺时针方向旋转45°后得到△AB ′C ′,∴∠BAB ′=∠CAC ′=45°,∴点B ′,C ,A 共线,∴线段BC 在上述旋转过程中所扫过部分(阴影部分)的面积为S 扇形BAB ′+S △AB ′C ′-S 扇形CAC ′-S △ABC =S 扇形BAB ′-S 扇形CAC ′=45×π×(2 2)2360-45×π×22360=12π.4.解:(1)证明:如图,连接OD . ∵OA =OD ,∴∠OAD =∠ODA . ∵AD 平分∠BAC ,∴∠OAD =∠DAC , ∴∠ODA =∠DAC ,∴OD ∥AC ,∴∠ODB =∠C =90°,∴OD ⊥BC . ∵OD 是⊙O 的半径,∴BC 是⊙O 的切线.(2)连接OE ,OE 交AD 于点K .∵E 是AD ︵的中点,∴AE ︵=DE ︵,∴OE ⊥AD .∵∠OAK =∠EAK ,AK =AK ,∠AKO =∠AKE =90°,∴△AKO ≌△AKE ,∴AO =AE =OE ,∴△AOE 是等边三角形, ∴∠AOE =60°,∴S 阴=S 扇形OAE -S △AOE =60×π×22360-34×22=2π3- 3.5.[解析]A 利用对称性可知:阴影部分的面积=扇形AEF 的面积-△ABD 的面积=90×π×42360-12×4×2=4π-4.故选A. 6.[答案] 4π[解析] 如图,将两个半圆变为同心半圆.过点O 作OM ⊥AB 于点M ,连接OB ,OF ,则MF =12EF =1,BM =12AB =3,∴S 阴影=12πOB 2-12πOF 2=12π(OB 2-OF 2)=12π[OM 2+32-(OM 2+12)]=4π(cm 2).7.解:由题意可知△ACD ≌△AC ′D ′,所以可将△AC ′D ′旋转到△ACD 处,使阴影部分的面积成为一部分环形的面积,可通过两扇形面积之差求得,所以雨刷CD 扫过的面积S 阴影=S 扇形ACC ′-S 扇形ADD ′=90π×1152360-90π×352360=π4×(115+35)×(115-35)=3000π(cm 2).答:雨刷扫过的面积为3000π cm 2.8.解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =AD =2,∠ABC =90°. ∵△BEC 绕点B 逆时针旋转90°得△BF A ,∴△BF A ≌△BEC ,∴∠F AB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB +∠F AB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG , ∴∠AFB +∠CFG =∠AFG =90°,AF =FG , ∴∠CFG =∠F AB =∠ECB ,∴EC ∥FG . ∵AF =EC ,AF =FG ,∴EC =FG , ∴四边形EFGC 是平行四边形,∴EF ∥CG .(2)∵△BF A ≌△BEC ,∴BF =BE =12AB =1,∴AF =AB 2+BF 2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线, ∴点G 到FC 的距离等于点E 到FC 的距离,即BE ,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形F AG =90π×22360+12×2×1+12×(1+2)×1-90π×(5)2360=52-π4(或10-π4),∴阴影部分的面积为52-π4(或10-π4).9.[解析]D 如图,连接OD .∵CD ⊥AB ,∴CE =DE ,∠CEO =∠DEO =90°.又∵OE =OE ,∴△COE ≌△DOE ,故S △COE =S △DOE ,即可得阴影部分的面积等于扇形OBD 的面积.∵∠CDB =30°, ∴∠COB =60°, ∴∠OCD =30°, ∴OE =12OC .由勾股定理可求得OC =2,故S 扇形OBD =60π×22360=23π,即阴影部分的面积为2π3.故选D.10.解:(1)∵AD ∥BC ,∠BAD =120°, ∴∠ABC =60°. 又∵BD 平分∠ABC ,∴∠ABD =∠DBC =∠ADB =30°,∴AB ︵=AD ︵=DC ︵,∠BCD =60°, ∴AB =AD =DC ,∠BDC =90°, ∴BC 是圆的直径,BC =2DC , ∴BC +32BC =15,解得BC =6,∴此圆的半径为3.(2)设BC 的中点为O ,由(1)可知点O 为圆心,连接OA ,OD . ∵∠ABD =30°,∴∠AOD =60°.根据同底等高的三角形面积相等可得S △ABD =S △AOD , ∴S 阴影=S 扇形OAD =60×π×32360=32π.∴图中阴影部分的面积为32π.11.解:(1)CD 与半圆O 相切.证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠OAC =∠OCA , ∴∠DAC =∠OCA ,∴OC ∥AD .∵AD ⊥CD ,∴OC ⊥CD .又∵OC 为半圆O 的半径,∴CD 与半圆O 相切. (2)连接OE .∵AC 平分∠DAB ,∴∠EAC =∠BAC , ∴EC ︵=BC ︵.又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵, ∴S 弓形AE =S 弓形CE ,∠BOC =∠EOC =60°, ∴△OEC 是等边三角形, ∴∠ECO =60°,CE =1.由(1)得OC ⊥CD ,∴∠OCD =90°, ∴∠DCE =30°,∴DE =12,DC =32,∴S 阴影=S △DEC =12×12×32=38,3∴图中阴影部分的面积为8.。
《常考题》初中九年级数学上册第二十四章《圆》经典练习题(含答案解析)
一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π 2.下列说法不正确的是( )A .不在同一直线上的三点确定一个圆B .90°的圆周角所对的弦是直径C .平分弦的直径垂直于这条弦D .等弧所对的圆周角相等3.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 4.在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧AC 沿弦AC 翻折交AB 于点D ,连结CD .如图,若点D 与圆心O 不重合,∠BAC =25°,则∠BDC 的度数( )A .45°B .55°C .65°D .70° 5.如图所示,AB 是O 的直径,点C ,D 在O 上,21BDC ∠=︒,则AOC ∠的度数是( )A .136°B .137°C .138°D .139° 6.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A .若EF AC ⊥,则EF 是O 的切线B .若EF 是O 的切线,则EF AC ⊥ C .若32BE EC =,则AC 是O 的切线D .若BE EC =,则AC 是O 的切线7.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .48.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线9.在下列命题中,正确的是( )A .弦是直径B .半圆是弧C .经过三点确定一个圆D .三角形的外心一定在三角形的外部 10.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )A .15︒B .30C .45︒D .60︒11.如图,ABC 的顶点A 是O 上的一个动点,90ACB ∠=︒,30BAC ∠=︒,边AC ,AB 分别交O 于点E ,D ,分别过点E ,D 作O 的切线交于点F ,且点F 恰好在边BC 上,连接OC ,若O 的半径为6,则OC 的最大值为( )A .393+B .2103+C .353+D .5312.如图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠BOD 等于( )A .20°B .40°C .50°D .60°13.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在O 上,点D 在ADB 上,DA DB =,则AOD ∠的度数为( )A .112.5°B .120°C .135°D .150° 14.如图,P 与y 轴交于点()0,4M -,()0,10N -,圆心P 的横坐标为4-,则P 的半径为( )A .3B .4C .5D .615.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE= D .BC=2CE 二、填空题16.已知正方形MNKO 和正六边形ABCDEF 边长均为1,把正方形放在正六边形外边,使OK 边与AB 边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B 顺时针旋转,使KN 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使NM 边与CD 边重合,完成第二次旋转;…在这样连续的旋转过程中,第一次点M 在图中直角坐标系中的坐标是_______,第6次点M 的坐标是_______.17.如图,点A 、D 、G 、M 在半圆上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC a =,EF b =,NH c =,则a ,b ,c 之间的大小关系是_________________.(用“>”、“<”、“=”连接)18.已知O 的直径10AB =cm ,CD 是O 的弦,AE CD ⊥,垂足为点E ,BF CD ⊥,垂足为点F ,且8CD =cm ,则BF AE -的长为________cm .19.如图,O 的半径为6,AB 、CD 是互相垂直的两条直径,点P 是O 上任意一点,过点P 作PM AB ⊥于M ,PN CD ⊥于N ,点Q 是MN 的中点,当点P 沿着圆周从点D 逆时针方向运动到点C 的过程中,当∠QCN 度数取最大值时,线段CQ 的长为______.20.一点到O 上的最近距离为3cm ,最远距离为11cm ,则这圆的半径是______.21.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.22.如图,AB 是⊙O 的直径,C 是BA 延长线上一点,点D 在⊙O 上,且CD=OA ,CD 的延长线交⊙O 于点E ,若∠BOE=54°,则∠C=______.23.如图,半径为10的扇形AOB 中,∠AOB=90°,C 为AB 上一点,CD ⊥OA ,CE ⊥OB ,垂足分别为D 、E .若∠CDE=36°,则图中阴影部分的面积为____.24.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________25.如图,ABC 是等边三角形,180BAD BCD ∠+∠=︒,8BD =,2CD =,则AD =________.26.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.三、解答题27.如图,已知O 的直径AB ⊥弦CD 于点E ,且E 是OB 的中点,连接CO 并延长交AD 于点F .(1)求证:CF AD ⊥;(2)若12AB =,求CD 的长.28.如图:在平面直角坐标系中,直线l 与两坐标轴分别相交,相交于C 、D 两点,且()6,0C ,30OCD ∠=︒,长度为2的线段AB (B 点在A 点右侧)在x 轴上移动,设点A的坐标为()0m ,.发现:(1)当以A 为圆心,AB 为半径的圆与直线l 相切时,求m 的值;应用:(2)当以A 为圆心,AB 为半径的A 与直线l 相交于M 、N 两点,且AMN 是等腰直角三角形,求m 的值.拓展:(3)直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是_________(直接写出答案).29.如图,在直角坐标系中,A (0,4)、B (4,4)、C (6,2),(1)写出经过A 、B 、C 三点的圆弧所在圆的圆心M 的坐标:______;(2)判断点()5,2D -与圆M 的位置关系.30.第十届亚运会在广东召开,有三名运动员分别下榻在A 、B 、C 三个宾馆,三个宾馆由三条道路相连,如图所示.(1)为建一个公共活动场地P 到三个宾馆的距离相等.请用尺规作图方法作出点P ,使得点P 落在△ABC 内部.保留作图痕迹,不要求写作法. (2)如果ACB α∠=,那么APB ∠=______.。
《常考题》初中九年级数学上册第二十四章《圆》习题(含答案解析)
一、选择题1.下列说法:(1)三点确定一个圆;(2)直径所对的圆周角是直角;(3)平分弦的直径垂直于弦,并且平分弦所对的弧;(4)相等的圆心角所对的弧相等;(5)圆内接四边形的对角互补.其中正确的个数为( )A .1个B .2个C .3个D .4个2.如图,在半径为8的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,30D ︒∠=,下列结论不正确的是( )A .OA BC ⊥B .83BC = C .四边形ABOC 是菱形D .扇形OAC 的面积为643π 3.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切 B .在圆外 C .在圆上 D .在圆内 4.如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D 、C .若∠ACB=30°,AB= 3,则阴影部分的面积( )A .32B .33C .3π26-D .3π36- 5.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态 6.如图,正六边形ABCDEF 内接于O ,过点O 作OM ⊥弦BC 于点M ,若O 的半径为4,则弦心距OM 的长为( )A .23B .3C .2D .22 7.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134πC .132πD .136π 8.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .8 9.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 10.如图,AB 为⊙O 的直径,,C D 为⊙O 上的两点,若7OB BC ==.则BDC ∠的度数是( )11.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°12.如图,⊙O 的直径2AB AM =,和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,则四边形ABCD 的面积S 的最小值为( )A .1B .2C .2D .4 13.已知圆锥的底面半径为3cm ,母线长为6cm ,则圆锥的侧面积是( ) A .18cm 2 B .218cm π C .27cm 2 D .227cm π 14.如图,⊙O 是四边形 ABCD 的内切圆,连接 OA 、OB 、OC 、OD .若∠AOB =110°,则∠COD 的度数是( )A .60°B .70°C .80°D .45°15.如图,△ABC 内接于☉O ,若☉O 的半径为6,∠A=60°,则BC 的长为( )二、填空题16.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.17.如图,30ACB ∠=︒,点O 是CB 上的一点,且6OC =,则以4为半径的O 与直线CA 的公共点的个数______.18.如图,四边形ABCD 是O 的内接四边形,对角线AC ,BD 交于点E ,且AC BD AB ==,若70AEB ∠=︒,则AOB ∠等于______︒.19.一排水管截面如图所示,截面半径13dm OA =,水面宽10dm AB =,则圆心O 到水面的距离OC =______dm .20.如图,AB 是半圆O 的直径,且4AB =,30BAC ︒∠=,则AC 的长为_________.21.半径为5的⊙O 是锐角三角形ABC 的外接圆,AB=BC ,连结OB 、OC ,延长CO 交弦AB 于D ,若△OBD 是直角三角形,则弦BC 的长为______________.22.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.23.在矩形ABCD 中,43AB =,6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.24.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.25.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.26.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为 _____.三、解答题27.如图,以Rt ABC 的AC 边为直径作O 交斜边AB 于点E ,连接EO 并延长交BC 的延长线于点D ,点P 为BC 的中点,连接EP ,AD .(1)求证:PE 是O 的切线; (2)若O 的半径为3,30B ∠=︒,求P 点到直线AD 的距离.28.对于平面上两点,A B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点,A B 的“共径圆”.点,A B 的“共径圆”的示意图如图所示.(1)已知点A 的坐标为(0,0),点B 的坐标为(3,4),则点,A B 的“共径圆”的面积为_______________;(2)已知点A 在以坐标原点为圆心,以1为半径的圆上,点B 在直线4y x =-+上,求点,A B 的“共径圆”的半径最小值;(3)已知点A 的坐标为(0,0),点B 是x 轴及x 轴上方的点,如果直线y x b =+上存在两个点B ,使得点,A B 的“共径圆”的面积为4π,直接写出满足条件的b 的取值范围.29.如图,AB 为⊙O 的直径,C ,D 是⊙O 上的点,P 是⊙O 外一点,AC ⊥PD 于点E ,AD 平分∠BAC .(1)求证:PD 是⊙O 的切线;(2)若3∠BAC=60°,求⊙O 的半径.30.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,CD 是⊙O 的切线,AD ⊥CD 于点D ,E是AB延长线上一点,CE交⊙O于点F,连接OC,AC.(1)求证:AC平分∠DAO;(2)若∠DAO=105°,∠E=30°,①求∠OCE的度数;②若⊙O的半径为2EF的长.。
人教版初中九年级数学上册第二十四章《圆》复习题(含答案解析)(3)
一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π 2.如图,在ABC 中,90ACB ∠=︒,过B ,C 两点的O 交AC 于点D ,交AB 于点E ,连接EO 并延长交O 于点F .连接BF ,CF ,若135EDC ∠=︒,2AE =,4BE =,则CF 的值为( ).A .10B .22C .23D .33.如图,一块直角三角板的30°角的顶点P 落在O 上,两边分别交圆O 于A ,B 两点,若O 的直径为6,则弦AB 的长为( )A .3B .2C .2D .3 4.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 5.如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO =30°,则∠C 的度数是( )A .70°B .45°C .30°D .20° 6.点P 到圆上各点的最大距离为10cm ,最小距离为6cm ,则此圆的半径为( ) A .8cmB .5cm 或3cmC .8cm 或2cmD .3cm 7.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .148.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cmB .12cmC .11cmD .10cm 9.如图,PA 切O 于点,A PB 切O 于点B PO ,交O 于点C ,下列结论中不一定成立的是( )A .PA PB =B .PO 平分APB ∠C .AB OP ⊥D .2PAB APO ∠=∠10.如图,在⊙O 中,OA BC ⊥,35ADB ∠=︒.则AOC ∠的度数为( )A .40︒B .55︒C .70︒D .65︒11.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 12.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .33 13.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°14.如图,AB 是⊙O 的直径,AB=AC 且∠BAC=45°,⊙O 交BC 于点D ,交AC 于点E ,DF 与⊙O 相切,OD 与BE 相交于点H .下列结论错误的是( )A .BD=CDB .四边形DHEF 为矩形C .2AE DE =D .BC=2CE 15.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题) 请点击修改第II 卷的文字说明参考答案二、填空题16.如图,A 、B 、C 是O 上顺次三点,若AC 、AB 、BC 分别是O 内接正三角形、正方形、正n 边形的一边,则n =______.17.如图,点A ,B ,C 在圆O 上,54ACB ∠=︒,则ABO ∠的度数是______.18.如图,四边形ABCD 是O 的内接四边形,对角线AC ,BD 交于点E ,且AC BD AB ==,若70AEB ∠=︒,则AOB ∠等于______︒.19.已知半径为5的圆O 中,弦AB =8,则以AB 为底边的等腰三角形腰长为___________.20.如图,△ABC 中,∠A=60°,若O 为△ABC 的内心,则∠BOC 的度数为______度.21.如图,O 是正方形ABCD 的外接圆,2,AB =点E 是劣弧AD 上的任意一点,连接BE ,作CF BE ⊥于点F ,连接,AF 则当点E 从点A 出发按顺时针方向运动到点D 时,AF 长的取值范围为________________.22.如图,在扇形AOB 中90AOB ∠=︒,正方形CDEF 的顶点C 是AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为22时,则阴影部分的面积为________.23.如图,在⊙O 中,弦AC 、BD 相交于点E ,且AB BC CD ==,若∠BEC=130°,则∠ACD 的度数为_____24.小红在手工制作课上,用面积为215cm π,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为_______cm .25.扇形 的半径为6cm ,弧长为10cm ,则扇形面积是________.26.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为 _____.三、解答题27.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上,若50AOD .(1)求DEB ∠的度数:(2)若3OC =,5OA =,①求弦AB 的长;②求劣弧AB 的长.28.如图,已知直线l 与⊙O 相交于点E 、F , AB 是⊙O 的直径,AD ⊥l 于点D ,交⊙O 于G(1)求证:∠BAF=∠DAE ;(2)若2DE=2,∠B=45°,求AG 的长29.已知PA ,PB 分别与⊙O 相切于点A ,B ,∠APB =80°,C 为⊙O 上一点. (Ⅰ)如图①,求∠ACB 的大小;(Ⅱ)如图②,AE 为⊙O 的直径,AE 与BC 相交于点D .若AB =AD ,求∠EAC 的大小.30.如图,已知直线PT 与⊙O 相交于点T ,直线PO 与⊙O 相交于A 、B 两点,已知PTA B ∠=∠.(1)求证:PT 是⊙O 的切线;(2)若3PT BT ==。
(必考题)初中九年级数学上册第二十四章《圆》经典练习(提高培优)
一、选择题1.如图,AC 为半圆的直径,弦3AB =,30BAC ∠=︒,点E 、F 分别为AB 和AC 上的动点,则BF EF +的最小值为( )A .3B .332C .3D .332+ 2.如图,四个水平放置正方形的边长都为4,顶点A 、B 、C 是圆上的点,则此圆的面积为( )A .72πB .85πC .100πD .104π 3.如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO =30°,则∠C 的度数是( )A .70°B .45°C .30°D .20°4.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 5.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 6.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°7.如图,一条公路的拐弯处是一段圆弧AB ,点O 是这段弧所在的圆的圆心,20cm AB =,点C 是AB 的中点,点D 是AB 的中点,且5cm CD =,则这段弯路所在圆的半径为( )A .10cmB .12.5cmC .15cmD .17cm 8.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切 B .在圆外 C .在圆上 D .在圆内 9.如图,AB 圆O 的直径,弦CD AB ⊥,垂足为M ,下列结论不成立的是( )A .CM DM =B .CB BD =C .ACD ADC ∠=∠ D .OM MB = 10.如图,已知AB 是O 的直径,AD 切O 于点A ,CE CB =.则下列结论中不一定正确的是( )A .OC BE ⊥B .//OC AE C .2COE BAC ∠=∠D .OD AC ⊥ 11.如图,不等边ABC 内接于O ,下列结论不成立的是( )A .12∠=∠B .14∠=∠C .2AOB ACB ∠=∠D .23ACB ∠=∠+∠ 12.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .13.如图,EM 经过圆心O ,EM CD ⊥于M ,若4CD =,6EM =,则CED 所在圆的半径为( )A .103B .83C .3D .4 14.如图,O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 可取的整数值有( )个A .1B .2C .3D .415.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333-B .2C .3D .33二、填空题16.如图,扇形AOB 的圆心角是直角,半径为23,C 为OB 边上一点,将△AOC 沿AC 边折叠,圆心O 恰好落在弧AB 上的点D ,则阴影部分面积为___________17.如图,A 、B 、C 是O 上顺次三点,若AC 、AB 、BC 分别是O 内接正三角形、正方形、正n 边形的一边,则n =______.18.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.19.如图,在平面直角坐标系中,点()3,4A ,()3,0B ,以A 为圆心,2为半径作A ,点P 为A 上一动点,M 为OP 的中点,连接BM ,设BM 的最大值为m ,最小值为n ,则m n -的值为_________.20.如图,已知AB 是O 的直径,点C ,D 在O 上,2BC =,30CDB ∠=︒,则O 的半径为_____.21.如图,Rt △ABC 的内切圆⊙I 分别与斜边AB 、直角边BC 、CA 切于点D 、E 、F ,AD =3,BD =2,则Rt △ABC 的面积为_______.22.一点到O 上的最近距离为3cm ,最远距离为11cm ,则这圆的半径是______. 23.在ABC 中,90,3,4C AC BC ∠===,则ABC 的内切圆的周长为___________.24.在矩形ABCD 中,43AB =,6BC =,若点P 是矩形ABCD 上一动点,要使得60APB ∠=︒,则AP 的长为__________.25.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.26.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.三、解答题27.如图,AB 是⊙O 的直径,点C 在⊙O 上,BD 平分ABC ∠交⊙O 于点D ,过点D 作DE BC ⊥,垂足为E .(1)求证:DE 与⊙O 相切;(2)若10AB =,6AD =,求DE 的长.28.如图,AB 是O 的一条弦,⊥OD AB ,垂足为C ,OD 交O 于点D ,点E 在O 上,若50AOD .(1)求DEB ∠的度数:(2)若3OC =,5OA =,①求弦AB 的长;②求劣弧AB 的长.29.如图,在△ABC中,以AB为直径的⊙O交AC于点M,弦MN∥BC交AB于点E,且ME=NE=3.(1)求证:BC是⊙O的切线;(2)若AE=4,求⊙O的直径AB的长度.30.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,求大正方形的面积.。
《常考题》初中九年级数学上册第二十四章《圆》经典练习(含答案解析)
一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135° 2.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 3.如图在ABC 中,∠B=90°,AC=10,作ABC 的内切圆圆O ,分别与AB 、BC 、AC 相切于点D 、E 、F ,设AD=x ,ABC 的面积为S ,则S 关于x 的函数图像大致为( )A .B .C .D .4.为落实好扶贫工作,某村驻村干部帮助村民修建了一个粮仓,该粮仓的屋顶是一个圆锥,为了合理购买、不浪费原材料,需要进行计算1个屋顶的侧面积大小,该圆锥母线长为5m ,底面圆周长为8m π,则1个屋顶的侧面积等于( )2m .(结果保留π)A .40πB .20πC .16πD .80π 5.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43 C .25或45 D .23或43 6.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A 433B .327C 233D .1677.如图,正方形ABCD 内接于O ,直径//MN AD ,则阴影部分的面积占圆面积的( )A .12B .16C .13D .148.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .45B .215C .16D .89.如图,A ,B ,C 三点在O 上,若120ACB ∠=︒,则AOB ∠的度数是( )A .60︒B .90︒C .100︒D .120︒ 10.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .11.如图,AB 为O 的弦,半径OC 交AB 于点D ,AD DB =,5OC =,3OD =,则AB 的长为( )A .8B .6C .4D .212.《九章算术》是东方数学思想之源,该书中记载:“今有勾八步,股一十五步,同勾中 容圆径几何.”其意思为:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形内切圆的直径是多少步?”该问题的答案是( ) A .8.5 B .17 C .3 D .613.如图,⊙O 的半径为2,四边形ADBC 为⊙O 的内接四边形,AB =AC ,∠D =112.5°,则弦BC 的长为( )A .2B .2C .22D .23 14.如图,在菱形ABCD 中,60A ∠=︒ ,3AB = ,A ,B 的半径分别为2和1,P ,E ,F 分别是CD 边、A 和B 上的动点,则PE PF +的最小值是( )A .333B .2C .3D .3315.下列说法中,正确的是( ) A .三点确定一个圆B .在同圆或等圆中,相等的弦所对的圆周角相等 C .平分弦的直径垂直于弦D .在同圆或等圆中,相等的圆心角所对的弦相等二、填空题16.如图,四边形ABCD 是O 的内接四边形,对角线AC 是O 的直径,2AB =,45ADB ∠=︒,则O 的半径长为_______.17.如图,在平面直角坐标系xOy 中,点,,A B C 的坐标分别是(0,),(22,0),()4,0,M是ABC ∆的外接圆,则圆心M 的坐标为__________________,M 的半径为_______________________.18.如图,AB 是半圆O 的直径,且4AB =,30BAC ︒∠=,则AC 的长为_________.19.已知,O 的弦AB 与O 的半径相等,则弦AB 所对的圆周角的度数为______. 20.已知一个圆锥形纸帽的底面半径为5cm ,母线长为10cm ,则该圆锥的侧面积为_____cm 2(结果保留π)21.在△ABC 中,已知∠ACB =90°,BC =3,AC =4,以点C 为圆心,2.5为半径作圆,那么直线AB 与这个圆的位置关系分别是_________.22.如图,在平面直角坐标系xOy 中,A (8,0),⊙O 半径为3,B 为⊙O 上任意一点,P 是AB 的中点,则OP 的最小值是____.23.已知三角形三边分别为3、4、5,则该三角形内心与外心之间的距离为_____.24.如图,正方形 ABCD 中,点 E 是 CD 边上一点,连接 AE ,过点 B 作 BG ⊥AE 于点 G , 连接 CG 并延长交 AD 于点 F ,当 AF 的最大值是 2 时,正方形 ABCD 的边长为______.25.如图,直线33y x =+交x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;26.如图,ABC 内接于半径为10的半圆,AB 为直径,点M 是弧AC 的中点,连结BM 交AC 于点E ,AD 平分∠CAB 交BM 于点D ,∠ADB =_____°,当点D 恰好为BM 的中点时,BM 的长为____.三、解答题27.如图,点E 为O 弦CD 的中点,过点O ,E 作直径()AB AE BE >,连接BD ,过点C 的弦//CF BD 交AB 于G .求证:AGF F ∠=∠.28.如图,长方形ABCD的长是a,宽是b,分别以A、C为圆心作扇形,用代数式表示阴影部分的周长L和面积S(结果中保留π).29.如图,半径为2的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,求劣弧MN 的长度.30.如图,O的直径AB为10,弦BC为6,D是AC的中点,弦BD和CE交于点=.F,且DF DC=;(1)求证:EB EF(2)求CE的长.。
2021年九年级数学上册第二十四章《圆》经典练习(答案解析)
一、选择题1.在ABC 中,90,4,3C AC BC ∠=︒==,把它绕AC 旋转一周得一几何体,该几何体的表面积为( )A .24πB .21πC .16.8πD .36π 2.如图,AB 、AC 是⊙O 的切线,B 、C 为切点,∠A =50°,点P 是圆上异于B 、C 的点,则∠BPC 的度数是( )A .65°B .115°C .115°或65°D .130°或65° 3.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 4.如图,在三角形ABC 中,AB=22,∠B=30°,∠C=45°,以A 为圆心,以AC 长为半径作弧与AB 相交于点E ,与BC 相交于点F ,则弧EF 的长为( )A .6πB .2π C .23π D .π 5.如图,在ABC 中,90C ∠=︒,7AB =,4AC =,以点C 为圆心、CA 为半径的圆交AB 于点D ,求弦AD 的长为( )A .4337B .327C .2337D .1676.以O 为中心点的量角器与直角三角板ABC 如图所示摆放,直角顶点B 在零刻度线所在直线DE 上,且量角器与三角板只有一个公共点P ,∠POB =40°,则∠CBD 的度数是( )A .50°B .45°C .35°D .40° 7.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cm B .12cm C .11cm D .10cm 8.如图,ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将ABC 绕点B 顺时针旋转到A B C '''的位置,且点A '、C '仍落在格点上,则线段AB 扫过的图形的面积是( )平方单位(结果保留)A .254πB .134πC .132πD .136π 9.如图,⊙O 的直径12CD =,AB 是⊙O 的弦,AB CD ⊥,垂足为P ,:1:2CP PO =,则AB 的长为( )A .5B .15C .16D .810.如图,O 的半径为5,弦AB 的长为8,M 是弦AB 上的一个动点,则线段OM 可取的整数值有( )个A .1B .2C .3D .411.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线12.如图,四边形ABCD 内接于⊙O ,AB 为⊙O 的直径,点C 为BD 的中点.若50A ∠=︒,则B 的度数是( )A .50︒B .55︒C .60︒D .65︒13.如图,ABC 的顶点A 是O 上的一个动点,90ACB ∠=︒,30BAC ∠=︒,边AC ,AB 分别交O 于点E ,D ,分别过点E ,D 作O 的切线交于点F ,且点F 恰好在边BC 上,连接OC ,若O 的半径为6,则OC 的最大值为( )A 393B .2103C .353D .53 14.在扇形中,∠AOB =90°,面积为4πcm 2,用这个扇形围成一个圆锥的侧面,这个圆锥的底面半径为 ( )A .1cmB .2cmC .3nD .4cm 15.一个圆锥的底面直径为4 cm ,其侧面展开后是圆心角为90°的扇形,则这个圆锥的侧面积等于( )A .4πcm 2B .8πcm 2C .12πcm 2D .16πcm 2第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题16.如图,30ACB ∠=︒,点O 是CB 上的一点,且6OC =,则以4为半径的O 与直线CA 的公共点的个数______.17.如图,四边形ABCD 是O 的内接四边形,对角线AC ,BD 交于点E ,且AC BD AB ==,若70AEB ∠=︒,则AOB ∠等于______︒.18.ABC 是边长为5的等边三角形,点D 在ABC 的外部且30BDC ∠=︒,则AD 的最大值是______.19.如图,矩形ABCD 和正方形BEFG 中2AB =,3AD =,1BE =,正方形BEFG 绕点B 旋转过程中,线段DF 的最小值为______.20.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.21.如图,已知点,,A B C 在O 上,若50ACB ∠=,则AOB ∠=_____________________度.22.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.23.已知,O 的弦AB 与O 的半径相等,则弦AB 所对的圆周角的度数为______. 24.如图,在Rt △ABC 中,∠C =90°,AC =3cm ,BC =4cm ,若以C 为圆心,r 为半径所作的圆与斜边AB 相切,则r 的值是________25.如图,四边形ABCD 内接于O ,若76A ∠=︒,则C ∠=_______ °.26.如图,⊙O 的半径为3,点A 是⊙O 外一点,OA =6,B 是⊙O 上的动点,线段AB 的中点为P ,连接 OA 、OP .则线段 OP 的最大值是______.三、解答题27.如图,已知四边形ABCD 是矩形,AC 为对角线.(1)把△ABC 绕点A 顺时针旋转一定角度得到△AEF ,点B 的对应点为E ,点C 的对应点F 在CD 的延长线上,请你在图中作出△AEF .(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,求证:B ,D ,E 三点共线.28.如图所示,AB 是⊙O 的直径,AC 是⊙O 的弦,∠ACB 的平分线交⊙O 于点D .若AB =10,AC =6,求BC 、BD 的长.29.如图,若O 是ABC 的外接圆,AD 为直径,60ABC ∠=︒.(1)求DAC ∠的度数;(2)若4=AD ,求阴影部分的面积.30.如图,已知直线l 与⊙O 相离,过圆心O 画OA ⊥l 于点A ,交⊙O 于点P 且OA =5,点B 为⊙O 上一点BP 的延长线交直线l 于点C 且AB=AC .(1)判断AB 与⊙O 有怎样的位置关系,并说明理由;(2)若5PC =⊙O 的半径.。
《常考题》初中九年级数学上册第二十四章《圆》知识点(含答案解析)
一、选择题1.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63 2.2020年温州市实验中学数学文化节征稿文化节LOGO ,小明利用古希腊医学家希波克拉底所画图形进行设计.如图ABC 内接于一个半径为5的半圆,90ACB ∠=︒,分别以AB ,BC ,AC 为直径向外作半圆.若阴影部分图形面积之和是空白部分图形面积之和的3倍,则ABC 的面积为( )A .5πB .7.5πC .253πD .10π 3.如图,ABC 为O 的一个内接三角形,过点B 作O 的切线PB 与OA 的延长线交于点P .已知34ACB ∠=︒,则P ∠等于( )A .17°B .27°C .32°D .22°4.如图,在半径为8的O 中,点A 是劣弧BC 的中点,点D 是优弧BC 上一点,30D ︒∠=,下列结论不正确的是( )A .OA BC ⊥B .83BC = C .四边形ABOC 是菱形D .扇形OAC 的面积为643π 5.在平面直角坐标系中,以点()3,4-为圆心,半径为5作圆,则原点一定( ) A .与圆相切B .在圆外C .在圆上D .在圆内 6.已知正方形的边长a ,其内切圆的半径为r ,外接圆的半径为R ,则::R r a =( ) A .2:1:2B .2:1:1C .2:1:1D .2:2:4 7.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .25 B .43C .25或45D .23或43 8.若圆锥的底面半径为5cm ,侧面积为265cm π,则该圆锥的高是( ) A .13cmB .12cmC .11cmD .10cm 9.已知⊙O 的直径为6,圆心O 到直线l 的距离为3,则能表示直线l 与⊙O 的位置关系的图是( ) A . B .C .D .10.下列命题中,正确的是( )A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .三角形的外心在三角形的外面D .与某圆一条半径垂直的直线是该圆的切线11.在下列命题中,正确的是( )A .弦是直径B .半圆是弧C .经过三点确定一个圆D .三角形的外心一定在三角形的外部 12.已知AB 是经过圆心O 的直线,P 为O 上的任意一点,则点P 关于直线AB 的对称点P '与O 的位置关系是( ) A .点P '在⊙○内 B .点P '在O 外 C .点P '在O 上 D .无法确定13.如图,AB 是⊙的直径,DB 、DE 分别切⊙O 于点B 、C ,若∠ACE =35°,则∠D 的度数是( )A .65°B .55°C .60°D .70°14.如图,⊙P 与y 轴相切于点C (0,3),与x 轴相交于点A (1,0),B (7,0),直线y=kx-1恰好平分⊙P 的面积,那么k 的值是( )A .12B .45C .1D .4315.如图,C 、D 是以AB 为直径的O 上的两个动点(点C 、D 不与A 、B 重合),在运动过程中弦CD 始终保持长度不变,M 是弦CD 的中点,过点C 作CP AB ⊥于点P .若3CD =,5AB =,PM x =,则x 的最大值是( )A .4B .5C .2.5D .23二、填空题16.如图,扇形AOB 的圆心角是直角,半径为23,C 为OB 边上一点,将△AOC 沿AC 边折叠,圆心O 恰好落在弧AB 上的点D ,则阴影部分面积为___________17.如图,⊙O 是△ABC 的内切圆,若∠A =70°,则∠BOC =________°.18.如图,等腰直角△ABC 中,∠BAC=90°,AB=AC=4.平面内的直线l 经过点A ,作CE ⊥l 于点E ,连接BE.则当直线l 绕着点A 转动时,线段BE 长度的最大值是________.19.如图,有一半径为6cm 的圆形纸片,要从中剪出一个圆心角为60︒的扇形ABC ,AB ,AC 为⊙O 的弦,那么剪下的扇形ABC (阴影部分)的面积为 ___________.20.如图,⊙O 的直径16AB =,半径OC AB ⊥,E 为OC 的中点, DE OC ⊥,交⊙O 于点D ,过点D 作DF AB ⊥于点F .若 P 为直径AB 上一动点,则PC PD +的最小值为 ________ .21.如图,在圆O 的内接五边形ABCDE 中,40CAD ∠=︒,则B E ∠+∠=_______°.22.如图,AB AC 、分别为O 的内接正方形、内接正三角形的边,BC 是圆内接正n 边形的一边,则n 的值为_______________________.23.如图,A ,B ,P 是半径为2的O 上的三点,45APB ∠=︒,则弦AB 的长为______.24.如图,把边长为12的正三角形ABC 纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK ,则剪去的小正三角形的边长为__________________.25.如图,AB 是O 的直径,CD 是O 的弦,AB 、CD 的延长线交于点E ,已知2AB DE =,若COD ∆为直角三角形,则E ∠的度数为______︒.26.如图,直线33y x =+x 轴于点A ,交y 轴于点B .以A 为圆心,以AB 为半径作弧交x 轴于点A 1;过点A 1作x 轴的垂线,交直线 AB 于点B 1,以A 为圆心,以AB 1为半径作弧交x 轴于点 A 2;…,如此作下去,则点n A 的坐标为___________;三、解答题27.如图,已知AB 是O 的一条弦,DE 是O 的直径且DE AB ⊥于点C . (1)若3,5OC OA ==,求AB 的长;(2)求证:EAO BAD ∠=∠.28.如图,已知O 的直径AB ⊥弦CD 于点E ,且E 是OB 的中点,连接CO 并延长交AD 于点F .(1)求证:CF AD ⊥;(2)若12AB =,求CD 的长.29.如图,在平面直角坐标系中,点A 的坐标为()3,2-,点B 的坐标为()0,2. (1)画出将绕点O 顺时针旋转90后的图形,记为A OB ''△;(2)在题(1)旋转过程中线段OA 扫过的面积为_______(直接写出答案)30.如图,在Rt△ABC中,∠C=90°,以BC为直径的圆O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=8,DE=5,求BC的长.。
【单元练】深圳中学九年级数学上册第二十四章《圆》经典测试(含答案解析)
一、选择题1.如图,在平行四边形ABCO 中,45C ∠=︒,点A ,B 在⊙O 上,点D 在优弧ADB 上,DA DB =,则AOD ∠的度数为( )A .165°B .155°C .145°D .135°D解析:D【分析】 连接OB ,根据平行四边形的性质可得∠OAB=∠C=45°,再根据等腰三角形的等边对等角得∠OBA=∠OAB=45°,则∠AOB=90°,由DA=DB 得∠AOD=∠BOD ,进而可求得∠AOD 的度数.【详解】解:连接OB ,∵四边形ABCO 是平行四边形,∴∠OAB=∠C=45°,∵OA=OB ,∴∠OBA=∠OAB=45°,∴∠AOB=90°,∵DA=DA ,∴∠AOD=∠BOD=12(360°﹣90°)=135°, 故选:D .【点睛】本题考查平行四边形的性质,等腰三角形的性质,圆心角、弧、弦的关系等知识,熟练掌握平行四边形的性质和等腰三角形的性质,熟知等弦所对的圆心角相等是解答的关键. 2.如图,A 是B 上任意一点,点C 在B 外,已知2AB =,4BC =,ACD △是等边三角形,则BCD △的面积的最大值为( )A .434+B .43C .438+D .63A解析:A【分析】 以BC 为边作等边BCM ,连接DM ,则DCM CAB ≅△△,根据全等三角形的性质得到DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232+,根据三角形的面积即可得到结论.【详解】解:以BC 为边作等边BCM ,连接DM ,∵60DCA MCB ==∠∠,∴DCM ACB =∠∠,∵DC=AC ,MC=BC ,∴DCM CAB ≅△△(SAS ),∴DM=AB=2为定值,即点D 在以M 为圆心,半径为2的圆上运动,当点D 运动至BC 为中垂线与圆的交点时,BC 边上的高取最大值为232,此时面积为:434故选:A【点睛】本题考查了等边三角形的性质,三角形面积的计算,找出点D 的位置是解题的关键. 3.如图,点A 、B 、C 在⊙O 上,∠ACB =54°,则∠ABO 的度数是( )A .54°B .30°C .36°D .60°C解析:C【分析】 根据圆周角定理求出∠AOB ,根据等腰三角形的性质求出∠ABO=∠BAO ,根据三角形内角和定理求出即可.【详解】解:∵∠ACB =54°,∴圆心角∠AOB =2∠ACB =108°,∵OB =OA ,∴∠ABO =∠BAO =12(180°﹣∠AOB )=36°, 故选:C .【点睛】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB 的度数是解此题的关键.4.已知O 的直径10CD cm ,AB 是O 的弦,AB CD ⊥,垂足为M ,且8AB cm =,则AC 的长为( ) A .5B .3C .2545D .233 解析:C【分析】连结OA ,由AB CD ⊥,根据垂径定理可以得到4AM =,结合勾股定理可以得到3OM =.在分类讨论,如图,当8CM =和2CM =时,再结合勾股定理即可求出AC .【详解】连结OA ,∵AB CD ⊥, ∴118422AM BM AB ===⨯=, 在Rt OAM 中,5OA =, ∴223OA OM AM -==,当如图时,538CM OC OM =+=+=,在Rt ACM △中,2245AC AM CM =+=,当如图时,532CM OC OM =-=-=,在Rt ACM △中,2225AC AM CM +=故选C .【点睛】 本题考查垂径定理“垂直于弦的直径平分弦且平分这条弦所对的两条弧”.分类讨论思想也是解决本题的关键.5.下列事件属于确定事件的为( )A .氧化物中一定含有氧元素B .弦相等,则所对的圆周角也相等C .戴了口罩一定不会感染新冠肺炎D .物体不受任何力的时候保持静止状态A 解析:A【分析】根据确定事件的概念,可知需找出必然事件或不可能事件即可.【详解】 A 、氧化物是含有两种元素其中一种是氧元素的化合物,必然事件;B 、在同圆或等圆中,弦相等所对的圆周角相等或互补,不确定事件;C 、戴了口罩一定不会感染新冠肺炎,不确定事件;D 、物体不受任何力的时候保持静止状态或匀速运动,不确定事件.故选A.【点睛】本题考查事件的划分,必然事件和不可能事件统称为确定事件,确定事件中,必然出现的事情称为必然事件;不可能出现的事情称为不可能事件.6.如图,在等边ABC 中,点O 在边AB 上,O 过点B 且分别与边AB BC 、相交于点D 、E ,F 是AC 上的点,判断下列说法错误的是( )A.若EF AC⊥,则EF是O的切线B.若EF是O的切线,则EF AC⊥C.若32BE EC=,则AC是O的切线D.若BE EC=,则AC是O的切线D解析:D【分析】A、如图1,连接OE,根据同圆的半径相等得到OB=OE,根据等边三角形的性质得到∠BOE=∠BAC,求得OE∥AC,于是得到A选项正确;B、由于EF是⊙O的切线,得到OE⊥EF,根据平行线的性质得到B选项正确;C、根据等边三角形的性质和圆的性质得到AO=OB,如图2,过O作OH⊥AC于H,根据三角函数得到OH=32AO≠OB,于是得到C选项正确;由于C正确,D自然就错误了.【详解】解:A、如图,连接OE,则OB=OE,∵∠B=60°∴∠BOE=60°,∵∠BAC=60°,∴∠BOE=∠BAC,∴OE∥AC,∵EF⊥AC,∴OE⊥EF,∴EF是⊙O的切线∴A选项正确B、∵EF是⊙O的切线,∴OE⊥EF,由A知:OE∥AC,∴AC⊥EF,∴B选项正确;C、如图,∵BE=32EC,∴CE=233BE,∵AB=BC,BO=BE,∴AO=CE=233OB,∴OH=32AO=OB,∴AC是⊙O的切线,∴C选项正确.D、∵∠B=60°,OB=OE,∴BE=OB,∵BE=CE,∴BC=AB=2BO,∴AO=OB,如图,过O作OH⊥AC于H,∵∠BAC=60°,∴OH=32AO≠OB,∴D选项错误;故选:D.【点睛】本题考查了切线的判定和性质,等边三角形的性质,正确的作出辅助线是解题的关键.7.如图,⊙P与y轴相切于点C(0,3),与x轴相交于点A(1,0),B(7,0),直线y=kx-1恰好平分⊙P的面积,那么k的值是()A.12B.45C.1 D.43C解析:C【分析】连接PC,PA,过点P作PD⊥AB于点D,根据切线的性质可知PC⊥y轴,故可得出四边形PDOC是矩形,所以PD=OC=3,再求出AB的长,由垂径定理可得出AD的长,故可得出OD 的长,进而得出P点坐标,再把P点坐标代入直线y=kx-1即可得出结论.【详解】解:连接PC,PA,过点P作PD⊥AB于点D,∵⊙P与y轴相切于点C(0,3),∴PC⊥y轴,∴四边形PDOC是矩形,∴PD=OC=3,∵A(1,0),B(7,0),∴AB=7-1=6,∴AD=12AB=12×6=3,∴OD=AD+OA=3+1=4,∴P(4,3),∵直线y=kx-1恰好平分⊙P的面积,∴3=4k-1,解得k=1.故选:C.【点睛】本题考查的是圆的综合题,根据题意作出辅助线,构造出直角三角形求出P点坐标即可得出结论.8.如图,半径为1cm的P在边长为9πcm,12πcm,15πcm的三角形外沿三遍滚动(没有滑动)一周,则圆P所扫过的面积为()cm2A.73πB.75πC.76πD.77πA【分析】圆在三角形的三个角的顶点处旋转的路线是弧,通过观察可以发现圆转动时在三个角上共转动了圆心角360°,所以在三个顶点处转了一个圆的面积,在三个边上滚过的图形是以三角形边长为长,圆的直径为宽的矩形,然就分别计算,最后求和.【详解】解:根据运动特点可知三个顶点处转了一个圆的面积,在三个边上滚过的图形矩形 ∴圆P 所扫过的面积=π+(9π+12π+15π)×2=73π故选:A【点睛】解答本题的关键是,找出圆滚动一周的图形,并将图形进行分割,拼组,化难为易,列式解答即可.9.如图,四边形ABCD 内接于O ,若108B ∠=︒,则D ∠的大小为( )A .36°B .54°C .62°D .72°D解析:D【分析】 运用圆内接四边形对角互补计算即可.【详解】∵四边形ABCD 内接于⊙O ,∠B =108°,∴∠D =180°−∠B =180°−108°=72°,故选:D .【点睛】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.10.如图,AB 为圆O 的直径,点C 在圆O 上,若∠OCA =50°,OB =2,则弧BC 的长为( )A .103πB .59π C .109π D .518πC 解析:C先根据等腰三角形的性质求出∠A ,再利用圆周角定理求得∠BOC ,最后根据弧长公式求求解即可.【详解】解:∵∠OCA =50°,OA =OC ,∴∠A =50°,∴∠BOC =100°∵BO =2, ∴1002101809BC l ππ⨯==. 故答案为C .【点睛】 本题主要考查了弧长公式应用以及圆周角定理,根据题意求得∠BOC 是解答本题的关键.二、填空题11.如图,PA 、PB 是⊙O 的切线,切点分别为A 、B ,若OA=2,∠P=60°,则AB 的长为________【分析】连接AB 并延长BO 交圆于C 连接ACPAPB 是⊙O 的切线由切线长定理知PA=PB ;又∠P=60°则等腰三角形APB 是等边三角形则有∠ABP=60°BC 是直径;由直径对的圆周角是直角得∠PBC= 解析:3【分析】连接AB ,并延长BO 交圆于C ,连接AC ,PA 、PB 是⊙O 的切线,由切线长定理知PA=PB ;又∠P=60°,则等腰三角形APB 是等边三角形,则有∠ABP=60°,BC 是直径;由直径对的圆周角是直角得∠PBC=90°,则在Rt △ABC 中,有∠ABC=30°,进而可知AB 的长.【详解】解:连接AB ,并延长BO 交圆于C ,连接AC ,∵PA、PB是⊙O的切线,∴PA=PB,又∵∠P=60°,∴∠PBA=60°;又∵BC是圆的直径,∴CB⊥PB,∠BAC=90°,∴∠ABC=30°,而BC=4,∴在Rt△ABC中,cos30°=AB BC,∴AB=4×32=23.故答案为:23【点睛】本题利用了切线长定理,等边三角形的判定和性质,弦切角定理,直角三角形的性质,正弦的概念求解.注意本题的解法不唯一.掌握相关知识是解题的关键.12.如图,点A,B,C在O上,顺次连接A,B,C,O.若四边形ABCO为平行四边形,则AOC∠=________︒.120【分析】连接OB先证明四边形ABCD是菱形然后再说明△AOB△OBC为等边三角形最后根据等边三角形的性质即可解答【详解】解:如图:连接OB∵点在上∴OA=OC=OB∵四边形为平行四边形∴四边形解析:120【分析】连接OB,先证明四边形ABCD是菱形,然后再说明△AOB、△OBC为等边三角形,最后根据等边三角形的性质即可解答.【详解】解:如图:连接OB∵点A,B,C在O上∴OA=OC=OB∵四边形ABCO为平行四边形∴四边形ABCO是菱形∴OA=OC=OB=AB=BC∴△AOB、△OBC为等边三角形∴∠AOB=∠BOC=60°∴∠AOC=120°.故答案为120.【点睛】本题主要考查了圆的性质和等边三角形的性质,根据题意证得△AOB、△OBC为等边三角形是解答本题的关键.13.如图,点A、D、G、M在半圆上,四边形ABOC、DEOF、HMNO均为矩形,设BC a=,NH c=,则a,b,c之间的大小关系是_________________.(用=,EF b“>”、“<”、“=”连接)【分析】连接OAODOM则OA=OD=OM由矩形的性质得出OA=BC=aOD=EF=bOM=NH=c即可得出a=b=c【详解】解:连接OMODOA根据矩形的对角线相等得BC=OAEF=ODNH=OM==解析:a b c【分析】连接OA、OD、OM,则OA=OD=OM,由矩形的性质得出OA=BC=a,OD=EF=b,OM=NH=c,即可得出a=b=c.【详解】解:连接OM、OD、OA、根据矩形的对角线相等,得BC=OA,EF=OD,NH=OM.再根据同圆的半径相等,得a=b=c .故答案是:a=b=c .【点睛】此题主要能够根据矩形的对角线相等把线段进行转换,根据同圆的半径相等即本题考查了矩形的性质、同圆的半径相等的性质;熟练掌握矩形的性质,并能进行推理论证是解决问题的关键.14.如图,⊙O 是ABC 的外接圆,64A ∠=︒,则OBC ∠=______°.26【分析】先利用圆周角定理得到∠BOC=2∠A=128°然后根据等腰三角形的性质和三角形内角和定理计算∠OBC 的度数【详解】解:∵∠A=64°∴∠BOC=2∠A=128°∵OB=OC ∴∠OBC=∠解析:26【分析】先利用圆周角定理得到∠BOC=2∠A=128°,然后根据等腰三角形的性质和三角形内角和定理计算∠OBC 的度数.【详解】解:∵∠A=64°,∴∠BOC=2∠A=128°,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC=12(180°-128°)=26°. 故答案为26.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.15.如图,在半径为2,圆心角为90°的扇形内,以BC 为直径作半圆,交弦AB 于点D ,连接CD ,则图中阴影部分的面积是______.(结果用含π的式子表示)【分析】已知BC 为直径则∠CDB=90°在等腰直角三角形ABC 中CD 垂直平分ABCD=DBD 为半圆的中点阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差【详解】解:由题可知△ACB 为等腰 解析:1π-【分析】已知BC 为直径,则∠CDB=90°,在等腰直角三角形ABC 中,CD 垂直平分AB ,CD=DB ,D 为半圆的中点,阴影部分的面积可以看做是扇形ACB 的面积与△ADC 的面积之差.【详解】解:由题可知△ACB 为等腰Rt △ACB ,在Rt △ACB 中,AB=222222+=,∵BC 是半圆的直径,∴∠CDB=90°,在等腰Rt △ACB 中,CD 垂直平分AB ,则△ADC 和△BDC 都为等腰直角三角形,CD=BD=AD ,令 CD=BD=AD=x ,则2222x x +=,2x =,S 阴影部分=S 扇形ACB -S △ADC =()229021213602ππ⨯-⨯=- .故答案为:1π-.【点睛】 本题考查了扇形面积的计算公式及不规则图形面积的求法,掌握扇形的面积公式是解题的关键.16.如图,AB 是半圆O 的直径,且4AB =,30BAC ︒∠=,则AC 的长为_________.【分析】先根据可求得进而可求得再利用弧长公式计算即可求得答案【详解】解:∵∴∴∵∴∴的长为故答案为:【点睛】本题考查了圆周角定理弧长公式的应用熟练掌握圆周角定理弧长公式是解决本题的关键 解析:43π 【分析】先根据30BAC ∠=︒可求得260BOC BAC ∠=∠=︒,进而可求得180120AOC BOC ∠=︒-∠=︒,再利用弧长公式计算即可求得答案.【详解】解:∵30BAC ∠=︒,∴260BOC BAC ∠=∠=︒,∴180120AOC BOC ∠=︒-∠=︒,∵4AB =,∴122AO AB ==, ∴AC 的长为120241803ππ⋅⋅=, 故答案为:43π. 【点睛】本题考查了圆周角定理,弧长公式的应用,熟练掌握圆周角定理,弧长公式是解决本题的关键.17.如图,把边长为12的正三角形ABC 纸板剪去三个小正三角形(阴影部分),得到正六边形DEFGHK ,则剪去的小正三角形的边长为__________________.4【分析】由题意可知剪去的三个三角形是全等的等边三角形可知得到剪去的小正三角的边长为4【详解】解:∵剪去三个三角形∴AD=AE=DEBK=BH=HKCG=CF=GF ∵六边形DEFGHK 是正六边形∴D解析:4【分析】由题意可知剪去的三个三角形是全等的等边三角形,可知得到剪去的小正三角的边长为4.【详解】解:∵剪去三个三角形∴AD=AE=DE ,BK=BH=HK ,CG=CF=GF ,∵六边形DEFGHK是正六边形,∴DE=DK=HK=GH=GF=EF,∴剪去的三个三角形是全等的等边三角形;∴AD=DK=BK=123=4,∴剪去的小正三角形的边长4.故答案为:4.【点睛】本题考查了等边三角形以及正六边形的定义,熟练掌握定义是解题的关键.18.小明用一张扇形纸片做一个圆锥的侧面,已知该扇形的半径是10cm,弧长是12πcm2,那么这个圆锥的高是________cm.参考答案8【分析】设圆锥的底面半径为利用圆锥的侧面展开图为一个扇形这个扇形的弧长等于圆锥底面的周长圆的周长公式计算出然后利用勾股定理计算出圆锥的高【详解】解:设圆锥底面圆的半径为则有∴圆锥的高为故答案是:【解析:8【分析】设圆锥的底面半径为r,利用圆锥的侧面展开图为一个扇形、这个扇形的弧长等于圆锥底面的周长、圆的周长公式计算出r,然后利用勾股定理计算出圆锥的高.【详解】解:设圆锥底面圆的半径为r,则有,212rππ=6r=∴8cm=.故答案是:8【点睛】本题考查了平面图形与立体图形之间的互相转化、求圆锥的底面半径、圆的周长公式以及勾股定理等相关知识,能够利用“扇形的弧长等于圆锥底面的周长”求得圆锥的底面半径是解题的关键.19.如图,直线y=+x轴于点A,交y轴于点B.以A为圆心,以AB为半径作弧交x轴于点A1;过点A1作x轴的垂线,交直线 AB于点B1,以A为圆心,以AB1为半径作弧交x轴于点 A2;…,如此作下去,则点n A的坐标为___________;(2n﹣10)【分析】根据题意先求出点AB的坐标再利用勾股定理求出AA1AA2AA3……AAn的长可得到点A1A2A3……An的坐标找到规律即可解答【详解】解:当x=0时y=当y=0时x=﹣1∴A(解析:(2n﹣1,0)【分析】根据题意,先求出点A、B的坐标,再利用勾股定理求出AA1、AA2、AA3……AA n的长,可得到点A1、A2、A3……A n的坐标,找到规律即可解答.【详解】解:当x=0时,y=3,当y=0时,x=﹣1,∴A(﹣1,0),B(0,3),∴AA1=AB=22++=,则点A1(1,0),B1(1,23),(01)(3)2∴AA2=AB1=22++=,则点A2(3,0),B2(3,43),(11)(23)4∴AA3=AB2=22(31)(43)8++=,则点A3(7,0),B3(7,83),……∴可以得到A n的坐标为(2n﹣1,0),故答案为:(2n﹣1,0).【点睛】本题考查了一次函数图象上的点的坐标特征、图形的规律探究、圆的基本知识、勾股定理,解答的关键是利用勾股定理求得AA1、AA2、AA3……AA n的长,进而得到A1、A2、A3……A n的坐标的变化规律.20.湖州南浔镇河流密如蛛网,民间有“千步一桥”之说.如图,某圆弧形桥拱的跨度AB=12米,拱高CD=4米,则该拱桥的半径为____米.65【分析】根据垂径定理的推论此圆的圆心在CD所在的直线上设圆心是O连接OA根据垂径定理和勾股定理求解【详解】根据垂径定理的推论知此圆的圆心在CD所在的直线上设圆心是O连接OA拱桥的跨度AB=12m解析:6.5【分析】根据垂径定理的推论,此圆的圆心在CD 所在的直线上,设圆心是O .连接OA .根据垂径定理和勾股定理求解.【详解】根据垂径定理的推论,知此圆的圆心在CD 所在的直线上,设圆心是O ,连接OA . 拱桥的跨度AB =12m ,拱高CD =4m ,根据垂径定理,得AD=6 m ,利用勾股定理可得:()22264AO AO =--,解得:AO =6.5m .即圆弧半径为6.5米,故答案为:6.5.【点睛】本题综合运用了勾股定理以及垂径定理.注意由半径、半弦、弦心距构造的直角三角形进行有关的计算. 三、解答题21.如图,在平面直角坐标系xOy 中,点A (3,3),点B (4,0),点C (0,﹣1). (1)以点C 为中心,把△ABC 逆时针旋转90°,画出旋转后的图形△A′B′C ;(2)在(1)中的条件下,①点A 经过的路径1AA 的长为 (结果保留π);②写出点B′的坐标为 .解析:(1)见解析;(2)①52π;②(﹣1,3) . 【分析】(1)根据旋转的定义作出点A 、B 绕点C 逆时针旋转90°得到的对应点,再顺次连接即可;(2)①根据弧长公式列式计算即可;②根据(1)中所作图形可得点B '的坐标;【详解】(1)如图所示,△A B C ''即为所求;(2)① ∵AC =2234=5+,∠ACA′=90°,∴点A 经过的路径ACA ' 的长为90551802ππ⨯⨯= , 故答案为:52π ;②由图知点B '的坐标为(﹣1,3),故答案为:(﹣1,3).【点睛】本题主要考查作图-旋转变换,解题的关键是根据旋转角度、旋转方向、旋转中心作出对应点;22.如图,已知圆内接四边形ABDC 中,∠BAC =60°,AB =AC ,AD 为它的对角线. 求证:AD =BD+CD .解析:见解析.【分析】连接BC ,证明∠ADB =∠ADC =60°,在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,证明△BDE 、△CDF 为正三角形,再证明∠AEB =∠CFA =120°,∠EAB =∠FCA ,证明△ABE ≌△CAF ,可得AE =CF ,从而可得结论.【详解】解:连接BC , ∠BAC =60°,AB =AC ,∴ △ABC 为等边三角形,∴ ∠ABC =∠ACB =60°,,,AC AC AB AB ==∴ ∠ADC =∠ABC 60,=︒ ∠ADB =∠ACB 60,=︒在AD 上取点E 、F ,使DE =DB 、DF =DC ,连接BE 、CF ,∴△BDE 、△CDF 为等边三角形,∴∠DEB =∠DFC =60°,,,DE BD CF DC ==∴∠AEB =∠CFA =120°,又∠FAC+∠FCA =∠DFC =60°、∠FAC+∠EAB =∠BAC =60°,∴∠EAB =∠FCA ,在△ABE 和△CAF 中,∵EAB FCA AEB CFA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CAF (AAS ),∴AE =CF ,∴AD =DE+AE =BD+FC =BD+CD .【点睛】本题考查的是等边三角形的性质与判定,全等三角形的判定与性质,圆周角定理,掌握以上知识是解题的关键.23.如图,点E 为O 弦CD 的中点,过点O ,E 作直径()AB AE BE >,连接BD ,过点C 的弦//CF BD 交AB 于G .求证:AGF F ∠=∠.解析:证明见解析.【分析】如图(见解析),先根据圆周角定理可得90ADC BDC ∠+∠=︒,再根据垂径定理可得AB CD ⊥,从而可得90B BDC ∠+∠=︒,然后根据等量代换可得ADC B ∠=∠,又根据平行线的性质可得AGF B ∠=∠,从而可得AGF ADC ∠=∠,最后根据圆周角定理可得ADC F ∠=∠,由此即可得证.【详解】如图,连接AD , AB 是O 的直径,90ADB ∴∠=︒,即90ADC BDC ∠+∠=︒,点E 为O 弦CD 的中点,AB 是过点E 的直径,AB CD ∴⊥,90B BDC ∴∠+∠=︒,ADC B ∴∠=∠,//CF BD ,AGF B ∴∠=∠,AGF ADC ∴∠=∠,由圆周角定理得:ADC F ∠=∠,AGF F ∴∠=∠..【点睛】本题考查了圆周角定理、垂径定理、平行线的性质等知识点,熟练掌握圆周角定理和垂径定理是解题关键.24.如图:在平面直角坐标系中,直线l 与两坐标轴分别相交,相交于C 、D 两点,且()6,0C ,30OCD ∠=︒,长度为2的线段AB (B 点在A 点右侧)在x 轴上移动,设点A的坐标为()0m ,.发现:(1)当以A 为圆心,AB 为半径的圆与直线l 相切时,求m 的值;应用:(2)当以A 为圆心,AB 为半径的A 与直线l 相交于M 、N 两点,且AMN 是等腰直角三角形,求m 的值.拓展:(3)直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是_________(直接写出答案).解析:(1)2m =;(2)622m =-622m =+3)3m 7≤≤【分析】(1)在平面直角坐标系中作出直线l 并画出当以A 为圆心,AB 为半径的圆与直线l 相切时的图形,由切线的性质可得Rt ACE △,然后再根据含30角的直角三角形的性质、圆的基本性质求得24AC AE ==,最后利用线段的和差求得2OA OC AC =-=,即可得到点A 的坐标,进而求得m 的值;(2)由AMN 相对于x 轴的位置分两种情况进行讨论,添加辅助线过点A 作AF MN ⊥、过点A 作AG MN ⊥,根据等腰直角三角形的性质可求得22MN =根据等腰三角形的三线合一以及直角三角形斜边上的中线等于斜边的一半可求得2AF =、2AG =30角的直角三角形的性质求得22AC =而利用线段的和差求得622OA =-、622OA =+A 的坐标,进而求得m 的值;(3)以AB 为直径作Q ,根据直径所对的圆周角是直角可在Q 上找到符合要求的点P 使得90APB ∠=︒.当Q 在x 轴上向右平移的过程中,直线l 和Q 的位置关系从相离到相切再到相交、再到相切、最后再相离,其中当直线l 和Q 相切或相交时直线l 上存在点P ,使得90APB ∠=︒.画出图形,求得当直线l 和Q 相切于x 轴上方或下方点P 时点A 的坐标,即可求得相应的m 的值,最后可得m 的取值范围.【详解】 解:(1)∵当以A 为圆心,AB 为半径的圆与直线l 相切于点E 时,连接AE ,如图:∴AE CD ⊥∵2AE AB ==,30ACE ∠=︒∴在Rt ACE △中,24AC AE ==∵()6,0C∴6OC =∴2OA OC AC =-=∴点A 的坐标为()2,0∴2m =.(2)①当AMN 在x 轴上方时,过点A 作AF MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AF MN ⊥∴122AF MN == ∵30ACF ∠=︒ ∴在Rt ACF 中,222AC AF == ∴622OA OC AC =-=-∴点A 的坐标为()622,0-∴622m =-;②当AMN 在x 轴下方时,过点A 作AG MN ⊥,如图:∵AMN 是等腰直角三角形∴90MAN ∠=︒,2AM AN == ∴2222MN AM AN =+=∵AG MN ⊥ ∴122AG MN ==∵30ACG OCD ∠=∠=︒ ∴在Rt ACG 中,222AC AG == ∴622OA OC AC =+=+∴点A 的坐标为()622,0+∴622m =+∴综上所述,622m =-622m =+(3)当点P 位于x 轴上方点1P 时直线l 和Q 相切,当点P 位于线段12PP (不包含两端点)上时直线l 和Q 相交,当点P 位于x 轴下方点2P 时直线l 和Q 相切,如图:直线l 和Q 相切于x 轴上方点1P 时,连接11PQ∴11PQ l ⊥,22P Q l ⊥∵11222A B A B == ∴111111112PQ AQ A B ===,222222112P Q A Q A B === ∵112230PCQ P CQ ∠=∠=︒∴在11Rt PCQ 中,11122Q C PQ ==;在22Rt P CQ 中,22222Q C P Q ==∴11113OA OC Q C AQ =--=;22227OA OC Q C A Q =+-=∴此时,点A 的坐标为()3,0或()7,0∴3m =或7m =∴直线l 上存在点P ,使得90APB ∠=︒,则m 的取值范围是3m 7≤≤. 故答案是:3m 7≤≤【点睛】本题考查了平面直角坐标系中坐标与图形、含30角的直角三角形的性质、圆的基本性质、直线与圆的位置关系、切线的性质、等腰直角三角形的性质、直角三角形的性质、线段的和差等知识点,渗透了分类讨论的数学思想,熟练掌握相关知识点是解题的关键. 25.如图,已知在△ABC 中,∠A =90°.(1)作∠ABC 的角平分线交AC 于点P ,以点P 为圆心,PA 长为半径作⊙P ,则⊙P 与BC 的位置关系是 .(2)在(1)的条件下,若AB=3,BC=5,求⊙P 的面积.解析:(1)相切;(2)94π 【分析】 (1)先利用角平分线的性质得到点P 到BC 的距离等于PA ,然后根据直线与圆的位置关系进行判断.(2)由全等三角形的性质,先求出CD=2,由勾股定理求出AC=4,再利用勾股定理求出PD 的长度即可.【详解】解:(1)作PD ⊥BC ,交BC 于点D ,如图:∵PB 平分∠ABC ,∴点P 到BC 的距离等于PA ,∴PA=PD ,∴BC 为⊙P 的切线.故答案为:相切.(2)由(1)可知,易得△ABP ≌△DBP ,∴BD=AB=3,∴CD=5-3=2,∵在直角△ABC 中,由勾股定理,得22534AC =-=,设PA PD r ==,∴4PC r =-,在直角△PDC 中,由勾股定理,则()22242r r -=+, 解得:32r =, ∴圆的面积为:223924S r πππ==•=(). 【点睛】 本题考查了圆的定义,勾股定理,角平分线的性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的知识,正确的进行解题.26.如图,BC 是圆O 的直径,AD 垂直BC 于D ,弧AB=弧AF ,BF 与AD 交于E ,求证:(1)AE BE =(2)若A ,F 把半圆三等分,12BC =,求AD 的长.解析:(1)见解析;(2)33 【分析】 (1)连接AC ,则∠BAC=90°,进而证得∠C=∠BAE ,由弧AB=弧AF 证得∠C=∠ABF ,则∠ABE=∠BAE ,根据等腰三角形的等角对等边证得结论;(2)由A ,F 把半圆三等分可得∠ACB=30°,再由BC=12和直角三角形中30°角所对的直角边等于斜边的一半可得AB=6,由勾股定理求得AC=63=AC ,进而可求得AD 的长.【详解】(1)证明:连AC ,如图,∵BC 为直径,则90BAC ∠=︒,90C ABC ∴∠+∠=︒,又∵AD ⊥BC90BAE ABC ∴∠+∠=︒,C BAE ∴∠=∠,由弧AB=弧AF ,可得C ABF ∠=∠,ABE BAE ∴∠=∠,AE BE ∴=;(2)∵A ,F 把半圆三等分,30ACB ∴∠=︒,在直角三角形ABC 中,12BC =,则162AB BC ==,363AC AB ==, 在直角三角形ADC 中,1332AD AC ==, 所以33AD =.【点睛】本题考查了同弧或等弧所对的圆周角相等、直径所对的圆周角是直角、含30°角的直角三角形的性质,熟练掌握圆的基本知识和直角三角形中30°角所对的直角边等于斜边的一半是解答的关键.27.如图1是某人荡秋千的情形,简化成图2所示,起始状态下秋千顶端O 与座板A 的距离为2m (此时OA 垂直于地面),现一人荡秋千时,座板到达点B (OA 不弯曲).(1)当BOA 30∠=时,求AB 弧的长度(保留π);(2)当从点C 荡至点B ,且BC 与地面平行,3m BC =时,若点A 离地面0.4m ,求点B 到地面的距离(保号根号).解析:(1)3m π;(2)127()52m -. 【分析】(1)利用弧长公式计算,得到答案;(2)根据等腰三角形的性质求出BD ,根据勾股定理求出OD ,结合图形计算即可.【详解】解:(1)AB 弧线的长度=302()1803m ππ⨯=; (2)如图,∵OB=OC ,OD ⊥BC ,∴1322BD BC ==, 在Rt △OBD 中,OD 2+BD 2=OB 2, ∴2222372()22OD OB BD =-=-=, ∴点B 到地面的距离=712720.45-+= 答:点B 到地面的距离为127(5m -. 【点睛】本题考查的是解直角三角形的应用、弧长的计算、勾股定理,掌握弧长公式是解题的关键.28.如图,AB 是O 的直径,AM 和BN 是它的两条切线,DE 切O 于点E ,交AM于点D ,交BN 于点C ,F 是CD 的中点,连接OF .(1)求证://OD BE ;(2)猜想:OF 与CD 有何数量关系?并说明理由.解析:(1)见解析;(2)(2)12OF CD =,理由见解析 【分析】(1)连接OE ,利用直角三角形HL 判定Rt AOD Rt EOD ∆∆≌,根据全等三角形的性质可知AOD ABE ∠=∠,根据平行线的判定即可求证结论;(2)根据切线长定理可知DA=DE ,CB=CE ,根据切线的性质可知AB ⊥AD ,BC ⊥AB ,证得四边形ABCD 是梯形,根据梯形的中位线定理并代换即可求证.【详解】(1)证明:连接OE ,∵AM ,DE 是O 的切线,OA 、OE 是O 的半径,∴OA OE =,90DAO DEO ∠=∠=︒,又∵OD 为公共边∴Rt AOD Rt EOD ∆∆≌(HL )∴12AOD EOD AOE ∠=∠=∠, ∵12ABE AOE ∠=∠, ∴AOD ABE ∠=∠,∴OD BE(2)12OF CD =, 理由:∵AM 、DE 是圆的切线,∴DA=DE ,AB ⊥AD ,同理可得:CB=CE ,BC ⊥AB ,证得四边形ABCD 是梯形,∵F 是CD 的中点、O 是AB 的中点,∴OF =()12AD BC + =()12DE CE +, ∴12OF CD =. 【点睛】 本题主要考查与圆有关的位置关系、切线长定理、全等三角形的判定与其性质、梯形,解题的关键是综合运用所学知识.。