2014年秋季学期新版新人教版八年级数学上册第十三章轴对称复习导学案
新人教版八年级数学上册《13.1轴对称》导学案
新人教版八年级数学上册《13.1轴对称》导学案学习目标:1、理解线段垂直平分线的性质和判定,初步体会线段垂直平分线的集合定义。
2、会作轴对称图形的对称轴。
3、通过实践探究图形轴对称的性质和线段垂直平分线的性质,培养作图能力和解决实际问题的能力4、通过小组合作交流,培养团队协作的精神和集体意识。
教学重点:理解轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;理解线段垂直平分线的性质和判定;会作线段的垂直平分线和轴对称图形的对称轴。
教学难点:线段垂直平分线的集合定义一、自学与导学:(一).问题导学(教师提出学习任务)第34页思考(二).自主学习1、回顾旧知学生回顾上节课的内容,强调轴对称的数学本质以及垂直平分线的相关概念和性质。
(1)、线段垂直平分线的性质探究:教材P32学生分小组讨论,教师巡视班级。
一段时间后请各小组代表发言,解释本小组的讨论情况,师生共同分析讨论。
教师作总结,肯定学生的积极表现。
归纳:线段垂直平分线的性质:线段垂直平分线上的与这条线段的距离(2)、思考:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?探究:教材P33归纳:与一条线段两个端点距离相等的点,在这条线段的上.2、引入新知思考:教材P34思考教、学反思学生相互讨论,教师巡视班级,观察监督学生的活动情况。
看学生动手操作,肯定学生的积极表现,总结归纳:作轴对称图形的对称轴的方法是:找到一对,作出连接它们的,就可以得到这两个图形的对称轴.二、说学与讲学1.合作学习(小组内部交流合作)(1)对于思考交流一下,那里有疑惑,又该怎样解决.(2)学生发言2、教师巡回点拨三、演学与议学(一)学生展示学习成果1、如图,点A和点B关于某条直线成轴对称,你能作出这条直线吗?2、已知线段AB,作出它的垂直平分线CD,并拼出线段的中点O.3、如图,在五角星上作出一条对称轴4、练习:教材P37第6题、第7题、第8题(二)教师矫正、补充完善四、扩学与评学(一)拓展提升(延伸课外知识、强化训练)1、画出下列图形的一条对称轴,和同学比较一下,你们画的对称轴一样吗?2、如图,角是轴对称图形吗?如果是,画出它的对称轴3、如图,与图形A成轴对称的是哪个图形?画出它们的对称轴4、如图所示在方格纸上画出的一棵树的一半,请你以树干为对称轴画出树的另一半5、第37页第9题、第11题(二)、评价归纳(学生归纳学习内容并说出本节课的得失)(三)、作业:《导学方案》。
【整合】数学人教版八年级上册第13章轴对称复习导学案
第13章轴对称复习导学案学习目标:1、加深认识本单元基础知识,并整理归纳出知识框架便于整体把握;2、能熟练运用轴对称图形或成轴对称的图形的性质、等腰三角形的性质和判定、等边三角形的性质和判定解决相关的问题;3、及时发现存在的问题,查漏补缺,体验学习的成败。
重点:轴对称图形或成轴对称的图形的性质、等腰三角形的性质和判定、等边三角形的性质和判定;难点:运用基础知识解决相关问题。
【课前预习】:一、分析本章的知识结构,完成下面的问题:等腰三角形的性质等腰三角形的判定轴对称二、1. 欣赏下面几幅图片,并完成问题。
如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。
折痕所在的这条直线叫做。
图形上能够重合的点叫。
分别在上面图形中画出它们的对称轴。
2. 欣赏下面几幅图片,并完成问题。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。
两个图形中的对应点叫。
如图,写出一对对称点是。
3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN,图中相等的线段有:,相等的角有:。
可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。
4.欣赏下面的图片,完成对镜面对称的回顾。
一辆汽车的车牌在水中的倒影如图所示,你能确定该车车牌的号码吗?在照镜子时,镜子外的物体和镜子内的成像不变,发生相反变化。
5.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。
6.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。
等边三角形的各条边都,各角都是,有条对称轴。
【课堂学习】:【合作探究·释疑】:一、动手做一做,小组合作解决以下问题:1.哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称性。
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z2.如图:由四个小正方形组成的图形中,请你添加一个小正方形,使它成为一个轴对称图形3.画出△ABC关于直线l的轴对称图形△A`B`C`4.数的运算中会有一些有趣的对称形式,如12×231=132×21,仿照这一形式,写出下列等式,并演算:12×462=,18×891=。
新人教版初中数学八年级上册《第十三章轴对称:数学活动》公开课导学案_0
《运用轴对称设计图案》教学设计一.教材依据人民教育出版社(义务教育课程标准实验教科书)数学八年级上册第十三章活动课。
二.设计理念初中数学教学大纲中明确指出:“要坚持理论联系实际,把数学知识运用到实际中去分析、解决力所能及的实际问题.”,《全日制义务教育数学课堂标准》提出“数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,教师激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识技能、数学思想和方法,获得广泛的数学活动的经验。
”因此,在本节课教学设计中,体现以下教学理念:黔南剪纸、自制花边等,让学生在真实有趣的情境中学习数学。
2、具体的活动中获得数学知识。
3、学有价值的数学:通过本课的学习,学生体会轴对称的重要性,学会运用轴对称设计图案。
4、人人都得到发展:学生通过教学活动,体验制作的过程,并在过程中理解和会教学重点四、教学流程安排五、教学流程设计[活动2] 创设情境,探索新知,获取新知一、美术字与轴对称3、猜想下列几个未写完的美术字是什么汉字或字母?问题1:该公司安排甲、乙两种货车运货,有几种方案?问题2:4]制作花边,作品展示,体会成功的喜悦。
有时,将平移和轴对称结合起来,可以设计出更丰富的图案,许多镶边和背景图案就是这样设计的.请你利用平移和轴对称设计图案,制作成花边,并说明你的设计过程,与同学九、教学反思:本节课是一节数学活动课,这是一堂集欣赏美与动手设计为一体的活动课,让学生在动手操作中探究,在理解中创新,以学生交流、合作为主,用轴对称研究美术字的对称和写出轴对称的美术字;利用轴对称设计图案,体验数学与生活的紧密联系,课堂教学模式发生了根本性的变化,教师不再是简单的知识传授者,而是一个组织者和引导者,并调动了每一位学生自制图案的主动性,使他们真正成为学习的主人,积极参与到活动中的每一个环节,努力探索自制美丽图案的方法,大胆展示自己的作品。
八年级第13章《轴对称》导学案资料.doc
新人教版八年级数学上册第13 章《轴对称》导学案施甸一中八年级数学导学案(第 13 章轴对称)新人教版八年级数学上册第13 章《轴对称》导学案13.1.1轴对称及其性质导学案【学习目标】1.知识技能(1)通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两(2)在具体的学习过程中加强的观察能力、思维能力、操作能力、归力的培养。
2.解决问题按要求做出简单的平面图形的轴对称图形,初步体会从对称的对称图案掌握线段的垂直平分线、角的平分线的性质及应用能够简单应用.【学习重难点】1.重点:由具体情境抽象出轴对称与轴对称图形的概念.2.难点:理解轴对称与轴对称图形之间的区别与联系.【知识回顾】一、基础知识填空欣赏下面几张美丽的图片,【探究 1】1. 轴对称图形:如果一个图形沿着一条直线称图形。
折痕所在的这条直线叫做__ 分别在上面图形中画出它们的对称轴。
,两侧的图形能够___。
图形上能够重合的2.轴对称:欣赏下面几幅图片,并完成问题。
新人教版八年级数学上册第13 章《轴对称》导学案2、下列图形中不是轴对称图形的有()A1个B2个C3个D4个3、以下汽车标志中,和其他三个不同的是()A B C D4、哪些英文字母在镜中的像与原字母一样?哪些发生了改变?说说它们 ABCDEFGHIJKLMNOPQRSTUVWXYZ5、观察下列各种图形,判断是不是轴对称图形.新人教版八年级数学上册第13 章《轴对称》导学案13.1.2线段垂直平分线的性质导学案【学习目标】1.知识技能(1)了解两个图形成轴对称性的性质,了解轴对称图(2)探究线段垂直平分线的性质.2.解决问题(1)理解轴对称的性质.(2)会利用线段垂直平分线的定理和逆定理解决相关问【学习重难点】1.重点:( 1)轴对称的性质.( 2)线段垂直平分线的性质.2.难点:体验轴对称的特征【知识回顾】1 、轴对称图形的对称轴是一条_____________ 。
2、写出五个成轴对称的汉字:______3、写出 3 个是轴对称图形的英文字母:________________4、如图,△ABCA′ B′ C′关于直线MN 和△对称,点 A′、 B′、 C′分别是点 A、 B、 C 的对称点,猜想一下线段 AA′、 BB′、 CC′与直线 MN有什么关系?MN垂直平分_____.MN垂直平分___.MN垂直平分_ ____.探究一:如下图.木条是 L 上的点,有什么发现?思考方法L 与 AB 钉在一起, L 垂直平分 AB, P1, P2, P3,?分别量一量点 P1, P2, P3,到 A 与 B 的距离,你1 .用平面图将上述问题进行转化,先作出线段AB,过 AB 中点作上取 P、P、P,连结AP、 AP、BP 、BP、CP、 CP1 2 3 1 2 1 2 1 22 .作好图后,用直尺量出AP1、 AP2、 BP1、 BP2、 CP1、 CP2讨论发现用我们已有的知识来证明这个结论吗?讨论给出证明.新人教版八年级数学上册第13 章《轴对称》导学案操作:1.用平面图形将上述问题进行转化.作线段AB ,取其中点 P ,过连结 AP 、 AP 、 BP 、 BP . 会有以下两种可能.1 2 1 22 .讨论:要使 L 与 AB 垂直, AP 1、 AP 2 、 BP 1 、BP 2 应满足什么条件?【巩固练习】1. 在 AE 的垂直平分线上, AB 、 AC 、 CE 的长度有什么关系?AB+BD 与 DE 有什么关系?2.如下图,AB=AC , MB=MC .直线 AM 是线段 BC 的垂直平分线吗?3、已知: MN AB 的垂直平分线,下列说法中,正确的是(是线段A. 与 AB 距离相等的点在 MN 上B.与点 A 和 B 距离 C MNAB 上 D AB 垂直平分 MN .与 距离相等的点在. 4、如图1 , PA=PB , QA=QB ,则直线 PQ 是线段 AB 的____________证明:因为 PA=PB (已知)所以P点在线段AB的中垂线上( ___________________因为QA=QB(已知)所以 Q 点在线段 AB 的中垂线上( ___________________所以 _____________________________( 两点确定一条直线新人教版八年级数学上册第13 章《轴对称》导学案13.2.1作轴对称图形导学案【学习目标】1.通过具体实例学做轴对称图形,认识轴对称变形,探索它的基本性2.能按要求作出简单平面图形经过一次或两次轴对称后的图形。
新人教版第13章轴对称导学案
13.1 轴对称(1)一、学习目标1、认识轴对称和轴对称图形,并能找出对称轴;2、知道轴对称和轴对称图形的区别和联系。
二、温故知新(口答)1、如图(1),OC 平分AOC ∠,则AOC ∠=_______=12______。
2、如图(2),△ ABD ≌ △ACD ,AB 与 AC 是对应边。
试说出这两个三角形的对应顶点和对应边。
观察上面两个图形,你能发现它们有什么共同的的特点吗 ?三、自主探究 合作展示探究(一)自学课本29页,完成以下问题。
1、 什么是轴对称图形?你能举几个轴对称图形的例子吗?2、试一试:下面的图形是轴对称图形吗?如果是,指出它的对称轴。
(1) (2) (3) (4) (5)探究(二)自学课本30页,完成以下问题。
1、什么叫做两个图形成轴对称?你能举几个生活中两个图形成轴对称的例子吗?2、 下面给出的每幅图中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点.探究(三)问题:成轴对称的两个图形全等吗?如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?归纳:区别:轴对称图形指的是_____个图形沿一条直线折叠,直线两旁的部分能够互相_________。
轴对称指的是_____个图形沿一条直线折叠 ,这个图形能够与另一个图形_________。
A CB O 图(1)A CB D 图(2)联系:把成轴对称的两个图形看成一个整体,它就是一个_______________;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线对称(简称轴对称)四、双基检测1、轴对称图形的对称轴的条数( )A.只有1条B.2条C.3条D.至少一条2、下列图形中对称轴最多的是( )A.圆B.正方形C.角D.线段3、如下图,从几何图形的性质考虑,哪一个与其他三个不同?请指出这个图形,并简述你的理由.答:图形;理由是: .4、标出下列图形中点A、B、C的对称点。
新人教版八年级数学上册第十三章《轴对称》导学案
第十三章轴对称13.1.1 轴对称学习目标1、初步认识轴对称图形;判掌握关于某条直线成轴对称的两个图形的对应线段相等、对应角相等;2、断一个图形是否是轴对称图形;理解轴对称图形和两个图形成轴对称这两个概念的区别与联系。
3、能够判别两个图形是否成轴对称。
通过试验,归纳出轴对称图形概念,能用概念;培养良好的动手试验能力、归纳能力和语言表述能力。
重点:理解轴对称图形的概念;轴对称图形的对应线段相等、对应角相等难点:判断图形是否是轴对称图形;两个图形成轴对称与轴对称图形两个概念的区别与联系。
一、预习新知P581、观察课本中的7副图片,你能找出它们的共同特征吗?2、你能列举出一些现实生活中具有这种特征的物体和建筑物吗?3、动手做一做:把一张纸对折,然后从折叠处剪出一个图形,展开后会是一个什么样的图形?它有什么特征?4、如果一个图形沿一条__________折叠,________两旁的部分能够完全________.这个图形就叫做轴对称图形,这条________就是它的对称轴,这时,我们也说这个图形关于这条_________(成轴) 对称.5、观察课本P59图13.1-3中的三幅图形,并试着沿虚线折叠,每对图形有什么共同特征?6、一个图形沿着某条直线折叠,如果他能够与________重合,那么就说_______关于这条直线对称,这条直线叫做__________,折叠后________叫做对称点.7、在课本中的图13.1-3的第三个图中,(1)标出A、B、C的对称点,∠A、∠B、∠C的对应角,(2)连接AA′,BB′,CC′,你发现这三条线段有什么关系?你找到规律了吗?8、成轴对称的两个图形全等吗?为什么?9、全等的两个图形成轴对称吗?试举例说明。
(可以画图说明)10、课本P60练习题做下面的题,检验你预习的结果1、轴对称图形的对称轴是一条___________(A ) (B ) (C )(D )(A ) (B ) (C ) (D ) A 直线 B 射线 C 线段1、 右面的图形是轴对称图形吗?如果是,指出对称轴。
第13章《轴对称》总复习-导学案(人教版)
第十三章《轴对称》总复习导学案一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做 .折叠后重合的点是对应点,叫做 .2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,•这条直线叫做,折叠后重合的点是对应点,叫做.(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线经过线段点并且这条线段的直线,叫做这条线段的垂直平分线.4.等腰三角形有的三角形,叫做等腰三角形.相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做 .5.等边三角形三条边都的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的 .或者说轴对称图形的对称轴,是任何一对对应点所连线段的 .2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离 .3.通过画出坐标系上的两点观察得出:(1)点P(x,y)关于x轴对称的点的坐标为P′(,).(2)点P(x,y)关于y轴对称的点的坐标为P″(,).4.等腰三角形的性质(1)等腰三角形的两个底角(简称“等边对等角”).(2)等腰三角形的顶角、底边上的、底边上的相互重合. (3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的 .(4)等腰三角形两腰上的高、中线分别,两底角的平分线也 .5.等边三角形的性质(1)等边三角形的三个内角都,并且每一个角都等于0.(2)等边三角形是轴对称图形,共有条对称轴.(3)等边三角形每边上的、和该边所对内角的互相重合.6.在直角三角形中,如果一个锐角等于30°,•那么它所对的直角边等于斜边的.三、有关判定1.与一条线段两个端点距离的点,在这条线段的垂直平分线上.2.如果一个三角形有两个角,那么这两个角所对的边也(简写成“等角对等边”).3.三个角都相等的是等边三角形.4.有一个角是60°的是等边三角形.四、练习一、选择题1、下列说法正确的是().A.轴对称涉及两个图形,轴对称图形涉及一个图形B.如果两条线段互相垂直平分,那么这两条线段互为对称轴C.所有直角三角形都不是轴对称图形D.有两个内角相等的三角形不是轴对称图形2、点M(1,2)关于x轴对称的点的坐标为().A.(-1,-2)B.(-1,2)C.(1,-2)D.(2,-1)3、下列图形中对称轴最多的是( ) .A.等腰三角形B.正方形C.圆D.线段4、已知直角三角形中30°角所对的直角边为2cm,则斜边的长为().A.2cm B.4cm C.6cm D.8cm5、若等腰三角形的周长为26cm,一边为11cm,则腰长为().A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6、如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A .16B .18C .26D .287、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ). A .1个 B .2个 C .3个 D .4个8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ). A .75°或15° B .75° C .15° D .75°和30°9、把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换.在自然界和日常生活中,大量地存在这种图形变换(如图1).结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图2)的对应点所具有的性质是( ).A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行10、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则其顶点的坐标,能确定的是 ( ) .A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 二、填空题(每小题2分,共20分)11、设A 、B 两点关于直线MN 对称,则______垂直平分________. 12、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 13、等腰三角形一个底角是30°,则它的顶角是__________度.14、等腰三角形的两边的边长分别为20cm 和9cm ,则第三边的长是__________cm . 15、等腰三角形的一内角等于50°,则其它两个内角各为 .16、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,ACB A ''C '图2图1E DCBAlODCBABA交OB 于N ,P 1P 2=15,则△PMN 的周长为 .17、如图,在△ABC 中,AB=AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面积为122cm ,则图中阴影部分的面积为 2cm .18、如图所示,两个三角形关于某条直线对称,则 = .19.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称.20.坐标平面内,点A 和B 关于x 轴对称,若点A 到x 轴的距离是3cm ,则点B 到x •轴的距离是_________cm .三、解答题(每小题6分,共60分) 21、已知:如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ; (2)写出 △A 1B 1C 1 和△A 2B 2C 2 各顶点坐标; (3)求△ABC 的面积.FE DCAP 2P 1N MO PB Aα35°115°DECBAO22、如图,已知点M 、N 和∠AOB ,求作一点P ,使P 到点M 、N 的距离相等,•且到∠AOB 的两边的距离相等.23、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数.24、已知:E 是∠AOB 的平分线上一点,EC ⊥OA ,ED ⊥OB ,垂足分别为C 、D . 求证:(1)∠ECD=∠EDC ;(2)OE 是CD 的垂直平分线.D C BAADEFB C25、已知:如图△ABC 中,AB=AC ,∠C=30°,AB ⊥AD ,AD=4cm ,求BC 的长.26、如图,已知在△ABC 中,AB=AC ,∠BAC=120o ,AC 的垂直平分线EF 交AC 于点E ,交BC 于点F .求证:BF=2CF .27、已知:△ABC 中,∠B 、∠C 的角平分线相交于点D ,过D 作EF//BC 交AB 于点E ,交AC 于点F .求证:BE+CF=EF .F CBAEDCBAABCDE28、如图,△ABD 、△AEC 都是等边三角形,求证:BE=DC .29、如图:△ABC 中,AB=AC=5,AB 的垂直平分线DE 交AB 、AC 于E 、D ,① 若△BCD 的周长为8,求BC 的长;② 若BC=4,求△BCD 的周长.30.已知:如图△ABC 中,AB=AC ,AD 和BE 是高,它们交于点H ,且AE=BE ,求证:AH=2BD .31.如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.HEA(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论N MDCBA。
八年级数学上册 第13章 轴对称学案 (新版)新人教版
课题:轴对称【学习目标】1、了解轴对称图形和轴对称;2、会判断一个图形是否是轴对称图形。
【重难点】重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质。
难点:轴对称图形和关于直线成轴对称的区别和联系。
【自学案】一自学指导(8分钟)1、熟读课本P58-60。
2.如果这个图形叫做轴对称图形。
3.把那么就说关于这条直线(成轴)对称。
4.轴对称和轴对称图形的区别与联系。
5. 叫做这条线段的垂直平分线。
6.轴对称的性质是。
7.轴对称图形的性质。
二自学检测(5分钟)1.在26个英语字母中,是轴对称图形的有。
2.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形三、合作探究(15分钟)1.哪些几何图形是轴对称图形?有几条对称轴?2.如图,已知正方形ABCD的边长为6㎝,则图中阴影部分的面积是㎝ .3.如图,Rt⊿ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上的A′处,折痕为CD ,求∠A′DB的度数。
【课堂检测】(12分钟)A组(基础限时练)1.我们所学的汉字,是轴对称图形的有(写5个)。
2.当写有数字的纸条垂直于镜面摆放,下面是从镜子中看到的一串数字,它其实是。
B组(能力拓展)1.如图,这是小亮制作的风筝,为了平衡,做成了轴对称图形。
已知OC是对称轴,∠A=35°,∠ACO=30°,求∠BOC的度数。
2.如图在长方形ABCD中,AB=10,BC=5,点E,F分别在AB,CD上,将长方形ABCD 沿EF折叠,使点A,D分别落在长方形ABCD外部的点A1 ,D1 处,求阴影部分的周长【学后反思】通过本节课的学习,你有什么收获?课题:线段的垂直平分线【学习目标】熟练掌握线段垂直平分线的性质和判定。
【重难点】重点:轴对称的性质,线段的垂直平分线的性质。
难点:线段的垂直平分线的性质。
【自学案】一自学指导(8分钟)1、熟读课本P61-62 ,学会例题。
最新人教版八年级数学上册 第十三章《轴对称》导学案(第3课时)
第3课时轴对称(3)学前温故1.线段垂直平分线上的点与这条线段的两个端点的距离相等.2.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.新课早知1.如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.2.轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.3.下列图形中,点A与点B,点P1与点P2是否关于直线l对称?答案:都不对称.应用线段垂直平分线的性质解决实际问题【例题】如图①,A,B,C三点表示三个村庄,为了解决村民子女就近入学问题,计划新建一所小学,要使学校到三个村庄距离相等,请你在图中确定学校的位置.作法:如图②,(1)连接AB,BC,AC;(2)分别作AB,AC的垂直平分线交于点P.则点P就是所要确定的学校的位置.点拨:三角形三边垂直平分线交于一点,这点到三个顶点的距离相等.1.判断下列说法是否正确,正确的打“√”,错误的打“×”.(1)垂直于线段的直线称为这条线段的垂直平分线.( )(2)过线段的中点并垂直于这条线段的直线是这条线段的垂直平分线.( )(3)形状大小相同的两个图形一定是轴对称图形.( )(4)如果一个图形沿着某条直线折叠后,不能和另一个图形完全重合,那么这两个图形一定不是轴对称图形.( )答案:(1)× (2)√ (3)× (4)×2.下列图形中,不一定是轴对称图形的是( ).A.直角B.线段C.直角三角形D.圆答案:C3.如图所示,如果AA′,BB′都被MN垂直平分,那么AB和A′B′关于直线MN__________.答案:对称4.画出下图中的各图的对称轴.分析:根据对称图形的性质可知:这几个图形的对称轴分别有2条、1条、3条.解:如下图所示.5.利用图中的对称点,画出图形的对称轴.分析:首先要准确选好一对对应点,连接成线段,然后再作这条线段的垂直平分线即可.解:如图:。
新人教八年级上册第十三章第十三章末复习导学案
新人教八年级上册第十三章章末复习一、复习导入1.导入课题:轴对称的知识在日常生活中应用得非常广泛,我们通过本章的学习已经了解到轴对称的相关知识,这节课我们对轴对称的知识进行系统的复习.2.复习目标:(1)认识生活中的轴对称;(2)掌握轴对称的性质;(3)熟知等腰三角形和等边三角形的性质和判定.3.复习重、难点:重点:轴对称的性质.等腰三角形和等边三角形的性质和判定.难点:运用轴对称寻求“最短路径”的方法.二、分层复习1.复习指导:(1)复习内容:复习教材第58页到第93页的内容.(2)复习时间:10分钟.(3)复习方法:看书、整理、记录、反思以前学习得失.(4)复习参考提纲:知识回顾:请你带着下面的问题,复习一下全章的内容:①你能举出一些实际生活中轴对称应用的例子吗?衣架,房梁,风筝,飞机.②成轴对称的两个图形有哪些特点?“轴对称”与“成轴对称”有何区别?成轴对称的两个图形沿对称轴折叠能够完全重合,轴对称是指单一图形,成轴对称是指两个图形.③在平面直角坐标系中,如果两个图形关于x轴或y轴对称,那么对称点的坐标有什么关系?关于x轴对称,对称点的横坐标相等,纵坐标互为相反数;关于y轴对称,对称点的纵坐标相等,横坐标互为相反数.④利用等腰三角形的轴对称性,我们发现了它的哪些性质?你能通过全等三角形的知识进行证明吗?性质一:等腰三角形的两个底角相等.性质二:等腰三角形“三线合一”.⑤等腰三角形和等边三角形之间有什么联系和区别?等边三角形有哪些特殊的性质?等边三角形是特殊的等腰三角形.等边三角形三条边相等,三个角相等且都为60°,等边三角形每条边上都具有“三线合一”.⑥在解决最短路径问题时,通常利用轴对称、平移等变换变“折线”为同一直线上.2.自主复习:同学们可结合复习指导进行复习.3.互助复习:(1)师助生:①明了学情:通过本章的学习,了解学生基础知识的缺失,加深运用知识的准确性和灵活性的思想方法的掌握程度.②差异指导:引导学生系统整理知识结构,查找遗漏,指导运用.(2)生助生:学生之间相互交流帮助.4.强化复习:(1)归纳全章重点知识及要点.(2)填空:1.复习指导:(1)复习内容:解答参考提纲中的例题.(2)复习时间:10分钟.(3)复习方法:独立尝试解决问题,注意所学知识的灵活运用.(4)复习参考提纲:①巧借轴对称知识解决生活中的实际问题.例1:小华在镜中看到身后墙上的钟,钟面上显示的时刻为8:45,那么此时的实际时间是多少?解:此时的实际时间是3:15.②灵活地运用等腰三角形的性质与判定进行计算与证明例2:在△ABC 中,AB=AC,在AB 上取一点E ,在AC 延长线上 取一点F ,使BE=CF ,EF 交BC 于G ,求证:EG=FG .证明:如图作FD ∥BE 交BC 的延长线于点D.则∠B=∠D.∵AB=AC ,∴∠B=∠ACB.又∠ACB=∠FCD ,∴∠D=∠FCD , ∴FC=FD ,又BE=CF ,∴BE=DF.在△BEG 和△DFG 中,∠B=∠D ,∠BGE=∠DGF ,BE=DF ,∴△BEG≌△DFG (AAS).∴EG=FG.(引导学生回顾证明线段相等的方法,注重“AB=AC”这个条件的作用)③巧借等腰三角形的性质与判定解决探究题.例3:如图,点O到△ABC的两边AB、AC所在的直线的距离相等,且OB=OC.图1 图2(1)如图1,若点O在边BC上,求证AB=AC;(2)如图2,若点O在△ABC内部,求证AB=AC;(3)若点O在△ABC外部,AB=AC成立吗?请画图表示.解:(1)证明:(1)连接AO,∵点O到AB,AC的距离相等,∴AO是△ABC的角平分线.∴∠BAO=∠CAO.∵OE⊥AB,OF⊥AC,∴∠BEO=∠CFO=90°.在Rt△BEO在Rt△CFO中,OB=OC,OE=OF,∴Rt△BEO≌Rt△CFO (HL).∴∠B=∠C.∴AB=AC.(2)作OE⊥AB,OF⊥AC,垂足分别为E、F,则∠BEO=∠CFO=90°.在Rt△BEO和Rt△CFO中,OB=OC,OE=OF,∴Rt△BEO≌Rt△CFO(HL).∴∠ABO=∠ACO.连接AO,∵OE=OF,则AO是∠BAC的平分线,∴∠BAO=∠CAO.在△ABO和△ACO中,∠BAO=∠CAO,∠ABO=∠ACO,AO=AO,∴△ABO≌△ACO (AAS).∴AB=AC.(3)成立,如图所示.2.自主复习:先动手独立完成,有困难可以合作探究.3.互助复习:(1)师助生:①明了学情:了解学生分析例题条件是否全面,由条件到结论需用到的知识是否清楚.②差异指导:引导学生分析例题中的关键条件,点拨条件与问题的联系点.(2)生助生:学生之间相互交流帮助.4.强化复习:(1)重要知识点提示.(2)解题方法的归纳.三、评价1.学生的自我评价:学生交谈自己的学习收获和学后体会.2.教师对学生的评价:(1)表现性评价:对学生的学习态度、方法、成果及不足进行点评.(2)纸笔评价(课堂评价检测);3.教师的自我评价(教学反思):本章知识与现实生活联系密切,是人们日常生活和生产中应用较广的几何图形,是三角形知识的延续与拓展,涉及的轴对称、线段垂直平分线、等腰三角形知识,可让解题从全等的模式中解脱出来,而且可简便解决相关的计算、证明问题,使解题过程简化,在复习中应强化这些知识.一、基础巩固(第(一)题每小题5分,第(二)题每小题5分,第(三)题10分,共60分)(一)填空(每题5分)1.如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,那么这个图形就是轴对称图形,折痕所在的直线叫做对称轴.2.圆的对称轴有无数条,半圆形的对称轴有1条.3.在轴对称图形中,对应点所连线段被对称轴垂直平分.4.等边三角形有三条对称轴,等腰三角形有一条对称轴.5.正方形有4条对称轴,长方形有2条对称轴,线段有1条对称轴.6.如图,△ABC中,∠A=30°,∠C=90°,BD平分∠ABC,若AD=6cm,则AC=9cm.(二)判断(每题5分)7.等腰三角形、角和圆都是轴对称图形.(√)8.所有的直径都是圆的对称轴.(×)9.在轴对称图形中,对应线段的延长线不一定交在对称轴上.(×)10.等腰三角形只有一条对称轴.(×)(三)11.画出下列是轴对称图形的所有对称轴.二、综合应用(20分)12.如图,∠A=60°,CE⊥AB于E,BD⊥AC于D,BD与CE 相交于点H,HD=1,HE=2,试求BD和CE的长.解:∵∠A=60°,CE⊥AB,BD⊥AC,∴∠ABD=30°,∠ACE=30°.∵HE=2,∴BH=2HE=4.∵HD=1,∴HC=2HD=2.∴BD=BH+HD=5,CE=CH+HE=4.三、拓展延伸(20分)13.如图,点P是∠AOB内一点,∠AOB=30°,OP=10,点M、N分别是OA、OB上的动点,试通过作图说明△PMN周长的最小值是多少?解:如图,分别作P点关于OA、OB的对称点P1,P2,连接P1P2与OA相交于点M,与OB相交于点N,则此时△PMN的周长最小(三点共线).连接OP1,OP2,则∠P1OP2=2∠AOB=60°,OP1=OP=OP2,∴△OP1P2是等边三角形,∴P1P2=OP1=OP=10,∴PM+MN+NP=P1M+MN+NP2=P1P2=10.即△PMN周长的最小值为10.。
2014年秋季新版新人教版八年级数学上学期13.1轴对称教案3
操作,归纳
教学准备
教
学
过
程
一、情景创设
看教材P29图12.1-1(将生活中的对称美牵引到数学中来)
二、探索研讨
(一)轴对称图形
1、做一做
把一张对折,剪出一个图案(折痕处不要完全剪断),想一想,展开后会是一个什么样的图形?
2、看一看,想一想
细心观察一些日常生活中常见的动物图片如:
蝴蝶、蜻蜓、对称简笔画等,能发现它们有 什么共
区别:
轴对称是说个图形的位置关系,轴对称图形是说个具有特殊形状的图形。联系:
都能沿着某条直线 。这条直线是对称轴。
如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称;反过来,如果把两个成轴对称的图形看成一个整体,那么它就是一个轴对称图形.
三、总结
四、作业
教后修改
板书设计
轴对称
轴对称图形
对称轴
对称点
教学反思
从学生熟悉的图形入手,感受轴对称图形在生活中的广泛应用,体会数学就在身边,激发学生学习数学的兴趣。
参考资料
学科
数学
(八年级上)备ຫໍສະໝຸດ 教师、授课时间第周 月日
教学内 容
12.1轴对称(第一课时)
教学目标
1、通过实例认识轴对称,掌握轴对称图形和关于直线成轴对称这两个概念。
2、培养学生的观察能力、思维能力、操作能力、归纳能力
教学重点
教学难点
学习 重点:准确掌握轴对称图形和关于直线成轴对称这两个概念的实质
学习难点:轴对称图形和关于直线成轴对称的区别和联系
同特征?
3、归纳:轴对称图 形定义:
如果一个图形沿一条折叠,直线两旁的部分能够这个图形就叫做轴 对 称图形。这条直线就是它的对称轴
2014年秋季新版新人教版八年级数学上学期第十三章轴对称单元复习复习教案1
2014年秋季新版新人教版八年级数学上学期第十三章轴对称单元复习复习教案112.2作轴对称图形12.2.1 作轴对称图形(1)教学目标①通过动手操作体验轴对称变换.②能作出一个图形经一次或二次轴对称变换后的图形.③能利用轴对称变换设计一些简单的图案.④通过图案设计等活动,培养学生的动手操作能力、审美及数学兴趣,发展学生的空间观念.教学重点与难点重点:作一个图形经轴对称变换后的图形.难点:通过动手操作总结轴对称变换的特征.教学准备剪刀、画有一个简易风筝的半透明的纸.教学设计创设情境,引入新课多媒体介绍剪纸文化艺术:剪纸是中国最为流行的民间艺术之一,根据考古其历史可追溯到公元六世纪,甚至更早.在过去,人们经常用纸做成形态各异的物像和人像,与死者一起下葬或葬礼上燃烧,还被用作祭祀祖先和神仙所用供品的装饰物.现在,剪纸更多地是用于装饰,也可为礼品作点缀之用,甚至剪纸本身也可作为礼物赠送他人.剪纸不是用机器而是由手工做成的,常用的方法有两种:剪刀剪和刀剪.学生欣赏展示的剪纸图片,教师提出问题:如此漂亮的剪纸是如何剪出的呢?相信同学们学了本节课后你也能剪出如此漂亮的剪纸!引入新课,板书课题:轴对称变换.注:让学生了解剪纸艺术,认识我国悠久灿烂的民族文化,了解我国优秀的民间手工艺术.培养学生的审美,激发学习兴趣.动手操作,感受变换请学生拿出画有一个简易风筝(如图形状)的半透明的纸,把这张纸对折后描图.学生画好后打开对折的纸.注:采用风筝图便于学生画图,在动手操作中体验轴对称变换,发现轴对称变换的特征,在实践中体验学习的快乐,也使轴对称特征的得出显得更直观,更具体.也为下面画轴对称变换后的图形提供感性认识.请学生仔细观察回答下列问题:(1)画出的图形与原来的图形有什么关系?(学生回答后,师生补充得出:画出的图形与原图形关于折痕轴对称,折痕所在直线是对称轴)(2)两个图形成轴对称有什么特征?(学生回答后,让学生找出几个对应点,并连结对应点进行验证.)注:我们可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.(多媒体演示如下图经多次重复后的图形),让学生感受运用所学知识设计出这些美丽的图案其实并不难!如果改变对称轴的方向和位置,结果又如何呢?让学生在刚才的纸上任意折叠,描图,打开纸.你发现了什么?学生交流后,总结归纳出:由一个平面图形可以得到它关于一条直线l对称的图形,这个图形与原图形的形状、大。
新人教版八年级数学上册 第十三章:轴对称总复习(导学案,无答案)
新人教版八年级数学上册《第十三章 轴对称总复习》导学案班级 小组 姓名一、学习目标:目标:加强轴对称及等腰三角形的相关证明与计算 二、问题引领 一、复习回顾:1、(1)已知等腰三角形的周长为24,一边长为6,则另外两边的长是 (2)已知等腰三角形的周长为24,一边长为10,则另外两边的长是2、(1)已知等腰三角形的一个内角是800,则它的另外两个内角是 (2)已知等腰三角形的一个内角是1000,则它的另外两个内角是3、等腰三角形的周长是16,其中两边之差为2,则它的三边的长分别为4、等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角度数为5、已知点A (a ,b )关于x 轴对称点的坐标是(a ,-12),关于y 轴对称点的坐标是(5,b ),则,A 点的坐标是__________.6、如图,若∆ACD 的周长为7cm ,DE 为AB 边的垂直平分线,则AC+BC=_____ cm.7、如图,在∆ABC 中,∠ACB=90°,AD 平分∠BAC,DE ⊥AB 于E, 求证:直线AD 是CE 的垂直平分线ABCDE6题7题8、如图∠A=∠D=90°,AB=DC,F是BC的中点,求证:∠BEF=∠CEF专题训练A例1 如图,在∆ABC中,∠A=90︒,BD是∠ABC的平分线,DE是BC的垂直平分线,则∠C为多少度?例2 如图,在∆ABC中,已知AB=AC=2a,15ABC∠=︒,CD是腰AB上的高,求CD的长。
例3 如图,D是△ABC中BC边上的一点,E是AD上的一点,EB=EC,∠AEB=∠AEC,求证:AD⊥BC.1、下列轴对称图形中,对称轴条数最少的是()ADBFECDCB ADA .等腰直角三角形 B.等边三角形 C.正方形 D.长方形 2、已知点P (-2,1),那么点P 关于x 轴对称的点Q 的坐标是( ). A.(-2,1) B.(-2,-1) C.(-1,2) D.(2,1) 3、若等腰三角形的底角比顶角大15︒,那么顶角为( )A .45︒ B.40︒ C.55︒ D.50︒ 4.等腰三角形有两条边长为4cm 和9cm ,则该三角形的周长是( ) A .17cmB .22cmC .17cm 或22cmD .18cm.5、一等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这个等腰三角形的底边长是6、已知点P 到x 轴、y 轴的距离分别是2和3,且点P 关于y 轴对称的点在第四象限,则点P 的坐标是 .7、如图,△ABC 中,AB =AC ,BD =CD ,∠BAD =40°,且AD =AE ,则∠EDC 是( ) A 、10° B 、15° C 、20° D 、25°8、如图AB=AC=4cm ,BC=3cm,∠A=40°,点A 和点B 关于直线l 对称,AC 与l 相交于点D ,则∠C=_________,△BDC 的周长是________.9、如图一本书折了其中一页的一角,测得AD=30,BE=20,∠BEG=60°则EF 为________ 10、如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF .求证:∠BAF=∠ACF .11、如图所示,F 、C 是线段BE 上的两点, A 、D 分别在线段QC 、RF 上, AB=DE ,BF=CE ,∠B=∠E ,QR ∥BE .求证:△PQR 是等腰三角形.lAB CD8题7题P QRFE DC B A四、课堂小结:这节课你有哪些收获 五课后作业1、等腰三角形的一个外角是80°,则其底角是( ) A .100° B .100°或40° C .40° D .80°2、如下图,△ABC 为等边三角形,BD 为高,CE 为角平分线,BD 与CE 相交于点O ,则,∠ABD =__,∠BOC =__3、已知点P(2a+b,-3a)与点P ’(8,b+2). 若点p 与点p ’关于x 轴对称,则a=_____ b=_______. 若点p 与点p ’关于y 轴对称,则a=_____ b=_______.4、如图,在等边三角形ABC 中,点D E ,分别在边BC AB ,上,且BD AE =,AD 与CE 交于点F . (1)说明:AD CE =; (2)求DFC ∠的度数.能力提升:如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点. (1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论A B CD EOA E F BNMDCBABA E DC。
最新人教版八年级数学上册 第十三章《轴对称》导学案(第2课时)
第2课时轴对称(2)学前温故成轴对称的两个图形是全等图形.新课早知1.经过线段中点并且垂直于这条线段的直线叫做这条线段的垂直平分线.2.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.平面上不重合两点的对称轴是连接两点线段的垂直平分线.4.线段垂直平分线上的点与这条线段两个端点的距离相等,通常用来说明线段相等.5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,可以用来判定点在线段的垂直平分线上.6.线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.7.如图,AC=AD,BC=BD,则有( ).A.AB垂直平分CD B.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分∠ACB答案:A线段垂直平分线的性质【例题】如图,在△ABC中,BC边上的垂直平分线DE交边BC于点D,交边AB于点E.若△EDC的周长为24,△ABC与四边形AE DC的周长之差为12,则线段DE的长为__________.解析:根据线段垂直平分线的性质,找出与△EDC,△ABC以及四边形AE DC中与周长有关的相等线段,然后列出方程,解方程即可.因为DE是BC的垂直平分线,所以EB=EC,BD=DC.根据题意,有ED+EC+CD=24,即ED+(BE+BD)=24,①(AB+BC+AC)-(AE+DE+DC+AC)=12,即(BE+BD)-DE=12,②①-②,得2ED=12,所以ED=6.答案:6点拨:线段的垂直平分线描述了线段的对称性,用其性质可以对线段进行转化.本题利用周长的计算式,通过相等线段的转化,将不在同一直线上的线段转化到同一直线上,从而借助方程求解.1.下列说法错误的是( ).A.若直线PE是线段AB的垂直平分线,则PA=PB,EA=EBB.若PA=PB,EA=EB,则直线PE垂直平分线段ABC.若PA=PB,则点P是线段AB垂直平分线上的点D.若EA=EB,则经过点E的直线垂直平分线段AB答案:D2.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为( ).A.6 B.5 C.4 D.3答案:B3.如图所示,四边形ABCD关于直线MN成轴对称图形,延长CB和DA相交于一点P,则点P在( ).A.直线MN外B.直线MN上C.点P满足PD≠PC D.以上答案都不对答案:B4.如图,AO为线段BC的垂直平分线,且BD=CE,则图中关于直线AO成轴对称的三角形有________对,它们分别是_________________________________________.答案:三△ABD与△AC E,△ABO与△AC O,△AD O与△AE O5.如图,已知AB=AC,DB=DC,P是AD上一点,求证:∠AB P=∠AC P.分析:连接BC.由于AB=AC,DB=DC,所以AD是线段BC的垂直平分线,因此PB =PC,再证△AB P≌△AC P即可.证明:连接BC,∵AB=AC,∴点A在线段BC的垂直平分线上.∵DB=DC,∴点D在线段BC的垂直平分线上.∴AD垂直平分线段BC.∴PB=PC. 又∵AB=AC,AP=AP,∴△AB P≌△AC P(SSS).∴∠AB P=∠AC P.。
新人教八年级数学上册第13章第1节轴对称(第2课时)导学案
CB AD 新人教八年级数学上册第13章第1节轴对称(第2课时)导学案【学习目标】1.了解轴对称(图形)的性质,会准确画出轴对称(图形)的对称轴; 2.理解线段垂直平分线的性质;3.通过轴对称性质的学习加强学生对事物的内在联系,增强学生创造 美好生活的信心.【学习重点】理解线段垂直平分线的性质. 【学习难点】线段垂直平分线的性质应用.【学前准备】认真阅读课本P59—P60,完成练习1.如图1,△ABC 和△A 1B 1C 1关于y 轴对称. (1)点A 的对应点是 ,y 轴经过线段AA 1的中点吗? y 轴垂直线段AA 1吗? 其它对应点有同样的结论吗?(2)线段垂直平分线的定义: 经过 并且 的直线,叫做这条线段的垂直平分线.2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线. 如图1,y 轴垂直平分 ;y 轴垂直平分 ;y 轴垂直平分 ; 3.如下图,直线l 垂直平分线段AB ,在直线l 上任取..一点P ,连结PA 、PB ,通过测量、折叠等方法判断PA 、PB 的关系是 .猜想线段的垂直平分线有什么性质,并用简练的语言叙述出来: 试证明以上猜测:【课堂探究】4.归纳:线段垂直平分线的性质:线段垂直平分线上的点与 相等.符号语言的表述:如图:∵AD⊥ , BD= (或AD 是线段BC 的垂直平分线) ∴ = ( )A 1B 1C 1 图1BA lCB AD EDCB A5.如图,线段AB 的垂直平分线l 交AB 于点C ,点P 在l 上,PA=5,AC=4,求△PAB 的周长.6.探究:如图,AD⊥BC,BD=DC ,点C 在AE 的垂直平分线上,AB 、AC 、CE 的长度有什么关系?AB+BD 与DE 有什么关系?【课堂检测】1.如图,△ABC 中,AD 垂直平分BC ,则AD⊥ ,CD =_____,原因是: ;AB =_______,原因是 .2.如图,△ABC 中, AD 是边BC 的垂直平分线,若AB=10cm ,BC=12 cm ,则AC= cm ,BD= cm . 3.如图, DE 是AC 的垂直平分线,AE=3,△ABD 的周长为cm 31,求△ABC 的周长.【课堂小结】1.线段垂直平分线的定义:经过 并且 的直线,叫做这条线段的垂直平分线. 2.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对 的 ;(2)轴对称图形的对称轴,是 的垂直平分线.3.线段垂直平分线的性质:线段垂直平分线上的点与 相等.课后作业1302--轴对称 (课时2)1.如图,在△ABC 中,AD 垂直平分边BC ,AB =5,那么AC =_________. 2.如图,在 ABC 中,AB 、BC 的垂直平分线相交于三角形内一点P , 下列结论中,错误的是( )A .PA=PB B .PA=PC C .PB=PCD .点P 到AB 、BC 、CA 的距离相等第1、2题(第2题)3.如图,已知AE =CE , BD ⊥AC .求证:AB +CD =AD +BC .4.如图,在△ABC 中,DE 是AB 的垂直平分线,(1)请写出相等的线段 _________________________; (2)若BC =10cm ,AC =6cm ,求△ADC 的周长.5.如图所示,已知在△ABC 中,AB 与AC 的垂直平分线分别交AB 于点D ,交AC 于点E ,它们相交于点F ,求证:BF=FC .6.如图所示,在△ABC 中,AC=12,BC=7,DE 垂直平分AB 交AC 于D ,交AB 于E , 求△BCD 的周长.7.如图,△ABC 中,AC 的垂直平分线交AC 于E ,交BC 于D ,△ABC 的周长为22,AE=5,求△ABD 的周长.※ 8.如图,点P 在AOB 内,点M 、N 分别为点P 关于直线AO 、BO 的对称点,M 、N 的连线与AO 、B O 交与E 、F .若△PEF 的周长为20cm ,求线段MN 的长.【教学反思】 答案: 课堂探究:4.线段两个端点的距离解:BC DC AB AC 线段垂直平分线上的点与线段两个端点的距离相等. 5.解:∵PC 是线段AB 的垂直平分线,∴∠ACP=∠BCP=90° ∵PA=5,AC=4 ∴BC=AC=4,PB=AP=5FEM PNA B第1题第2题∴△PAB的周长为:5+5+8=186.AB+BD=DE.∵AD⊥BC,BD=DC(垂直平分线)∴AB=AC.∴AC+CD=AB+BD又∵点C在AE的垂直平分线上,∴AC=EC.又∵AC+CD=AB+BD,∴EC+CD=AB+BD.即AB+BD=DE.【课堂检测】1.BC BD 线段垂直平分线的定义AC 线段垂直平分线上的点与线段两个端点的距离相等2.10 63.如图:AE=3∵DE为AC的垂直平分线∴AE=EC=3 AD=DC又∵△ABD的周长为13 即:AB+AD+BD=13∴△ABC的周长为AB+AC+BD=AB+(AE+EC)+(BD+DC)=13+6=19课后作业:1.52.D3.∵AE=CE ,BD⊥AC∴BA=BC, DA=DC(线段的垂直平分线的点到这条线段的2个端点相等)∴AB+CD=AD+BC4.(1)AD=BD,AE=BE(2)∵DE是AB的垂直平分线∴AD=DB∴△ADC的周长=AD+DC+AC=BD+DC+AC=BC+AC=16cm5.证明:连接AF∵CD为AB的垂直平分线,∴AF=BF∵EF为AC的垂直平分线,∴AF=FC∴BF=FC6.解:AC=12 ,∵DE垂直平分AB,∴BE=AE,∴BE+EC=AE+EC=AC,∵BC=7,∴△BCE的周长=BC+BE+EC=BC+AC=7+12=19.7.解:∵DE是边AC的垂直平分线,∴AD=CD,AE=EC,∵AE=5,△ABC的周长为22,∴AC=AE+EC=5+5=10,△ABC的周长=AB+BC+AC=22∴AB+BC=22-10=12△ABD的周长=AB+AD+BD=AB+CD+BD=AB+BC=12,8.∵点M是点P关于AO,的对称点,∴AO垂直平分MP,∴EP=EM.同理PF=FN.∵MN=ME+EF+FN,∴MN=EP+EF+PF,∵△PEF的周长为20cm,∴MN=EP+EF+PF=20cm.。
2014年秋季学期新版新人教版八年级数学上册13.1.1轴对称教案
13.1 轴对称
问题1:如图,把一张纸对折,剪出一个图案(折痕处不要完全剪断),再打开这张对折的纸,
追问1:你能说明其中的道理吗?
追问2:上面的问题说明“如果△
C′关于直线MN 对称,
′,BB′和CC′,并且直线
追问:你能用数学语言概括前面的结论吗?
轴对称图形的性质:轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
附:板书设计
教学反思:
本课主要学习轴对称、轴对称图形、线段的垂直平分线的概念,并探究轴对称的性质. 因此,将这部
分内容结合实例,分三个层次引导学生逐步认识和体会.
首先,通过观察实物或实物图片,认识生活中有些物体具有对称的特性;以及对称性美学上的应用,渗透美育教育;初步培养学生的审美情趣;
第二,提供有关实物或实物图片的抽象图形,让学生在进一步的观察和操作中体会轴对称图形的基本特征,并适时揭示轴对称图形的初步概念;
最后,让学生从学过的简单的平面图形中识别其中的轴对称图形,并能“做”出不同的轴对称图形。
因此,教学中采用了观察比较、动手实践、操作感悟等方法,让学生在活动中逐步感知,逐步体验,通过师生、生生相互间的互动来完成本节课的教学任务,收到了良好的教学效果. 由于这堂课操作性的问题较多、活动量大,胆大、性格开朗的学生特别活跃,也容易引起老师的注意,而对那些胆小性格较内向的学生关注不够,应注意引导.。
新人教版八年级数学上册导学案第十三章 轴对称复习导学案
第十三章轴对称复习导学案学习目标:1.理解轴对称与轴对称图形的概念,掌握轴对称的性质。
2.结合生活实例,欣赏生活中的轴对称现象和镜面对称现象,感受对称的美学价值,体验几何图形与自然、社会、人类的生活,增强学习数学的兴趣。
重点:掌握线段的垂直平分线、角的平分线的性质、等腰三角形的性质及应用难点:轴对称图形以及关于某条直线成轴对称的概念,等腰三角形的性质应用导学过程:欣赏下面几张美丽的图片,回顾本单元的知识结构1.轴对称图形:如果一个图形沿着一条直线,两侧的图形能够,这个图形就是轴对称图形。
折痕所在的这条直线叫做______。
图形上能够重合的点叫。
分别在上面图形中画出它们的对称轴。
2.轴对称:欣赏下面几幅图片,并完成问题。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成,这条直线叫做。
两个图形中的对应点叫。
如图,写出一对对称点是。
3.轴对称的性质上图中点A和F的连线与直线MN有什么样的关系?同理,点C和D,点B和E的连线也被直线MN ,图中相等的线段有:,相等的角有:。
可以概括为:如果两个图形关于某条直线成轴对称,那么对应点的连线被对称轴,对应线段,对应角。
4.线段垂直平分线的性质线段垂直平分线上的点到的距离相等。
5.角的平分线的性质角的平分线的性质上的点到的距离相等。
6.等腰三角形的性质等腰三角形是图形,它的对称轴是,等腰三角形的两个底角,互相重合。
等边三角形的各角都是,有条对称轴。
一、独立完成发现问题(自主学习)1.自主梳理(一)轴对称和轴对称图形的联系和区别区别:轴对称是两个图形能沿对称轴折叠后能重合,指的是个图形的位置关系。
而轴对称图形是指个图形的两部分沿对称轴折叠后能完全重合,指的是具有对称性的个图形。
联系:如果把成轴对称的两个图形看成一个整体,那么这个整体就是一个轴对称图形。
如果把一个轴对称图形位于对称轴两旁的部分看成两个图形,那么这两部分图形就成轴对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章轴对称复习导学案
课型:学习复习课编写:李经龙审核:初二数学备课组
班级组别姓名
一、复习目标
1、重新认识轴对称、轴对称图形,探索轴对称的基本性质,理解对应点连线被对称轴垂直平分的性质。
2、按照要求作出简单图形经过一次或两次轴对称后的图形,能应用轴对称进行简单的图案设计。
3、理解线段的垂直平分线的概念并掌握其性质;理解等腰三角形、等边三角形的有关概念,并掌握它们的性质及判定方法。
二、自主复习,盘点知识
(一)基本概念
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就叫做。
折叠后重合的点是对应点,叫做。
2.轴对称:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线,这条直线叫做,折叠后重合的点是对应点,叫做。
(说明:两个图形关于某条直线对称也叫两个图形成轴对称)。
3.线段的垂直平分线
经过线段点并且这条线段的直线,叫做这条线段的垂直平分线。
4.等腰三角形
有的三角形,叫做等腰三角形。
相等的两条边叫做,另一条边叫做,两腰所夹的角叫做,底边与腰的夹角叫做。
5.等边三角形
三条边都的三角形叫做等边三角形。
(二)主要性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的。
或者说轴对称图形的对称轴,是任何一对对应点所连线段的。
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离。
3.通过画出坐标系上的两点观察得出:
(1)点P(x,y)关于x轴对称的点的坐标为P′(,)。
(2)点P(x,y)关于y轴对称的点的坐标为P″(,)。
4.等腰三角形的性质
(1)等腰三角形的两个底角(简称“等边对等角”)。
(2)等腰三角形的顶角、底边上的、底边上的相互重合。
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的。
(4)等腰三角形两腰上的高、中线分别,两底角的平分线也。
5.等边三角形的性质
(1)等边三角形的三个内角都,并且每一个角都等于。
(2)等边三角形是轴对称图形,共有条对称轴。
(3)等边三角形每边上的、和该边所对内角的互相重合。
6.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的。
(三)有关判定
1.与一条线段两个端点距离 的点,在这条线段的垂直平分线上。
2.如果一个三角形有两个角 ,那么这两个角所对的边也 (简写成“等角对等边”)。
3.三个角都相等的 是等边三角形。
4.有一个角是60°的 是等边三角形。
三、基础训练
1.下列各时刻是轴对称图形的为( ).
A 、
B 、
C 、
D 、
2.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是( ).
A 、21:10
B 、10:21
C 、10:51
D 、12:01
3.如图是屋架设计图的一部分,其中∠A=30°,点D 是斜梁AB 的中点,BC 、DE 垂直于横梁
AC ,AB=16m ,则DE 的长为( ).
A 、8 m
B 、4 m
C 、2 m
D 、6 m
4.等腰三角形是轴对称图形,其对称轴是_______________________________.
5.已知点A (x , -4)与点B (3,y )关于x 轴对称,那么x +y 的值为____________.
6.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 __ .
7.如图,在△ABC 中,AB =AC ,AD 是BC 边上的高,点E 、F 是AD 的三等分点,若△ABC 的面
积为12cm 2,则图中阴影部分的面积是 ___ cm 2.
8、(1)请画出ABC △关于y 轴对称的A B C '''△
(其中A B C ''',,分别是A B C ,,的对应点,不写画法);
(2)直接写出A B C ''',,三点的坐标:(_____)(_____)(_____)A B C ''',,.
(3)求△ABC 的面积是多少?
轴对称专题训练
课型:学习复习课 编写:李经龙 审核:初二数学备课组
班级 组别 姓名 专题一:根据轴对称及线段垂直平分线性质的作图题
1、如图所示,EFGH 是一矩形的弹子球台面,有黑、白两球分别位于A 、B 两点的位置上,试问:怎样撞击白球,使白球先撞击边EF•反弹后再击中黑球?
2、如图,一牧民从A 点出发,到草地出发,到草地MN 去喂马,该牧民在傍晚回到营帐B 之前先带马去小河边
PQ 给马饮水(MN 、PQ 均为直线),试问牧民应走怎样的路线,才能使整个路程最短?(简要说明作图步骤,并在图上画出)
专题二:线段垂直平分线性质的运用
1.如图所示,在△ABC 中,AB=AC ,∠A=120°,AB•的垂直平分线MN•分别交BC 、AB 于点M 、N ,求证:CM=2BM .
2.如图所示,AD 是△ABC 的角平分线,EF 是AD 的垂直平分线,交BC 的延长线于点F ,连结AF .求证:∠BAF=∠ACF .
B A
E
D C
N M C B A
专题三:等腰三角形边与角计算中的分类讨论思想与方程思想
1、已知等腰三角形的一个内角是800,则它的另外两个内角是
2、已知等腰三角形的一个内角是1000,则它的另外两个内角是
3、已知等腰三角形有两边的长分别为6,3,则这个等腰三角形的周长是
4、已知等腰三角形的周长为24,一边长为6,则另外两边的长是
5、已知等腰三角形的周长为24,一边长为10,则另外两边的长是
6、等腰三角形的周长是16,其中两边之差为2,则它的三边的长分别为
7、等腰三角形一腰上的高与另一腰的夹角为30°,则它的顶角度数为
8、一等腰三角形一腰上的中线把这个三角形的周长分成15cm 和18cm 两部分,则这个等腰三角形的底边长是
9、如图, ∠DEF =36°,AB=BC=CD=DE=EF ,求∠A
专题四.关于等腰三角形证明题
1、如图所示,F 、C 是线段BE 上的两点, A 、D 分别在线段QC 、RF 上, AB=DE ,BF=CE ,∠B=∠E ,QR ∥BE .求证:△PQR 是等腰三角形.
2、如图,在Rt △ABC 中,AB=AC ,∠BAC=90°,D 为 BC 的中点.
(1)写出点D 到ΔABC 三个顶点 A 、B 、C 的距离的关系(不要求证明)
(2)如果点M 、N 分别在线段AB 、AC 上移动, 在移动中保持AN=BM ,请判断△DMN 的形状,并证明你的结论
F E D C
A P
Q R F E D C B A N
M D
C B A。