霍尔效应实验报告

合集下载

霍尔效应的研究实验报告

霍尔效应的研究实验报告

霍尔效应的研究实验报告实验报告:霍尔效应的研究摘要:本实验通过测量铜箔和σ-Fe薄膜的霍尔效应,研究磁场下的电子运动和磁场效应。

实验结果表明,在磁场的作用下,霍尔电阻Rxy的大小与电流I的正向方向、磁感应强度B及样品厚度d有关,且与样品材料的导电性质、载流子浓度n、载流子类型p、n有关。

引言:霍尔效应是指在外加磁场下,垂直于电流方向的方向会发生电势差,这种电势差所对应的电阻称为霍尔电阻。

该现象广泛应用于电子学、材料科学等领域。

本实验旨在通过实验验证霍尔效应,并深入研究磁场对电子运动和电阻的影响。

实验步骤和方法:1.制备实验样品:分别用化学方法制备铜箔和σ-Fe薄膜样品。

2.测量实验样品的电阻率:用四端子法测量样品的电阻率ρ。

3.测量霍尔效应:在磁场作用下,用直流电流源给样品加电流I,并在样品表面检测到的霍尔电势差UH作为其霍尔电阻Rxy。

4.测量实验数据:通过数据处理对实验结果进行定量分析,并进行结果分析与比较。

结果:1.铜箔和σ-Fe薄膜样品的电阻率分别为2.5×10-8 Ω·m和2.0×10-7 Ω·m。

2.在外加磁场下,两种材质的霍尔电势差UH分别变化,随磁感应强度B增大而增大。

霍尔电阻Rxy的大小与磁场强度B、电流I梦想方向、样品厚度d、载流子密度n和载流子类型p、n有关。

3.样品材质、载流子密度n、载流子类型p、n对样品的Rxy和UH的大小都有一定影响,导电性质较差、载流子密度较低的材料霍尔效应较小。

分析:1.样品的电阻率与样品材质的导电性质有关,样品的Rxy和UH与样品材料及其性质有关。

2.载流子密度n是决定材料电导率的关键因素之一,导电性质优越的材料,其载流子密度较高,霍尔电阻和霍尔电势差都会增大。

3.磁感应强度B的增大清楚样品中载流子受到的场强增大,样品中的霍尔电阻和霍尔电势差增大。

结论:本实验研究了霍尔效应的特性及其与样品的相关性,结果表明,在外加磁场下,铜箔和σ-Fe薄膜均出现了霍尔效应,其相应的霍尔电阻和霍尔电势差都与材料性质、载流子密度、磁感应强度等因素有关。

霍尔效应实验报告.doc

霍尔效应实验报告.doc

霍尔效应实验报告篇一:霍尔效应实验报告篇二:霍尔效应的应用实验报告一、名称:霍尔效应的应用二、目的:1.霍尔效应原理及霍尔元件有关参数的含义和作用2.测绘霍尔元件的VH—Is,VH—IM曲线,了解霍尔电势差VH与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。

3.学习利用霍尔效应测量磁感应强度B 及磁场分布。

4.学习用“对称交换测量法”消除负效应产生的系统误差。

三、器材:1、实验仪:(1)电磁铁。

(2)样品和样品架。

(3)Is和IM 换向开关及VH 、Vó切换开关。

2、测试仪:(1)两组恒流源。

(2)直流数字电压表。

四、原理:霍尔效应从本质上讲是运动的带电粒子在磁场中受洛仑兹力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横向电场,即霍尔电场EH。

如图15-1所示的半导体试样,若在X方向通以电流IS ,在Z方向加磁场B,则在Y方向即试样A-A/ 电极两侧就开始聚集异号电荷而产生相应的附加电场。

电场的指向取决于试样的导电类型。

对图所示的N型试样,霍尔电场逆Y方向,(b)的P型试样则沿Y方向。

即有EH0EH0显然,霍尔电场EH是阻止载流子继续向侧面偏移,当载流子所受的横向电场力eEH与洛仑兹力eB相等,样品两侧电荷的积累就达到动态平衡,故eEH?eB (1)其中EH为霍尔电场,v是载流子在电流方向上的平均漂移速度。

设试样的宽为b,厚度为d,载流子浓度为n ,则IS?nebd(2)由(1)、(2)两式可得:VH1ne?EHb?1ISBned?RHISBd即霍尔电压VH(A 、A/电极之间的电压)与ISB乘积成正比与试样厚度d成反比。

比例系数RH?称为只要测出VH (伏)以及知道IS(安)、B(高斯)和d (厘米)可按下式计算RH(厘米3/库仑):RH=VHdISB?108(4)上式中的108是由于磁感应强度B用电磁单位(高斯)而其它各量均采用CGS实用单位而引入。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告一、实验目的1、了解霍尔效应的基本原理。

2、掌握用霍尔效应测量磁场的方法。

3、学会使用霍尔效应实验仪器。

二、实验原理霍尔效应是指当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这种现象称为霍尔效应。

设导体的厚度为 d,宽度为 b,通过的电流为 I,磁场强度为 B,电子的电荷量为 e,电子的平均定向移动速度为 v。

则在磁场的作用下,电子受到洛伦兹力的作用,其大小为 F = evB。

电子会在导体的一侧积累,从而在导体的两侧产生电势差,这个电势差称为霍尔电压 UH。

当达到稳定状态时,电子受到的电场力与洛伦兹力相等,即 eEH = evB,其中 EH 为霍尔电场强度。

霍尔电场强度 EH = UH / b,所以 UH = EHb = vBb。

又因为 I = nevbd(n 为单位体积内的自由电子数),所以 v = I /(nebd)。

将 v 代入 UH 的表达式中,可得 UH = IB /(ned),霍尔系数 RH = 1 /(ned),则 UH = RHIB / d 。

三、实验仪器霍尔效应实验仪、特斯拉计、双刀双掷开关、直流电源、毫安表、伏特表等。

四、实验步骤1、连接电路将霍尔效应实验仪的各部分按照电路图连接好,确保连接正确无误。

2、调节磁场打开特斯拉计,调节磁场强度,使其达到所需的值。

3、测量霍尔电压接通电源,让电流通过霍尔元件。

分别测量不同电流和磁场强度下的霍尔电压,并记录数据。

4、改变电流方向和磁场方向重复测量步骤 3,以消除副效应的影响。

5、数据处理根据测量的数据,计算出霍尔系数和载流子浓度。

五、实验数据记录与处理|磁场强度 B(T)|电流 I(mA)|霍尔电压 UH(mV)|||||| 01 | 10 | 25 || 01 | 20 | 50 || 02 | 10 | 50 || 02 | 20 | 100 |根据实验数据,计算霍尔系数 RH 和载流子浓度 n。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告引言:霍尔效应是指当电流通过垂直于电流方向的导电体时,会产生横向电势差(Hall voltage)。

通过研究霍尔效应,可以了解材料的电性质,并在磁传感器、霍尔元件等领域得到应用。

本实验旨在通过测量霍尔效应的相关参数,深入了解其原理和特性。

实验材料与仪器:1. 霍尔片:选用精确的霍尔片,并保证其表面电阻低于10 Ω;2. 磁铁:用于产生磁场,保证其磁场均匀且稳定;3. 恒流源:用于提供稳定的电流;4. 毫伏表:用于测量霍尔电压;5. 恒温槽:用于控制实验环境温度。

实验原理:当电流通过霍尔片时,由于霍尔片内产生的洛伦兹力,电子受力方向与电流方向成正交关系,从而形成电子在导电体中的漂移运动。

此过程中,电子受力方向受磁场和电荷载流方向的共同作用。

当磁场、电流和电子漂移方向垂直时,会在导体一侧产生电势差,即霍尔电压。

实验步骤:1. 将霍尔片固定在实验台上,并将磁铁与霍尔片垂直放置;2. 连接恒流源,并设置电流大小;3. 通过毫伏表测量霍尔电压,并记录;4. 重复步骤2和3,改变电流大小,记录相应的霍尔电压;5. 在实验过程中,保持实验环境温度恒定,使用恒温槽进行控制。

实验数据及结果:按照上述步骤进行实验,依次记录不同电流值下的霍尔电压。

随后,根据实验数据绘制电流与霍尔电压之间的关系曲线图,并进行数据分析。

分析与讨论:通过实验数据的分析,我们可以得到以下几个结论:1. 霍尔电压与电流存在线性关系,电流越大,霍尔电压也越大;2. 霍尔电压与磁场的关系是非线性的,且磁场强度越大,霍尔电压也越大;3. 霍尔电压与温度存在一定的关系,随着温度的升高,霍尔电压会变化。

以上结论验证了霍尔效应的基本原理。

当电流通过霍尔片时,受到磁场的作用,电子受到洛伦兹力的驱动,从而产生横向电势差。

而电势差的大小与电流、磁场以及温度等因素有关。

实验误差分析:在实验过程中,由于外界环境的干扰以及仪器的精度等原因,会产生一定的误差。

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/ (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

霍尔效应实验报告kh(参考)

霍尔效应实验报告kh(参考)

霍尔效应实验报告‎k h霍尔效应实‎验报告kh‎‎篇一:‎霍尔效应‎实验报告大学‎本(专)科实验报‎告课程名称:‎姓名:‎学院‎:系:‎专业‎:年‎级:学‎号:‎指导教师:‎成绩:‎年月日‎(实验报告目录)‎实验名称‎一、实验‎目的和要求‎二、实验原理‎三、主要实‎验仪器四‎、实验内容及实验‎数据记录‎五、实验数据处理‎与分析六‎、质疑、建议霍尔‎效应实验一.实‎验目的和要求:‎1‎、了解霍尔效应原‎理及测量霍尔元件‎有关参数.‎2、测绘霍尔元‎件的VH?Is,‎V H?IM曲线了‎解霍尔电势差VH‎与霍尔元件控制(‎工作)电流Is、‎励磁电流IM之间‎的关系。

‎3、学习利用霍尔‎效应测量磁感应强‎度B及磁场分布。

‎4、判断‎霍尔元件载流子的‎类型,并计算其浓‎度和迁移率。

‎5、学习用“对‎称交换测量法”消‎除负效应产生的系‎统误差。

二.实‎验原理:‎1、霍尔‎效应霍尔效应是‎导电材料中的电流‎与磁场相互作用而‎产生电动势的效应‎,从本质上讲,霍‎尔效应是运动的带‎电粒子在磁场中受‎洛仑兹力的作用而‎引起的偏转。

当带‎电粒子(电子或空‎穴)被约束在固体‎材料中,这种偏转‎就导致在垂直电流‎和磁场的方向上产‎生正负电荷在不同‎侧的聚积,从而形‎成附加的横向电场‎。

如右图‎(1)所示,磁场‎B位于Z的正向,‎与之垂直的半导体‎薄片上沿X 正向通‎以电流Is(称为‎控制电流或工作电‎流),假设载流子‎为电子(N 型半‎导体材料),它沿‎着与电流Is相反‎的X负向运动。

‎由于洛伦兹力fL‎的作用,电子即向‎图中虚线箭头所指‎的位于y轴负方向‎的B侧偏转,并使‎B侧形成电子积累‎,而相对的A侧形‎成正电荷积累。

与‎此同时运动的电子‎还受到由于两种积‎累的异种电荷形成‎的反向电场力fE‎的作用。

随着电荷‎积累量的增加,f‎E增大,当两力大‎小相等(方向相反‎)时,fL=-f‎E,则电子积累便‎达到动态平衡。

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇

霍尔效应实验报告优秀4篇实验四霍尔效应篇一实验原理1.液晶光开关的工作原理液晶的种类很多,仅以常用的TN(扭曲向列)型液晶为例,说明其工作原理。

TN型光开关的结构:在两块玻璃板之间夹有正性向列相液晶,液晶分子的形状如同火柴一样,为棍状。

棍的长度在十几埃(1埃=10-10米),直径为4~6埃,液晶层厚度一般为5-8微米。

玻璃板的内表面涂有透明电极,电极的表面预先作了定向处理(可用软绒布朝一个方向摩擦,也可在电极表面涂取向剂),这样,液晶分子在透明电极表面就会躺倒在摩擦所形成的微沟槽里;电极表面的液晶分子按一定方向排列,且上下电极上的定向方向相互垂直。

上下电极之间的那些液晶分子因范德瓦尔斯力的作用,趋向于平行排列。

然而由于上下电极上液晶的定向方向相互垂直,所以从俯视方向看,液晶分子的排列从上电极的沿-45度方向排列逐步地、均匀地扭曲到下电极的沿+45度方向排列,整个扭曲了90度。

理论和实验都证明,上述均匀扭曲排列起来的结构具有光波导的性质,即偏振光从上电极表面透过扭曲排列起来的液晶传播到下电极表面时,偏振方向会旋转90度。

取两张偏振片贴在玻璃的两面,P1的透光轴与上电极的定向方向相同,P2的透光轴与下电极的定向方向相同,于是P1和P2的透光轴相互正交。

在未加驱动电压的情况下,来自光源的'自然光经过偏振片P1后只剩下平行于透光轴的线偏振光,该线偏振光到达输出面时,其偏振面旋转了90°。

这时光的偏振面与P2的透光轴平行,因而有光通过。

在施加足够电压情况下(一般为1~2伏),在静电场的作用下,除了基片附近的液晶分子被基片“锚定”以外,其他液晶分子趋于平行于电场方向排列。

于是原来的扭曲结构被破坏,成了均匀结构。

从P1透射出来的偏振光的偏振方向在液晶中传播时不再旋转,保持原来的偏振方向到达下电极。

这时光的偏振方向与P2正交,因而光被关断。

由于上述光开关在没有电场的情况下让光透过,加上电场的时候光被关断,因此叫做常通型光开关,又叫做常白模式。

霍尔效应实验报告[共8篇]

霍尔效应实验报告[共8篇]

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vh?is,vh?im曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 fe??eeh??evh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,fl??fe ?vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为 is?ne (2)由(1),(2)两式可得 vh?ehl?ib1isb?rhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh?1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh??/???? (4)式中?为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

实验报告 霍尔效应

实验报告 霍尔效应

实验报告霍尔效应一、实验目的1、了解霍尔效应的基本原理。

2、掌握用霍尔效应法测量磁场的原理和方法。

3、学会使用霍尔效应实验仪器,测量霍尔电压、电流等物理量。

二、实验原理1、霍尔效应将一块半导体薄片置于磁场中,当在薄片的纵向通以电流时,在薄片的横向两侧会产生一个电位差,这种现象称为霍尔效应。

这个电位差称为霍尔电压,用$U_H$ 表示。

霍尔电压的产生是由于运动的载流子在磁场中受到洛伦兹力的作用而发生偏转,在薄片的两侧积累了正负电荷,从而形成了电场。

当电场力与洛伦兹力达到平衡时,电荷的积累停止,霍尔电压达到稳定值。

2、霍尔电压的计算设半导体薄片的厚度为$d$,载流子的浓度为$n$,电流为$I$,磁感应强度为$B$,则霍尔电压$U_H$ 可以表示为:\U_H =\frac{1}{nq}IBd\其中,$q$ 为载流子的电荷量。

3、测量磁场如果已知半导体薄片的参数(如载流子浓度$n$、薄片厚度$d$)以及通过的电流$I$,测量出霍尔电压$U_H$,就可以计算出磁感应强度$B$:\B =\frac{nqdU_H}{I}\三、实验仪器1、霍尔效应实验仪,包括霍尔元件、电磁铁、电源、电压表、电流表等。

2、特斯拉计,用于测量磁场强度。

四、实验步骤1、连接实验仪器按照实验电路图连接好霍尔效应实验仪的各个部分,确保连接正确无误。

2、调整磁场打开电磁铁电源,逐渐增加电流,使磁场强度逐渐增大。

使用特斯拉计测量磁场强度,并记录下来。

3、测量霍尔电压(1)保持磁场强度不变,改变通过霍尔元件的电流$I$,分别测量不同电流下的霍尔电压$U_H$,记录数据。

(2)保持电流$I$ 不变,改变磁场强度,测量不同磁场强度下的霍尔电压$U_H$,记录数据。

4、数据处理(1)根据测量的数据,绘制霍尔电压$U_H$ 与电流$I$ 的关系曲线。

(2)绘制霍尔电压$U_H$ 与磁场强度$B$ 的关系曲线。

(3)根据实验原理中的公式,计算出半导体薄片的载流子浓度$n$ 和薄片厚度$d$。

霍尔效应实验报告(附带实验结论)(总3页)

霍尔效应实验报告(附带实验结论)(总3页)

霍尔效应实验报告(附带实验结论)(总3页)实验内容:实验中我们将会介绍霍尔效应,包括霍尔现象背后的原理,如何建立实验并如何分析实验结果。

霍尔效应是一个经典的材料物理学现象,主要是指当一个电流通过一块具有特殊形状的半导体晶体时,在晶体内部会产生一个垂直于电流方向和晶面法向的电场。

这个电场会导致从侧面进入材料的一个外部磁场中电荷载流子弯曲轨迹,从而引起电荷载流子的偏转和最终的偏差。

霍尔效应实验是通过使用霍尔元件来测量材料中电子的电荷密度、电阻率以及磁感应强度等物理量。

通过使用一个差分放大器来隔离高电阻元件所测量的低电压信号,实现误差最小化。

实验原理:霍尔现象是指当一个电流通过材料时,电荷载流子会遭受到一个垂直于电流方向和晶面法向的洛伦兹力。

这个力是由外磁场和载流子的运动速度所决定。

通过等效电路模型来表示这个效应,可以得出以下公式:$R_H=\frac{V_H}{IB}$其中$R_H$是霍尔系数,$V_H$是霍尔电压,$I$是传输电流,$B$是外磁场的磁感应强度。

实验步骤:1、使用霍尔元件进行实验测量。

首先我们将要求对外磁场变量进行变动。

我们将会使用自制的霍尔元件来测量材料的电阻率和磁感应强度。

此外我们还需要在实验中加入一个电压测量电路和一个高阻放大器,以便测量霍尔电压。

2、调整电路和实验装置,确保高电阻元件测得的信号能够被放大器隔离并接收到计算机来进行数据采集和分析。

3、进行霍尔效应实验并测量霍尔电压。

当电流通过材料时,霍尔电压会在样品上产生。

我们会使用磁感应计来测量磁场的强度,并利用霍尔元件来测量霍尔电压。

为了确保测量精度和可靠性,我们需要在实验期间不断进行复位校准。

实验结果:我们执行了多次霍尔效应实验,每次实验中都测得了数据。

我们将测得的数据进行了计算,并绘制了以下的实验曲线。

经过分析实验结果,我们得出以下重要结论:1、随着磁感应强度的增加,电流的方向和样品中霍尔电压的值都会发生变化。

2、我们在实验中发现,霍尔元件的特性随着温度和磁场强度的变化而变化。

霍尔效应实验报告(共8篇)

霍尔效应实验报告(共8篇)

篇一:霍尔效应实验报告大学本(专)科实验报告课程名称:姓名:学院:系:专业:年级:学号:指导教师:成绩:年月日(实验报告目录)实验名称一、实验目的和要求二、实验原理三、主要实验仪器四、实验内容及实验数据记录五、实验数据处理与分析六、质疑、建议霍尔效应实验一.实验目的和要求:1、了解霍尔效应原理及测量霍尔元件有关参数.2、测绘霍尔元件的vhis,vhim曲线了解霍尔电势差vh与霍尔元件控制(工作)电流is、励磁电流im之间的关系。

3、学习利用霍尔效应测量磁感应强度b及磁场分布。

4、判断霍尔元件载流子的类型,并计算其浓度和迁移率。

5、学习用“对称交换测量法”消除负效应产生的系统误差。

二.实验原理:1、霍尔效应霍尔效应是导电材料中的电流与磁场相互作用而产生电动势的效应,从本质上讲,霍尔效应是运动的带电粒子在磁场中受洛仑兹力的作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场。

如右图(1)所示,磁场b位于z的正向,与之垂直的半导体薄片上沿x正向通以电流is(称为控制电流或工作电流),假设载流子为电子(n型半导体材料),它沿着与电流is相反的x负向运动。

由于洛伦兹力fl的作用,电子即向图中虚线箭头所指的位于y轴负方向的b侧偏转,并使b侧形成电子积累,而相对的a侧形成正电荷积累。

与此同时运动的电子还受到由于两种积累的异种电荷形成的反向电场力fe的作用。

随着电荷积累量的增加,fe增大,当两力大小相等(方向相反)时,fl=-fe,则电子积累便达到动态平衡。

这时在a、b两端面之间建立的电场称为霍尔电场eh,相应的电势差称为霍尔电压vh。

设电子按均一速度向图示的x负方向运动,在磁场b作用下,所受洛伦兹力为fl=-eb式中e为电子电量,为电子漂移平均速度,b为磁感应强度。

同时,电场作用于电子的力为 feeehevh/l 式中eh为霍尔电场强度,vh为霍尔电压,l为霍尔元件宽度当达到动态平衡时,flfe vh/l (1)设霍尔元件宽度为l,厚度为d,载流子浓度为n,则霍尔元件的控制(工作)电流为isne (2)由(1),(2)两式可得 vhehlib1isbrhs (3)nedd即霍尔电压vh(a、b间电压)与is、b的乘积成正比,与霍尔元件的厚度成反比,比例系数rh1称为霍尔系数,它是反映材料霍尔效应强弱的重要参数,根据材料的电导ne率σ=neμ的关系,还可以得到:rh/ (4)式中为材料的电阻率、μ为载流子的迁移率,即单位电场下载流子的运动速度,一般电子迁移率大于空穴迁移率,因此制作霍尔元件时大多采用n型半导体材料。

霍尔效应实验总结及结论

霍尔效应实验总结及结论

霍尔效应实验总结及结论引言霍尔效应是指当一个电流通过导体时,会在导体中引起一种特殊的电场分布,从而使导体的一侧产生电压差。

这种现象被称为霍尔效应,广泛应用于传感器、电流测量等领域。

本文将对霍尔效应实验进行总结和结论的归纳,以加深对霍尔效应的理解。

实验步骤1.准备实验所需材料:霍尔元件、电源、电流表、电压表、导线等。

2.搭建实验电路:将霍尔元件与电流表、电压表相连,连接电源并调节电流大小。

3.测量电压:在不同电流下,使用电压表测量霍尔元件两侧的电压差。

4.记录数据:根据测量结果记录电流和电压的数值。

实验结果通过实验的测量和记录,得到了一系列的电流和电压数据。

根据霍尔效应的原理,我们可以进行一些数据处理和分析,得出以下几点结论:1.电流与电压之间的关系:在实验中,我们可以观察到随着电流大小的增加,霍尔元件两侧的电压差也相应增加。

这表明在电流通路中存在一定的电场分布,从而产生了霍尔电压。

2.正负电荷的分布:由于霍尔效应的原理,霍尔元件两侧会形成正负的电荷分布。

根据电压的正负性质,可以判断出电流的方向。

3.线性关系验证:通过实验数据的分析,我们可以验证霍尔效应的线性关系。

在一定范围内,电流和电压之间存在线性关系,这符合霍尔效应的基本原理。

实验验证为了验证实验结果的准确性和可靠性,我们可以采取以下措施:1.多次重复实验:通过多次实验,可以得到多组数据,从而对实验结果进行验证和比较。

如果多组数据之间一致性较高,说明实验结果较为可信。

2.控制变量:在实验过程中,尽可能控制其他变量的影响,只改变电流大小,以保证实验的准确性。

3.对比理论预期值:根据霍尔效应的原理,可以计算出理论预期值,将理论值与实验测量值进行对比,并分析其差异原因。

结论通过本次实验,我们对霍尔效应有了更深入的理解和认识。

实验的结果验证了霍尔效应的存在,并且通过实验数据的分析,验证了电流和电压之间的线性关系。

除此之外,通过实验还可以进一步研究和应用霍尔效应,如根据电压的变化实现电流的测量、磁场的检测等。

霍尔效应实验报告(共8篇).doc

霍尔效应实验报告(共8篇).doc

霍尔效应实验报告(共8篇).doc
实验名称:霍尔效应实验
实验目的:通过测量半导体中霍尔电压和霍尔电流,了解半导体中的电子输运性质。

实验器材:霍尔电流源、霍尔电压计、半导体样品、直流电源、数字万用表等。

实验原理:当一个导电材料中存在磁场时,载流子将在该磁场下发生偏转,从而导致材料的横向电场。

这种结果被称为霍尔效应。

V_H = KBIB/Tne
其中V_H为霍尔电压,B为外磁场强度,I为霍尔电流,n为携带载流子的数量密度。

实验步骤:
1. 将半导体样品制成薄片,并对其进样操作。

2. 通过在泳道中流动电流,产生磁场,测量霍尔电压和磁场。

3. 通过改变霍尔电流来改变携带量子的数量密度。

4. 通过改变温度来研究电子输运性质。

实验数据:
实验中测得的数据如下表所示:
B(T) | I(mA) | V_H(mV) | n(cm^-3)
0.002 | 3 | 3.5 | 2.2*10^12
0.004 | 5 | 7.0 | 2.5*10^12
0.006 | 7 | 10.5 | 2.8*10^12
0.008 | 9 | 14.0 | 3.5*10^12
0.01 | 10 | 17.5 | 4.0*10^12
实验结果:
通过上述数据,我们可以绘制出霍尔电压与磁场的曲线,通过分析该曲线,可以获得半导体的部分参数,如携带载流子的数量密度、迁移率和磁场的线性范围。

除了以上的结论,该实验还可以用于检测半导体的杂质和掺杂浓度等质量因素,并可用于研究半导体中的输运行为(例如迁移率),以便确定相应观察特性的重要性及其与材料的性质之间的关联性。

霍尔效应实验报告(附带实验结论)

霍尔效应实验报告(附带实验结论)

霍尔效应实验报告(附带实验结论)
霍尔效应实验是研究磁场穿过电路时电流的结果,它由瑞典物理学家弗里德里克•霍
尔创造并命名于1879年,以他揭示磁场中线圈电流方向的发现而获得了诺贝尔物理学奖。

它可以证明磁性作用和电流之间的关系,用于显示物体的磁性特性而被广泛应用到有无线
电电子设备研究中。

本次实验是以霍尔效应量测磁场强度(脉冲电压)的发生情况,以及
它们相互之间的关系,从而测量磁场的方向。

本次实验的目的是测试霍尔效应并且量测磁场强度和方向。

此外,实验综合使用计算
机科学和物理学,电子技术等方法,采用标准实验设备建立实验系统,对磁场和脉冲电压
进行测量,具体实验过程如下。

1.设置实验材料:仪器、电源、低阻抗负载和校正磁场线圈;
2.设定测量参数:动圈圈特征电阻、容性和无源性串联电阻;
3.将被测物体放置在磁场线圈中;
4.将阻抗电源的输出电压调整至0.5V;
6.检查阻抗电源的输出参数以确保它不超出安全容量;
7.用电路模拟器测量脉冲电压,记录和分析测量结果;
8.根据实验结果制定结论。

实验结果表明,该实验可以有效的测量磁场的强度(脉冲电压)和方向,而且它可以
有效地检测磁场的变化。

根据实验结果,得出实验结论:当磁场穿过电路时,会出现脉冲
电压,这也证明了磁性作用和电流之间的关系。

总之,本次实验圆满成功。

我们测出脉冲电压,研究了磁场强度和方向与脉冲电压之
间的关系,从而明确了霍尔效应的物理原理。

实验结果可以为智能电子元件、磁性感应装
置和电机设计等方面的应用提供有效的参考依据。

霍尔效应测磁场实验报告(共7篇)

霍尔效应测磁场实验报告(共7篇)

篇一:霍尔元件测磁场实验报告用霍尔元件测磁场前言:霍耳效应是德国物理学家霍耳(a.h.hall 1855—1938)于1879年在他的导师罗兰指导下发现的。

由于这种效应对一般的材料来讲很不明显,因而长期未得到实际应用。

六十年代以来,随着半导体工艺和材料的发展,这一效应才在科学实验和工程技术中得到了广泛应用。

利用半导体材料制成的霍耳元件,特别是测量元件,广泛应用于工业自动化和电子技术等方面。

由于霍耳元件的面积可以做得很小,所以可用它测量某点或缝隙中的磁场。

此外,还可以利用这一效应来测量半导体中的载流子浓度及判别半导体的类型等。

近年来霍耳效应得到了重要发展,冯﹒克利青在极强磁场和极低温度下观察到了量子霍耳效应,它的应用大大提高了有关基本常数测量的准确性。

在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍耳器件,会有更广阔的应用前景。

了解这一富有实用性的实验,对今后的工作将大有益处。

教学目的:1. 了解霍尔效应产生的机理,掌握测试霍尔器件的工作特性。

2. 掌握用霍尔元件测量磁场的原理和方法。

3. 学习用霍尔器件测绘长直螺线管的轴向磁场分布。

教学重难点: 1. 霍尔效应2. 霍尔片载流子类型判定。

实验原理如右图所示,把一长方形半导体薄片放入磁场中,其平面与磁场垂直,薄片的四个侧面分别引出两对电极(m、n和p、s),径电极m、n 通以直流电流ih,则在p、s极所在侧面产生电势差,这一现象称为霍尔效应。

这电势差叫做霍尔电势差,这样的小薄片就是霍尔片。

图片已关闭显示,点此查看假设霍尔片是由n型半导体材料制成的,其载流子为电子,在电极m、n上通过的电流由m极进入,n极出来(如图),则片中载流子(电子)的运动方向与电流is的方向相反为v,运动的载流子在磁场b中要受到洛仑兹力fb的作用,fb=ev×b,电子在fb的作用下,在由n→m运动的过程中,同时要向s极所在的侧面偏转(即向下方偏转),结果使下侧面积聚电子而带负电,相应的上侧面积(p极所在侧面)带正电,在上下两侧面之间就形成电势差vh,即霍尔电势差。

霍尔效应实验报告(附带实验结论)

霍尔效应实验报告(附带实验结论)

《霍尔效应》参考实验报告附带结论实验目的1.了解霍尔效应实验原理。

2.测量霍尔电流与霍尔电压之间的关系。

3.测量励磁电流与霍尔电压之间的关系。

4.学会用“对称测量法”消除负效应的影响。

实验仪器霍尔效应实验仪。

实验步骤1.正确连接电路,调节霍尔元件处于隙缝的中间位置。

2.测量不等位电势。

令励磁电流I=0mA,霍尔电流H I=1.00mA,M2.00mA,…,10.00mA,测量霍尔元件的不等位电势随霍尔电流的对应关系。

2.测量霍尔电流I与霍尔电压H U的关系。

令励磁电流M I=400mA,调节H霍尔电流I=1.00mA,2.00mA,…,10.00mA(每隔1.0mA改变一次),H分别改变励磁电流和霍尔电流的方向,记录对应的霍尔电压。

3.测量励磁电流I与霍尔电压H U的关系。

令霍尔电流H I=8.00mA,调M节励磁电流I=100.0mA,200.0mA,…,1000.0mA(每隔100.0mA改M变一次),分别改变励磁电流和霍尔电流的方向,记录对应的霍尔电压。

实验数据记录及处理(2)测量霍尔电流和霍尔电压的关系(M I =400mA)(3)测量励磁电流和霍尔电压的关系(H I =8.00mA)实验结论1、当励磁电流M I=0时,霍尔电压不为0,且随着霍尔电流的增加而增加,通过作图发现二者满足线性关系。

说明在霍尔元件内存在一不等位电压,这是由于测量霍尔电压的两条接线没有在同一个等势面上造成的。

2、当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,通过作图发现二者之间满足线性关系。

3、当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,通过作图发现二者之间也满足线性关系。

注意事项:1.不要带电接线,中间改变电路时,一定要先关闭电源,再连接电路。

2.实验完成后要整理实验仪器,先关闭电源,再将电线拆下,捋好后放在实验仪器的右侧。

3.仪器开机前应将I、H I调节旋钮逆时针方向旋到底,使其输出电M流趋于最小,然后再开机。

霍尔效应实验报告

霍尔效应实验报告

南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:霍尔效应学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、 实验目的: 1、了解霍尔效应法测磁感应强度S I 的原理和方法;2、学会用霍尔元件测量通电螺线管轴向磁场分布的基本方法;二、 实验仪器:霍尔元件测螺线管轴向磁场装置、多量程电流表2只、电势差计、滑动变阻器、双路直流稳压电源、双刀双掷开关、连接导线15根。

三、 实验原理:1、霍尔效应霍尔效应本质上是运动的带电粒子在磁场中受洛仑磁力作用而引起的偏转。

当带电粒子(电子或空穴)被约束在固体材料中,这种偏转导致在垂直电流和磁场方向上产生正负电荷的聚积,从而形成附加的横加电场,即霍尔电场H E .如果H E <0,则说明载流子为电子,则为n 型试样;如果H E >0,则说明载流子为空穴,即为p 型试样。

显然霍尔电场H E 是阻止载流子继续向侧面偏移,当载流子所受的横向电场力e H E 与洛仑磁力B v e 相等,样品两侧电荷的积累就达到动态平衡,故有:e H E =-B v e其中E H 为霍尔电场,v 是载流子在电流方向上的平均速度。

若试样的宽度为b ,厚度为d ,载流子浓度为n ,则 bd v ne I =由上面两式可得:dB I R d BI ne b E V S H S H H ===1 (3)即霍尔电压H V (上下两端之间的电压)与B I S 乘积成正比与试样厚度d 成反比。

比列系数neR H 1=称为霍尔系数,它是反应材料霍尔效应强弱的重要参量。

只要测出H V 以及知道S I 、B 和d 可按下式计算H R :410⨯=BI dV R S H H 2、霍尔系数H R 与其他参量间的关系根据H R 可进一步确定以下参量:(1)由H R 的符号(或霍尔电压的正负)判断样品的导电类型。

判别方法是电压为负,H R 为负,样品属于n 型;反之则为p 型。

(2)由H R 求载流子浓度n.即eR n H 1= 这个关系式是假定所有载流子都具有相同的漂移速度得到的。

霍尔效应实验报告

霍尔效应实验报告

霍尔效应实验报告霍尔效应实验报告1实验内容:1.保持不变,使Im从0.50到4.50变化测量VH.可以通过改变I和磁场B的方向消除负效应。

在规定电流和磁场正反方向后,分别测量以下四组不同方向的I和B组合的VH,即+B,+IVH=V1—B,+VH=-V2—B,—IVH=V3+B,-IVH=-V4VH=(|V1|+|V2|+|V3|+|V4|)/40.501.601.003.201.504.792.006.902.507.983.009.553.5011.174.0012.734.5014.34画出线形拟合直线图:ParameterValueError------------------------------------------------------------A0.115560.13364B3.165330.0475------------------------------------------------------------RDNP------------------------------------------------------------0.999210.183959<0.00012.保持I=4.5mA,测量Im—Vh关系VH=(|V1|+|V2|+|V3|+|V4|)/40.0501.600.1003.200.1504.790.2006.900.2507.980.3009.550.35011.060.40012.690.45014.31ParameterValueError------------------------------------------------------------A0.133890.13855B31.50.49241------------------------------------------------------------RDNP------------------------------------------------------------0.999150.190719<0.0001根本满足线性要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

霍尔效应实验
一、实验目的
1.霍尔效应原理及霍尔元件有关参数的含义和作用
2.测绘霍尔元件的V H—Is,V H—I M曲线,了解霍尔电势差V H与霍尔元件工作电流Is,磁场应强度B及励磁电流IM之间的关系。

3.学习利用霍尔效应测量磁感应强度B及磁场分布。

4.学习用“对称交换测量法”消除负效应产生的系统误差。

二、实验仪器
霍尔效应实验仪器和测试仪
三、实验原理
运动的带电粒子在磁场中受洛仑兹力的作用而引起偏转,当带电粒子(电子或空穴)被约束在固体材料中,这种偏转就导致在垂直电流和磁场的方向上产生正负电荷在不同侧的聚积,从而形成附加的横向电场(霍尔电场),这就是霍尔效应的本质。

由于产生霍尔效应的同时,伴随多种副效应,以致实测的霍尔电场间电压不等于真实的V H值,因此必需设法消除。

根据副效应产生的机理,采用电流和磁场换向的对称测量法基本上能把副效应的影响从测量结果中消除。

具体的做法是Is和B(即I M)的大小不变,并在设定电流和磁场的正反方向后,依次测量由下面四组不同方向的Is和B(即I M)时的V1,V2,V3,V4,
1)+I s+B V1
2)+I s-B V2
3)-I s-B V3
4)-I s+B V4
然后求它们的代数平均值,可得:
4
4 3
2 1
V V
V
V
V
H
-+
-
=
通过对称测量法求得的VH误差很小。

四、实验步骤
1.测量霍尔电压VH与工作电流Is的关系
1)先将Is,I M都调零,调节中间的霍尔电压表,使其显示为0mV。

2)将霍尔元件移至线圈中心,调节IM =0.45A,按表中所示进行调节,测量当I M正(反)向时, I S正向和反向时的V H值填入表1,做出V H-I S曲线。

表1 VH-IS 关系测量表 IM =0.45A
2.测量霍尔电压V H与励磁电流I M的关系
1)先将Is调节至4.50mA。

2)调节励磁电流I M如表2,分别测量霍尔电压V H值填入表2中。

3)根据表2中所测得的数据,绘出I M—V H曲线
表2 V H—I M关系测量表I S =4.50mA
五、实验结论
1、当霍尔电压保持恒定,改变励磁电流时,测量得到的霍尔电压随励磁电流的增加而增加,
通过作图发现二者之间也满足线性关系。

2、当励磁电流保持恒定,改变霍尔电流时,测量得到的霍尔电压随霍尔电流的增加而增加,
通过作图发现二者之间满足线性关系。

六、实验中的注意问题
1、不要带电接线,中间改变电路时,一定要先关闭电源,再连接电路。

2、实验完成后要整理实验仪器,先关闭电源,再将电线拆下,捋好后放在实验仪器的右侧。

3、作图要使用铅笔,先描点,描点要清晰,然后使用平滑曲线连接各点。

七、思考题
1、实验的原理是什么?
答:法拉第电磁感应原理。

2、对探测线圈的要求是什么?
答:线圈面积要大小合适,太大无法反映各点磁场的情况,太小则感应电压小,不利于测量。

3、感应法测磁场为什么不用一般的电压表?
答:因为被测量的电压是交流毫伏量级。

4、是否能利用本方法测量稳恒磁场?
答:不能,因为根据法拉第电磁感应原理静止探测线圈在稳恒磁场中感应电动势为零。

相关文档
最新文档