运筹学资料5非线性规划
精心整理的运筹学重点6.非线性规划N L P
∂f 2 ( x) ∂f ( x ) ∂x 2 ∂x x 2,0 1 / 2 , 0 0 1 1 2 0 −1 H (X ) = = ,[ H ( X )] = 0,1/50 ∂f ( x) ∂f 2 (x ) 0,50 2 ∂ x x ∂ x 2 1 2
2 r1* (5 − x12 − x2 )=0
r2* (6 − 3 x1 − x2 ) = 0 r1* ≥ 0 r2* ≥ 0
情况 1:假设两约束完全不起作用,此时 r1* = r2* = 0 情况 2:第一个约束起作用,第二个不起作用, r2* = 0 ,检验知是一个 K-T 点。 情况 3:第二个约束起作用,第一个不起作用, r1* = 0 情况 4:两个约束完全起作用, r1* > 0, r2* > 0 2)带约束问题最优化方法-----制约函数法(外点法、内点法) 外点法:将有约束问题转成无约束极值问题,分两种情况 1. 等式约束
∂f ( x) ∂x 2 x 4 ∇f ( x ) = 1 = 1 , ∇ f ( x0 ) = ∂f ( x) 50 x2 100 ∂x 2
0 0 0 0
则 X + λ d = X − λ∇f ( X ) = [ 2 − 4 λ , 2 − 100λ ]
4.带约束问题的最优化方法
min f ( x) s.t g i ( x) ≥ 0
1)最优性条件 K-T 条件(判断最优的条件)
∇f ( x* ) − ∑ rj*∇g j ( x * ) = 0
* r* j g j(x ) = 0
r* j ≥0
2 2 min f ( x) = 2 x1 + 2 x1x2 + x2 −10x1 − 10x 2 2 例求 5 − x12 − x2 ≥0
运筹学
1(单纯形法)例:Min Z=-2x1-x2+x3 , s.t. 3x1+x2+x360≤x1-x2+2x310≤,x1+x2-x320≤,xj 0≥,解析:对第一、二、三个不等式添加松弛变量x4 x5 x6,则原线性问题化成标准形形式为:(略)因为B=(A4 A5 A6)是一单位矩阵,且b=(60 10 20)T>0 所以基B 是可行基,x4 x5 x6为基变量,x1 x2 x3为非基变量,基B 对应的基本可行解为检验数02>=ξ,故当前解不是最优解,A1列中有三个元素a11 a21 a31 均为正数,取min ()313212111,,a b a b a b =min ()120110360,,=10故转轴元为a21,x1为进基变量,x5为出基变量,进行旋转后得下表(略)它对应的基本可行解为x=(10 0 0 30 0 10)T,其目标函数值为Z0=-20,但,032>=ξ仍不是最优解,(以下的过程跟前面一样)最后得Z0=-35,检验向量0<ξ故为最优解。
故基本可行解x*=(15 ,5 ,0 )Tm 目标函数值为Z0=-35。
2(两阶段法)例 max z=3x1+4x2+2x3 s.t. x1+x2+x3+x430≤, 3x1+6x2+x3-2x40≤, x24≥解:化为标准形形式为min z=-3x1-4x2-2x3 s .t.分别加x5 x6 x7松弛变量,因为该线性规划的系数矩阵的系数矩阵已包含两个单位向量,就是A5=(100)T ,A6=(010)T ,第一阶段只要增加一个人工变量x8得到辅助LP 问题为min g=x8 s.t .以下略,作如下表(略),将表中第三行加到关于g 的第0行中,得到第一张单纯形表(略)按单纯形迭代,表略,第一阶段结束,得到辅助问题的一个最优解,3(对偶单纯形法)例 min 2x1+3x2+4x3, s.t. x1+2x2+x33≥ 2x1-x2+3x34≥ x1 x2 x3 0≥,解:引进非负的剩余变量x40≥,x50≥,将不等式约束化为等式约束直接利用对偶单纯形法求解,b2=- 4<b1=-3,所以x5为出基变量,由以下比值决定进基变量min(3422,----)=21a ξ=1,所以x1为进基变量,以a21为转轴元进行旋转变换得下表(略)因为b1=-1<0,所以x4为出基变量,因为min( )所以x2为进基变量,以a12为转轴得表(略)此时b>0,故原问题最优解为x*=( )T,其最优值Z0=() 4写出下面线性规划的对偶规划。
运筹学中的非线性规划问题-教案
教案运筹学中的非线性规划问题-教案一、引言1.1非线性规划的基本概念1.1.1定义:非线性规划是运筹学的一个分支,研究在一组约束条件下,寻找某个非线性函数的最优解。
1.1.2应用领域:广泛应用于经济学、工程学、管理学等,如资源分配、生产计划、投资组合等。
1.1.3发展历程:从20世纪40年代开始发展,经历了从理论到应用的转变,现在已成为解决实际问题的有效工具。
1.1.4教学目标:使学生理解非线性规划的基本理论和方法,能够解决简单的非线性规划问题。
1.2非线性规划的重要性1.2.1解决实际问题:非线性规划能够处理现实中存在的非线性关系,更贴近实际问题的本质。
1.2.2提高决策效率:通过优化算法,非线性规划可以在较短的时间内找到最优解,提高决策效率。
1.2.3促进学科交叉:非线性规划涉及到数学、计算机科学、经济学等多个学科,促进了学科之间的交叉和融合。
1.2.4教学目标:使学生认识到非线性规划在实际应用中的重要性,激发学生的学习兴趣。
1.3教学方法和手段1.3.1理论教学:通过讲解非线性规划的基本理论和方法,使学生掌握非线性规划的基本概念和解题思路。
1.3.2实践教学:通过案例分析、上机实验等方式,让学生动手解决实际问题,提高学生的实践能力。
1.3.3讨论式教学:鼓励学生提问、发表观点,培养学生的批判性思维和创新能力。
1.3.4教学目标:通过多种教学方法和手段,使学生全面掌握非线性规划的理论和实践,提高学生的综合素质。
二、知识点讲解2.1非线性规划的基本理论2.1.1最优性条件:介绍非线性规划的最优性条件,如一阶必要条件、二阶必要条件等。
2.1.2凸函数和凸集:讲解凸函数和凸集的定义及其在非线性规划中的应用。
2.1.3拉格朗日乘子法:介绍拉格朗日乘子法的原理和步骤,以及其在解决约束非线性规划问题中的应用。
2.1.4教学目标:使学生掌握非线性规划的基本理论,为后续的学习打下坚实的基础。
2.2非线性规划的求解方法2.2.1梯度法:讲解梯度法的原理和步骤,以及其在求解无约束非线性规划问题中的应用。
运筹学——非线性规划
非线性规划
0.618法(近似黄金分割法)
函数 (t ) 称为在[a,b]上是单谷的,如果存在一个t * [a, b] ,使得 (t ) 在[a, t * ] 上严格递减,且在[t * , b] 上严格递增。区间[a,b]称为 (t ) 的单 谷区间。
非线性规划
第 1 步 确定单谷区间[a,b],给定最后区间精度 0 ; 第 2 步 计算最初两个探索点
第3步
计算 t k1
tk
(tk (tk
) )
,如果
t k 1
tk
,停止迭代,输出 t k1 。否则
k : k 1,转第 2 步。
非线性规划
基本思路:迭代
给定初始点x0
根据x0,依次迭代产生点列{xk}
{xk}有限
{xk}无限
{xk}的最后一点为最优解
{xk}收敛于最优解
前一页 后一页 退 出 非线性规划
关于凸函数的一些结论
定理: 设S Rn是非空凸集
(1)若f是S上的凸函数, 0,则f是S上的凸函数;
(2)若f1, f2是S上的凸函数, f1 f2是S上的凸函数。 定理: 设S Rn是非空凸集, f是凸函数,cR1,则集合
HS ( f ,c)xS| f ( x) c 是凸集。
f ( x1 )(f ( x1 ),f ( x1 ))T是函数在点x1处的梯度。
x1
xn
(2)f是S上的严格凸函数的充要条件是
f ( x1 )T ( x2 x1 ) f ( x2 ) f ( x1 ), x1, x2S, x1 x2
n=1时几何意义:可微函数是凸的等价于切线不在函数图 像上方。
前一页 后一页 退 出 非线性规划
运筹学非线性规划
二 、模型的解及相关概念
1.可行解与最优解
★可行解:约束集D中的X。
★最优解:如果有 X * D,对于任意的 X D , 都有 f ( X *) f ( X ) ,则称 X *为(NLP)的最优
解,也称为全局最小值点。
★局部最优解:如果对于 X 0 D ,使得在 X 0的邻 域 B(X 0, ) {X |P X X 0 P } 中的任意 X D 都有f (X 0 ) f (X ) ,则称 X 0 为(NLP)的局部最
: 风险系数;ij : 第i种与第j种股票收益的协方差
n
nn
max f (x) j xj
xi x j
j 1i1 j1源自s.t.n j 1Pj x j
B
x
j
0
2.模型
min f ( X )
(
NLP
)s.t.
hi
g
( X ) 0,i j ( X ) 0,
1,L , j 1,L
f
(X
)=f
(X0
)
f
(X0
)(T X-X0)
1 2
(X
X0
)T
H
( X0 )(
X
X0)
o(P X-X 0 P2)
其中:o(P X
X0
P2 )是当X
X
时
0
PX
X0
P2
的高阶无穷小。
例2:写出 f ( X ) 3x12 sin x2 在X 0 [0, 0]T 点的二阶泰勒展开式
解: f ( X ) [6x1 cos x2 ]T , f ( X 0 ) [0 1]T
0
解得:=-f (Xk )T Pk
PkT H ( X k )Pk
九.非线性规划(NonlinearProgramming)
九. 非线性规划(Nonlinear Programming)非线性规划是研究目标函数和约束条件中至少包含一个非线性函数的约束极值最优化问题。
由于非线性问题的复杂性,非线性规划与线性规划相比在理论和算法上呈现出明显的多样性,成果非常丰富。
非线性规划的理论成果包括约束极值问题到达极值解的充分和必要条件(即最优性条件)、非线性规划的对偶理论等。
非线性规划的算法种类繁多,但本质上都是采用数值计算迭代方法求解非线性方程组。
解非线性规划问题时所用的计算方法最常见的是迭代下降算法,即算法同时具有迭代和下降两种特征:迭代:从一点x(k)出发,按某种规则算出后继点x(k+1);用x(k)代替x(k+1),重复上述过程,产生点列{x(k)};下降:对某个函数,每次迭代后,后继点的函数值要有所减少。
评价算法的几个要素通用性与可靠性对参数与数据的敏感性准备与计算的工作量收敛性一维搜索算法可以归纳为两大类:试探法和函数逼近法。
试探法:黄金分割法(0.618法);Fibonacci法(斐波那契法)函数逼近法:牛顿法;割线法;抛物线法;插值法多维搜索中使用导数的最优化算法(无约束问题)最速下降法(梯度法);牛顿法(二阶梯度法);共轭梯度法;拟牛顿法;……多维搜索无约束最优化的直接方法(不用导数)模式搜索法;Rosenbrock算法;单纯形法;……有约束最优化方法可行方向法;惩罚函数法;线性逼近法及二次规划;SQP(序贯二次规划)法;……十.多目标数学规划(Multiobjective Programming)多目标规划标准形式:(VP)实际问题往往难以用一个指标来衡量,需要用一个以上相互间不很协调(甚至相互冲突)的衡量指标,形成多目标规划问题。
x f x f V T p )](,),(min[1符号V -min 表示区别于单目标求最小,指对向量形式的p 个目标求最小。
由于实际问题中p 个目标量纲不同,有必要对每个目标事先规范化。
运筹学课件PPT课件
整数规划的解法
总结词
整数规划的解法可以分为精确解法和近似解法两大类。
详细描述
整数规划的解法可以分为两大类,一类是精确解法,另一类是近似解法。精确解法包括割平面法、分支定界法等, 这些方法可以找到整数规划的精确最优解。而近似解法包括启发式算法、元启发式算法等,这些方法可以找到整 数规划的近似最优解,但不一定能保证找到最优解。
模拟退火算法采用Metropolis准则来 判断是否接受一个较差解,即如果新 解的能量比当前解的能量低,或者新 解的能量虽然较高但接受的概率足够 小,则接受新解。
模拟退火算法的应用
01
模拟退火算法在旅行商问题中得到了广泛应用。通过模拟退火算 法,可以求解旅行商问题的最优解,即在给定一组城市和每对城 市之间的距离后,求解访问每个城市恰好一次并返回出发城市的 最短路径。
动态规划的解法
确定问题的阶段和状态
首先需要确定问题的阶段和状态,以便将问 题分解为子问题。
建立状态转移方程
根据问题的特性,建立状态转移方程,描述 状态之间的转移关系。
求解子问题
求解每个子问题,并存储其解以供将来使用。
递推求解
从最后一个阶段开始,通过递推方式向前求 解每个阶段的最优解。
动态规划的应用
线性规划的解法
单纯形法
01
单纯形法是求解线性规划问题的经典方法,通过迭代过程逐步
找到最优解。
对偶理论
02
对偶理论是线性规划的一个重要概念,它通过引入对偶问题来
简化求解过程。
分解算法
03
分解算法是将大规模线性规划问题分解为若干个小问题,分别
求解后再综合得到最优解。
线性规划的应用
生产计划
线性规划可以用于生产计划问题, 通过优化资源配置和生产流程, 提高生产效率和利润。
非线性规划
非线性规划(nonlinear programming)1.非线性规划概念非线性规划是具有非线性约束条件或目标函数的数学规划,是运筹学的一个重要分支。
非线性规划研究一个n元实函数在一组等式或不等式的约束条件下的极值问题,且目标函数和约束条件至少有一个是未知量的非线性函数。
目标函数和约束条件都是线性函数的情形则属于线性规划。
2.非线性规划发展史公元前500年古希腊在讨论建筑美学中就已发现了长方形长与宽的最佳比例为0.618,称为黄金分割比。
其倒数至今在优选法中仍得到广泛应用。
在微积分出现以前,已有许多学者开始研究用数学方法解决最优化问题。
例如阿基米德证明:给定周长,圆所包围的面积为最大。
这就是欧洲古代城堡几乎都建成圆形的原因。
但是最优化方法真正形成为科学方法则在17世纪以后。
17世纪,I.牛顿和G.W.莱布尼茨在他们所创建的微积分中,提出求解具有多个自变量的实值函数的最大值和最小值的方法。
以后又进一步讨论具有未知函数的函数极值,从而形成变分法。
这一时期的最优化方法可以称为古典最优化方法。
最优化方法不同类型的最优化问题可以有不同的最优化方法,即使同一类型的问题也可有多种最优化方法。
反之,某些最优化方法可适用于不同类型的模型。
最优化问题的求解方法一般可以分成解析法、直接法、数值计算法和其他方法。
(1)解析法:这种方法只适用于目标函数和约束条件有明显的解析表达式的情况。
求解方法是:先求出最优的必要条件,得到一组方程或不等式,再求解这组方程或不等式,一般是用求导数的方法或变分法求出必要条件,通过必要条件将问题简化,因此也称间接法。
(2)直接法:当目标函数较为复杂或者不能用变量显函数描述时,无法用解析法求必要条件。
此时可采用直接搜索的方法经过若干次迭代搜索到最优点。
这种方法常常根据经验或通过试验得到所需结果。
对于一维搜索(单变量极值问题),主要用消去法或多项式插值法;对于多维搜索问题(多变量极值问题)主要应用爬山法。
生产运筹非线性规划的基本概念(PPT 78页)
X xRnh gii((x x)) 0 0,,ij 11,, ,,q p
min f(x)
s.t. gi(x)0, i 1,, p
hi(x)0, j 1,,q
min f ( x )
s
.t
.
g(x) 0
h( x) 0
minf (x)
生产运筹非线性规划的基本概念 (PPT 78页)
xX
➢(3)数学规划问题的分类:
第五讲 非线性规划的基本概念
非线性规划问题 非线性规划数学模型 非线性规划的图解法 梯度、Hesse矩阵、Jacobi阵 凸函数和凸规划 解非线性规划方法概述 一维最优化
生产运筹非线性规划的基本概念 (PPT 78页)
在科学管理和其他领域中,大量应用问题可以归结为线性规划问 题,但是,也有另外许多问题,其目标函数和(或)约束条件很 难用线性函数表达。如果目标函数和(或)约束条件中包含有自 变量的非线性函数,则这样的规划问题就属于非线性规划。
其中, x(x1,x2, ,xn)T, f(x)g ,i(x)h ,j(x)为 x的实值函 简记为MP(Mathematical Programming)
生产运筹非线性规划的基本概念 (PPT 78页)
➢(2)简记形式: 引入向量函数符号:
h (x) (h 1(x) ,,h q(x)T ) g (x ) (g 1(x ) ,,gp(x )T )
则称 x* 是(MP)的局部最优解或局部极小解, 称f(x*)是( MP )的局部最优值 极或 小局 值部
梁尺寸可使木梁成本最小.
x1 x2
设矩形横截面的高度为 x 1 , 宽度 为 x 2 ,则圆形木材的半径
r x1 2 x2 2 2 2
而木梁长度无法改变,因此成本只与圆形 木材的横截面积有关。
非线性规划方案山大刁在筠运筹学讲义
非线性规划方案山大刁在筠运筹学讲义那天,阳光透过窗户洒在我的书桌上,我翻看着山大刁在筠教授的运筹学讲义,非线性规划这一章节引起了我的兴趣。
思绪如泉水般涌出,我决定以意识流的方式,写下这篇非线性规划方案。
一、问题的提出非线性规划是运筹学中的一个重要分支,它研究的是在一组约束条件下,如何找到使目标函数取得最优解的问题。
这类问题在实际应用中广泛存在,如生产计划、资源分配、投资决策等。
山大刁在筠教授的讲义中,以一个具体的生产问题为例,引导我们深入探讨非线性规划的方法。
二、方案的构建1.确定目标函数我们要明确目标函数。
在生产问题中,我们通常追求的是最大化利润或最小化成本。
以最大化利润为例,我们可以将目标函数表示为:maxf(x)=p1x1+p2x2++pnxn其中,x1,x2,,xn分别表示各种产品的产量,p1,p2,,pn表示相应产品的单位利润。
2.构建约束条件我们要构建约束条件。
约束条件通常包括资源约束、技术约束、市场约束等。
以资源约束为例,我们可以将其表示为:a11x1+a12x2++a1nxn≤b1a21x1+a22x2++a2nxn≤b2am1x1+am2x2++amnxn≤bm其中,a11,a12,,amn表示各种资源消耗系数,b1,b2,,bm表示各种资源的总量。
3.确定求解方法构建好目标函数和约束条件后,我们需要选择合适的求解方法。
非线性规划问题的求解方法有很多,如拉格朗日乘子法、KKT条件、序列二次规划法等。
在实际应用中,我们需要根据问题的特点选择合适的方法。
三、方案的实施1.确定初始解在实际操作中,我们通常需要先确定一个初始解。
这个初始解可以是任意一个满足约束条件的解。
我们可以通过观察目标函数和约束条件的图形,或者使用启发式算法来找到一个合适的初始解。
2.迭代求解3.分析结果求解完成后,我们需要对结果进行分析。
我们要检查最优解是否满足所有约束条件。
如果满足,那么我们可以将最优解应用于实际问题中。
非线性规划课件
②再固定x₂=x₂ (1): 求以x₁为单变量的目标函数的极值点,
得 X(2)=(x,(2),x₂ (1))T ,S(2)=f(X(2))
此时S(2)优于S(1), 且搜索区间缩短为x₁*∈[x,(2),b,],x₂*∈[x₂ (1),b₂] 第二步:如此交替搜索,直至满足给定精度ε为止
否则,继续缩短区间,
直至满足给定的精度为
①f(x₂)≥f(xq), 取[aq=ao,b,=x,]
X₁ =X2
x'2=b₁-λ(b₁-aq) ②f(x₂)<f(x₁), 取[a=x2,b,=b,]
x=aq+λ(b₁-aq)
10
x₂ =x₁
例 求 解 f(x)=-18x²+72x+28 的极大值点,δ≤0.1,起始搜索区间为[0,3] 解:①用间接法:令 f'(x)=-36x+72=0, 得驻点 x=2
xq*∈[aq,b,],x²*∈[a₂ ,b₂ ],.,x*∈[an,b,]
1、原理: ①从起点 X(0) 出发,沿平行于 x, 轴的方向P(1)进行一维搜索,
求得 f(X) 在该方向P(1)上近似极值点 X(1);
②从点 X(1) 出发,沿平行于 x₂ 轴的方向P(2)进行一维搜索,
求得 f(X) 在该方向P(2)上近似极值点 X(2); ③从点 X(2) 出发,照此交替进行下去,直至满足给定的精度ε为止
六、 寻优方法概述:
1、N.L.P.问题分类
① 无约束条件的NLP问题。 ② 有约束条件的NLP问题。 2、寻优方法
① 间接法(解析法):适应于目标函数有简单明确的数学表达式。
非线性规划
非线性规划非线性规划(Nonlinear Programming ,简记为NP)研究的对象是非线性函数的数值最优化问题,是运筹学的最重要分支之一,20世纪50年代形成一门学科,其理论和应用发展十分迅猛,随着计算机的发展,非线性规划应用越来越广泛,针对不同的问题提出了特别的算法,到目前为止还没有适合于各种非线性规划问题的一般算法,有待人们进一步研究.§1 非线性规划基本概念一、引例例7.1 一容器由圆锥面和圆柱面围成. 表面积为S ,圆锥部分高为h ,h 和圆柱部分高2x 之比为a ,1x 为圆柱底圆半径.求21,x x 使面积最大.解: 由条件 a x h =2/22121231x x x ax V ππ+=21212222112221x x x x a x x S πππ+++⋅⋅=所以,数学模型为:212)311(max x x a V π+=s.t. S x x x x a x x =+++21212222112πππ0,21≥x x例7.2 某高校学生食堂用餐,拟购三种食品,馒头0.3元/个,肉丸子1元/个,青菜0.6/碗.该学生的一顿饭支出不能够超过5元.问如何花费达到最满意?解: 设该学生买入馒头,肉丸子,青菜的数量分别为321,,x x x ; 个人的满意度函数即为效用函数为321321321),,(aaax x Ax x x x u =.于是数学模型为321321321),,(max aaax x Ax x x x u =s.t.56.03.0321≤++x x x 321,,x x x 为非负整数二、数学模型称如下形式的数学模型为数学规划(Mathematical Programming 简称MP ) )(min x f z = (7.1) (MP ) t s . 0)(≥x g i m i ,,1 = (7.2) 0)(=x h j l j ,,1 = (7.3)其中Tn x x x x ),,,(21 =是n 维欧几里得空间nR 中的向量(点),)(x f 为目标函数,0)(,0)(=≥x h x g j i 为约束条件.称满足约束条件的向量x 为(MP )问题的一个可行解,全体可行点组成的集合称为可行域.K ={}l j x h mi x g R x j i n,,2,10)(,,2,10)( ===≤∈如果)(),(),(x h x g x f j i 均为线性函数,就是前面所学的线性规划问题(LP).如果至少有一个为非线性函数称为非线性规划问题.由于等式约束0)(=x h j 等价于下列两个不等式约束 0)(,0)(≥-≥x h x h j j 所以(MP)问题又可表示为 )(min x f z =s.t. 0)(≥x g i m i ,,1 = (7.4) 三、数学基础 1、线性代数知识考虑二次型Az z T ,z 为n 维向量正定的二次型:若对于任意0≠z ,有0>Az z T; 半正定的二次型:若对于任意0≠z ,有0≥Az z T ; 负定的二次型:若对于任意0≠z ,有0<Az z T ; 半负定的二次型:若对于任意0≠z ,有0≤Az z T ;不定二次型:0≠∃z ,有0>Az z T,又0≠∃z ,有0<Az z T.二次型Az z T 为正定的充要条件是它的矩阵A 的左上角各阶主子式都大于零. 二次型Az z T 为负定的充要条件是它的矩阵A 的左上角各阶主子式负正相间.2、分析数学知识(1)方向导数和梯度(二维为例)考虑函数),(21x x f Z =,及方向j i lϕϕsin cos +=梯度:Tx f x f j x f i x f x x f ),(),(212121∂∂∂∂=∂∂+∂∂=∇ ; 方向导数:⎪⎪⎭⎫⎝⎛∂∂∂∂=∂∂+∂∂=∂∂ϕϕϕϕsin cos ),(sin cos 2121x f x f x f x f l f )),,(cos(||),(||),(),(21212121l x x gardf x x gardf lx x gardf lx x f T=⋅=⋅∇=考虑等值线00201),(c x x f =上一点),(0201x x 梯度方向 ),(0201x x gardf 即为法线方向n.如果)(x f 二次可微,称⎪⎪⎪⎪⎪⎭⎫⎝⎛=)()()()()()()()()()(212222111211x h x h x h x h x h x h x h x h x h x H nn n n n n为)(x f 在点 x 处的Hesse 矩阵.(2)多元函数泰勒公式:若)(,),(0x f R S x x f u n⊆∈=在点0x 处的某个领域具有二阶连续偏导数,则有x x x f x x x f x f x x f T T∆∆+∇∆+∆∇+=∆+)(21)()()(02000θ 10≤≤θ )||(||)(21)()(||)(||)()(2020000x x x f x x x f x f x x x f x f T TT ∆+∆∇∆+∆∇+=∆+∆∇+=οο 四、最优解的类型定义7.1 (MP)问题的一个可行点*x 被称为整体极小点,如果对于任意的可行点K x ∈,都有不等式)()(*x f x f ≥成立.如果对于任意可行点*,x x K x ≠∈均有)()(*x f x f >,称点*x 是)(x f 的可行解集K上的严格整体极小点.定义7.2 问题(MP)的一个可行点*x 被称为一个局部极小点,如果存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*≥x f x f 成立.如果对任意的可行点K x ∈,*≠x x ,存在一个正数ε使得对于所有满足关系式ε<-*x x 的可行点x 都有)()(*>x f x f 成立.则称*x 是)(x f 在K 上的一个局部严格极小点.显然整体极小点一定是局部极小点,反之不然. 五、凸规划定义7.3 集合K 被称为nR 中的一个凸集,如果对于K 中任意两点21,x x 和任一实数]1,0[∈λ,点K x x ∈-+21)1(λλ.几何解释:当一个集合是凸集时,连接此集合中任意两点的线段也一定包含在此集合内,规定φ空集是凸集.定义7.4 凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x 和任意实数]1,0[∈λ有不等式)()1()())1((2121x f x f x x f λλλλ-+≤-+成立.严格凸函数:)(x f 是凸集K 上的实值函数,如果对于K 中任意两点21,x x ,21x x ≠和任意实数)1,0(∈λ,有不等式)()1()())1((2121x f x f x x f λλλλ-+<-+成立.定义7.5 )(x f 是定义在凸集K 上的实值函数,如果)(x f -是K 上凸函数,称)(x f 是凹函数.定理7.1 设)(x f 是凸集K 上的凸函数,则)(x f 在K 中的任一局部极小点都是它的整体极小点.证明: 设*x 是一局部极小点而非整体极小点,则必存在可行点K x ∈(可行域))()(*x f x f <∍.对任一]1,0[∈λ,由于)(x f 的凸性,有 )()()1()())1((***x f x f x f x x f ≤-+≤-+λλλλ当0→λ时,*)1(x x λλ-+与*x 充分接近,与*x 是局部极小矛盾. 证毕. 定义7.6 设有(MP)问题)(min x f kx ∈,若可行域K 是凸集,)(x f 是K 上的凸函数,则称此规划问题为凸规划.定理7.2 凸规划的任一局部极小解为整体极小解. 六、非线性规划问题的求解方法 考虑(MP)问题:lj x h m i x g t s x f j i ,,10)(,,10)(.)(min ===≥ (7.5) 一般来说,MP 问题难以求得整体极小点,只能求得局部极小点.以后我们说求(MP)问题,指的是求局部极小点.1、无约束极小化问题(UMP ) )(min x f nRx ∈ (7.6) 这里)(x f 是定义在n R 上的一个实值函数定理7.3(一阶必要条件)如果)(x f 是可微函数.*x 是上述无约束问题(UMP )的一个局部极小点或局部极大点的必要条件是:0)(*=∇x f .满足0)(=∇x f 的点称为平稳点或驻点.定理7.4 设)(x f 为定义在n R 上的二阶连续可微函数,如果*x 是)(x f 的一个局部极小点,必有nT Ry y x H y x f ∈∀≥=∇0)(0)(**这里)(*x H 表示)(x f 在*x 处的Hesse 矩阵.证明:nE y ∈∀,根据)(x f 在点*x 处的展开式有)()(21)()(2*2**λολλ++=+y x H y x f y x f T)0)((*=∇x f若0)(,*<∍∈∃y x H y R y T n ,当λ充分小时,有 )()(21|2*2λολ>y x H y T∴有)()(**x f y x f <+λ.这和*x 是)(x f 的极小矛盾.定理7.5 设)(x f 是定义在nR 上的二阶连续可微函数,如果点*x 满足0)(*=∇x f ,而且存在*x 的一个邻域0)(),(,),(*≥∈∀∈∀∍*y x H y x x R y x T n 有 ,则*x 是)(x f 的一个局部极小点.在高等数学中求解极值点方法先求出满足0)(=∇x f 的点及不可导点.在这些点判断)(x f 是否取得极小值.2、等式约束的极小化问题考虑 )(min x fl j x h t s j ,,10)(. == (7.7)定义7.7 如果)(,),(),(21x h x h x h l ∇∇∇ 在点x 处线性无关,则称点x 是此约束条件的一个正则点.Langrange 乘子法:引进拉格朗日函数 ∑=-=lj jj x h u x f u x L 1)()(),(其中Tl u u u u ),,,(21 =被称为拉格朗日乘子向量.定理7.6 设l j x h x f j ,,1),(),( =是连续可微函数,*x 是)(x f 在可行集中的一个局 部极小点.在*x 是正则点的假定下必存在一个拉格朗日乘子向量u ,使得),(*u x 满足方程组)(0)()(*1**==∇-∇∑=x h x h u x f lj j j对等式约束,用拉格朗日乘子法求解出平稳点,判断是否极值点.用上述解析法求解无约束和等式约束极值问题的平稳点,再判断是否为极值点.该方法有一定的局限性:(1)它们要求函数是连续的,可微的,实际问题中不一定满足这一条件; (2)上述求平稳点的方程组求解比较困难,有些解不出来; (3)实际问题中有大量的不等式约束.因此求解非线性规划应有更好的新方法.实际应用中一般用迭代法来求解非线性规划问题,即求近似最优解的方法.3、非线性规划问题的求解方法—迭代法迭代法一般过程为:在(MP)问题的可行域K 内选择初始点0:,0=k x ,确定某一方向k p ,使目标函数)(x f 从k x 出发,沿k p 方向使目标函数值下降,即)0(,>∈+=λλK p x x k ,有)()(0x f x f <,进一步确定kλ,使)(m i n )(0k k k k k p x f p x f λλλ+=+>,令k k k k p x x λ+=+1.如果1+k x 已满足某终止条件,1+k x 为近似最优解.否则,从1+k x 出发找一个方向1+k p ,确定步长1+k λ,使K p x x k k k k ∈+=++++1112λ,有)(min )(1102++>++=k k k p x f x f λλ.如此继续,将得到点列{}kx .显然有 >>>>)()()(1kx f x f x f ,即点列{}kx 相对应的目标函数是一个单调下降的数列.当{}kx 是有穷点列时,希望最后一个点是(MP)问题的某种意义下的最优解.当{}kx 为无穷点列时,它有极限点,其极限点是(MP)的某种意义下的最优解(此时称该方法是收敛的).迭代法求解(MP)的注意点:该方法构造的点列{}kx ,其极限点应是近似最优解,即该算法必须是收敛的.迭代法一般步骤:①. 选取初始点0x ,0:=k ②. 构造搜索方向kp ③. 根据kp 方向确定k λ ④. 令k k k k p x xλ+=+1⑤. 若1+k x已满足某终止条件,停止迭代,输出近似最优解1+k x.否则令1:+=k k ,转向第②步.计算终止条件在上述迭代中有:若1+k x满足某终止条件则停止计算,输出近似最优解1+k x.这里满足某终止条件即到达某精确度要求.常用的计算终止条件有以下几个:(1)自变量的改变量充分小时,11||||ε<-+k k x x,或21||||||||ε<-+kk k x x x ,停止计算. (2)当函数值的下降量充分小时,31)()(ε<-+k kx f x f ,或41|)(|)()(ε<-+k k k x f x f x f , 停止计算.(3)在无约束最优化中,当函数梯度的模充分小时51||)(||ε<∇+k x f ,停止计算.迭代法的关键:① 如何构造每一轮的搜索方向kp ② 确定步长k λ关于k λ,前面是以)(min kk p x f λλ+产生的,也有些算法k λ取为一个固定值,这要根据具体问题来确定.关于kp 的选择,在无约束极值问题中只要是使目标函数值下降的方向就可以了,对于约束极值问题则必需为可行下降方向.定义7.8 设0,,:1≠∈→p R x R R f nn,若存在0>δ使),0(δλ∈∀,)()(x f p x f <+λ则称向量p 是函数)(x f 在点x 处的下降方向.定义7.9 设0,,,≠∈∈∈p R p K x R K nn,若存在0>λ使得K p x ∈+λ,称向量p 是点x 处关于K 的可行方向. 若一个向量p 既是目标函数f 在点x 处的下降方向,又是该点处关于可行域K 的可行方向,则称p 为函数f 在点x 处关于区域K 的可行下降方向.根据不同原理产生了不同的kp 和k λ的选择方法,就产生了各种算法. 在以后的讨论中,一维极值的优化问题是讨论求解步长k λ.无约束极值中讨论的最速下降法,共轭方向法,坐标轮换法,牛顿法,变尺度法及有约束极值中讨论的可行方向法都是根据不同的原理选择kp 得到的迭代算法.七、迭代算法的收敛性定义7.10 设有一算法A ,若对任一初始点(可行点),通过A 进行迭代时,或在有限步后停止得到满足要求的点;或得到一个无穷点列,它的任何一个聚点均是满足要求的点,则称此算法A 具有全局收敛性.定义7.11 设(UMP )问题的目标函数Px Qx x x f T+=21)(,Q 为对称半正定矩阵, 若由算法A 进行迭代时,不论初始点0x 如何选择,必能在有限步后停止迭代,得到所要求的点,则称此算法A 有二次有限终止性.定义7.12 设序列{}kr收敛于*r,定义满足∞<=--≤**+∞−→−βhkk k rr r r 1______lim0的非负数h 的上确界为{}k r 的收敛级.若序列的收敛级为h ,就称序列是h 级收敛的.若1=h 且1<β就称序列是以收敛比β线性收敛的. 若1>h 或1=h 且0=β就称序列是超线性收敛的. 如何判别算法的收敛性和收敛速度问题本书不讨论.本书给出的算法中,最速下降法具有全局收敛性、是线性收敛的;改进牛顿法具有全局收敛性、二次有限终止性、是二阶线性收敛的;变尺度法和共轭方向法具有全局收敛性和二次有限终止性、是超线性收敛的;Zoutenddijk 法不具有全局收敛性、改进的T-V 法具有全局收敛性;制约函数法具有全局收敛性.关于这些算法的收敛性的讨论和证明有兴趣的读者可参考其他文献.§2 一维极值问题的优化方法前面讨论迭代算法时,从kx 出发确定沿k p 方向的步长k λ是这样求解的),(min 0k k p x f λλ+>这里k x ,k p 已知.所以,若记)()(λλg p x f k k =+,则为求解)(min 0λλg >的过程.于是我们考虑如下形式的极值问题.)(min x f bx a ≤≤ (7.8)b a R x ,,1∈为任意实数很显然可应用高等数学中学过的解析法,即令0)('=x f 求出平稳点,但如前面所述如果该方程解不出来,怎么办?可用下述迭代算法—0.618法.定义7.13 )(x f 定义在],[b a 上,若存在点∍∈],[*b a x 当*x y x ≤<,有)()(y f x f >,当*x y x ≥>时,)()(y f x f >,称)(x f 在],[b a 中为单峰函数(单谷函数).显然满足定义要求的点*x 是)(x f 在],[b a 中的极小点.在],[b a 中任选两点21,x x ,且b x x a <<<21,根据)(x f 的单峰性,若)()(21x f x f <,则*x 必然位于],[2x a 内,如果)()(21x f x f >,则*x 必然位于],[1b x 内.如果)()(21x f x f =,则*x 必然位于],[21x x ,记此区间为],[11b a .如此继续,得闭区间套⊃⊃⊃⊃],[],[],[11n n b a b a b a .显然 ,1,0],,[*=∈i b a x i i ,又0→-i i a b .由闭区间套性质, *x 为极小值点.闭区间套的选择方法不同,求得的*x 的快慢及求解过程的计算量是不一样的,有一个常用的方法是0.618法.0.618法: 取],[],[b a =βα① 在],[βα中选取1λ和2λ,)(618.0),(382.021αβαλαβαλ-+=-+=,求出)(1λf 和)(2λf 进入②.② 若)()(21λλf f <,取],[],[2λαβα=,若αλ-2已足够小,停止,否则进入③.若)()(21λλf f >,取],[],[1βλβα=,若1λβ-已足够小,停止,否则进入④. 若)()(21λλf f =,取],[],[21λλβα=,若12λλ-已足够小,停止,否则进入①. ③ 取上一步中的1λ为2λ,显然有)(618.02αβαλ-+=,令)(382.01αβαλ-+=,求出)(1λf ,返回②.④ 取上一步的2λ为1λ,则有)(382.01αβαλ-+=,令)(618.02αβαλ-+=,求出)(2λf 返回②.设初始区间为],[b a ,用0.618法,经过k 次迭代后],[βα的长度ka b 618.1)(-=-αβ,只要k 充分大αβ-可以小于任何给定的正数.例7.3 用0.618法求解λλλ2)(min 2+=f单峰区间为[-3,5],2.0=ε解:[α,β]=[-3,5]1λ=-3+0.382×8=0.056 )(1λf =0.1152λ=-3+0.618×8=1.944 )(2λf =7.667由于)(1λf <)(2λf 所以新的不定区间为[α,β] =[-3,1.944] 由于β-α=4.944>0.22λ:=1λ=0.056 )(2λf :=)(1λf =0.115 1λ=-3+0.382×4.944=-1.112 )(1λf =-0.987如此反复得下表7-1:在进行8次迭代后,2.0112.1936.0<+-=-αβ取中间值024.1*-=λ或032.12-=λ作为近似最优解.显然真正极小点是-1.0.一维收索方法很多,如函数逼近法、牛顿法等可参考其他文献.§3 无约束极值的优化方法考虑无约束最优化问题(UMP ))(min x f nR x ∈ (7.9) 前面已经讨论过,求解此无约束优化问题,可以求出平稳点及不可导点的方法.令0)(*=∇x f ,求出平稳点.如果)(*2x f ∇是正定的,则*x 是UMP 的严格局部最优解.若)(x f 在n R 上是凸函数,则是整体最优解.在求解0)(*=∇x f 这n 维方程组比较困难时,就用最优化算法——迭代法.本节将介绍最速下降法,牛顿法,共轭方向法,坐标轮换法,变尺度法.这些算法就是用不同的方法来选择搜索方向k p 而得到的.当然kp 必须是下降方向.定理7.7 设R R f n→:,在点x 处可微,若存在nR p ∈,使0)(<∇p x f T,则向量p是f 在x 处的下降方向.证明:)(x f 可微(在x 处),由泰勒展开式,有 ||)(||)()()(p p x f x f p x f Tλολλ+∇+=+ ,0,0)(><∇λp x f T0)(<∇∴p x f Tλ),(当δλδ0∈∃∴时,有0||)(||)(<+∇p p x f Tλολ),0()()(δλλ∈∀<+∴x f p x fp ∴是)(x f 在点x 的下降方向. 证毕.一、最速下降法最速下降法又称梯度法,选择负梯度方向作为目标函数值下降的方向,是比较古老的一种算法,其它的方法是它的变形或受它的启发而得到的,因此它是最优化方法的基础. 基本思想:迭代法求解无约束最优化(5.9)问题的关键是求下降方向kp .显然最容易想到的是使目标函数值下降速度最快的方向.从当前点kx 出发,什么方向是使)(x f 下降速度最快呢? 由泰勒展开知:||)(||)()()(k k T k k k k p p x f p x f x f λολλ+∇-=+-略去λ的高阶无穷小项,取)(kkx f p -∇=时,函数值下降最多.而)(kx f ∇为)(x f 在kx 处的梯度,所以下降方向kp 取为负梯度方向时,目标函数值下降最快.最速下降法:①. 取初始点0x ,允许误差0>ε,令0:=k ②. 计算)(kkx f p -∇=③. 若ε<||||k p ,停止,点k x 为近似最优解.否则进入④.④. 求 k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥ ⑤. 令kk k k p x xλ+=+1,1:+=k k ,返回②例7.4 用最速下降法求解下列无约束优化问题1222121225),(m in x x x x x f -+=取初始点Tx )2,2(0= 终止误差 610-=ε解:很显然,该问题的整体最优解为Tx )0,1(*=⎪⎪⎭⎫⎝⎛-=∇215022)(x x x f ,令0,10)(21==⇒=∇x x x f易验证)(*2x f ∇是正定的, ∴是整体最优解. 下面用最速下降法求解T T x x x f x f x f )50,22(),()(2121-=∂∂∂∂=∇ T x )2,2(0=T x f )100,2()(0=∇∴取Tp )100,2(0-=由⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+λλλλ10022210022200p x4)22(2)1002(25)22()(2200+---+-=+λλλλp x f得0)1002(5000)22(4=----=λλλd df020007679.0500008100080==⇒λ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+=0007679.0959984642.11002020007679.0220001p x x λ重复上述过程得 Tx )01824717.0,009122542.1(2=789850288.0)(,078282.0)(,100)(21-=-==x f x f x f图7-1从图7-1可知,{}kx 随着迭代次数的增加,越来越接近与最优解)0,1(,同时也看到,随着迭代次数的增加,收敛速度越来越慢.极小点附近沿着一种锯齿形前进,即产生“拉锯”现象:{}kx沿相互正交的方向小步拐进,趋于最优解的过程非常缓慢.这种现象怎样解释?如何克服?在求k λ时,由于)()(kkp x f λλϕ+=,求导得0)('=λϕ,k λ是)(λϕ的极小点.故有0)()('=⋅+∇=k T k k k k p p x f λλϕ,即0)(=⋅+∇kk k k p p x f λ,又)(11++-∇=k k x f p,即0)(1=⋅+k T k p p 或0)()(1=∇⋅∇+k T k x f x f .也就是最速下降法相邻两个搜索方向是彼此正交的.因此最速下降法是局部下降最快,但不一定是整体下降最快的.在实际应用中一般开始几步用最速下降法,后来用下面介绍的牛顿法.这样两个算法结合起来,求解速度较快.二、牛顿法 基本思想:考虑无约束优化问题(5.9))(min x f nRx ∈ 由前面的讨论知,若能解出方程组0)(=∇x f ,求出平稳点*x ,则可验证*x 是否为极值点.由于0)(=∇x f 难以求解.如果)(x f 具有连续的二阶偏导数,则考虑用)(x f 在点*x 二阶泰勒展开式条件替代)(x f ∇,即由22||)(||))(()(21)()()()(k k k T k k T k k x x x x x f x x x x x f x f x f -+-∇-+-∇+=ο))(()(21)()()()()(2kk T k k T k k x x x f x x x x x f x f x g x f -∇-+-∇+=≈⇒令0))(()()()(2=-∇+∇=∇≈∇kk k x x x f x f x g x f)())((121k k k k x f x f x x ∇∇-=⇒-+即从kx 出发,搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为1,得到下一个迭代点1+k x.牛顿法:①. 选取初始点0,0=:k x ,精度0>ε ②. 计算)(kx f ∇,如果ε≤∇||)(||kx f ,计算终止.否则计算)(2kx f ∇,求出搜索方向)())((12kk k x f x f p ∇∇-=-. ③. 令1:,1+=+=+k k p x x k k k ,返回②.例7.5 考虑无约束问题22122214)(m in x x x x x f -+=试分别取初始点(1)T x )1,1(0=,(2)T x )4,3(0=(3)Tx )0,2(0=,取精度要求310-=ε,用牛顿法求解.解:⎪⎪⎭⎫ ⎝⎛--=∇212211228)(x x x x x x f ⎪⎪⎭⎫⎝⎛---=∇22228)(1122x x x x f (1) 取Tx )1,1(0=有Tx f )1,6()(0=∇ ε>=∇0828.6||)(||0x f⎪⎪⎭⎫⎝⎛--=∇2226)(02x fT x f x f p )2500.2,7500.1()())((01020--=∇⋅∇-=-Tp x x )2500.1,7500.0(01--=+= 重复计算结果得表7-2.ε<=0||)(||4x f T x )0,0(4=∴为近似最优解.实际上,该问题最优解为**)0,0(=x(2) 取Tx )4,3(0=,同上计算,得TT x x x )4,8284.2(,)4,8333.2(),4,3(21===有ε<=∇=∇=∇0||)(||,1667.0||)(||,1||)(||210x f x f x f ,这一迭代结果收敛到)(x f 的鞍点T)4,22(.(3) 取Tx )0,2(0=T x f )4,16()(0-=∇ ⎪⎪⎭⎫⎝⎛--=∇2448)(02x f0)(02=∇x f , 即)(02x f ∇不可逆,所以无法求得点1x .牛顿法的主要缺点:(1) 该法的某次迭代反而使目标函数值增大(见上例).(2) 初始点0x 距极小点*x 较远时,产生的点列{}kx可能不收敛,还会出现)(*2x f ∇的奇异情况.(3) )(*2x f ∇的逆矩阵计算量大. 牛顿迭代法的主要优点:当目标函数)(x f 满足一定条件,初始点0x 充分接近极小点*x 时,由牛顿法产生的点列{}kx 不仅能够收敛到*x,而且收敛速度非常快.实际应用中常将最速下降法和牛顿法结合起来使用.牛顿法的改进:上面介绍的牛顿法中,kx 处的搜索方向为)())((12kkkx f x f p ∇∇-=-,步长恒为 1.若通过一维搜索来取最优步长k λ,可防止在迭代中步长恒为1时标目标函数值增大的可能. 改进的牛顿法:①. 取初始点nR x ∈0,允许误差0:,0=>k ε.②. 检验是否满足ε<∇||)(||kx f ,若是,迭代停止,得到k x 为近似最优解.否则进入③.③. 令)())((12kk k x f x f p ∇∇-=-.④. 求k λ,使)()(min kk k k k p x f p x f λλλ+=+. ⑤. 令k k k k p x x λ+=+1,令1+=k k :转②.三、坐标轮换法既然求解非线性规划问题的迭代法是给出初始点0x ,求出一个方向kp ,根据kp 确定步长k λ,使k k k k p x xλ+=+1,如果1+k x 满足某精度要求则停止,否则继续找方向1+k p .显然构造出搜索方向有一定的困难,能否按既定的搜索方向寻找最优解,省去找搜索方向kp 呢?在最速下降法中我们看到相邻两个搜索方向kp 和1+k p是正交的.我们知道在n 维欧氏空间中坐标轴向量n εεε,,,21 是正交的,可否选坐标轴向量为搜索方向kp 为呢?回答是肯定的,这样我们得到了坐标轮换法.基本思想:从1x 出发,取11ε=p ,沿1p 进行一维搜索得到1112p x x λ+=.若2x 满足精度要求,则停止.否则取22ε=p ,2223p x x λ+=.如此继续,, 取n n n n n n p x x p λε+==+1,,若1+n x 满足精度要求,则停止.否则令11ε=+n p ,1112+++++=n n n n p x x λ,如此反复连续,可以求出近似最优解.坐标轮换法的缺点是收敛速度较慢,搜索效率较低,但基本思想简单,沿坐标轴的方向进行搜索.四、共轭方向法和共轭梯度法共轭方向法是一类方法的总称,它原来是为求解目标函数为二次函数的问题而设计的.这类方法的特点是:方法中的搜索方向是与二次函数的系数矩阵Q 有关的所谓共轭方向,用这类方法求解n 元二次函数的极小化问题最多进行n 次一维搜索便可以得到极小点.由于可微的非二次函数在极小点附近的性态近似于二次函数,因此这类方法也用于求可微的非二次函数的UMP 问题.定义7.14 设Q 为n n ⨯对称正定矩阵,如果0=Qy x T称n 维向量x 和y 关于Q 共轭.定义7.15 设k p p p ,,,21 为nR 中一组向量, Q 是一个n n ⨯对称正定矩阵.如果k j i j i Qp p Qp p i T i j T i ,,2,1,,,0,0 =≠≠=,称k p p p ,,,21 为Q 共轭向量组,也称它们为一组Q 共轭方向.当E Q =(单位矩阵)时,为正交方向.定理7.8 若k p p p ,,,21 为矩阵Q 共轭向量组,则它们必线性无关. 证明: 若存在k l l l ,,,21 ,使011=++k k p l p l ,则对任一k j ,,2,1 =,由 0)(11===∑∑==j T j j ki j T j iki iiT jQp p l Qp pl p l Q p又0>j Tj Qp p , 0=∴j l∴ k p p p ,,,21 线性无关. 证毕.由高等代数知识可知, Q 共轭向量组中最多包含n 个向量, n 是向量的维数.反之,可以证明,由n 维空间的任一组基出发可以构造出一组Q 共轭方向11,,,-n pp p .前面我们已经讲述了坐标轮换法,在n 维欧几里德空间中, n εεε,,,21 是一组线性无关的正交向量.从0x 出发,依次使用n εεε,,,21 作为下降方向进行一维精确搜索来确定n x x x ,,,21 ,重复进行得点列{}k x ,最终求得满足精度要求的最优解.刚才我们引进了共轭向量组11,,,-n p p p ,又证明了它们的线性无关性,那么是否可以用这共轭向量组像坐标轮换法一样,从0x 出发依次用11,,,-n pp p 作为下降方向来确定{}kx,最终求得近似最优解?回答是肯定的.这个方法称为共轭方向法.共轭方向法适合任何可微凸函数,且对于二次函数极值)(min x f x p Qx x T T+=21特 别有效.下面的定理告诉我们用共轭方向法求解二次函数的极值,经过n 次迭代就能求得最优解.定理7.9 设Q 为n n ⨯对称正定矩阵,函数x p Qx x x f T T+=21)(,又设 110,,,-n p p p 为一组Q 共轭向量组,且每个i p 是(下面形成的)i x 点处的下降方向.则由任一点0x 出发,按如下迭代至多n 步后收敛,k k k k p x xλ+=+1,这里k λ满足)(m i n )(0k k k k k p x f p x f λλλ+=+>.证明: 欲证至多n 步收敛,即证0)(=∇nx f .下证)(nx f ∇和11,,,-n pp p 正交.p Qx x f +=∇)( p Qx x f kk+=∇∴)( p p x Q p Qx xf k k k k k ++=+=∇++)()(11λkk k k k k Qp x f p Qp Qx λλ+∇=++=)( =+∇=∇---111)()(n n n n Qpx f x f λ 11111)(--++++++∇=n n k k k Qp Qp xf λλQ p Q p x f x f Tn n T k k T k T n )()()()(11111--++++++∇=∇λλkT n n k T k k k T k k T n Qp p Qp p p x f p x f )()()()(11111--++++++∇=∇λλ000+++= )2,,2,1,0(-=n k 又0)(1=∇-n Tn px f0)(=∇∴kT n p x f )1,,1,0(-=n k)(nx f ∇∴和11,,,-n pp p 正交, 又110,,,-n pp p 线性无关.0)(=∇∴nx fnx ∴是问题的最优解. 证毕. 共轭方向法具有二次有限终止性. 由于共轭方向组11,,,-n p p p 的取法有很大的随意性,用不同方式产生一组共轭方向就得到不同的共轭方向法.如果利用迭代点处的负梯度向量为基础产生一组共轭方向,这样的方法叫共轭梯度法.下面对二次函数讨论形成Q 共轭梯度方向的一般方法,然后引到求解无约束化问题上.任取初始点n R x ∈0,若0)(0≠∇x f ,取)(0x f p -∇=,从0x 点沿方向0p 进行一维搜索 ,求得0λ.令0001p x x λ+=,若0)(1=∇x f ,则已获得最优解1*x x =.否则,取0011)(p x f p υ+-∇=,其中0υ的选择要使1p 和0p 关于Q 共轭,由0)(01=Qp p T ,得0100)()()(Qp p x f Q p T T ∇=υ一般地,若已获得Q 共轭方向kp p p ,,,1和依次沿它们进行一维搜索的得到的点列110,,,+k x x x ,若0)(1=∇+k x f ,则最优解为1*+=k x x ,否则∑=+++-∇=ki i i k k p xf p011)(α为使1+k p 和11,,,-k pp p 是共轭,可证0110====-k ααα所以有 k k k k p x f pυ+-∇=++)(11又1+k p和kp 是Q 共轭的.有0)(1=+k Tk Qp p,得kT k k T k k Qpp x f Q p )()()(1+∇=υ 2,,2,1,0-=n k 进一步可得k υ221||)(||||)(||k k x f x f ∇∇=+ 2,,1,0-=n k综合起来得 Fletcher-Reeves 公式2)21110||(||||)(||)()(k k k k k k k x f x f p x f px f p ∇∇=+-∇=-∇=+++υυ 2,,2,1,0-=n k (7.10)共轭梯度法: ①. 选取初始点0x ,给定终止误差0>ε. ②. 计算)(0x f ∇,若ε≤∇||)(||0x f ,停止迭代,输出0x .否则进行③.③. 取)(0x f p -∇=,令0:=k④. 求k λ,)(min )(0kkkk kp x f p x f λλλ+=+≥,令k k k k p x xλ+=+1⑤. 计算)(1+∇k xf ,若ε≤∇+||)(||1k x f ,停止迭代,1*+=k x x 为最优解.否则转⑥.⑥. 若n k =+1,令nx x =:0,转③(已经完成一组共轭方向的迭代,进入下一轮)否则转⑦ ⑦. 取kk k k p xf pυ+-∇=++)(11,其中221||)(||||)(||k k k x f x f ∇∇=+υ,令1:+=k k ,转④当)(x f 是二次函数时上述共轭梯度法至多进行n 步可求得最优解.当)(x f 不是二次函数,共轭梯度法也可以构造11,,,-n p p p ,但已不具有有限步收敛的性质,于是和坐标轮换法一样经过一轮迭代后,采用重新开始的技巧.上述共轭梯度法就是带有再开始技巧的F-R 法.例7.6 用F-R 法求下面问题 2212121252),(m in x x x x x f +-=取初始点T x )2,2(0=,终止误差为610-=ε解:在例7.4中已得Tx f p )100,2()(0-=-∇= Tx )0007679.0,959984642.1(1-= Tx f )038395.0,919969284.1()(1-=∇000368628.010004687756228.3||)(||||)(||20210==∇∇=x f x f υ ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=+-∇=0015322.092070654.11002000368628.0038395.0919969284.1)(0011p x f p υ⎪⎪⎭⎫ ⎝⎛+--=+0015322.00007679.092070654.1959984642.111λλλp x0378228399.7687703443.3)(11=+-=+λλλd p x df499808794.01=∴λ⎪⎪⎭⎫ ⎝⎛≈⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫⎝⎛⨯+--⨯+=+=010********.0999998622.00015322.0499808794.00007679.0)92070654.1(499808794.0959984642.11112p x x λε<=∇0||)(||2x f , ∴最优解⎪⎪⎭⎫⎝⎛==012*x x .五、变尺度法当初始点为)(x f 的其极值点附近时牛顿法收敛速度很快,但缺点是需计算)(2kx f ∇的逆矩阵,在实际问题中目标函数往往相当复杂,计算二阶导数的工作量或者太大或者不可能,在x 的维数很高时,计算逆矩阵也相当费事.如果能设法构造另一个矩阵kH ,用它来逼近二阶导数矩阵的逆矩阵12))((-∇kx f 则可避免上述问题.下面就来研究如何构造12))((-∇kx f 的近似矩阵kH .我们希望:每一步都能以现有的信息来确定下一个搜索方向,每做一次迭代,目标函数值均有所下降,这些近似矩阵最后应收敛于最优解处的海赛矩阵的逆矩阵12))((-∇kx f .p Qx x f xp Qx x x f T T+=∇+=)(21)(考虑于是 )]()([)()()(11111k k k k k k k k x f x f Q x x x x Q x f xf ∇-∇=-⇒-=∇-∇+-+++当)(x f 是非二次函数时,令)]()([111k k k k k x f x f H x x ∇-∇=-+++ (7.11)称为拟牛顿条件.显然,我们构造出来的近似矩阵k H 必须满足上述拟牛顿条件及递推性:k k k H H H ∆+=+1,这里k H ∆称为矫正矩阵.记 k k k kk k x x x x f x f G -=∆∇-∇=∆++11)()( 有 kk k k k k G H H G H x ∆∆+=∆=∆+)(1 .变尺度法即DEP 法是由Davidon 首先提出,后来又被Fletcher 和Powell 改进的算法.记kk T k kT k k k k T k T k k k k kk T k kT k k k k T k T k k kG H G HG G H x G x x H H G H G H G G H x G x x H ∆∆∆∆-∆∆∆∆+=∆∆∆∆-∆∆∆∆=∆+)()()()()()()()(1 (7.12)容易验证1+k H 满足拟牛顿条件,称上式为DEP 公式.变尺度方法计算步骤:(1) 给出初始点nR x ∈0,允许误差0>ε.(2) 若ε<∇||)(||0x f ,停止,0x 为近似最优解;否则转下一步.(3) 取I H =0(单位矩阵),0=:k . (4) )(kk k x f H p ∇-=(5) 求k λ,使)(min )(0kk k k k p x f p x f λλλ+=+≥. (6) 令kk k k p x xλ+=+1(7) 若ε<∇+||)(||1k xf ,1+k x 为最优解,停止;否则当1-=n k 时,令n x x =:0转(3).(即迭代一轮n 次仍没求得最优解,以新的0x 为起点重新开始一轮新的迭代).k k k k k kx x x x f xf G n k -=∆∇-∇=∆-<++11),()(1时,令当.计算kk T k kT k k k k T k T k k kk G H G H G G H x G x x H H∆∆∆∆-∆∆∆∆+=+)()()()(1,令1+=k k :,转(4). §4 约束极值的最优化方法考虑(MP)问题:0)(0)(..)(min =≥x H x g t s x f (7.13)其中Tl T m x h x h x h x g x g x g ))(,),(()(,))(,),(()(11 ==是向量函数.显然 0)(0)(0)(≥-≥⇔=x h x h x h , 于是(MP )问题可以写为:Tm x g x g x g x g t s x f ))(,),(()(0)(..)(min 1 =≥ (7.14)一、积极约束设0x 是(MP )问题(5.14)的一个可行解.对0)(0≥x g i 来说,在点0x 有两种情况:或者0)(0>x g i ,或者0)(0=x g i .0)(0>x g i 时,则0x 不在0)(0=x g i 形成的边界上,称这一约束为0x 的非积极约束;0)(0=x g i 时,0x 处于由0)(0≥x g i 这个约束条件形成的可行域边界上,当0x 有变化时就不满足0)(0=x g i 的条件,所以称为积极约束,记为:{}()|()0,1i I x i g x i m ==≤≤.定义7.16 设x 满足约束条件0)(0≥x g i ),,1(m i =,0)(|{)(==x g i x I i ,}m i ≤≤1,如果)(x g i ∇,)(x I i ∈线性无关,则称点x 是约束条件的一个正则点.二、可行方向、下降方向的代数条件前面我们已经给出可行方向和下降方向的定义,下面给出其代数条件.可行方向:设K 是(MP )问题(5.14)的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时有K p x ∈+λ,称p 为x 点处的一个可行方向.由泰勒公式:||)(||)()()(p p x g x g p x g T i i i λολλ+∇+=+当x 为)(x g i 的积极约束时,有0)(=x g i .只要0>λ足够小,)(p x g i λ+和p x g T i )(∇λ同号,于是当0)(>∇p x g T i 时有0)(≥+p x g i λ )(x I i ∈.当x 为)(x g i 的非积极约束时,有0)(>x g i .由)(x g i 的连续性,当0>λ足够小时,由保号性知 0)(≥+p x g i λ )(x I i ∉.所以只要 0)(>∇p x g T i ,)(x I i ∈就可保证0)(≥+p x g i λ,于是p 为x 点处的一个可行方向.称0)(>∇p x g T i ,)(x I i ∈ 为p 在点x 处是可行方向的代数条件.下降方向:设K 是(MP )问题的可行域,K x ∈,0,≠∈p R p n.若存在00>λ使得],0[0λλ∈时,有)()(x f p x f <+λ,称p 为x 点处的一个下降方向.由泰勒公式:||)(||)()()(p p x f x f p x f Tλολλ+∇+=+.当λ足够小时,只要0)(<∇p x f T,有)()(x f p x f <+λ. 称0)(<∇p x f T为p 在x 点处的一个下降方向的代数条件.三、可行下降方向设K 为(MP )问题(5.14)的可行域,K x ∈,若存在0,≠∈p R p n,p 既是x 点处的下降方向又是可行方向,则称p 为点x 处的可行下降方向.定理7.10 考虑非线性规划问题(5.14),K x ∈,),,1)()(m i x g x f i =(和在x点处可微,若*x 是局部极小点,则x 点处必不存在可行下降方向,即不存在p 同时满足:⎪⎩⎪⎨⎧∈>∇<∇)(0)(0)(x I i p x g p x f Ti T证明:反证法,设局部极小点x 处存在可行下降方向p ,于是1λ∃,当],0[1λλ∈时有)()(x f p x f <+λ,又p 为可行方向.2λ∃∴当],0[2λλ∈时K p x ∈+λ,这与x 是。
运筹学前五章作业
运筹学作业1、线性规划某快餐店坐落在一个旅游景点中。
这个旅游景点远离市区,平时游客不多,而在每个星期六游客猛增。
快餐店主要是为旅客提供低价位的快餐服务。
该快餐店雇佣了两名正式职工,正式职工每天工作八小时,其余工作有临时工来担任,临时工每班工作4小时。
在星期六,该快餐店从上午11点开始营业到下午10点关门。
根据游客就餐情况,在星期六每个营业小时所需职工数(包括正式工和临时工)如下表所示:表格 1已知一名正式职工11点开始上班,工作4小时后休息一小时,而后在工作4小时;另一名正式职工13点开始上班,工作4小时后休息一小时,而后在工作四小时。
又知临时工每小时的工资为4元。
(1)、在满足对职工需求的条件下如何安排临时工的班次,使得使用临时工的成本最小?(2)、如果临时工每班工作时间可以是3小时也可以是4小时,那么应如何安排临时工的班次,使得使用临时工的总成本最小?比(1)节省多少费用?这时应安排多少临时工班次?目标函数:min z=16(x1+x2+x3+x4+x5+x6+x7+x8+x9+x10+x11)x1+x9+x10+x11>=8x1+x2+x10+x11>=8x1+x2+x3+x11>=7x1+x2+x3+x4>=1x2+x3+x4+x5>=2x3+x4+x5+x6>=1x4+x5+x6+x7>=5x5+x6+x7+x8>=10x6+x7+x8+x9>=10x7+x8+x9+x10>=6x8+x9+x10+x11>=6x1,x2,x3,x4,x5,x6,x7,x8,x9,x10,x11>=0程序如下:Model:Sets:Row/1…11/:b;Arrange/1…11/:x,c;Link(row,arrange):a;EndsetsData:b=8,8,7,1,2,1,5,10,6,6;c=16,16,16,16,16,16,16,16,16,16,16;a=1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0,1,1,1,1,1,0,0,0,0,0,0,0 ,1,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0, 0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0 ,0,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0,1,1,1,1;enddata[OBJ]min=@sum(arrange(j):c(j)*x(j));@for(row(i);@sum(arrange(j):a (i,j)x(i,j))>=b(i););@for(arrange(j):x(j)>=0;);End最优解为x=(2,1,0,0,1,0,9,0,1,0,5),最优值为z=304,即临时工班次为11:00~12:00开始上班2人,12:00~13:00开始上班1人,15:00~16:00开始上班1人,17:00~18:00开始上班9人,19:00~20:00开始上班1人,21:00~22:00开始上班5人,雇佣临时工19人,临时工的总工资为304元。
运筹学课件第六章 非线性规划
或 x
k 1
x tk p , tk 0
k k
称p k 为 第k轮 搜 索 方 向 , 为 第k轮 沿 搜 索 方 向 tk p k的 步 长 。
第11页
n n n 定义3 设f : R R, x R , p R , p 0, 0,使得 若
f ( x tp) f ( x ), t (0, )
2 1
令 0 得: f ( x1 )T ( x 2 x1 ) f ( x 2 ) f ( x1 )
f ( x 2 ) f ( x1 )
第23页
x1 , x 2 S f ( x ) ( x x ) f ( x ) f ( x )
1 T 2 1 2 1
1 T 2 1 2 1
证 (1) 必要性.设f是S上的凸函数,则对 (0,1), 有
f ( x 2 (1 ) x1 ) f ( x 2 ) (1 ) f ( x1 )
x1 , x 2 S
f ( x 1 ( x 2 x 1 )) f ( x1 )
第14页
全局优化算法概述
全局优化方法可分为随机性方法和确定性方法. 确定性方法充分利用了问题的解析性质, 如函数的 凸性、单调性、稠密性等, 产生一个确定性的有限 或无限点序列, 使得该点序列收敛于全局最优解. 包 括分枝定界算法、区间算法、填充函数法、割平面 法、顶点枚举法等,这类算法在理论上有较强的可行 性, 但对较为复杂的大型优化问题却难于应用.
如果有 f ( x* ) f ( x), x D, x x* 则称 x * 是(P)的严格全局最优解或严格全局极小点, 称 f ( x * ) 是(P)的严格全局最优值或严格全局极小值。
非线性规划管理运筹学李军
2024/10/16
9
1.3 非线性规划问题的图示
x2 6
3 2
0
23
f(X)=4 f(X)=2
x1 6
由左图可见,等值线 f (X)=2和约束条件直 线6-6相切,切点D即
为此问题的最优解, X*=(3, 3),其目标函 数值 f (X*)=2。
2024/10/16
10
1.3 非线性规划问题的图示
lim ( X (k) X ) 0
k
则称X*为最优解。
2024/10/16
34
3.2 下降迭代算法
基本问题: 递推步骤的有限性,一般说很难得到精
确解,当满足所要求的精度时即可停止迭 代而得到一个近似解。
2024/10/16
35
3.2 下降迭代算法
下降算法: 若产生的解序列{X(k) }能使目标函数f (X(k)) 逐步减少,就称此算法为下降算法。“下 降”的要求很容易满足,因此它包括了很 多具体的算法。
2024/10/16
30
3. 凸规划
凸规划的定义 下降迭代算法
2024/10/16
31
3.1 凸规划的定义
考虑非线性规划:
min f (X ), X En g j (X ) 0,( j 1,2,,l)
假定其中 f (X)为凸函数, g j (X)为凹函 数(- g j (X)为凸函数),这样的非线性规 划称为凸规划。
凹函数
24
非凹非凸函数示意图
f (X) f (X(1)) f (X(2))
2024/10/16
X(1)
X(1) +(1-)X(2)
X(2)
X
非凸非凹函数
25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解无约束问题的算法: 解无约束问题的算法: 求f(X)的驻点X*,若是凸函数, f(X)的驻点 ,若是凸函数, 的驻点X* 得到最优解.否则,转下一步. 得到最优解.否则,转下一步. 在驻点X*处 计算H(x). 在驻点X*处,计算H(x). 根据H(x)来判断该驻点 是否是 根据H(x)来判断该驻点X*是否是 来判断该驻点X* 极值点. 极值点.
X ∈ E1
解:利用一阶必要条 件求出有可能成为最 优解的那些点: 优解的那些点: f(X) = 6x(x2-1)2 =0 得到: f(X 得到: x1=0,x2=1,x3= -1 进一步考虑二阶必要条件,缩小范围: 进一步考虑二阶必要条件,缩小范围: 二阶必要条件
H(X) =xxf(X) = 6(x2-1)2+24 x2(x2-1) = H(x1) =xxf(x1) = xxf(0) =6>0 = H(x2) =xxf(x2) = xxf(1) = 0 = H(x3) =xxf(x3) = xxf(-1) =0 = f(f(X)在 =0点正定 依二阶必要条件, f(X)在x1=0点正定,依二阶必要条件, 点正定, x1=0为(P1)的局部最优解.而x2=1, =0为 的局部最优解. =1, x3= -1满足二阶必要条件和一阶必要条 但它们显然都不是最优解. 件,但它们显然都不是最优解.
例6-3 Min f(X)= 2x12+5x22+x32+ 2x2x3 2x + 2x1x3 - 6x2+3 X ∈ E3 f(X 解:f(X) = (4x1+ 2x3, 10x2+ 2x3 – 6, 2x1+ 2x2 + 2x3 )=0 驻点x*=(1,1,驻点x*=(1,1,-2)
H(X) =xxf(X)= =
都是k 的非线性函数, 都是ki的非线性函数,构造非线性规划 模型如下: 模型如下: Max ∑ ∫Ei(ki,Q) dFi(Q) s.t.V1(k1)+ V2(k2)+…… + Vn(kn)=V V1(k1), V2(k2),……,Vn(kn) ≥ 0 利用一定的算法,可求出最优分配ki* 利用一定的算法,可求出最优分配k 和Vi *(i=1,2,….n).
电厂水库径流输入量分布为F (Q), 电厂水库径流输入量分布为Fi(Q),发 电量随库容与径流量而变化, 电量随库容与径流量而变化,以Ei(ki,Q) 表示.计划部门构造一个模型, 表示.计划部门构造一个模型,即在一 定条件下,使总发电量年平均值最大, 定条件下,使总发电量年平均值最大, 用数学语言来说,使其期望值最大. 用数学语言来说,使其期望值最大.对 每个电厂i 每个电厂i ,其年发电量的期望值为 ∫Ei(ki,Q) dFi(Q) 设V为总投资额,Vi为各水电厂的投资, 为总投资额, 为各水电厂的投资,
f(λx1+(1- λ)x2 ) f(λ +(1-
f(X1)
X1
+(1λx1+(1-
λ)x2
X2
X
f(X)
λf( x1 ) +(1- λ) f( x2) +(1-
f(X2)
f(λx1+(1- λ)x2 ) f(λ +(1-
f(X1)
X1
+(1λx1+(1-
λ)x2
X2
X
f(X) 任意两点的函数值的连线上的点都在曲线的上方
λf( x1 ) +(1- λ) f( x2) +(1-
f(X2)
f(λx1+(1- λ)x2 ) f(λ +(1-
f(X1)
X1
+(1λx1+(1-
λ)x2
X2
X
线性函数既是凸函数,又是凹函数, 线性函数既是凸函数,又是凹函数, 反之也然. 反之也然. 梯度向量 f(X)=grad f(X) =(f/x1 ,f/x2 ,…..,f/xn) =(f/ f/ ,…..,f/ 正定矩阵 如果对矩阵H(X),对任意 对任意X 如果对矩阵H(X),对任意X ∈ N(X* ,δ) Z∈ En 均有 ZT H(X)Z > 0( ≥ 0 ) 则称H(X)在 点正定(半正定). 则称H(X)在X* 点正定(半正定).
(P1) Min f(X)
X ∈ En
定理4 一阶充分条件) 定理4(一阶充分条件) 设f(X)为En上的凸函数,又设f(X) f(X)为 上的凸函数,又设f(X) 点可微,如果f(X 在X*点可微,如果f(X*) =0 ,则X*为 (P1) 的一个整体最优解. 的一个整体最优解.
例6-2 Min f(X)=(x2-1)3 f(X)=(
最优性条件的研究是非线性规划理论 研究的一个中心问题. 研究的一个中心问题. 为什么要研究最优性条件? 为什么要研究最优性条件? o本质上把可行解集合的范围缩小. 本质上把可行解集合的范围缩小. o它是许多算法设计的基础. 它是许多算法设计的基础.
无约束问题的最优性条件
(P1)
Min f(X)
X ∈ En
模型分类2 模型分类2 o若m=l=0 ,则称(P)为无约束问题. 则称( 为无约束问题. Min f(X) (P1)
X ∈ En
模型分类2 模型分类2 o若m≠0,l=0 ,则称(P)为带等式 则称( 约束问题. 约束问题. (P2) Min
f(X)
s.t. hi(X)=0 (i=1,2,….m)
凸函数的概念 定义:定义在凸集D 定义:定义在凸集DEn上的函数f(X) 如果对任意两点x 如果对任意两点x(1),x(2) ∈D,均有0<λ<1 均有0<λ 使得 f(λ x(1)+(1- λ)x(2)) ≤ λ f( x(1) ) +(1- λ) f( x(2)) f(λ +(1+(1则称函数f(X)为D上的凸函数. 上的凸函数.
Min f(X)
s.t. hi(X)=0 (i=1,2,….m) gj(X) ≥ 0 (j=1,2….l)
X ∈ En
凸函数的概念 凸集概念: 凸集概念: 设D是n维线性空间En的一个点集, 维线性空间E 的一个点集, 中的任意两点x 的连线上的 若D中的任意两点x(1),x(2)的连线上的 一切点x仍在D 则称D为凸集. 一切点x仍在D中,则称D为凸集. 中的任意两点x 即:若D中的任意两点x(1),x(2) ∈D, 存在0<α 存在0<α<1 使得 x= α x(1)+(1- α)x(2) ∈ D,则称D为凸集 +(1D,则称 则称D
凸函数的概念 若严格不等式成立, 若严格不等式成立,则称函数f(X)为D上 的严格凸函数. 的严格凸函数. 如果 - g(X)为D上的(严格)凸函数,则g(X) 上的(严格)凸函数, 上的(严格) 凹函数. 为D上的(严格) 凹函数.
f(X) f(X2)
f(X1)
X1
X2
X
f(X) f(X2)
定理3 二阶充分条件) 定理3(二阶充分条件) 设f(X)在X*点二阶可微,如果f(X*) f(X)在 点二阶可微,如果f(X =0 和 H(X*)为正定,则X*为(P1) 的一个 H(X 为正定, 局部最优解.( H(X 的邻域内为 局部最优解.( H(X)在X*的邻域内为 半正定. 半正定.
无约束问题的最优性条件
定理2 二阶必要条件) 定理2(二阶必要条件) 设f(X)在X*点二阶可微,如果X*为 f(X)在 点二阶可微,如果X (P1) 的一个局部最优解,则有 的一个局部最优解, f(X*) =0 和 H( X* )为半正定. f(X 为半正定.
无约束问题的最优性条件
(P1) Min f(X)
X ∈ En
第六章 非线性规划
1 引
言
非线性规划是运筹学中包含内容最多, 非线性规划是运筹学中包含内容最多, 应用最广泛的一个分支, 应用最广泛的一个分支,计算远比线性 规划复杂,由于时间的限制, 规划复杂,由于时间的限制,只能作简 单的介绍. 单的介绍. 例6-1 电厂投资分配问题 水电部门打算将一笔资金分配去建设n 水电部门打算将一笔资金分配去建设n 个水电厂,其库容量为k ,i=1,2….n,各 个水电厂,其库容量为ki,i=1,2….n,各
几个概念 定义2 定义2 X*称为(P)的一个(整体) 称为( 的一个(整体) 最优解,如果X 最优解,如果X* ∈D,满足 f(X) ≥ f(X*), X ∈D.
几个概念 定义3 定义3 X*称为(P)的一个(局部) 称为( 的一个(局部) 最优解,如果X 且存在一个X 最优解,如果X* ∈D,且存在一个X* 的邻域 N(X* ,δ)= X ∈ En X- X* < δ 满足 f(X) ≥ f(X*), X ∈D∩ N(X* ,δ) δ>0
几个概念 定义1 如果X满足( 定义1 如果X满足(P)的约束条件 hi(X)=0 (i=1,2,….m) gj(X) ≥ 0 (j=1,2….l) 则称X 则称X ∈ En 为(P)的一个可行解. 的一个可行解. 记(P)的所有可行解的集合为D, 的所有可行解的集合为D D称为(P)可行域. 称为( 可行域.
局部最优n f(X) s.t. hi(X)=0 (i=1,2,….m) gj(X) ≥ 0 (j=1,2….l) X ∈ En f(X) hi(X) gj(X) 为En上 的实函数. 的实函数. (P)
模型分类1 模型分类1 如果 f(X) hi(X) gj(X) 中至少有 一个函数不是线性(仿射)函数, 一个函数不是线性(仿射)函数,则 为非线性问题. 称(P)为非线性问题. 如果 f(X) hi(X) gj(X) 都是线性 仿射)函数,则称( (仿射)函数,则称(P)为线性问 题.
o若H(x)为正定,该驻点X*是严格局部 H(x)为正定 该驻点X*是严格局部 为正定, 极小值点; 极小值点; o若H(x)为负定,该驻点X*是严格局部 H(x)为负定 该驻点X*是严格局部 为负定, 极大值点; 极大值点; o若H(x)为半正定(半负定)则进一步 H(x)为半正定 半负定) 为半正定( 观察它在该点某邻域内的情况, 观察它在该点某邻域内的情况,如果保 持半正定(半负定), ),那它们是严格局 持半正定(半负定),那它们是严格局 部极小值点(极大值点); 部极小值点(极大值点); o如果H(x) 不定的,该驻点X*就不是f(X) 如果H(x) 不定的,该驻点X*就不是 就不是f(X) 极值点. 极值点.