数学上册21.3实际问题与一元二次方程增长率教案新版新人教版0605173【精品教案】

合集下载

21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】

21.3 实际问题与一元二次方程 教案  【新人教版九年级上册数学】

21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。

人教版九年级数学上册:21.3 实际问题与一元二次方程 教学设计4

人教版九年级数学上册:21.3 实际问题与一元二次方程  教学设计4

人教版九年级数学上册:21.3 实际问题与一元二次方程教学设计4一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程”是本册教材中的重要内容,旨在让学生通过解决实际问题,巩固和应用一元二次方程的解法。

本节课的内容包括:了解一元二次方程在实际问题中的应用,学会用一元二次方程解决实际问题,以及掌握一元二次方程的解法。

二. 学情分析九年级的学生已经学习了一元二次方程的理论知识,对解一元二次方程有一定的掌握。

但在解决实际问题时,还需要将理论知识和实际问题结合起来,灵活运用。

此外,学生需要进一步提高解决实际问题的能力,以及将数学知识应用到生活中的能力。

三. 教学目标1.了解一元二次方程在实际问题中的应用。

2.学会用一元二次方程解决实际问题。

3.掌握一元二次方程的解法。

4.提高解决实际问题的能力,培养将数学知识应用到生活中的意识。

四. 教学重难点1.教学重点:一元二次方程在实际问题中的应用,以及解一元二次方程的方法。

2.教学难点:如何将实际问题转化为数学问题,并用一元二次方程解决。

五. 教学方法采用问题驱动的教学法,通过设计具有代表性的实际问题,引导学生将实际问题转化为数学问题,并用一元二次方程解决。

在教学过程中,注重启发式教学,引导学生主动思考、探索,提高学生的数学素养。

六. 教学准备1.准备相关的实际问题,如购物问题、长度问题等。

2.准备一元二次方程的解法教学课件。

3.准备练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)通过一个购物问题,引导学生思考如何用数学方法解决实际问题。

例如:一件商品原价为x元,打8折后的价格为0.8x元。

如果购买这件商品需要支付100元,那么x可以是多少?2.呈现(10分钟)呈现实际问题,引导学生发现实际问题中存在的等量关系,并用一元二次方程表示。

例如:一件商品原价为x元,打8折后的价格为0.8x元。

如果购买这件商品需要支付100元,那么可以得到方程:0.8x = 100。

九年级数学上册 21.3 实际问题与一元二次方程(增长率)教案 新人教版(2021学年)

九年级数学上册 21.3 实际问题与一元二次方程(增长率)教案 新人教版(2021学年)

陕西省安康市石泉县池河镇九年级数学上册21.3 实际问题与一元二次方程(增长率)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省安康市石泉县池河镇九年级数学上册21.3 实际问题与一元二次方程(增长率)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省安康市石泉县池河镇九年级数学上册21.3 实际问题与一元二次方程(增长率)教案(新版)新人教版的全部内容。

21.3实际问题与一元二次方程(增长率)一、教材分析本课的主要内容是以列一元二次方程解应用题为中心,深入探究有关成本下降和增长率问题。

活动的侧重点是列方程解应用题,提高学生应用方程分析解决问题的能力。

活动中涉及了一元二次方程解法,列方程解应用题的一般规律等.这些问题在现实世界中有许多原型,让学生理解两个时间段的平均变化率可以用一元二次方程作为数学模型,从而使问题得到解决。

二、学情分析本节课是在初二学习增长率,下降率的基础上来用一元二次方程的方法来解决的问题,在本课的学习中,应重视相关内容与实际的联系,加强对一元二次方程是解决现实问题的一种数学模型的认识。

分析和解决的关键是找出问题中的相关数量之间的相等关系,并把这样的关系“翻译"为一元二次方程。

在教学中借助现代化教学媒体和网络资源,让学生通过观察、类比,分解、等方法指导怎样试。

加强对这类题的把握。

三、教学目标通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关成本下降和增长率问题。

四、教学重点难点重点会用列一元二次方程的方法解有关下降和增长率问题。

难点有关成本下降和增长率问题的数量关系。

九年级数学上册21.3.2实际问题与一元二次方程 增长率问题教案新人教版

九年级数学上册21.3.2实际问题与一元二次方程   增长率问题教案新人教版

九年级数学上册21.3.2实际问题与一元二次方程增长率问题教案新人教版九年级数学上册21.3.2实际问题与一元二次方程-增长率问题教案新人教版21.3.2实际问题与一元二次方程―增长率问题一、教学目标1.掌握建立数学模型以解决增长率与降低率问题2.正确分析问题中的数量关系并建立一元二次方程模型.二、课时安排1课时三、教学重点创建数学模型以化解增长率与减少率为问题四、教学难点正确分析问题中的数量关系并建立一元二次方程模型.五、教学过程(一)导入新课小明自学非常深入细致,学习成绩直线下降,第一次月托福数学成绩就是80分后,第二次月托福快速增长了10%,第三次月托福又快速增长了10%,反问他第三次数学成绩就是多少?教师引导学生积极讨论,引入新课。

(二)讲授新课两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?思索:(1)怎样认知上升额和上升率为的关系?(2)若设甲种药品平均下降率为x,则一年后,甲种药品的成本下降了元,此时成本为元;两年后,甲种药品上升了元,此时成本为元。

(3)对甲种药品而言根据等量关系列方程并求解、选择根?解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为5000(1-x)元.依题意,得5000(1-x)=3000解得:x1≈0.225,x2≈1.775(不合题意,舍去)(4)同样的方法恳请同学们尝试排序乙种药品的平均值上升率为,并比较哪种药品成本的平均值上升率为很大。

2设立乙种药品成本的平均值上升率仅y.则:6000(1-y)=3600整理,得:(1-y)=0.6Champsaur:y≈0.225答:两种药品成本的年平均下降率一样大(5)思考经过计算,你能得出什么结论?小结:经过排序,成本上升额很大的药品,它的成本上升率为不一定很大,应当比较降前及再降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)=b(增长取+,降低取-).(三)重难点通识科例2某公司2021年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.求解:设立这个增长率为x.根据题意,得200+200(1+x)+200(1+x)=950整理方程,得4x+12x-7=0,解这个方程得x1=-3.5(舍去),x2=0.5.答:这个增长率为50%.特别注意:增长率不容为负,但可以少于1.(四)归纳小结小结:1.列一元二次方程求解应用题的步骤:检、设立、打听、列于、求解、请问。

21.3实际问题与一元二次方程教案

21.3实际问题与一元二次方程教案

21.3实际问题与一元二次方程教案篇一:21.3实际问题与一元二次方程教学设计教案教学准备1.教学目标知识技能1.能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.2.能根据具体问题的实际意义,检验结果是否合理.过程方法经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述。

情感态度与价值观通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.2.教学重点/难点教学重点:列一元二次方程解有关传播问题的应用题教学难点:发现传播问题中的等量关系3.教学用具制作课件,精选习题4.标签教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、探索新知【问题情境】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?(4)能否把方程列得更简单,怎样理解?(5)解方程并得出结论,对比几种方法各有什么特点?【解答】设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感。

于是可列方程:1+x+x(1+x)=121解方程得x1=10,x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.【思考】如果按这样的传播速度,三轮传染后有多少人患了流感?【活动方略】教师提出问题学生分组,分别按问题(3)中所列的方程来解答,选代表展示解答过程,并讲解解题过程和应注意问题.【设计意图】使学生通过多种方法解传播问题,验证多种方法的正确性;通过解题过程的对比,体会对已知数量关系的适当变形对解题的影响,丰富解题经验.三、例题分析例1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.例2、参加足球联赛的每两队之间都进行了两次比赛(双循环比赛),共要比赛90场,共有多少个队参加了比赛?例3、学校组织了一次篮球单循环比赛(每两队之间都进行了一次比赛),共进行了15场比赛,那么有几个球队参加了这次比赛?【分析】(1)两题中有哪些数量关系?(2)由这些数量关系还能得到什么新的结论?你想如何利用这些数量关系?为什么?如何列方程?(3)对比两题,它们有什么联系与区别?【活动方略】教师活动:操作投影,将例题显示,组织学生讨论.学生活动:合作交流,讨论解答。

人教版九年级数学上册《实际问题与一元二次方程增长率》教学设计

人教版九年级数学上册《实际问题与一元二次方程增长率》教学设计

《实际问题与一元二次方程增长率》教学设计
教材:义务教育课程标准实验教科书(人教版九年级上册21.3)第二课时
一、教学任务分析
二、教学流程设计
三、教学过程设计
问题与情境师生活动设计意图环节1:情景导入
(一)温故知新
1. 解一元二次方
程有哪些方法?
2.列一元一次方
程解应用题都是
有哪些步骤?
3.回忆:变化率的
公式
(二)探索新知
列方程解应用题:某药品原来每盒售价54元,由于两次提价,现在每盒96元,•求平均每次提价的百分数.
学生独立思考问题,
回答
学生板演,通过学生
作答,展示不同学生的思
维层次。

利用实际问题
引入课题,,激发
学生的学习兴趣;
通过师生互动,消
除师生间的陌生
与隔阂,营造轻松
愉悦的课堂氛围.
为学习能力较
强的学生通过一
个展示的平台。

九年级数学上册 21.3 实际问题与一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上

九年级数学上册 21.3 实际问题与一元二次方程教案 (新版)新人教版-(新版)新人教版初中九年级上

21.3实际问题与一元二次方程教学目标1、本节课主要学习建立一元二次方程的数学模型解决平均变化率问题。

2、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.3、能根据具体问题的实际意义,检验结果是否合理.4、通过用一元二次方程解决身边的问题,体会数学知识应用的价值.重难点、关键重点:列一元二次方程解有关平均变化率问题的应用题难点:发现平均变体化率问题中的等量关系关键:建立一元二次方程的数学模型教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一展示学习目标(使学生明确本节课学习目标,具体内容如下)学习目标1、本节课主要学习建立一元二次方程的数学模型解决平均变化率问题。

2、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型.3、能根据具体问题的实际意义,检验结果是否合理.4、通过用一元二次方程解决身边的问题,体会数学知识应用的价值.二展示学习要求(学生对照要求自学,教师巡视并做个别辅)学习要求1、某农户第一年的粮食产量为6万kg,平均每年的增长率为20%,第二年的产量为____________万kg,第三年的产量为____________万kg ;某商品原价每件100元连续两次降价,平均每次降低率为10%,第一次降价后价格为每件________元,第二次降价后价格为每件________元通过以上两题你能发现关于两次平均增长(降低)率问题的一般关系吗?(用A表示基数,X 表示平均增长(降低)率,B表示新数)2、学校图书馆去年年底有图书5万册,预计到明年年底增加到7.2万册.求这两年的年平均增长率.设年平均增长率为X,则可列方程为____________。

3、对照课本46页探究2内容,完成下列问题:(1)甲种药品成本的年平均下降额为元,•乙种药品成本的年平均下降额为元,显然,乙种药品成本的年平均下降额较.(2)设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为元,两年后甲种药品成本为元.从而可列方程为。

人教版九年级上册数学全册教案21.3 实际问题与一元二次方程

人教版九年级上册数学全册教案21.3 实际问题与一元二次方程

6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(1)如何理解年平均下降额与年平均下降率?它们相等吗?(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);二月(或二年)后产量为a(1±x)2;n月(或n年)后产量为a(1±x)n;如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.(4)对甲种药品而言根据等量关系列方程为:________________.活动1创设情境1.长方形的周长________,面积________,长方体的体积公式________.2.如图所示:(1)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为2 cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.(2)一块长方形铁皮的长是10 cm,宽是8 cm,四角各截去一个边长为x cm 的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.活动2自学教材第20页~第21页探究3,思考老师所提问题要设计一本书的封面,封面长27 cm,宽21 cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1 cm).(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.(3)若设上、下边衬的宽均为9x cm,左、右边衬的宽均为7x cm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.(4)根据等量关系:________,可列方程为:________.(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)(6)思考如果设正中央矩形的长与宽分别为9x cm和7x cm,你又怎样去求上下、左右边衬的宽?活动3变式练习如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.答案:路的宽度为5米.作业布置教材第21-22页习题21.3第2-7题.课堂总结.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际..传播问题解决的关键是传播源的确定和等量关系的建立..若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n 次后的量是b,则有:a(1±x)n=b(常见n=2)..成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小..利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系..根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.。

九年级数学上册第二十一章一元二次方程21.3实际问题与一元二次方程(3)教案新人教版(2021年整

九年级数学上册第二十一章一元二次方程21.3实际问题与一元二次方程(3)教案新人教版(2021年整

湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十一章一元二次方程21.3 实际问题与一元二次方程(3)教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十一章一元二次方程21.3 实际问题与一元二次方程(3)教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为湖南省益阳市资阳区迎丰桥镇九年级数学上册第二十一章一元二次方程21.3 实际问题与一元二次方程(3)教案(新版)新人教版的全部内容。

实际问题与一元二次方程教学设计课标要求能根据具体问题的实际意义,检验方程的根是否合理。

教材及学情分析探究3的问题中,已知封面及正中央矩形的长宽比都是9:7,由此可以推出上、下、左、右边衬之比也为9:7。

问题中的方程的两个根都是正数,但他们并不是问题的的解。

必须根据他们的值得大小,来确定哪个更合乎实际.这种取舍更多地要考虑问题的实际意义,这是检验数学模型的解是否是实际的过程.九年级的学生在以前学习了用一元一次方程、二元一次方程组、分式方程解决实际问题,有一定的基础,在此基础上,进一步培养学生学习分析问题、找出等量关系来解决实际问题的能力.课时教学目标1、探索以几何图形为背景的应用题,找出其中的等量关系,建立一元二次方程,体会数学模型在解决现实生活问题中的作用。

并能根据实际问题的意义检验结果的合理性.2、经历数学建模建立一元二次方程的过程,锻炼学生分析问题,解决问题的能力.3、通过建立一元二次方程解决实际生活问题,感受数学在生活中的实用性,提高学生学习数学的积极性,体会数学给人类生活带来的促进作用.重点列一元二次方程解决实际应用问题难点寻找问题中的等量关系教学过程分析问题,建立模型探究3:如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(结果保留小数点后一位)?思考:(1)本题中有哪些数量关系?(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?(3)如何利用已知的数量关系选取未知数并列出方程?分析:依据题意可知,封面的长宽之比是27∶21=9∶7,中央的矩形的长宽之比也应是9∶7.设中央的矩形的长和宽分别是9a cm和7a cm,由此得上、下边衬与左、右边衬的宽度之比是21(27-9a)∶21(21-7a)=9(3-a)∶7(3-a)=9∶7.淡化解方程,重点突出列方程弄清问题背景,把有关数量关系分析透彻,特别是找出可以作为列方程依据的主要相等关系让学生更加熟练地列方程解应用题,并强化运用。

数学人教版九年级上册21.3实际问题与一元二次方程(增长率问题)(教学设计)

数学人教版九年级上册21.3实际问题与一元二次方程(增长率问题)(教学设计)

课题:21.3实际问题与一元二次方程——增长率(下降率)问题执教:张英杰【教学目标】1.知识与技能(1)会分析简单实际问题中增长率(下降率)的相等关系,列出相应一元二次方程,并能解出所列方程和检验结果是否合理;(2)学会利用平均增长率(下降率)计算、预测简单变化后的数量.2.过程与方法通过观察、思考、交流,经历将实际问题中的数量关系转化为一元二次方程的过程,领悟数学模型思想,进一步感受方程的工具作用.3.情感态度价值观(1)经历完整建立一元二次方程解决实际问题的过程,感受与认识一元二次方程源于实际;(2)加强数学建模思想,培养运用一元二次方程分析和解决实际问题的能力.【重点、难点】重点:分析实际问题中的数量关系,列出一元二次方程;难点:找出等量关系,建立一元二次方程模型.【学习过程】一、模型探讨问题讨论:某商店一月份的利润是8000元,三月份的利润是9680元,这两个月利润平均增长的百分率是多少?解:设这两个月利润平均增长的百分率为x.讨论:一月份利润是二月份利润是三月份利润是建立方程:概括:若变化前量为a,平均增长率为x,二次增长后量为b,则有:若变化前量为a,平均下降率为x,二次下降后量为b,则有:快速巩固:1.2014年前生产某种药品的成本是5000元,到了2016年成本是3000元.设该种药品的成本平均下降率为x,根据题意可列方程为;2.图书馆去年有图书5万册,预计到明年将增加到7.2万册.设该图书馆每年图书平均增长率为x,根据题意可列方程为.二、典例分析例某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.三、巩固运用A 组1.某厂今年1月份的产量为100吨,平均每月产量增加20%.则二月份的产量为 吨,三月份的产量为 吨;2.某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平 均增长率为x ,根据题意可列方程为( )A .()248136x -=B .()248136x +=C .()236148x -=D .()236148x +=3.某商品经过连续两次降价,销售单价由原来200元降到162元,设两次的平 均下降率为%a ,根据题意可列方程为( )A .()22001%162a +=B .()220012162a -=C .()22001%162a -=D .()22001162a -=4.某种型号的手机,原售价7200元/台,经连续两次降价后,现售价为4608 元/台.(1)求两次降价的平均百分率是多少?(2)为了促销,将进行第三次降价,如果仍保持前两次降价的平均百分率,请你预计第三次降价后售价是多少?B 组某机械厂七月份生产零件20万个,第三季度(七月、八月、九月)共生产零件.....66.2万个,求该厂第三季度平均增长率.(列出方程即可)C 组某牌子食用油两次升价后,零售价为原来的1.44倍,已知两次升价的增长率相同,求每次升价的增长率.四、课堂小结1.谈谈本节课学到了哪些知识?2.你认为最难是在那里?还有那些困惑?五、课后作业《课堂导学案》1819P .。

九年级数学上册21.3实际问题与一元二次方程(增长率)教案(新版)新人教版

九年级数学上册21.3实际问题与一元二次方程(增长率)教案(新版)新人教版

21.3实际问题与一无二次方程(增长率问题)教学目标:1.引导学生通过平均变化率问题,学会将实际问题转化为数学问题。

2.指导学生根据问题的实际意义,检验所得结果是否合理。

教学重点:如何解决增长率与降低率问题。

教学难点:用一元二次方程解决增长率问题的规律:a(1+x)2=b教学过程:一、温故知新填空:1.小明学习非常认真,学习成绩直线上升,第一次月考数学成绩是a分,第二次月考增长了10﹪,第三次月考又增长了10﹪,他第二次数学成绩是,第三次数学成绩是。

2.国庆节期间,商场为了促销搞了两次降价活动,某品牌上衣原价a元,第一次价格降低了10﹪,第二次价格又降低了10﹪,第一次促销活动中该上衣的价格是第二次促销活动中该上衣的价格是。

二、探究新知1.探究2中乙种药品成本的下降率是多少?(请给出详细的解答过程)2.请比较探究2中两种药品成本的平均下降率。

归纳:解决增长率与降低率问题的公式:a(1±x)n=b,其中a是原有量,x为增长率(或降低率),n为增长(或降低)的次数,b为增长(或降低)后的量。

变式:2012年,A市投入600万元用于“改水工程”,计划以后每年以后每年以相同的增长率投资,2014年该市计划投资“改水工程”1176万元。

求A市投资“改水工程的”年平均增长率是多少?三、巩固新知1.某市为改善机动车尾气污染问题,计划今后两年内将全市的环保汽车由目前的500辆增加到720辆,求这种环保汽车平均每年增长的百分率。

2.P22 7 P26 9、 10四、课堂小结解决增长率与降低率问题的公式:a(1±x)n=b,其中a是原有量,x为增长率(或降低率),n 为增长(或降低)的次数,b为增长(或降低)后的量。

根据离实际情况决定根取舍。

教学反思:中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。

一、教材分析:本节课讲的是中国书法艺术主要是为了提高学生对书法基础知识的掌握,让学生开始对书法的入门学习有一定了解。

人教版九年级数学上册21.3.3《实际问题与一元二次方程(第2课时)》教学设计

人教版九年级数学上册21.3.3《实际问题与一元二次方程(第2课时)》教学设计

人教版九年级数学上册21.3.3《实际问题与一元二次方程(第2课时)》教学设计一. 教材分析人教版九年级数学上册21.3.3《实际问题与一元二次方程(第2课时)》这一节主要讲述了如何将实际问题转化为一元二次方程,并通过求解方程得到实际问题的解答。

教材通过具体的例子引导学生理解一元二次方程在实际问题中的应用,培养学生运用数学解决实际问题的能力。

二. 学情分析九年级的学生已经学习了一元二次方程的理论知识,对于如何列方程、解方程已经有了一定的了解。

但是,将实际问题转化为一元二次方程的能力还需要加强。

此外,学生对于实际问题的解决方法还不够灵活,需要通过实例引导学生学会用数学的眼光去发现问题、解决问题。

三. 教学目标1.理解一元二次方程在实际问题中的应用。

2.学会将实际问题转化为一元二次方程,并求解方程得到实际问题的解答。

3.培养学生的数学思维能力,提高学生解决实际问题的能力。

四. 教学重难点1.教学重点:一元二次方程在实际问题中的应用,将实际问题转化为一元二次方程的方法。

2.教学难点:如何引导学生发现实际问题中的等量关系,并将等量关系转化为数学方程。

五. 教学方法采用案例教学法,通过具体的实例引导学生理解一元二次方程在实际问题中的应用,培养学生的数学思维能力。

同时,采用小组讨论法,让学生在小组内共同探讨实际问题的解决方法,提高学生的合作能力。

六. 教学准备1.准备相关的实际问题案例。

2.准备PPT,用于展示案例和引导学生思考。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题引出一元二次方程的应用,激发学生的学习兴趣。

例如:小明买了一本书,原价是20元,书店搞活动满100元减30元,小明最后实付了50元,问小明买了多少本书?2.呈现(10分钟)呈现准备好的案例,引导学生观察、分析案例中的等量关系。

例如:某车间生产一批产品,每小时生产30个,生产4小时后,因机器故障停工,停工后修机器花了2小时,修好机器后,车间又接着生产,最终完成了原定的生产任务。

九年级数学上册《实际问题与一元二次方程-增长(降低)率问题》教学设计(人教版)

九年级数学上册《实际问题与一元二次方程-增长(降低)率问题》教学设计(人教版)

21.3实际问题与一元二次方程——增长(降低)率问题一、教材分析:本节是第二十一章一元二次方程的第三部分实际问题与一元二次方程的第二课时。

学生在七八年级已经学习了方程的有关知识。

本章的前两部分学习了一元二次方程的概念和解法,这一部分学习一元二次方程的应用。

让学生经历从实际问题中抽象出数学模型,建立一元二次方程解决实际问题的过程,将数学知识和实际生活进行有机结合,体现数学的现实意义。

一元二次方程与二次函数也有着重要的联系。

本节课的学习也是后面继续学习列方程解决实际问题,用二次函数解决实际问题的基础。

二、学情分析:学生已经学过了用一元一次方程、二元一次方程组、可化为一元一次方程的分式方程的有关知识解决实际问题。

在此基础上学习列一元二次方程解决实际题,从简单到复杂符合学生的认知规律。

对学生来说列方程解决实际问题的步骤很熟悉,分析题意、设未知数、列方程、解方程,检验解、答。

与以前的实际问题相比,本节课的问题在分析数量关系方面更复杂,对于学生来说很困难。

还是不能直接“设元”的问题,学生会感到无从下手。

基于所教学生的基础很差,所以我这节课只涉及一种类型的实际问题,就是降低率增长率问题。

给学生充足的时间审题,思考,交流。

设计的思考问题有简单到复杂层层递进。

三、教法学法:因为学生已经学习了有关方程的知识和用一元二次方程解决传播问题,积累了一些经验,所以在讲课时采用对比法,启发引导,小组合作,讲练结合。

学生小组讨论,合作交流,经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界的一个有效的数学模型。

四、教学目标:知识与技能1、掌握增长(降低)率问题的基本数量关系。

能根据这些数量关系列方程解决问题。

2、通过实际问题的解答,让学生认识到要检验方程的解是不是符合实际意义。

过程与方法经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用。

培养学生的“数学建模思想”和对数学的“应用意识”。

情感态度与价值观通过用一元二次方程解决实际问题,让学生感知数学来源于生活,又服务于生活,体会数学的应用价值,提高学生学数学的兴趣。

人教版九年级上册数学 21.3 实际问题与一元二次方程 教案

人教版九年级上册数学  21.3 实际问题与一元二次方程   教案

21.3 实际问题与一元二次方程【本讲内容】一. 教学内容:实际问题与一元二次方程1. 根据实际问题列出一元二次方程,并会求出符合实际问题的解.2. 在分析解决问题的过程中逐步深入地体会一元二次方程作为一种数学模型的应用价值.二. 重点难点:本讲的重点是,进一步反映一元二次方程与实际问题的密切联系,再次体现数学建模思想,加强培养运用一元二次方程分析和解决实际问题的能力.由于本讲问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确地建立一元二次方程是主要难点.突破难点的关键是弄清问题背景,把有关数量关系分析透彻,特别是找出可以作为列方程依据的主要相等关系.三. 知识要点:1. 列一元二次方程解应用题的一般步骤与列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤也归结为:审、设、列、解、检验、答.(1)审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系.(2)设:是指设元,也就是设未知数.(3)列:就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.(4)解:就是解方程,求出未知数的值.(5)检验:是指检验方程的解能否保证实际问题有意义.(6)答:就是写出答案.2. 列一元二次方程解决实际问题的常见题型(1)销售问题;(2)数字问题;(3)面积问题;(4)平均增长(降低)率问题.3. 列一元二次方程解实际问题的注意事项(1)要搞清现实生活中的一些数量关系,例如:距离=速度×时间,工作量=工作效率×工作时间,溶质重量=溶液重量×浓度等等.(2)还有一些关键词语也要搞清,如“多”、“倍”、“差”、“提前”、“同时”、“早到”、“迟到”、“增加几倍”等.对于“增长率”问题,要注意区分“增”与“减”,如人口的减少、利率的降低、汽车的折旧等等,都是在原来基数上减少,不能与增加混淆.(3)列方程解应用题时,要对所求出的未知数进行检验,检验的目的有两个:其一,检验求出来的未知数的值是否满足方程;其二,检验求出的未知数的值是不是满足实际问题的要求,对于适合方程而不适合实际问题的未知数的值应舍去.【典型例题】例1. 小明将1000元钱存入银行,定期一年后取出500元购买学习用品,剩下的500元和应得的利率又全部按一年定期存入,若存款的年利率保持不变,到期后取出660元,求年利率.分析:本题属本息问题,第一年:本金=1000元,利率为x ,本息和为1000(1+x );第二年:本金[1000(1+x )-500]元,利率为x ,本息和为[1000(1+x )-500](1+x )=660.解:设存款年利率为x ,由题意得[1000(1+x )-500](1+x )=660整理得50x 2+75x -8=0解得x 1=110,x 2=-85(不合题意舍去), 取x =110=10% 答:存款的年利率为10%.评析:将各数据代入本息和计算公式即可求得结果.应熟记利率的计算公式,本息和=本金×(1+利率)年数.例2. 三个连续正整数,最大数的立方与最小数的立方差比中间数的40倍大16,求这三个数.分析:∵相邻的两个连续整数之间相差1,∴这三个连续正整数用一个未知数表示的方法是x ,x +1,x +2或x -1,x ,x +1或x -2,x -1,x ,根据题中相等关系:(最大数的立方)-(最小数的立方)=40×(中间数)+16,此题设中间数为x 比较方便.解:设中间数为x ,则最大数为x +1,最小数为x -1,由题意得(x +1)3-(x -1)3=40x +16,整理得3x 2-20x -7=0,解得x 1=7,x 2=-13. ∵x =-13不合题意舍去,∴只取x =7. ∴x +1=8,x -1=6.答:这三个连续正整数是6、7、8.评析:解数字问题的关键是正确而巧妙地设未知数,一般采用间接设元法,如有关三个连续整数(或连续奇数,连续偶数)的问题,一般设中间一个数为x ,再用含x 的代数式表示其余两个数.例3. 用一块长方形的铁片,在它的四个角上各自剪去一个边长是4cm 的小正方形,然后把四边折起来,恰好做成一个没有盖的盒子,已知铁片的长是宽的2倍,做成盒子的容积是1536cm 3,求这块铁片的长和宽.分析:如图所示,设铁片的宽为xcm ,则长为2xcm ,做成的盒子的底面积就是图中虚线围成的长方形面积:(2x -4-4)(x -4-4)cm 2.盒子的高应等于小正方形的边长4cm ,盒子的容积可用代数式表示为4(2x -8)(x -8)cm 3.。

人教版九年级数学上册:21.3 实际问题与一元二次方程 教学设计3

人教版九年级数学上册:21.3 实际问题与一元二次方程  教学设计3

人教版九年级数学上册:21.3 实际问题与一元二次方程教学设计3一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程”是本册教材中的重要内容,旨在让学生能够将实际问题转化为一元二次方程,并通过解方程求解实际问题的答案。

本节内容紧密联系生活实际,有利于培养学生的数学应用意识,提高学生解决问题的能力。

二. 学情分析九年级的学生已经学习了初中阶段的大部分数学知识,对一元二次方程有了初步的了解。

但在解决实际问题时,部分学生可能会对将实际问题转化为方程的过程感到困惑。

因此,在教学过程中,需要关注学生的个体差异,引导学生逐步掌握将实际问题转化为方程的方法。

三. 教学目标1.知识与技能:让学生能够将实际问题转化为一元二次方程,并熟练运用一元二次方程求解实际问题的答案。

2.过程与方法:通过解决实际问题,培养学生将数学知识应用于实际生活中的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学应用意识。

四. 教学重难点1.重点:将实际问题转化为一元二次方程,并求解实际问题的答案。

2.难点:灵活运用一元二次方程解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过设置实际问题,引导学生自主探究,合作解决,从而提高学生将数学知识应用于实际问题的能力。

六. 教学准备1.准备相关的实际问题,如购物问题、长度问题等。

2.准备一元二次方程的解法教学资源。

3.准备投影仪、黑板等教学工具。

七. 教学过程1.导入(5分钟)教师通过设置一个购物问题,引导学生思考如何将实际问题转化为数学问题。

例如:“某商品原价为x元,打8折后的价格为0.8x元。

现在售价为120元,求原价是多少?”让学生尝试解答,从而引出一元二次方程的概念。

2.呈现(10分钟)教师通过展示一系列实际问题,如长度问题、面积问题等,引导学生将这些实际问题转化为一元二次方程。

并在黑板上板书相应的方程,如:a.长度问题:设直线y=kx+b与抛物线y=ax^2+bx+c相切,求k、b、c的值。

新人教版九年级上册 第21章 21.3实际问题与一元二次方程 教案

新人教版九年级上册 第21章 21.3实际问题与一元二次方程 教案

师生行为
点题,板书课 题.
教师提出问 题,并指导学 生进行阅读, 独立思考,学 生根据个人理 解,回答教师 提出的问题. 弄清题意,设 出未知数,并 表示相关量, 根据相等关系 尝试列方程, 求根.根据实 际问题要求, 对根进行选择 确定问题的 解.教师组织
二次备 课 .
1
○1 正中央的长方形与整个封面的长宽比例 相同,是什么含
学生合作交 流,达到共 识,
师生汇总生活 中常见的类似 问题,总结这 类题的做题技 巧.
教师提出问 题,让学生结 合画图独立理 解并解答问 题,培养学生 对几何图形的 分析能力,将 数学知识和实 际问题相结合 的 应用意识
教师总结,学 生体会
学生独立完 成,教师巡视 指导,了解学 生 掌握情况, 并集中订正
个面积为 8m2•的长方形花台,要使花坛四周的宽地宽度一
样,则这个宽度为多少?
四小结 归纳
谈一节课的收获和体会.
五、作业设计
必做:P48:4-8
选做:P49:10
补充作业:
某林场•上口宽比渠深多 2m,渠底比渠深多 0.4m.
(1)渠道的上口宽与渠底宽各是多少?
教 学 目 标
教学重点 教学难点 教学过程设计
实际问题与一元二次方程
知识 技能
过程 方法 情感 态度
1.能根据○1 以流感为问题背景,按一定传播速度 逐步传播的问题;○2 以封面设计为问题背景,边衬 的宽度问题中的数量关系列出一元二次方程,体会 方程刻画现实世界的模型作用. 2.培养学生的阅读能力与分析能力. 3.能根据具体问题的实际意义,检 验结果是否合 理. 通过自主探究,独立思考与合作交流,使学生弄清 实际问题的背景,挖掘隐藏的数量关系,把有关数 量关系分析透彻,找出可以作为列方程依据的主要 相等关系,正确的建立一元二次方程. 在分析解决问题的过程中逐步深入地体会一元二 次方程的应用价值.

人教版九年级上册数学教案:21.3实际问题与一元二次方程-增长率问题

人教版九年级上册数学教案:21.3实际问题与一元二次方程-增长率问题
-难点四:在实际问题中,增长率可能为负,如在减少污染排放的问题中,学生需要理解减少率的概念,并将其正确地反映在数学模型中。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《实际问题与一元二次方程-增长率问题》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过价格每年上涨或人口每年增长的情况?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索增长率的奥秘。
其次,在新课讲授环节,我发现有些学生对一元二次方程的求解方法还不够熟练。针对这个问题,我考虑在接下来的课程中增加一些针对性练习,巩固学生对求解一元二次方程方法的掌握。同时,我也会强调在解决增长率问题时,要关注增长率可能为负数的情况,即减少率。
在实践活动环节,学生们分组讨论和实验操作的表现让我感到欣慰。但我注意到,有些小组在讨论过程中,成员之间的交流并不充分。为了提高学生的合作能力,我打算在之后的课程中加强对小组讨论的引导,鼓励学生们多发表自己的观点,学会倾听他人的意见。
-难点二:在将实际问题转化为方程时,学生可能会对如何选择变量、如何列出等式感到困难。例如,在人口增长问题中,学生需要明确人口增长的初始值、增长率以及增长后的值之间的关系。
-难点三:求解一元二次方程时,学生需要根据方程的特点选择合适的解法,如对于ax^2+bx+c=0,何时使用因式分解,何时使用配方法或公式法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“增长率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

教学设计1:21.3 实际问题与一元二次方程

教学设计1:21.3 实际问题与一元二次方程

21.3 实际问题与一元二次方程
教学目标
知识与技能:1、能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问
题的一个有效的数学模型。

2、能根据具体问题的实际意义,检验结果是否合理。

过程与方法:1、经历将实际问题抽象为数学问题的过程,探索问题中的数量关系,并能运用一元二次
方程对之进行描述。

2、通过成本降低、能源增长等实际问题,学会将实际应用问题转化为数学问题,发展实践应用意识。

情感与态度:通过用一元一次方程解决身边的问题,体会数学知识的应用价值,提高学生学习数学的兴趣。

教学重点和难点
重点:利用增长率问题中的数量关系,列出方程解决问题
难点:理清增长率问题中的数量关系。

九年级数学上册 21.3 实际问题与一元二次方程教案1 新人教版(2021学年)

九年级数学上册 21.3 实际问题与一元二次方程教案1 新人教版(2021学年)

陕西省石泉县九年级数学上册21.3实际问题与一元二次方程教案1(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(陕西省石泉县九年级数学上册21.3 实际问题与一元二次方程教案1 (新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为陕西省石泉县九年级数学上册21.3 实际问题与一元二次方程教案1 (新版)新人教版的全部内容。

实际问题与一元二次方程情感态度与价值观通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.四、教学重点难点教学重点建立数学模型,找等量关系,列方程教学难点找等量关系,列方程ﻩ五、教法学法引导发现、归纳推理六、教学过程设计师生活动设计意图一、复习引入1、解一元二次方程都是有哪些方法?2、列一元一次方程解应用题都是有哪些步骤?①审题;②设未知数;③列方程;④解方程;⑤检验;⑥答二、探索新知【探究1】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?思考:(1)本题中有哪些数量关系?(2)如何理解“两轮传染”?(3)如何利用已知的数量关系选取未知数并列出方程?为继续学习建立一元二次方程的数学模型解实际问题作好铺垫.使学生充分体会传播问题,培养学生对传播设每轮传染中平均一个人传染x个人,那么患流感的这个人在第一轮传染中传染了人;第一轮传染后,共有人患了流感;在第二轮传染中,传染源是人,这些人中每一个人又传染了人,那么第二轮传染了人,第二轮传染后,共有人患流感.(4)根据等量关系列方程并求解解:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有x+1人患了流感,第二轮传染后有x(1+x)人患了流感.于是可列方程:1+x+x(1+x)=121解方程得x1=10, x2=-12(不合题意舍去)因此每轮传染中平均一个人传染了10个人.(5)为什么要舍去一解?(6)如果按照这样的传播速度,三轮传染后,有多少人患流感?通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?(后一轮被传染的人数前一轮患病人数的x倍)(学生审题,理解题意,有问题时可合作交流,找出等量关系,列方程并求出方程的解,找出符合实际问题的解。

九年级数学上册 第二十一章 21.3 实际问题与一元二次方程备课资料教案 (新版)新人教版

九年级数学上册 第二十一章 21.3 实际问题与一元二次方程备课资料教案 (新版)新人教版

第二十一章 21.3实际问题与一元二次方程知识点1:列一元二次方程解应用题的一般步骤:(1)审:审题,要弄清已知量和未知量以及问题中的等量关系;(2)设:设未知数,根据题意,可直接设也可间接设,未知数必须写明单位,语言叙述要完整;(3)列:列代数式和方程,用含有所设未知数的代数式表示其他未知数,利用等量关系,列出方程;(4)解:求出方程的解;(5)验:检验方程的解是否正确,是否符合题意;(6)答:给出符合题目要求的答案.注意:在这些步骤中,审题是解题的基础,列方程是解题的关键.在列方程时,要注意列出的方程必须满足以下三个条件:(1)方程两边表示的是同类量;(2)方程两边的同类量的单位一样;(3)方程两边的数值相等.知识点2:传播问题按一定传播速度传播的问题在现实世界中有许多原型,如:细胞分裂、信息传播、传染病扩散、复利计算等.如果每轮传播中平均一个传播源传给x个,那么第一轮传播源有1个,第一轮传播后共有(1+x)个被传播;第二轮传播源有(1+x)个,第二轮传播后共有[1+x+x(1+x)]个被传播…….下面以流感传播为例加以说明:如有a个人患流感,一轮中每人传染给x人,两轮传染后共有b人患流感,那么:一轮传染后患流感人数为a+ax=a(1+x);两轮传染后患流感人数为a(1+x)+a(1+x)x=a(1+x)2;可列出方程:a(1+x)2=b.关键提醒:(1)我们假设最早的传播源一直在继续传播,虽然实际问题与此不一定完全一致,但这样假设便于用一元二次方程作为实际问题的数学模型.(2)这类问题还可以进一步推广到两轮以上的传播问题,其基本数量关系是一致的,只是如果用方程作为数学模型时会涉及更高次的方程.知识点3:平均变化率方面的问题在实际问题中,常常遇到平均增长率问题.如果原来产值的基础数为a,平均增长率为x,则对于时间n的总产值b,可以用公式b=a(1+x)n表示,解决平均增长率问题,要用这个公式;类似的还有降低率问题.归纳整理:(1)对于增长(降低)率问题,在解答时要注意如下几点:①正确设出未知数x;②准确找出变化前后的两个关键值:起始值a,两次变化后的值b(a<b);③正确列出方程:a(1+x)2=b(或a(1-x)2=b);④对方程的根结合实际进行合理取舍,通常舍去负根;(2)对于两次增长率累计问题,可列方程为a+a(1+x)+a(1+x)2=b.知识点4:几何图形方面的问题与几何图形有关的一元二次方程的应用问题主要是数量关系隐藏在图形中,可以通过列一元二次方程求解问题.图形主要是三角形、四边形,数量关系主要有面积计算、体积计算、勾股定理等.归纳整理:(1)解答此类问题时,关键是把问题数字化.一般通过分析题意先把题目的已知条件与未知条件归结到几何图形中,然后用几何定理(比如:勾股定理)、公式(比如:面积、体积公式)等来寻找它们之间的关系,从而列出相关的一元二次方程,解这个方程并注意实际要求,看其解是否符合实际,即可使问题获解.(2)这类问题可能涉及动点问题、方案设计问题等.动点问题关键是要弄清点的运动特征,利用面积公式、体积公式或勾股定理等可列方程;方案设计问题具有较大的开放性,往往利用面积公式可列方程,解答后要注意检验其解是否符合实际.知识点5:市场经济与其他问题市场经济与其他问题包括纳税、利息、分期付款、销售利润、匀变速运动、古诗词、数位等问题都值得关注,解答这类问题时,不论背景如何变化,一定要抓住“关键词语”寻找等量关系,如销售利润=每件利润×件数,并注意根据实际意义对所列一元二次方程进行合理的取舍.考点1:解决传播的问题【例1】某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,三轮感染后,被感染的电脑会不会超过700台?解:设一台每轮感染给x台电脑,依题意,得(1+x)2=81,解得x=8或-10(负值不合题意,舍去).∵(1+8)3=729>700,∴若病毒得不到有效控制,三轮感染后,被感染的电脑会超过700台.点拨:设一台电脑每轮感染给x台电脑,则第一轮后有(1+x)台,经过第二轮感染后,共有(1+x)2台,经过第三轮感染后,共有(1+x)3台.考点2:解决平均变化率方面的问题【例2】据报道,某省农作物秸秆的资源巨大,但合理利用量十分有限,2010年的利用率只有30%,大部分秸秆被直接焚烧了.假定我省每年产出的农作物秸秆总量不变,且合理利用量的增长率相同,要使2012年的利用率提高到60%,求每年的增长率.(取≈1.41)解:设我省每年产出的农作物秸秆总量为a,合理利用量的增长率是x,由题意得a·30%·(1+x)2=a·60%,即(1+x)2=2.解得x1≈0.41,x2≈-2.41(不合题意,舍去).即我省每年秸秆合理利用量的增长率约是41%.点拨:可假设每年产出的农作物秸秆总量为a,这样2010年被利用的秸秆总量为30%a,设每年的增长率为x,则2012年能被利用的秸秆总量为a·30%·(1+x)2.考点3:利用一元二次方程解决几何问题【例3】要对一块长60米、宽40米的矩形荒地ABCD进行绿化和硬化.设计方案如图所示,矩形P、Q为两块绿地,其余为硬化路面,P、Q两块绿地周围的硬化路面宽都相等,并使两块绿地面积的和为矩形ABCD面积的,求P、Q两块绿地周围的硬化路面的宽.解:设P、Q两块绿地周围的硬化路面的宽都为x米,根据题意,得(60-3x)×(40-2x)=60×40×,解得x1=10,x2=30.经检验,x2=30不符合题意,舍去.所以两块绿地周围的硬化路面宽都为10米.点拨:此题属于几何图形应用问题,通过所提供的图案信息,正确分析图形中数量关系,从图形中获取有用的信息,构建与选择相应的方程求解,解决这类问题的关键是要认真理解题意,善于运用转化的思想方法,将实际问题转化为数学问题.在图形的面积表示方法中,通常有三种处理办法:直接表示、间接表示与变换表示三种.考点4:利用一元二次方程解决盈利问题【例4】百货大楼服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“十一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存.经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件.要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?解:设每件童装应降价x元,则(40-x)(20+8×)=1200,解得x1=20,x2=10.因为要尽快减少库存,所以x=20.故每件童装应降价20元.反思:本题主要的数量关系是:销售利润=每件利润×件数,理解商品的销售的件数及商品价格的关系是解答本题的关键.数学来源于生活,又应用于生活,当前的纳税、利息、分期付款、销售利润等问题通常都与一元二次方程有关,解答这类问题时,不论背景如何复杂与变化,一定要抓住问题的关键,寻找等量关系,并注意根据实际意义对所列一元二次方程的解进行合理的取舍.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.3实际问题与一元二次方程(增长率)
一、教材分析
本课的主要内容是以列一元二次方程解应用题为中心,深入探究有关成本下降和增长率问题。活动的侧重点是列方程解应用题,提高学生应用方程分析解决问题的能力。活动中涉及了一元二次方程解法,列方程解应用题的一般规律等。这些问题在现实世界中有许多原型,让学生理解两个时间段的平均变化率可以用一元二次方程作 为数学模型,从 而使问题得到解决。
第三步:根据这些相等关系列出需要的代数式(出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名称)。
二、实践探究
探究二:两年前生产1吨甲种药品的成本是5000元,生产吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
二、学情分析
本节课是在初二学习增长率,下降率的基础上来用一元二次方程的方法来解决的问题,在本课的学习中,应重视相关内容与实际 的联系,加强对一元二次方程是解决现实问题的一种数学模型的认识。分析和解决的关键是找出问题中的相关数量之间的相等关系,并把这样的关系“翻译”为一元二次方程。在教学中借助现代化教学媒体和网络资源,让学生通过观察、类比, 分解、等方法指导怎样试。加强对这类题的把握。
三、教学目标
通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关成本下降和增长率问题.
四、教学重点难点
重点
会用列一元二次方程的方法解有关下降和增长率问题.
难点
有关成本下降和增长率问题的数量关系.
五、教学过程设计
一、复习
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找 出能够表示应用题全部含义的相等关系;
2.某校去年对实验器材的投资为2万元,预计今明两年的投 资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为
七、作业设计
22页:A组做6.7.8题。B组做第7题。
解:设甲种药品成本的年平均下降率为x,则一年后
甲种药品成本为5000(1-x)元,两年后甲种药品成本
为5000(1-x)2元,依题意得
六、练习及检测题
练习:
1.据报道:2008年底某市自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A级标准.因此,市政府决定加快绿化建设,力争到2010年底自然保护区覆盖率达到8%以上.若要达到最低目标8%,则该自然保护区面积的年平均增长率应是多少?(结果保留三位有效数字)
相关文档
最新文档