某旅行社拟在暑假期间面向学生推出林州红旗渠一日游活动,收费标准如下
一元一次方程例题
1.“十·一”期间,百汇商场和雅思超市打出了打折优惠大酬宾的广告.百汇商场的优惠广告是:百汇商场为答谢广大顾客长期以来对百汇商场的厚爱,即日起特推出“买100送100”大酬宾活动,活动规则如下:1.凡第一次在本商场购满100元者,赠给100元的优惠卡(注:购物100元以内的不赠优惠卡,超过100元不到200元的也只赠100元优惠卡,满200元或超过200而不到300元的赠200元优惠卡,依此类推);2.第二次在本商场购物时能使用优惠卡,但使用优惠卡的数额不能超过购物金额的一半,另一半应以现金支付,且不再赠优惠卡,同时优惠卡的最少面额为50元,即使用优惠卡不到50元的按50元算,超过50元但不到100元的按100元算.雅思超市的优惠广告是:为答谢广大新老顾客,雅思超市今日起特推出全场6.5折大优惠.欢迎惠顾.请分析一下哪家更优惠?分析:假如我们用100元去百汇商场购100元商品,得到100元优惠卡,这100元优惠卡并不是真正意义上的钱,为了让它产生效益,我们必须把100元优惠卡在这家商场全部花掉,按规定,我们必须再拿出100现金和那100元优惠卡再购买200元的商品.这时,我们共付出了200元,买到了300元的商品;而如果到雅思超市购买300元的商品,只须付出300×6.5=195(元).由此可见,从雅思超市得到300元商品比百汇商场便宜了5元;再说,要恰好买到整百元的商品并不多,此时又要浪费一部分钱,实际优惠常常并不能达到6.5折.因此,雅思超市比百汇商场更优惠.2 某商场的服装按原价九折出售,要使销售总收入不变,那么销售量应增加?分析:在这个问题当中,总收入=单价×件数,但是由于没有给出原价的数量、原来卖出的件数和原来的总收入,要想列出这个方程就非常困难。
但是反过来想,如果给出原价和原来的销售数量,列方程就会非常简单。
这时我们就可以在设出未知数的基础上,再设一些辅助未知数。
新人教版七年级下数学实际运用题.doc题型
1、某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。
(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分∼90分),请你算算小亮答对了几道题?2、为了抓住梵净山文化艺术节的商机,某商店决定购进A. B两种艺术节纪念品。
若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元。
(1)求购进A. B两种纪念品每件各需多少元?(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?3、题目:某次知识竞赛共有20道题,每一题答对得5分,答错或不答都扣3分。
(1)小明考了68分,那么小明答对了多少问题?(2)小亮获得二等奖(70分∼90分),请你算算小亮答对了几道题?5、小明家每月水费都不少于15元,自来水公司的收费标准如下;若每户每月用水不超过5立方米,则每立方米收费1.8元;若每户每月用水超过5立方米,则超出部分每立方米收费2元,小明家每月用水量至少是多少?6、题目:为了解决农民工子女就近入学问题,我市第一小学计划2012年秋季学期扩大办学规模。
学校决定开支八万元全部用于购买课桌凳、办公桌椅和电脑,要求购买的课桌凳与办公桌椅的数量比为20:1,购买电脑的资金不低于16000元,但不超过24000元。
已知一套办公桌椅比一套课桌凳贵80元,用2000元恰好可以买到10套课桌凳和4套办公桌椅.(课桌凳和办公桌椅均成套购进)(1)一套课桌凳和一套办公桌椅的价格分别为多少元?(2)求出课桌凳和办公桌椅的购买方案。
7、题目:某汽车专卖店销售A,B两种型号的新能源汽车。
上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元。
初一数学二元一次方程组试题答案及解析
初一数学二元一次方程组试题答案及解析1.方程组的解满足方程x+y-a=0,那么a的值是A.5B.-5C.3D.-3【答案】A.【解析】把①代入②得:y=-5,把y=-5代入①得:x=0,把y=-5,x=0代入x+y+a=0得:a=5;故选A.【考点】1.二元一次方程组的解;2.二元一次方程的解.2.解方程组(1)(2)【答案】(1);(2).【解析】分别把所给方程组进行变形,然后再求解即可.试题解析:(1)由①得:x="3y-7" ③把③代入②得:6y-14=5y整理解得:y=14把y=14代入①得:x=35所以方程组的解为:;(2)方程组可变形为:由①得:x="300-y" ③把③代入②得:1500-5y+53y=7500整理解得:x=125.把x=125代入①得:y=175.所以方程组的解为:.【考点】解二元一次方程组.3.为庆祝“六·一”国际儿童节,鸡冠区某小学组织师生共360 人参加公园游园活动,有A 、B 两种型号客车可供租用,两种客车载客量分别为45 人、30 人,要求每辆车必须满载,则师生一次性全部到达公园的租车方案有种。
【答案】5【解析】分析:可设租用A型号客车x辆,B型号客车Y辆,根据共360人参加公园游园活动可列方程,再根据车辆数为非负整数求解即可.解答:解:设租用A型号客车x辆,B型号客车Y辆,则45x+30y=360,即3x+2y=24,当x=0时,y=12,符合题意;当x=2时,y=9,符合题意;当x=4时,y=6,符合题意;当x=6时,y=3,符合题意;当x=8时,y=0,符合题意.故师生一次性全部到达公园的租车方案有5种.故选C.【考点】二元一次方程的应用.4.已知3x-2y+6=0,用含x的代数式表示y得:y= .【答案】.【解析】要把方程3x-2y+6=0写成用含x的式子表示y的形式,需要把含有y的项移到等号一边,其他的项移到另一边,然后合并同类项,系数化1就可用含x的式子表示y的形式.试题解析:∵3x-2y+6=0∴2y=3x+6即:.【考点】解二元一次方程.5.若是二元一次方程组的解,求的值.【答案】3【解析】根据方程组解的定义,将代入得到关于的二元一次方程组,二式相减即可求得的值.把代入方程组得:,(1)(2),得.【考点】1.方程组的解;2.求代数式的值;3.整体思想的应用.6.方程mx-2y=x+5是二元一次方程时,m的取值范围为()A.m≠0B.m≠1C.m≠-1D.m≠2【答案】B【解析】原方程移项,得mx-x-2y=5,合并同类项,得(m-1)x-2y=5,根据二元一次方程的定义,得m-1≠0,即m≠1.故选B.【考点】二元一次方程的定义7.小明的爸爸骑着摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数(单位:公里)如下:设小明12:00时看到的两位数的个位数字为x。
二元一次方程组的应用(二)
同步课程˙二元一次方程组的应用(二)【例1】某县为鼓励失地农民自主创业,在2010年对60位自主创业的失地农民自主创业的失地农民进行奖励,共计划奖励10万元.奖励标准是:失地农民自主创业连续经营一年以上的给予1000元奖励;自主创业且解决5人以上失业人员稳定就业一年以上的,再给予2000元奖励.问:该县失地农民中自主创业连续经营一年以上的和自主创业且解决5人以上失业人员稳定就业一年以上的农民分别有多少人?【例2】利民商店经销甲、乙两种商品.现有如下信息:请根据以上信息,解答下列问题:(1)甲、乙两种商品的进货单价各多少元?(2)该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降0.1元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m元.在不考虑其他因素的条件下,当m定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大?每天的最大利润是多少?二元一次方程组的应用(二)同步练习同步课程˙二元一次方程组的应用(二)【例3】 古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成。
A 工程队每天整治12米,B 工程队每天整治8米,共用时20天。
(1)根据题意,甲、乙两个同学分别列出了尚不完整的方程组如下:甲:⎩⎨⎧=+=+y x y x 812乙:⎪⎩⎪⎨⎧=+=+812y x y x根据甲、乙两名同学所列的方程组,请你分别指出未知数x,y 表示的意义,然后在方框中补全甲、乙两名同学所列的方程组: 甲:x 表示,y 表示; 乙:x 表示,y 表示;(2)求A 、B 两工程队分别整治河道多少米?(写出完整的解答过程)(1)此题蕴含两个基本数量关系:A 工程队用的时间+B 工程队用的时间=20天,A 工程队整治河道的米数+B 工程队整治河道的米数=180,由此进行解答即可;(2)选择其中一个方程组解答解决问题.同步课程˙二元一次方程组的应用(二)【例4】某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=a t2+b t,且乙级干果的前三天的销售量的情况见下表:t 1 2 3y221 44 69(1)求a.b的值;(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)【例5】潼南绿色无公害蔬菜基地有甲、乙两种植户,他们种植了A、B两类蔬菜,两种植户种植的两类蔬菜的种植面积与总收入如下表:种植户种植A类蔬菜面积(单位:亩)种植B类蔬菜面积(单位:亩)总收入(单位:元)甲 3 1 12500乙 2 3 16500 说明:不同种植户种植的同类蔬菜每亩平均收入相等.⑴求A、B两类蔬菜每亩平均收入各是多少元?⑵某种植户准备租20亩地用来种植A、B两类蔬菜,为了使总收入不低于63000元,且种植A类蔬菜的面积多于种植B类蔬菜的面积(两类蔬菜的种植面积均为整数),求该种植户所有租地方案.【例6】某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?【例7】为了参加2011年威海国际铁人三项(游泳,自行车,长跑)系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.【巩固】小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远?【例8】某电脑经销商计划购进一批电脑机箱和液晶显示器,若购电脑机箱10台和液液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【巩固】某班到毕业时共结余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件T恤或一本影集作为纪念品.已知每件T恤比每本影集贵9元,用200元恰好可以买到2件T恤和5本影集.(1)求每件T恤和每本影集的价格分别为多少元?(2)有几种购买T恤和影集的方案?【例9】童星玩具厂工人的工作时间为:每月22天,每天8小时.工资待遇为:按件计酬,多劳多得,每月另加福利工资500元,按月结算.该厂生产A、B两种产品,工人每生产一件A种产品可得报酬1.50元,每生产一件B种产品可得报酬2.80元.该厂工人可以选择A、B两种产品中的一种或两种进行生产.工人小李生产1件A产品和1件B产品需35分钟;生产3件A产品和2件B产品需85分钟.(1)小李生产1件A产品需要15分钟,生产1件B产品需要20分钟.(2)求小李每月的工资收入范围.【例10】建华小区准备新建50个停车位,以解决小区停车难的问题.已知新建1个地上停车位和1个地下停车位需0.5万元;新建3个地上停车位和2个地下停车位需1.1万元.(1)该小区新建1个地上停车位和1个地下停车位各需多少万元?(2)若该小区预计投资金额超过10万元而不超过11万元,则共有几种建造方案?(3)已知每个地上停车位月租金100元,每个地下停车位月租金300元.在(2)的条件下,新建停车位全部租出.若该小区将第一个月租金收入中的3600元用于旧车位的维修,其余收入继续兴建新车位,恰好用完,请直接写出该小区选择的是哪种建造方案?【例11】 某班将举行“庆祝建党90周年知识竞赛“活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息.解决问題: (1)试计算两种笔记本各买了多少本? (2)请你解释:小明为什么不可能找回68元?1、我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.课后练习2、毕业在即,九年级某班为纪念师生情谊,班委决定花800元班费买两种不同单价的留念册,分别给50位同学和10位任课教师每人一本作纪念,其中送给任课教师的留念册单价比给同学的单价多8元.请问这两种不同留念册的单价分别是多少?3、某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费10 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?4、为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作.某地决定对居民家庭用电实际“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实际“基本电价”;当居民家庭月用电量超过80千瓦时时,超过部分实行“提高电价”.(1)小张家2011年4月份用电100千瓦时,上缴电费68元;5月份用电120千瓦时,上缴电费88元.求“基本电价”和“提高电价”分别为多少元/千瓦时?(2)若6月份小张家预计用电130千瓦时,请预算小张家6月份应上缴的电费.5、某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工速度,能够比原来少用多少天完成任务?6、食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?7、在长为10m,宽为8m的矩形空地中,沿平行于矩形各边的方向分割出三个全等的小矩形花圃,其示意图如图所示.求小矩形花圃的长和宽.同步课程˙二元一次方程组的应用(二)8、某工厂计划生产A,B两种产品共10件,其生产成本和利润如下表:A种产品B种产品成本(万元∕件) 3 5利润(万元∕件) 1 2(1)若工厂计划获利14万元,问A,B两种产品应分别生产多少件?(2)若工厂投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?(3)在(2)条件下,哪种方案获利最大?并求最大利润.11 / 11。
最新人教版初中数学七年级下册第8章《二元一次方程组》单元综合练习题(解析版)
人教版七年级数学下册第八章二元一次方程组单元测试题(有答案)一.选择题1.下列方程中,是二元一次方程的是( )A .3x -2y =4zB .6xy +9=0C.1x +4y =6 D .4x =y -24 2.下列方程组中,是二元一次方程组的是( )A.⎩⎪⎨⎪⎧x +y =42x +3y =7B.⎩⎪⎨⎪⎧2a -3b =115b -4c =6C.⎩⎪⎨⎪⎧x 2=9y =2xD.⎩⎪⎨⎪⎧x +y =8x 2-y =4 3.方程组的解为( ) A .B .C .D .4.夏季来临,某超市试销A 、B 两种型号的风扇,两周内共销售30台,销售收入5300元,A 型风扇每台200元,B 型风扇每台150元,问A 、B 两种型号的风扇分别销售了多少台?若设A 型风扇销售了x 台,B 型风扇销售了y 台,则根据题意列出方程组为( ) A . B . C .D .5.小岩打算购买气球装扮学校“毕业典礼”活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同.由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A .19B .18C .16D .156.某文具店一本练习本和一支水笔的单价合计为3元,小妮在该店买了20本练习本和10支水笔,共花了36元.如果设练习本每本为x 元,水笔每支为y 元,那么根据题意,下列方程组中,正确的是( )A.B.C.D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y线,根据题意,可列方程组为()A.B.C.D.8.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20 B.x+y=20 C.5x﹣2y=60 D.5x+2y=609.阅读理解:a,b,c,d是实数,我们把符号称为2×2阶行列式,并且规定: =a ×d﹣b×c,例如: =3×(﹣2)﹣2×(﹣1)=﹣6+2=﹣4.二元一次方程组的解可以利用2×2阶行列式表示为:;其中D=,D x=,D y=.问题:对于用上面的方法解二元一次方程组时,下面说法错误的是()A.D==﹣7 B.D x=﹣14C.D y=27 D.方程组的解为10.若二元一次联立方程式的解为x=a,y=b,则a+b之值为何?()A.24 B.0 C.﹣4 D.﹣811.为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有()A.4种B.3种C.2种D.1种12.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B. C.D.二.填空题1.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a= .2.六一儿童节,某幼儿园用100元钱给小朋友买了甲、乙两种不同的玩具共30个,单价分别为2元和4元,则该幼儿园购买了甲、乙两种玩具分别为、个.3.对于实数a,b,定义运算“◆”:a◆b=,例如4◆3,因为4>3.所以4◆3==5.若x,y满足方程组,则x◆y=.4.已知x,y满足方程组,则x2﹣4y2的值为.5.我国古代数学著作《九章算术》中有一道阐述“盈不足术”的问题,译文为:“现有几个人共同购买一个物品,每人出8元,则多3元;每人出7元,则差4元.问这个物品的价格是多少元?”该物品的价格是元.6.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为尺,竿子长为尺.7.若二元一次方程组的解为,则a﹣b= .8.已知是关于x,y的二元一次方程组的一组解,则a+b= .9.小强同学生日的月数减去日数为2,月数的两倍和日数相加为31,则小强同学生日的月数和日数的和为.三.解答题1.解方程组:.2.用消元法解方程组3.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少?请解答上述问题.4.某水果店5月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.6月份,这两种水果的进价上调为:甲种水果10元千克,乙种水果20元/千克.(1)若该店6月份购进这两种水果的数量与5月份都相同,将多支付货款300元,求该店5月份购进甲、乙两种水果分别是多少千克?(2)若6月份将这两种水果进货总量减少到120千克,且甲种水果不超过乙种水果的3倍,则6月份该店需要支付这两种水果的货款最少应是多少元?5.在端午节来临之际,某商店订购了A型和B型两种粽子,A型粽子28元/千克,B型粽子24元/千克,若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.6.为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?7.为拓宽学生视野,引导学生主动适应社会,促进书本知识和生活经验的深度融合,我市某中学决定组织部分班级去赤壁开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.现有甲、乙两种大客车,它们的载客量和租金如表所示.甲种客车乙种客车载客量/(人/辆)30 42租金/(元/辆)300 400学校计划此次研学旅行活动的租车总费用不超过3100元,为了安全,每辆客车上至少要有2名老师.(1)参加此次研学旅行活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师,可知租用客车总数为8 辆;(3)你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.参考答案:一、选择题。
201X版中考数学专题复习 二元一次方程(组)训练 鲁教版
2019版中考数学专题复习 二元一次方程(组)训练 鲁教版1.某班为奖励在校运会上取得较好成绩的运动员,花了400元钱购买甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x 件,乙种奖品y 件,则方程组正确的是( )A.⎩⎪⎨⎪⎧x+y=3012x+16y=400B.⎩⎪⎨⎪⎧x+y=3016x+12y=400C.⎩⎪⎨⎪⎧12x+16y=30x+y=400D.⎩⎪⎨⎪⎧16x+12y=30x+y=400 2.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元。
该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠。
若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x 双、乙鞋y 双,则依题意可列出下列哪一个方程式( )A .1800)30(50)30(200=-+-y xB .1800)30(50)30(200=--+-y x xC .1800)60(50)30(200=--+-y x xD .1800])30(30[50)30(200=---+-y x x3.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x 元,包子每颗y 元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?( )A .⎩⎨⎧⨯=++=+9.09051125035y x y x B .⎩⎨⎧÷=++=+9.09051125035y x y x C .⎩⎨⎧⨯=+-=+9.09051125035y x y x D .⎩⎨⎧÷=+-=+9.09051125035y x y x4. 二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是( ) A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩5.灾后重建,四川从悲壮走向豪迈.灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15 人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15 包.请问这次采购派男女村民各多少人( )A .男村民3人,女村民12人 B .男村民5人,女村民10人C .男村民6人,女村民9人D .男村民7人,女村民8人6.下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩ B . 52313x y y x -=⎧⎪⎨+=⎪⎩C . 20135x z x y +=⎧⎪⎨-=⎪⎩D .5723z x y =⎧⎪⎨+=⎪⎩ 7.方程组⎩⎨⎧=+=-422y x y x 的解是( )A .⎩⎨⎧==21y x B .⎩⎨⎧==13y x C .⎩⎨⎧-==20y x D .⎩⎨⎧==02y x8.已知2,1x y =⎧⎨=⎩是二元一次方程组7,1ax by ax by +=⎧⎨-=⎩的解,则a b -的值为( )A .-1 B .1 C .2 D .3 9.方程组237,38.x y x y +=⎧⎨-=⎩的解是 .10.方程组257x y x y 的解是 . 11.已知x 、y 满足方程组⎩⎨⎧=+=+,42,52y x y x 则x -y 的值为 .12.方程组524050x y x y --=⎧⎨+-=⎩的解是_________. 13.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______. 14.已知.a y x 3y x 3y 2的解的二元一次方程,是关于+=⎩⎨⎧==x 求(a+1)(a -1)+7的值15. 古运河是扬州的母亲河,为打造古运河风光带,现有一段长为180米的河道整治任务由A 、B 两个工程队先后接力完成。
第21讲八上(生)二元一次方程应用题
第21讲二元一次方程应用题(2) (一)利润问题典型例题销售方式直接销售粗加工后销售精加工后销售每吨获利(元)100 250 450现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行)。
(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:销售方式全部直接销售全部粗加工后销售尽量精加工,剩余部分直接销售获利(元)应如何分配加工时间?例2. 下表是某一周甲、乙两种股票每天的收盘价(股票每天交易结束的价格)。
时间收盘价(元/股)名称星期一星期二星期三星期四星期五甲12 12.5 12.9 12.45 12.75乙13.5 13.3 13.9 13.4 13.75 某人在该周内持有若干甲、乙两种股票,若按照两种股票每天收盘价计算(不计手续费、税费等),该人账户上星期二比星期一多获利200元,星期三比星期二多获利1300元。
试问该人持有甲、乙股票多少股?延伸训练11. 某牛奶加工厂现有鲜奶9t。
若在市场上直接销售鲜奶,每吨可获取利润500元;制成酸奶销售,每吨可获取利润1200元;制成奶片销售,每吨可获取利润2000元。
该工厂的生产能力是:如制成酸奶,每天可加工3t;制成奶片,每天可加工1t。
受人员限制,两种加工方式不可同时进行。
受气温条件限制,这批牛奶必须在4天内全部销售或加工完毕。
为此,该厂设计了两种可行方案:方案一:尽可能多的制成奶片,其余直接销售鲜奶;方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成。
你认为选择哪种方案获利最多,为什么?2. 2002年世界杯足球赛,韩国组委会公布的四分之一决赛门票价格是:一等席300美元,二等席200美元,三等席125美元。
某服装公司在促销活动中,组织获得特等奖,一等奖的36名顾客到韩国观看2002年世界杯足球赛四分之一决赛,除去其他费用后,计划买两种门票,用完5025美元,你能设计出几种购票方案给该服装公司选择?并说明理由。
七年级下册数学期末复习实际问题应用题
1.芦山地震发生后我市决定向灾区捐献一批矿泉水和帐篷共3200件,其中矿泉水比帐篷多800件.(1)求矿泉水和帐篷各有多少件(2)现计划租用甲、乙两种货车共8辆,一次性将这批矿泉水和帐篷全部运往灾区中小学.已知每辆甲种货车最多可装矿泉水400件和帐篷100件,每辆乙种货车最多可装矿泉水和帐篷各200件.问安排甲、乙两种货车时有几种方案请你帮助设计出来.?2.列方程组或不等式组解应用题:为实现区域教育均衡发展,我区计划对A、B两类薄弱学校分别进行改造,根据预算,改造一所A类学校和两所B类学校共需资金230万元,改造两所A类学校和一所B类学校共需资金205万元.(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元(2)我区计划今年对A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过380万元,地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元,请你通过计算求出有几种改造方案哪种改造方案所需资金最少,最少资金为多少》3.某饮料厂有甲,乙两条饮料灌装生产线,根据市场需求,计划平均每天灌装饮料700箱.如果两条生产线同时工作,则完成一天的生产任务需要工作7小时;如果两条生产线同时工作小时后,再由乙生产线单独工作,则完成一天的生产任务还需10小时.(1)求甲、乙两条灌装生产线每小时各灌装多少箱饮料(2)已知甲灌装生产线工作1小时的成本费用为550元,乙灌装生产线工作1小时的成本费用为495元,如果每天用于灌装生产线的成本费用不得超过7370元,那么甲灌装生产线每天至少工作多少小时·4.据统计资料,甲、乙两种作物的单位面积产值的比是1:2,现要把一块长AB 为200m、宽AD为100m的长方形土地,分为两块土地,分别种植这两种作物,使甲、乙两种作物的总产量的比是3:4.(1)如图1,若甲、乙两种作物的种植区分别为长方形ABFE和EFCD,此时设AE=xm,ED=ym,列方程组去x,y的值并写出种植甲、乙两种作物的面积;(2)若按如图2划分出一块三角形土地AEF种植一块作物,其余土地种植另一种作物,三角形土地AEF适合种哪种作物为什么AF应该取多长%(3)若按如图3划分出一块正方形土地AEGF种植一种作物,其余土地种植另一种作物,正方形AEGF适合种哪种作物AF应该取多长(结果用根号表示)(4)若按如图4划分出一块圆形土地种植一种作物,其余土地种植另一种作物,圆形土地是否适合种植其中某种作物,若适合,请说明适合种植哪种作物,并确定圆的半径,若不适合,请说明理由(π取)¥5.为降低空气污染,公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B若购买A型公交车A型公交车2辆,B型公交车1辆,共需350万元.(1)求a,b的值;(2)如果该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次.请你设计一个方案,使得购车总费用最少.解:(1)由题意得:,解这个方程组得:.|答:购买A 型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车x辆,购买B型公交车(10﹣x)辆,由题意得:,解得:6≤x≤8,有三种购车方案:①购买A型公交车6辆,购买B型公交车4辆;②购买A型公交车7辆,购买B型公交车3辆;③购买A型公交车8辆,购买B型公交车2辆.故购买A型公交车越多越省钱,所以购车总费用最少的是购买A型公交车8辆,购买B型公交车2辆.@6.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:每户每月用水量自来水销售价格污水处理价格单价:元/吨《单价:元/吨17吨及以下 a超过17吨但不超过30吨的部分b>超过30吨的部分(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费)已知小王家2015年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨<解析(1)由题意,得②-①,得5(b+=25,解得b=,把b=代入①,得17(a++3×5=66,解得a=.∴a=,b=.(2)当月用水量为30吨时,水费为17×3+13×5=116(元).—又9 200×2%=184(元),116<184,∴小王家6月份的用水量可以超过30吨.设小王家6月份用水量为x吨,由题意,得17×3+13×5+(x-30)≤184,(x-30)≤184-116,解得x≤40.∴小王家6月份最多能用水40吨.7.某乳制品厂,现有鲜牛奶 10 吨.若直接销售,每吨可获利 500 元;若制成酸奶销售,每吨可获利 1200 元;若制成奶粉销售,每吨可获利 2000 元.本工厂的生产能力是:若制成酸奶,每天可加工鲜牛奶 3 吨;若制成奶粉,每天可加工鲜牛奶 1 吨(两种加工方式不能同时进行).受气温条件限制,这批鲜牛奶必须在 4 天内全部销售或加工完成.为此该厂设计了以下两种可行方案:|方案一:4 天时间全部用来生产奶粉,其余直接销售鲜奶;方案二:将一部分制成奶粉,其余制成酸奶,并恰好 4 天完成.你认为哪种方案获利多,请通过计算说明.8.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元)9.目前节能灯在城市已基本普及,为响应号召,某商场计划用3800元购进甲,乙两种节能灯共120只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型25 :30乙型45 60(1)求甲、乙两种节能灯各进多少只(2)全部售完120只节能灯后,该商场获利多少元解:(1)设甲种节能灯有x只,则乙种节能灯有y只,由题意得:,…解得:,答:甲种节能灯有80只,则乙种节能灯有40只;(2)根据题意得:80×(30﹣25)+40×(60﹣45)=1000(元),答:全部售完120只节能灯后,该商场获利润1000元.10.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:0<m≤100 100<m≤200 m>200·人数m收费标准(元/人)90 85 75—甲、乙两所学校计划组织本校学生自愿参加此项活动,已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费16875元,若两校联合组团只需花费16575元.(1)两所学校报名参加旅游的学生共有多少人(2)两所学校报名参加旅游的学生各有多少人【分析】(1)设两校人数之和为a,由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)设甲学校人数为x人,乙学校人数为y人,根据题意若两校分别组团共需花费16875元,列方程组,求解即可.【解答】解:(1)设两校人数之和为a,若a>200,则a=16575÷75=221(人),若100<a≤200,则a=16575÷85=195(人).'答:两所学校报名参加旅游的学生共有221人或195人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,,解得:.,解得:(不合题意,舍去);(②当x>200时,或,解得:.答:甲学校报名201人,乙学校报名20人或甲学校报名135人,乙学校报名60人.【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,根据花费方式分情况讨论,设出未知数再列出方程组,注意舍去不合题意的结论.|11为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案怎样购置才能使所需总费用最低,最低费用是多少解:(1)设男式单车x元/辆,女式单车y元/辆,根据题意,得:,解得:,答:男式单车2000元/辆,女式单车1500元/辆;.(2)设购置女式单车m辆,则购置男式单车(m+4)辆,根据题意,得:,解得:9≤m≤12,∵m为整数,∴m的值可以是9、10、11、12,即该社区有四种购置方案;设购置总费用为W,则W=2000(m+4)+1500m=3500m+8000,|∵W随m的增大而增大,∴当m=9时,W取得最小值,最小值为39500,答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为39500元.12.某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.。
二元一次方程组 应用题
二元一次方程(组)习题1、(8分)在y =kx +b 中,当x =1时,y =2;当x =-1时,y =4;当x =2时,y 值为多少?2、(8分)满足方程组⎩⎨⎧=++=+532153y x k y x 的x 、y 值之和为2,求k 的值.3、若243724952=+--++n m n m y x 是关于x 、y 的二元一次方程,求m n ++2014)1(的值.4.若12a b =⎧⎨=-⎩是关于a ,b 的二元一次方程ax +ay -b =7的一个解,则代数式x 2+2xy +y 2-1•的值是_________.5.小东将书折过来,该角顶点A 落在F 处,BC 为折痕,如图所示,若DB 平分∠FBE ,∠DBE 比∠CBA 大30°,设∠CBA 和∠DBE 分别为x °、y °,那么可求出这两个角的度数的方程组是 .6.a -b =2,a -c =12,则(b -c )3-3(b -c )+94=________. 7.7.已知32111x x y y ==-⎧⎧⎨⎨==⎩⎩和都是ax +by =7的解,则a =_______,b =______. 8.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了 张,乙种票买了 张.9.方程组经“消元”后可得到一个关于x 、y 的二元一次方程组为 . . 10.已知关于x ,y 的二元一次方程组的解为,那么关于m ,n 的二元一次方程组的解为 .11.已知y =3xy +x ,求代数式2322x xy y x xy y+---的值.(本小题6分) 12.已知x =1是关于x 的一元一次方程ax -1=2(x -b )的解,y =1是关于y •的一元一次方程b (y -3)=2(1-a )的解.在y =ax 2+bx -3中,求当x =-3时y 值.(本小题6分)13、。
一元一次方程实际问题综合分配方案2
1.我国邮政部门规定:国内平信100克以内(包括100克)每20克需贴邮票0.80元,不足20克重的以20克计算;超过100克的,超过部分每100克需加贴2.00元,不足100克的以100克计算.(1)寄-封重41克的国内平信,需贴邮票多少元?(2)某人寄-封国内平信贴了6.00元邮票,此信重约多少克?(3)有9人参加一次数学竞赛,每份答卷重14克,每个信封重5克,将这9份答卷分装两个信封寄出,怎样装才能使所贴邮票金额最少?2.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?3.学校艺术节要印制节目单,有两个印刷厂前来联系业务,他们的报价相同,甲厂的优惠条件是:按每份定价1.5元的八折收费,另收900元制版费;乙厂的优惠条件是:每份定价1.5元的价格不变,而900元的制版费则六折优惠.问:(1)学校印制多少份节目单时两个印刷厂费用是相同的?(2)学校要印制1500份节目单,选哪个印刷厂所付费用少?4、某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?如果两校区分别单独购买服装,一共应付5000元.(1)如果两校区联合起来购买服装,那么比各自单独购买服装共可以节省多少钱?(2)黄花园校区和鲁能校区各有多少学生准备参加演出?(3)如果鲁能校区有9名参加演出的同学临时接到通知将参加某大学的自主招生考试而不能参加演出,那么你认为有几种购买方案,通过比较,你该如何购买服装才能最省钱?8、.某中学为了表彰在书法比赛中成绩突出的学生,购买了钢笔30支,毛笔45支,共用了1755元,其中每支毛笔比钢笔贵4元.(1)求钢笔和毛笔的单价各为多少元?(2)①学校仍需要购买上面的两种笔共105支(每种笔的单价不变).陈老师做完预算后,向财务处王老师说:“我这次买这两种笔需支领2447元.”王老师算了一下,说:“如果你用这些钱只买这两种笔,那么帐肯定算错了.”请你用学过的方程知识解释王老师为什么说他用这些钱只买这两种笔的帐算错了.②陈老师突然想起,所做的预算中还包括校长让他买的一支签字笔.如果签字笔的单价为小于10元的整数,请通过计算,直接写出签字笔的单价可能为元.张叔叔从邮局拿到税后稿费为3380元,问该杂志社给张叔叔的税前论文稿费为多少请你帮助邻居张叔叔出个主意,要在这两个店买,应怎样买最省钱?共需多少钱?并写出购买方案.11、近期市政府将制定居民用水标准:规定每个三口之家每月的标准用水量,不超过标准部分的水价为每立方米3.5元;超过标准部分的水价为每立方米4.2元.(1)某家庭某月用水12立方米,交水费44.8元,请你求出市政府规定的三口之家每月的标准用水量为多少立方米.(2)为了节约用水,缓解供水压力,市民建议采取阶梯水价:每天8:00至22:00为用水高峰期,水价可定为每立方米5元;22:00至次日8:00为用水低谷期,水价可定为每立方米3元.若某三口之家按照此方案需交水费也为44.8元,又知该家庭用水高峰期的用水量比低谷期少20%.请计算哪种方案的用水量较少?少多少?12.某校一个班的班主任带领该班的“合唱团学生”去旅游,甲旅行社说:“如果教师买张全票,那么学生票可以五折优惠”,乙旅行社说“包括教师票在内全部按票价的6折优惠”.假设全票票价为240元/张.(1)若有x名学生,请写出甲、乙两个旅行社的费用的代数式.(2)若有10名学生参加,跟随哪个旅行社省钱,请说明理由.4名学生呢?13.甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价8折优惠;在乙超市累计购买商品超出200元之后,超出部分按原价8.5折优惠.设顾客预计累计购物x元(x>300).(1)请用含x代数式分别表示顾客在两家超市购物所付的费用;(2)试比较顾客到哪家超市购物更优惠?说明你的理由.(2)若姚先生每天上班行驶8公里的市区路段和12公里的郊区路段,按7.5元/升油费计算,求姚先生每天上下班需油费多少元?(3)姚先生准备从杭州去上海出差,有两条路线可供选择:①号路线需行驶15公里的市区路段,200公里的高速路段,50公里的郊区路段;②号路线需行驶18公里的市区路段,260公里的郊区路段.若油费按7.5元/升计算,你认为姚先生应该选择哪条路线会更省钱?15、学校组织同学到博物馆参观,小明因事没有和同学同时出发,于是准备在学校门口搭乘出租车赶去与同学们会合,出租车的收费标准是:起步价为6元,3千米后每千米收1.2元,不足1千米的按1千米计算.请你回答下列问题:(1)小明乘车3.8千米,应付费元.(2)小明乘车x(x是大于3的整数)千米,应付费多少钱?(3)小明身上仅有10元钱,乘出租车到距学校7千米远的博物馆的车费够不够?请说明理由.16、张先生准备在沙坪坝购买一套小户型商品房,他去某楼盘了解情况得知,该户型商品房的单价是8000元/m2,面积如图所示(单位:米,卫生间的宽未定,设宽为x米),售房部为张先生提供了以下两种优惠方案:方案一:整套房的单价是8000元/m2,其中厨房可免费赠送23的面积;方案二:整套房按原销售总金额的9折出售.(1)用y1表示方案一中购买一套该户型商品房的总金额,用y2表示方案二中购买一套该户型商品房的总金额,分别求出y1、y2与x的关系式;(2)求x取何值时,两种优惠方案的总金额一样多?(3)张先生因现金不够,于2012年1月在建行借了9万元住房贷款,贷款期限为6年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月还款数额=平均每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率.①张先生借款后第一个月应还款数额是多少元?②假设贷款月利率不变,若张先生在借款后第n(1≤n≤72,n是正整数)个月的还款数额为P,请写出P与n 之间的关系式某校初一甲、乙两班共103人(其中甲班人数多于乙班人数)去游该公园,如果两班都以班为单位分别购票,则一共需付486元.(1)如果两班联合起来,作为一个团体购票,则可以节约多少钱?(2)两班各有多少名学生?(提示:本题应分情况讨论)18、7年级(1)班的同学到水库调查了解今年的汛情.水库一共有10个泄洪闸,现在水库水位已超过安全线,上游的河水仍以一个不变的速度流入水库.同学们经过一天的观察和测量,做了如下记录:上午打开一个泄洪闸,在2小时内水位继续上涨了0.06米;下午再打开2个泄洪闸后,4小时内水位下降了0.1米.目前水位仍超过安全线1.2米.(1)求河水流入使水位上升速度及每个闸门泄洪可使水位下降速度;(2)如果共打开5个泄洪闸,还需几个小时水位降到安全线?(3)如果防汛指挥部要求在6小时内使水位降到安全线,应该一共打开几个泄洪闸?七年级2个班共100人计划本周末去公园游玩.已知“七•一”班40多人、不足50人,两个年级各自以班为单位去购票,应付890元.(1)两个班各多少人?(2)两个班作为一个团体购票,最多能省多少钱?(3)若“七•一”班单独去,应该怎样购票才最省钱甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?21、某市百货商场元月一日搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元的优惠10%;超过500元的,其中500元的部分按9折优惠,超过500元部分按8折优惠,某人两次购物分别用了134元和466元.问:(1)此人两次购物其物品如果不打折,一共值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购物合为一次购物是否更省钱?为什么?22、某城市按以下规定收取每月的煤气费:用气如果不超过60m3,按每立方米0.8元收费;如果超过60m3,超过部分按每立方米1.2元收费,已知某用户4月份煤气费平均每立方米0.88元,那么,4月份这位用户应交煤气费多少元?23、某同学在A、B两家商场都发现了他看中的一种运动服和运动鞋,两家商场的运动服和运动鞋的单价都是相同的,运动服和运动鞋的单价之和是542元,且运动服是运动鞋单价的4倍少8元.(1)求该同学看中夫人运动服单价和运动鞋单价分别是多少元?(2)某一天该同学上街,恰好赶上商场促销,A商场所有商品打八折销售,B商场全场满100元返购物卷30元(不足100元不反卷,购物卷全场通用),如果他只在一家商场买看中的两样商品,请你判断他在哪一家购物更省钱?并说明理由.25、2010年元旦,某校初一年级(1)班组织学生去公园游玩.该班有50名同学组织了划船活动(划船须知如图).他们一共租了10条船,并且每条船都坐满了人,那么大船租了几只?(1)求用户用水为x米(x>6)时的水费(用含x的代数式表示).(2)某用户某月交水费39元,这个月该用户用水多少立方米?27.老师准备购买精美的练习本当作奖品,有两种购买方式:一种是直接按定价购买,每本售价为8元;另一种是先购买会员年卡(自购买之日起,可持供卡人使用一年),每张卡40元,再持卡买这种练习本,每本5元.(1)如果购买20本这种练习本,两种购买方式各需要多少钱?(2)如果你只能选择一种购买方式,并且你计划一年中用100元花在购买这种练习本上,请通过计算找出可使用购买本数最多的购买方式;(3)一年至少购买这种练习本超过多少本,购买会员年卡才合算?28、某中学将组织七年级学生春游一天,由王老师和甲、乙两同学到客车租赁公司洽谈租车事宜.(1)两同学向公司经理了解租车的价格,公司经理对他们说:“公司有45座和60座两种型号的客车可供租用,60座的客车每辆每天的租金比45座的贵100元.”王老师说:“我们学校八年级昨天在这个公司租了5辆45座和2辆60座的客车,一天的租金为1600元,你们能知道45座和60座的客车每辆每天的租金各是多少元吗”甲、乙两同学想了一下,都说知道了价格.聪明的你知道45座和60座的客车每辆每天的租金各是多少元吗?(2)公司经理问:“你们准备怎样租车”,甲同学说:“我的方案是只租用45座的客车,可是会有一辆客车空出30个座位”;乙同学说“我的方案只租用60座客车,正好坐满且比甲同学的方案少用两辆客车”,王老师在-旁听了他们的谈话说:“从经济角度考虑,还有别的方案吗”?如果是你,你该如何设计租车方案,并说明理由.(2)若某人预计一个月内使用本地通话费90元,则应该选择哪种通讯方式较合算30、中国移动湖北分公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴25元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.4元.(通话均指拨打本地电话)(1)设一个月内通话时间约为x分钟,这两种用户每月需缴的费用各是多少元?(用含x的式子表示)(2)一个月内通话多少分钟,两种移动通讯方式费用相同?(3)若李老师一个月通话约80分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?请说明理由。
七年级数学思维探究(11)方程组的应用(含答案)
陶哲轩,2008年11月20日出版的美国《探索》杂志上,20位40岁以下的科学家被冠以“最具智慧的头脑”称号,华裔澳大利亚人陶哲轩排名第一.他1975年生于澳大利亚,13岁获得国际数学竞赛的金牌,24岁被评为终身教授,2006年我国数学家大会上获得菲尔兹奖,时年31岁,广泛的兴趣、丰富的知识储备、深刻的洞察力以及能敏锐地发现那些陌生的问题同自己最擅长领域的本质联系,是他最大的特色.11.方程组的应用解读课标方程组也是刻画现实数量关系的有效模型,在代数式的化简求值、解实际问题等方面有广泛的应用.一些代数式化简求值问题,运用相关概念、性质,对题意的理解等,常可转化为方程组求解或利用方程组探寻字母间的关系.列方程组解实际问题的关键是找到能够表示问题中全部含义的相等关系,即在相等关系电,问题所给的条件既要不遗漏地重复使用,又不能把同一条件重复利用.许多实际问题既可用列方程求解,又可用列方程组求解,列方程组求解常比单独设一个未知数建立一元一次方程更容易表示相等关系,但解方程组稍繁,这是它们的各自优缺点.问题解决例1 若()()2223423450a b c a b c -+++-+-≤,则610143a b c -+-=_______. 试一试 由不等推导相等,未知数个数多于方程个数,怎么办?例2 小明的爸爸骑摩托车带着小明在公路上匀速行驶,小明每隔一段时间看到的里程碑上的数如下:A .24B .42C .51D .15试一试 理解行驶路程与里程碑上的数的关系是解题的关键.例3 如图,长方形ABCD 中放置9个形状、大小都相同的小长方形(尺寸如图),求图中阴影部分的面积.试一试 大长方形ABCD 由小长方形拼接而成,要求阴影部分的面积,需求出小长方形的长与宽. 例4 韦武准备装修一套新宅,若甲、乙两个装饰公司合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支的角度考虑,韦武是选甲公司还是选乙公司?请说明理由.试一试 只有先求出每个公司工效、需要的工钱,才能进行正确的经济决策,因此,解本例需解两次方程组.例5 已知1x ,2x ,3x ,…,n x 中每一个数值只能取2-,0,1中的一个,且满足1217n x x x +++=-,2221237n x x x +++=,求33312n x x x +++的值.分析 因1x ,2x ,3x ,…,n x 中每一个数值只能取2-,0,1中的一个,故只需求出相应值的个数,将问题转化为解方程组.解 设有p 个i x 取1,q 个i x 取2-,由217437p q p q -=-⎧⎨+=⎩,得19p q =⎧⎨=⎩,故原式()33119271=⨯+⨯-=-.间隔发车例6 小王沿街匀速行走,发现每隔6分钟从背后驶过一辆公交车,每隔3分1钟从迎面驶来一辆公交车.假设每辆公交车行驶速度相同,而且公交车总站每隔固定时间发一辆车,那么发车间隔的时间是多少分钟?分析 本例是一个既含有相遇又含有追及的综合性行程问题,有下列隐含的等量关系: ①迎面驶来两车距离=3(车速+人速). ②背后开来两车距离=6(车速-人速). ③迎面驶来两车距离=背后开来两车距离. ④同向两车距离=车速×发车间隔时间.解法一 设公交车的速度为x 米/分,小王行走的速度为y 米/分,发车间隔的时间是t 分钟. 则()()()366x y x y x y xt ⎧+=-⎪⎨-=⎪⎩,解得4t =.即公交车总站发车间隔的时间为4分钟.解法二 设同向行驶的相邻两车的间距为s 米,发车间隔的时间为t 分钟,小王行走相邻两车间距s 米所用的时间为m 分钟.即36s s t m s s s t m ⎧⎛⎫+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩,解得4t =.即公交车总站发车间隔的时间为4分钟. 数学冲浪 知识技能广场1.如果21250x y x y -++--=,那么x y +的值为________.2.由图给出的信息,可求得每件T 恤衫和每瓶矿泉水的价格分别为________.共计44元共计26元3.如图,某化工厂与A ,B 两地有公路和铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米).这两次运输共支出公路运费15000元,铁路运费97200元.请计算这批产品的销售款比原料费和运输费的和多多少元?(1)根据题意,甲、乙两名同学分别列出尚不完整的方程组如下: 甲:()()1.520101.2110120x y x y ⎧+=⎪⎨+=⎪⎩乙: 1.52010800010001.211012080001000x y x y ⎧⎛⎫⋅+⋅= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⋅+⋅=⎪⎪⎝⎭⎩根据甲、乙两名同学所列方程组,请你分别指出未知数x ,y 表示的意义,然后在等式右边的方框内补全甲、乙两名同学所列方程组.甲:x 表示____________,y 表示______________ 乙:x 表示____________,y 表示______________(2)甲同学根据他所列方程组解得300x =,则y =__________,并解决该实际问题:__________. 4.利用两块长方体木块测量一张桌子的高度,首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是( )A .73cmB .74cmC .75cmD .76cm①②5.为确保信息安全,信息需加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为:明文a 、b 对应的密文为2a b -、2a b +,例如:明文1,2对应的密文是3-,4,当接收方收到密文是1,7时,解密得到的明文是( )A .1-,1B .1,3C .3,1D .1,16.甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A .甲比乙大5岁 B .甲比乙大10岁 C .乙比甲大10岁 D .乙比甲大5岁7.某超市为“开业三周年”举行了店庆活动,对A ,B 两种商品实行打折出售.打折前,购买5件A 商品和1件B 商品需用84元;购买6件A 商品和3件B 商品需用108元,而店庆期间,购买50件A 商品和50件B 商品仅需960元.这比不打折少花多少钱?8.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么? (2)两所学校报名参加旅游的学生各有多少人?9.已知用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨? (2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少的租车费.思维方法天地10.美国篮球巨星乔丹在一场比赛中24投14中,拿下28分,其中三分琼三投全中,那么乔丹两分球投中_________球,罚球投中_________球.11.在一条笔直的公路上,某一时刻,有一辆客车在前,一辆小轿车在后,一辆货车在客车与小轿车的正中间同向行驶,过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;此后,再过t 分钟,货车追上了客车,则t =________.12.已知a 、b 、c 是三个有理数,且a 与b 的平均数是127,b 与c 的和的13是78,c 与a 的和的14是52,那么a 、b 、c 的平均数是________. 13.已知x ,y ,z 满足235x y z z x ==-+,则52x y y z-+的值为( ) A .1 B .13 C .13- D .1214.放成一排的2005个盒子中共有4010个小球,其中最左端的盒子中放了a 个小球,最右端的盒子放了b 个小球,如果任意相邻的12个盒子中的小球共有24个,则( ).A .2a b ==B .1a b ==C .1a =,2b =D .2a =,1b =15.买20支铅笔、3块橡皮擦、2本日记本需32元;买39支铅笔、5块橡皮擦、3本日记本需58元;则买5支铅笔、5块橡皮擦、5本日记本需( )A .20元B .25元C .30元D .35元16.如图,从左上角标注2的圆圈开始,顺时针方向按an b +的规律(n 表示前一个圆圈中的数字,a 、b 是常数)转换后得到下一个圆圈中的数,求“?”代表的数.17.已知2xy x y =+,3xz x z=+,4yz y z =+,求752x y z +-的值. 18.如图,正方形中的每个小图形表示一个数字,相同的图形表示相同的数字,不同的图形表示不同的数字,正方形外的数字表示该行或该列的数字的和,求x ,y 的值.xy 302528☆☆☆应用探究乐园19.老师布置了一个探究性活动作业:仅用一架天平和一个10克的砝码测量壹元硬币和伍角硬币的质量各是多少?(注:同种类的每枚硬币质量相同)聪明的小明同学找来足够多的壹元和伍角的硬币,经过探究得到以下两个探究记录:20.【函函游园记】函函早晨到达上海世博园D 区入口处等待开园,9时整开园,D 区入口处有10n 条安全检查通道让游客通过安检入园,游客每分钟按相同的人数源源不断到达这里等待入园,直到中午12时D 区入口处才没有排队人群,游客一到就可安检入园,9时20分函函通过安检进入上海世博园时,发现平均一个人通过安全检查通道入园耗时20秒.【排队的思考】(1)若函函在9时整排在第3000位,则这时D 区入口安全检查通道可能有多少条?(2)若9时开园时等待D 区入口处的人数不变,当安检通道是现有的1.2倍且每分钟到达D 区入口处的游客人数不变时,从中午11时开始游客一到D 区入口处就可安检入园,当每分钟到达D 区入口处的游客人数增加了50%,仍要求从12时开始游客一到D 区人口处就可安检入园,求这时需要增加安检通道的数量.11.方程组的应用答案问题解决例l 1- 由条件得2340a b c -++=,23450a b c -+-=,两式相加得35710a b c -+-=. 例2 D 设两位数为xy ,则()()61010 2.510010x y x yy x x y x y x y +=<⎧⎪⎨+-+⨯=+-+⎡⎤⎪⎣⎦⎩且. 例3 82例4 设甲公司单独完成需x 周,需要工钱a 万元,乙公司单独完成需要y 周,需要工钱b 万元,由题意得661491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,解得1015x y =⎧⎨=⎩; 又6 5.2101549 4.81015a b a b ⎧⎛⎫+= ⎪⎪⎪⎝⎭⎨⎪⨯+⨯=⎪⎩,解得64a b =⎧⎨=⎩.从节约开支的角度考虑,韦武应选乙公司装修房子. 数学冲浪 1.62.20元、2元3.(1)产品的重量;原料的重量;产品销售额;原料费. 甲方程组右边方框内的数分别为15000,97200,乙同甲.(2)400;这批产品的销售款比原料费和运输费的和多()24000004000001122001887800-+=元. 4.C 5.C6.A 提示:设甲、乙两人现在的年龄分别是x 、y 岁,则()()1025y x y x x y ⎧--=⎪⎨+-=⎪⎩,解得2015x y =⎧⎨=⎩. 7. 40元8.(1)超过200人,理由略;(2)160人,80人 9.(1)3吨;4吨(2)共有三种租车方案,具体方案略(3)租用A 型车1辆、B 型车7辆最省钱,最少的租车费为940元 10.8;311.15 设在某一时刻,货车与客车、小轿车的距离均为s 千米,小轿车、货车、客车的速度分别为a 、b 、c 千米/分,则()10a b s -=,()152a c s -=,()()105t b c s ++-=,解得15t =.12.11613.B 提示:由条件得3y x =,32z x =14.A 提示:由123122341324a a a a a a a a ++++=++++=,得113a a =,同理113252005a a a a ====,又()()12121993200420052005241674010a a a a a a a ++++++++=⨯+=,得120052a a ==.15.C 16. 122 17.由条件得1112x y =+,1113x z =+,1114y z =+,联立解得247x =,245y =,24z =,7520z y z +-=. 18.易知28y =,设第一行所表示的数依次是a ,b ,c ,b ,第2行第4列的数字是d ,则有 302528a b c b y b a c d b b d a a b c b b a b b x +++=⎧⎪+++=⎪⎪+++=⎨⎪+++=⎪⎪+++=⎩①②③④⑤②-③,得5c b =+⑥⑥代入④,得()528a b b b ++++=, 即323a b += 故23x =.b bb c ab c da b c d d c b a 282530y x19.6克;4克 20.(1)1050n =(2)设9时开园时,等待在D 区人口处的人数为x ,每分钟 到达D 区入口处的游客人数为y ,增加安检通道后的数量为m .依据题意,有:()()()()()()()()111960 1.21011960602011296010129606020112960150%129606020x y n x y n x y m ⎧+-⨯=⨯⨯⨯-⨯⨯⎪⎪⎪+-⨯=⨯⨯-⨯⨯⎨⎪⎪+-⨯+=⨯⨯-⨯⨯⎪⎩①②③ 由①,②解得:216018x n y n =⎧⎨=⎩,代入③,解得13m n =, 增加通道的数量为103m n n -=.。
中考数学高频考点《一次函数》专项测试卷-附答案
中考数学高频考点《一次函数》专项测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.(10分)某健身器材专卖店推出两种优惠活动,并规定购物时只能选择其中一种.活动一:所购商品按原价打八折;活动二:所购商品按原价每满300元减80元.(如:所购商品原价为300元,可减80元,需付款220元;所购商品原价为770元,可减160元,需付款610元)(1)购买一件原价为450元的健身器材时,选择哪种活动更合算?请说明理由;(2)购买一件原价在500元以下的健身器材时,若选择活动一和选择活动二的付款金额相等,求一件这种健身器材的原价;(3)购买一件原价在900元以下的健身器材时,原价在什么范围内,选择活动二比选择活动一更合算?设一件这种健身器材的原价为a元,请直接写出a的取值范围.2.(9分)近日,教育部印发《义务教育课程方案》和课程标准(2022年版),将劳动从原来的综合实践活动课程中独立出来.某中学为了让学生体验农耕劳动,开辟了一处耕种园,需要采购一批菜苗开展种植活动.据了解,市场上每捆A种菜苗的价格是菜苗基地的倍,用300元在市场上购买的A种菜苗比在菜苗基地购买的少3捆.(1)求菜苗基地每捆A种菜苗的价格.(2)菜苗基地每捆B种菜苗的价格是30元.学校决定在菜苗基地购买A,B两种菜苗共100捆,且A 种菜苗的捆数不超过B种菜苗的捆数.菜苗基地为支持该校活动,对A,B两种菜苗均提供九折优惠.求本次购买最少花费多少钱.3.(9分)猕猴嬉戏是王屋山景区的一大特色,猕猴玩偶非常畅销.小李在某网店选中A,B两款猕猴玩偶,决定从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶类别价格进货价(元/个)4030销售价(元/个)5645(1)第一次小李用1100元购进了A,B两款玩偶共30个,求两款玩偶各购进多少个.(2)第二次小李进货时,网店规定A款玩偶进货数量不得超过B款玩偶进货数量的一半.小李计划购进两款玩偶共30个,应如何设计进货方案才能获得最大利润,最大利润是多少?(3)小李第二次进货时采取了(2)中设计的方案,并且两次购进的玩偶全部售出,请从利润率的角度分析,对于小李来说哪一次更合算?(注:利润率=×100%)4.(9分)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠.设某学生暑期健身x(次),按照方案一所需费用为y1(元),且y1=k1x+b;按照方案二所需费用为y2(元),且y2=k2x.其函数图象如图所示.(1)求k1和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和k2的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.5.(9分)学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的.请设计出最省钱的购买方案,并说明理由.6.(9分)某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系关于销售单价,日销售量,日销售利润的几组对应值如表:销售单价x(元)8595105115日销售量y(个)17512575m87518751875875日销售利润w(元)(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x=元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?7.(9分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.(1)求这两种魔方的单价;(2)结合社员们的需求,社团决定购买A,B两种魔方共100个(其中A种魔方不超过50个).某商店有两种优惠活动,如图所示.请根据以上信息,说明选择哪种优惠活动购买魔方更实惠.按买3个A种魔方和买4个B种魔方钱数相同解答8.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元;3只A型节能灯和2只B型节能灯共需29元.(1)求一只A型节能灯和一只B型节能灯的售价各是多少元?(2)学校准备购进这两种型号的节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由.9.(9分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.10.(9分)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.11.(9分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器5个以上超出部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)小明准备联系一部分同学集体购买同一品牌的计算器,若购买计算器的数量超过5个,购买哪种品牌的计算器更合算?请说明理由.12.(9分)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?13.(9分)为响应“全民植树增绿,共建美丽中国”的号召,学校组织学生到郊外参加义务植树活动,并准备了A,B两种食品作为午餐.这两种食品每包质量均为50g,营养成分表如下.(1)若要从这两种食品中摄入4600kJ热量和70g蛋白质,应选用A,B两种食品各多少包?(2)运动量大的人或青少年对蛋白质的摄入量应更多.若每份午餐选用这两种食品共7包,要使每份午餐中的蛋白质含量不低于90g,且热量最低,应如何选用这两种食品?参考答案1.【答案】解:(1)选择活动一更合算.理由如下:选择活动一需付款:450×0.8=360(元)选择活动二需付款:450﹣80=370(元)∵360<370∴选择活动一更合算;(2)设一件这种健身器材的原价为x元当0<x<300时,则活动一按原价打八折,活动二按原价,此时付款金额不可能相等;当300≤x<500时,由题意,得∴0.8x=x﹣80解得x=400答:一件这种健身器材的原价是400元;当300≤a<600时,a﹣80<0.8a解得a<400;∴300≤a<400;当600≤a<900时,a﹣160<0.8a解得a<800;∴600≤a<800;综上所述,300≤a<400或600≤a<800.2.【答案】解:(1)设菜苗基地每捆A种菜苗的价格是x元根据题意得:=+3解得x=20经检验,x=20是原方程的解,且符合题意.答:菜苗基地每捆A种菜苗的价格是20元;设购买A种菜苗m捆,则购买B种菜苗(100﹣m)捆∵A种菜苗的捆数不超过B种菜苗的捆数∴m≤100﹣m解得m≤50设本次购买花费w元∴w=20×0.9m+30×0.9(100﹣m)=﹣9m+2700∵﹣9<0∴w随m的增大而减小∴m=50时,w取最小值w最小=-9×50+2700=2250(元)答:本次购买最少花费2250元.3.【答案】解:(1)设A款玩偶购进x个,B款玩偶购进(30﹣x)个由题意,得40x+30(30﹣x)=1100解得:x=20.30﹣20=10(个).答:A款玩偶购进20个,B款玩偶购进10个;(2)设A款玩偶购进a个,B款玩偶购进(30﹣a)个,获利y元∵A款玩偶进货数量不得超过B款玩偶进货数量的一半.∴a≤(30﹣a)解得a≤10由题意,得y=(56﹣40)a+(45﹣30)(30﹣a)=a+450.∵k=1>0∴y随a的增大而增大.∴当a=10时,y最大=460元.∴此时B款玩偶为:30﹣10=20(个).答:按照A款玩偶购进10个、B款玩偶购进20个的方案进货才能获得最大利润,最大利润是460元;(3)第一次的利润率=×100%≈42.7%第二次的利润率=×100%=46%∵46%>42.7%∴对于小李来说第二次的进货方案更合算.4.【答案】解:(1)∵y1=k1x+b的图象过点(0,30)与(10,180)∴,解得k1=15表示的实际意义是:购买一张学生暑期专享卡后每次健身费用为15元(2)b=30表示的实际意义是:购买一张学生暑期专享卡的费用为30元;(3)由题意可得,打折前的每次健身费用为15÷0.6=25(元)则k2=25×0.8=20;(3)选择方案一所需费用更少.理由如下:由题意可知,y1=15x+30,y2=20x.当健身8次时选择方案一所需费用:y1=15×8+30=150(元)选择方案二所需费用:y2=20×8=160(元)∵150<160∴选择方案一所需费用更少.5.【答案】解:(1)设A的单价为x元,B的单价为y元根据题意,得,解得答:A的单价30元,B的单价15元;(2)设购买A奖品m个,则购买B奖品为(30﹣m)个,购买奖品的花费为W元由题意可知,m≥(30﹣m)∴m≥,且m为正整数.∴W=30m+15(30﹣m)=15m+450∵15>0∴当m=8时,W有最小值答:购买A奖品8个,购买B奖品22个,花费最少.6.【答案】解:(1)设y关于x的函数解析式为y=kx+b,得即y关于x的函数解析式是y=﹣5x+600当x=115时,y=﹣5×115+600=25即m的值是25;(2)设成本为a元/个当x=85时,875=175×(85﹣a),得a=80w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000∴当x=100时,w取得最大值,此时w=2000(3)设科技创新后成本为b元当x=90时,(﹣5×90+600)(90﹣b)≥3750解得b≤65答:该产品的成本单价应不超过65元.7.【答案】解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为20元/个,B种魔方的单价为15元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:活动一w=20m×0.8+15(100﹣m)×0.4=10m+600;活动二w=20m+15(100﹣m﹣m)=-10m+1500.当w活动一<w活动二时,有10m+600<﹣10m+1500解得:m<45;当w活动一=w活动二时,有10m+600=﹣10m+1500解得:m=45;当w活动一>w活动二时,有10m+600>﹣10m+1500解得:45<m≤50.综上所述:当0<m<45时,选择活动一购买魔方更实惠;当m=45时,选择两种活动费用相同;当m>45时,选择活动二购买魔方更实惠.(按购买3个A种魔方和4个B种魔方需要130元解答)解:(1)设A种魔方的单价为x元/个,B种魔方的单价为y元/个根据题意得:,解得:.答:A种魔方的单价为26元/个,B种魔方的单价为13元/个.(2)设购进A种魔方m个(0<m≤50),总价格为w元,则购进B种魔方(100﹣m)个根据题意得:w活动一=26m×0.8+13(100﹣m)×0.4=15.6m+520;w活动二=26m+13(100﹣m﹣m)=1300.当w活动一<w活动二时,有15.6m+520<1300解得:m<50;当w活动一=w活动二时,有15.6m+520=1300解得:m=50;当w活动一>w活动二时,有15.6m+520>1300不等式无解.综上所述:当0<m<50时,选择活动一购买魔方更实惠;当m=50时,选择两种活动费用相同.8.【答案】解:(1)设一只A型节能灯的售价是x元,一只B型节能灯的售价是y元根据题意,得:,解得:答:一只A型节能灯的售价是5元,一只B型节能灯的售价是7元;(2)设购进A型节能灯m只,总费用为W元由题意m≤3(50-m)解得:m≤37.5,且m为正整数根据题意,得:W=5m+7(50-m)=-2m+350∵﹣2<0∴W随m的增大而减小∴当m=37时,W最小=﹣2×37+350=276此时50﹣37=13答:当购买A型灯37只,B型灯13只时,最省钱.9.【答案】解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x解得:x=15,则y=300∴B(15,300)当y=10x+150,x=0时,y=150∴A(0,150)当y=10x+150=600解得:x=45,则y=600∴C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.10.【答案】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150(100﹣x),即y=-50x+15000②据题意得,100﹣x≤2x解得x≥33,且x为正整数.∵-50<0∴y随x的增大而减小∵x为正整数∴当x=34时,y取最大值,则100﹣x=66即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=(100+m)x+150(100﹣x),=(m﹣50)x+15000(33≤x≤70且x为正整数)①当0<m<50时m﹣50<0,y随x的增大而减小∴当x=34时,y取最大值即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时m﹣50>0,y随x的增大而增大∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.11.【答案】解:(1)设A、B两种品牌的计算器的单价分别为a元、b元根据题意得,,解得:答:A种品牌计算器30元/个,B种品牌计算器32元/个;(2)A品牌:y1=30x•0.8=24x;B品牌:①当0≤x≤5时,y2=32x②当x>5时,y2=5×32+32×(x﹣5)×0.7=22.4x+48综上所述:y1=24xy2=;(3)当y1=y2时,24x=22.4x+48,解得x=30,即购买30个计算器时,两种品牌都一样;当y1>y2时,24x>22.4x+48,解得x>30,即购买超过30个计算器时,B品牌更合算;当y1<y2时,24x<22.4x+48,解得x<30,即购买不足30个且大于5个计算器时,A品牌更合算.12.【答案】解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得(6分)---------------------------②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.13.解:(1)设选用A 种食品x 包,B 种食品y 包根据题意得:7009004600101570x y x y +=⎧⎨+=⎩解得:42x y =⎧⎨=⎩. 答:应选用A 种食品4包,B 种食品2包;(2)设选用A 种食品m 包,则选用B 种食品(7)m -包根据题意得:1015(7)90m m +-解得:3m .设每份午餐的总热量为w kJ ,则700900(7)w m m =+-即2006300w m =-+2000-<w ∴随m 的增大而减小∴当3m =时,w 取得最小值,此时7734m -=-=.答:应选用A 种食品3包,B 种食品4包.。
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组单元测试题(含答案) (72)
人教版七年级数学下册第八章第三节解实际问题与二元一次方程组练习试题(含答案)张老师计划到超市购买甲种文具100个,他到超市后发现还有乙种文具可供选择,如果调整文具的购买品种,每减少购买1个甲种文具,需增加购买2个乙种文具.设购买x 个甲种文具时,需购买y 个乙种文具.(1)①当减少购买1个甲种文具时,x =______,y =________;②求y 与x 之间的函数表达式.(2)已知甲种文具每个5元,乙种文具每个3元,张老师购买这两种文具共用去540元,甲、乙两种文具各购买了多少个?【答案】(1)y=-2x+100;(2)甲乙两种文具各购买了60个和80个.【解析】【分析】(1)①根据“每减少购买1个甲种文具,需增加购买2个乙种文具”可直接求解;①根据①的结论直接列式即可求出函数的解析式;(2)根据题意列出二元一次方程组求解即可.【详解】(1)①99,2.①根据题意,得2(100)2200y x x =-=-+.所以与之间的函数表达式为2200y x =-+.(2)根据题意,得220053540y x x y =-+⎧⎨+=⎩解得6080 xy=⎧⎨=⎩答:甲、乙两种文具各购买了60个和80个.考点:1、一次函数,2、二元一次方程组72.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗.为什么;(2)两所学校报名参加旅游的学生各有多少人.【答案】(1)超过,理由见解析;(2)甲学校160人,乙学校80人.【解析】【分析】(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程求解,讨论得出答案.【详解】解:(1)设两校人数之和为a .若a >200,则a =18 000÷75=240.若100<a ≤200,则13180008521117a =÷=,不合题意.所以这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x 人,乙学校报名参加旅游的学生有y 人,则①当100<x ≤200时,得240{859020800x y x y +=+= 解得160{80x y ==①当x >200时,得240{759020800x y x y +=+=,解得1533{21863x y ==此解不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.【点睛】本题考查二元一次方程组,本题难度中等,主要考查学生运用二元一次方程组知识点解决实际问题的综合运算能力,为中考常考题型,要求学生牢固掌握解题技巧.注意这类题型中未知数的特殊性去整数值等性质.73.已知关于x 、y 的二元一次方程组2024x y ax by -=⎧⎨+=-⎩与82314ax by x y -=⎧⎨+=⎩的解相同,求a 、b 的值.【答案】a 的值为1,b 的值为﹣2.【解析】试题分析:首先联立两个方程组不含a 、b 的两个方程求得方程组的解,然后代入两个方程组含a 、b 的两个方程从而得到一个关于a ,b 的方程组求解即可.试题解析:解方程组202314x y x y ==-⎧⎨+⎩得42x y ⎧⎨⎩==则有444428a b a b +-⎧⎨-⎩== 解得12a b ⎧⎨-⎩== 所以a 的值为1,b 的值为﹣2.74.某班将举行“数学知识竞赛”活动,班长安排小明购买奖品,下面两图是小明买回奖品时与班长的对话情境:请根据上面的信息,解决问题:(1)试计算两种笔记本各买了多少本?(2)请你解释:小明为什么不可能找回68元?【答案】(1) 5元笔记本买了25本,8元笔记本买了15本 (2)不可能找回68元,理由见解析.【解析】【详解】(1)设5元、8元的笔记本分别买本,本,依题意,得:40583006813x yx y+=⎧⎨+=-+⎩,解得:2515xy=⎧⎨=⎩.答:5元和8元笔记本分别买了25本和15本.(2)设买m本5元的笔记本,则买(40)m-本8元的笔记本.依题意,得:58(40)30068m m+-=-,解得883m=.因m是正整数,所以883m=不合题意,应舍去,故不能找回68元.【点睛】本题难度较低,主要考查学生对二元一次方程组解决实际应用的能力。
某旅行社拟在暑假期间面向学生推出林州红旗渠一日游活动,收费标准如下
某旅行社拟在暑假期间面向学生推出林州红旗渠一日游活动,收费标准如下某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元。
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?
用一元一次方程解答
解:(1)设两校人数之和为a.
若a>200,则a=18000÷75=240.
若100<a≤200,则a=18000÷85=211又17分之11,不合题意.
所以这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人
①当100<x≤200时,得:X+Y=240 85X+90Y=20800
答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.。
河南2011-2017年中考一次函数、方程、不等式综合(无答案)
2011. (10分)某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费10 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和赳过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?2012.(10分)某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?2013.(10分)某中学计划购买A型和B型课桌凳共200套,经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,,且购买4套A型和6套B型课桌凳共需1820元。
(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?23231 / 321.(10分)(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A 型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.2015.(10分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费;②银卡售价150元/张,每次凭卡另收10元.暑期普通票正常出售,两种优惠卡仅限暑期使用,不限次数. 设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一个坐标系中,若三种消费方式对应的函数图像如图所示,请求出点A、B、C 的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.2 / 32016.(9分)学校准备购进一批节能灯,已知1只A型节能灯和3只B型节能灯共需26元,3只A型节能灯和2只B型节能灯共需29元.(1) 求一只A型节能灯和一只B型节能灯的售价各是多少元;(2) 学校准备购进这两种节能灯共50只,并且A型节能灯的数量不多于B型节能灯数量的3倍,请设计出最省钱的购买方案,并说明理由。
【3套打包】上海市初中数学七年级下册第8章《二元一次方程组》单元测试(含答案)
人教版七年级下册单元测试卷:第八章 二元一次方程组一、填空。
(本大题共6小题,每小题3分,共18分)1. 已知二元一次方程132=-y x 中,若3=x 时,=y ;若1=y 时,则=x 。
2. 由方程0623=--y x 可得到用x 表示y 的式子是3. 一船顺水航行45千米需要3小时,逆水航行65千米需要5小时,若设船在静水中的速度为x 千米/时,水流速度为y 千米/时,则可列方程组为 (提示:船在顺流水中速度为船在静水得速度加水速,逆流则为静水船速减水速)4. a 的相反数是2b -1,b 的相反数是3a+1,则a 2+b 2=_________.5. 如图,点O 在直线AB 上,OC 为射线,1∠比2∠的3倍少︒10,设1∠,2∠的度数分别为x ,y ,那么下列求出这两个角的度数的方程是 ________________________6. “十一黄金周”期间,几位同学一起去郊外游玩。
男同学都背着红色的旅行包,女同学都背着黄色的旅行包。
其中一位男同学说,我看到红色旅行包个数是黄色旅行包个数的1.5倍。
另一位女同学说,我看到红色旅行包个数是黄色旅行包个数的2倍。
如果这两位同学说的都对,那么女同学的人数是( )二、选择(本大题共12小题,每小题3分,共36分)。
7. 下列方程是二元一次方程的是( )A. 12=+x xB. 0132=-+y xC.0=-+z y xD. 011=++yx 8.表示二元一次方程组的是( )A 、⎩⎨⎧=+=+;5,3x z y xB 、⎩⎨⎧==+;4,52y y xC 、⎩⎨⎧==+;2,3xy y xD 、⎩⎨⎧+=-+=222,11xy x x y x 9. 方程82=+y x 的正整数解的个数是( )A 、4B 、3C 、2D 、110. 方程组⎩⎨⎧=-=-82352y x y x ,消去y 后得到的方程是( )A 、01043=--x xB 、8543=+-x xC 、8)25(23=--x xD 、81043=+-x x11. 方程2x -1y=0,3x+y=0,2x+xy=1,3x+y -2x=0,x 2-x+1=0中,二元一次方程的个数是( )A .1个B .2个C .3个D .4个12. 关于x ,y 的二元一次方程组59x y k x y k+=⎧⎨-=⎩的解也是二元一次方程2x+3y=6的解,则k 的值是( ).A .k=-34B .k=34C .k=43D .k=-43 13. 如果│x+y -1│和2(2x+y -3)2互为相反数,那么x ,y 的值为( )A .1122 (2211)x x x x B C D y y y y ==-==-⎧⎧⎧⎧⎨⎨⎨⎨==-=-=-⎩⎩⎩⎩ 14. 二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解 15. 若23815m n x y -+-=是关于x y 、的二元一次方程,则m n +=( )A.1-B.2C.1D.2-16. 以11x y =⎧⎨=-⎩为解的二元一次方程组是( )A .B .C .D .02x y x y +=⎧⎨-=-⎩ 17. 已知代数式1312a x y -与23b a b x y -+-是同类项,那么a 、b 的值分别是( ) A.21a b =⎧⎨=-⎩ B.21a b =⎧⎨=⎩ C.21a b =-⎧⎨=-⎩ D.21a b =-⎧⎨=⎩ 18. 若方程组⎩⎨⎧=+=-81my nx ny mx 的解是⎩⎨⎧==12y x ,则m 、n 的值分别是( ) A. m=2,n=1 B. m=2,n=3 C. m=1,n=8 D. 无法确定三、解答题(本大题共7小题,共63分+3分卷面分,要求写出必要的演算求解过程)。
应用题类型四:每每型问题及其他问题(原卷版)
类型四利润——“每每”型问题典例分析例1:(2020河南二模)母亲节前夕,某花店准备采购一批康乃馨和萱草花,已知购买2束康乃馨和1束萱草花共需46元;购买3束康乃馨和4束萱草花共需94元.(1)求康乃馨和萱草花的单价分别为多少元;(2)经协商,购买康乃馨超过30束时,每增加1束,单价降低0.2元;当超过50束时,均按购买50束时的单价购进.萱草花一律按原价购买.①购买康乃馨50束时,康乃馨的单价为元;购买康乃馨m(30<m<50)束时,康乃馨的单价为元(用含m的代数式表示).②该花店计划购进康乃馨和萱草花共100束.其中康乃馨超过30束,且不超过60束.当购买康乃馨多少束时.购买两种花的总金额最少,最少为多少元?分析:(1)设康乃馨和萱草花的单价分别为x元,y元,根据题意列出二元一次方程组进行解答;(2)①根据”现在康乃馨的单价=原单价-0.2×(康乃馨数量-30)”列式计算便可得出答案;②设购买康乃馨的数量为a束,购买康乃馨和萱草花的总金额为w元,分两种情况:当30<a≤50时和当50<a≤60时,然后分别列出相应的函数解析式,根据二次函数和一次函数的性质求得其最小值,然后即可得到当购买康乃馨多少束时.购买两种花的总金额最少,最少为多少元.专题过关1、(2020郑外模拟)最近科幻小说《三体》热销,某书店为满足广大顾客要求,订购该小说若干本,每本进价30元,经过一段时间的销售后得出:当销售单价是40元时,每天的销量是300本;销售单价每上涨1元,每天的销量就减少10本.书店要求每本书的利润不低于15元且不高于25元.(1)求出该书店每天销售该小说的利润W(元)与销售单价x(元)之间的函数关系式及自变量的取值范围;(2)书店决定每销售1本该科幻小说,就捐赠m(0<m≤12)元给希望工程,每天扣除捐赠后可获得最大利润2250元,求m的值.2、某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)(2)设商品每天的总利润为W(元),求W与x之间的函数解析式.(利润=收入-成本)(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时,获得最大利润,最大利润是多少?3、某宾馆有若干间标准房,当标准房的价格为200元时,每天入住的房间数为60间.经市场调查表明,该宾馆每间标准房的价格在170~240元之间(含170元,240元)浮动时,每天入住的房间数y(间)与每间标准房的价格x(元)的数据如下表:(1)(2)求y关于x的函数解析式,并写出自变量x的取值范围.(3)设客房的日营业额为W(元).若不考虑其他因素,问:宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?4、(2020丹东)某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:(1)求出y与x之间的函数关系式.(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?5、 (2020郑州一中模拟)当今社会人们越来越离不开网络,电脑、手机被普遍使用,与此同时人们的视力也大大受到影响,2019年初某企业以25万元购得某项护目镜生产技术后,再投入100万元购买生产设备,进行该护目镜的生产加工,已知生产这种护目镜的成本价为每件20元,经过市场调研发现该产品的销售单价定在25~35元比较合理,并且该产品的年销售量y (万件)与销售单价x (元)之间的函数关系式为y =⎩⎪⎨⎪⎧40-x (25≤x ≤30),25-0.5x (30<x ≤35).(年获利=年销售收入-生产成本-投资成本)(1)求该公司第一年的年获利W (万元)与销售单价x (元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损.若盈利,最大利润是多少?若亏损,最小亏损是多少?(2)2020年初我国爆发新冠肺炎,该公司决定向红十字会捐款20万元,另外每销售一件产品,就抽出1元钱作为捐款,若除去第一年的最大盈利(或最小亏损)以及第二年的捐款后,到2020年底,两年的总盈利不低于57.5万元,请你确定此时销售单价的范围.6、某公司推出一款产品,成本价为10元/千克,经过市场调查,该产品的日销售量y (千克)与销售单价x (元/千克)之间满足一次函数关系,该产品的日销售量与销售单价之间的几组对应值如表:[注:日销售利润=日销售量×(销售单价-成本单价)](1)求y 关于x 的函数关系式(不要求写出x 的取值范围).(2)根据以上信息,填空:①m = kg ;②当销售单价x = 元时,日销售利润w 最大,最大利润是 元.(3)该公司决定从每天的销售利润中捐赠100元给“精准扶贫”对象,为了保证捐赠后每天的剩余利润不低于1025元,试确定该产品销售单价的范围.7、(2020·十堰)某企业接到生产一批设备的订单,要求不超过12天完成.这种设备的出厂价为1 200元/台,该企业第一天生产22台设备,第二天开始,每天比前一天多生产2台.若干天后,每台设备的生产成本将会增加,设第x 天(x 为整数)的生产成本为m (元/台),m 与x 的关系如图所示.(1)若第x天可以生产这种设备y台,则y与x的函数关系式为,x的取值范围为.(2)第几天时,该企业当天的销售利润最大?最大利润为多少?(3)求当天销售利润低于10800元的天数.8、某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式.(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式.(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?9、某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=-2x +120.(1)第40天,该厂生产该产品的利润是元.(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少元?②在生产该产品的过程中,当天利润不低于2 400元的共有多少天?9、 “绿水青山就是金山银山”的理念已融入人们的日常生活中,因此,越来越多的人喜欢骑自行车出行.某自行车店在销售某型号自行车时,以高出进价的50%标价.已知按标价九折销售该型号自行车8辆与将标价直降100元销售7辆获利相同.(1)求该型号自行车的进价和标价分别是多少元?(2)若该型号自行车的进价不变,按(1)中的标价出售,该店平均每月可售出51辆;若每辆自行车每降价20元,每月可多售出3辆,求该型号自行车降价多少元时,每月获利最大?最大利润是多少?10、某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式y =-x +26.(1)求这种产品第一年的利润W 1(万元)与售价x (元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年的产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W 2至少为多少万元?11、我市某乡镇在“精准扶贫”活动中销售一农产品,经分析发现月销售量y (万件)与月份x (月)的关系为:y =⎩⎪⎨⎪⎧x +4(1≤x ≤8,x 为整数),-x +20(9≤x ≤12,x 为整数),每件产品的利润z (元)与月份x (月)的关系如下表:(2)若月利润w (万元)=当月销售量y (万件)×当月每件产品的利润z (元),求月利润w (万元)与月份x (月)的关系式;(3)当x 为何值时,月利润w 有最大值,最大值为多少?11、某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元.经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:(1)求y与x之间的函数解析式;(2)设商品每天的利润为W(元),求W与x之间的函数解析式;(利润=收入-成本)(3)试说明(2)中总利润W随售价x的变化而变化的情况,并指出售价为多少元时获得最大利润,最大利润是多少?12、某旅行杜拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200 收费标准(元/人) 90 85 75 甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费10 800元,若两校联合组团只需花赞18 000元.(1)两所学校报名参加旅游的学生人数之和赳过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?13、某公司推出一款产品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系.关于销售单价,日销售量,日销售利润的几组对应值如下表:(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)求y关于x的函数解析式(不要求写出x的取值范围)及m的值;(2)根据以上信息,填空:该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元;(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销售单价仍存在(1)中的关系.若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?14、某商场经销一种商品,已知其每件进价为40元.现在每件售价为70元,每星期可卖出500件.该商场通过市场调查发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出m (m 为正整数)件.设调查价格后每星期的销售利润为W 元. (1)设该商品每件涨价x (x 为正整数)元,当x = 为何值时,W 最大,W 的最大值是 ;(2)设该商品每件降价y (y 为正整数)元,写出W 与y 的函数关系式,并通过计算判断:当m =10时每星期销售利润能否达到⑴中W 的最大值;(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,请直接写出m 的取值范围.15、某企业接到了一批零件加工任务,要求在20天内完成,这批零件的出厂价为每个6元,为按时完成任务,该企业招收了新工人.6天的培训期内,新工人小李第x 天能加工80x 个零件;培训后小李第x 天加工的零件数量为()50200+x 个.(1)小李第几天加工零件数量为650个?(2)如图,设第x 天每个零件的加工成本是P 元,P 与x 之间的关系可用图中的函数图象来刻画.若小李第x 天创造的利润为w 元,求w 与x 的函数表达式,并求出第几天的利润最大,最大利润是多少?(利润=出厂价-成本价)16、小王电子产品专柜以20元/副的价格批发了某新款耳机,在试销的60天内整理出了销售数据如下:(1)若试销阶段每天的利润为W 元,求出W 与x 的函数关系式;(2)请问在试销阶段的哪一天销售利润W 可以达到最大值?最大值为多少?17、在某市的创优工作中,某社区计划对21200m 的区域进行绿化.经投标,由甲、乙两个施工队来完成,已知甲队每天能完成绿化面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为2300m 区域的绿化时,甲队比乙队少用3天.(1)求甲、乙两施工队每天分别能完成的绿化面积是多少?(2)设先由甲队施工m天,再由乙队施工n天,刚好完成绿化任务,①求n与m的关系式;②若甲、乙两队施工的总天数不超过14天,问甲工程队最少施工多少天?18、某校喜迎中华人民共和国成立70周年,将举行以“歌唱祖国”为主题的歌咏比赛,需要在文具店购买国旗图案贴纸和小红旗发给学生做演出道具.已知毎袋贴纸有50张,毎袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同.(1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元?(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面.设购买国旗图案贴纸a袋(a为正整数),则购买小红旗多少袋能恰好配套?请用含a的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w元,求w关于a的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用多少元?19、某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.()求甲、乙两种商品的每件进价;12()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量.要使两种商后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?20、随着“低碳生活,绿色出行”理念的普及,新能源汽车正逐渐成为人们喜爱的交通工具.某汽车销售公司计划购进一批新能源汽车尝试进行销售,据了解2辆A型汽车、3辆B型汽气车的进价共计80万元;3辆A型汽车、2辆B型汽车的进价共计95万元.(1)求A、B两种型号的汽车每辆进价分别为多少方元?(2)若该公司计划正好用200万元购进以上两种型号的新能源汽车(两种型号的汽车均购买),请你帮助该公司设计购买方案21、某地计划对A、B两类薄弱学校全部进行改造:根据预算,共需资金1575万元,已知改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元,(1)求改造一所A类学校和一所B类学校所需的资金分别是多少万元?(2)若该地的A类学校不超过5所,则B类学校至少有多少所?22、小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.他们利用下表来记录了两人5天的读书进程.例如,第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.(1)表中空白部分从左到右2个数据依次为,;(2)小明、小红每人每天各读多少页?(3)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保第10天结束时还不被小红超过?(答案取整数)23、某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1) 该商场购进A、B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?24、.小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).(1)求y与x的函数关系式.(2)要使日销售利润为720元,销售单价应定为多少元?(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.25、为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?/26、一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?27、某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t 个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=(1)当8<t≤24时,求P关于t的函数解析式;(2)设第t个月销售该原料药的月毛利润为w(单位:万元)①求w关于t的函数解析式;②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.28、某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件.(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示.求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂第几个生产周期创造的利润最大?最大为多少万元?(利润=收入﹣成本)。
第8章二元一次方程组单元测试含答案解析(期末考题好题精选)
第8章二元一次方程组中考题精选训练一、选择题1.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6 个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A. B. C. D.2.已知是方程组的解,则a+b+c的值是()A.3 B.2 C.1 D.无法确定3.(河北省中考)根据图中提供的信息,可知一个杯子的价格是()A.51元 B.35元 C.8元 D.7.5元4.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2 B.x=3,y=﹣3 C.x=﹣4,y=2 D.x=﹣3,y=﹣95.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2 B.135mm2 C.108mm2 D.96mm26.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.设从甲地到乙地上坡与平路分别为xkm,ykm,依题意,所列方程组正确的是()A.B. C. D.7.(潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A. B. C. D.二、填空题8.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入小球时有水溢出.9.单项式3x2m+3n y8与﹣2x2y3m+2n是同类项,则m+n= .10.(乌兰察布中考)对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3= .11. 4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为: =ad﹣bc.若=13,则x= .12.(温州市中考)有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.13.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了张,乙种票买了张.14.已知关于x,y的二元一次方程组的解为,那么关于m,n的二元一次方程组的解为.15.2015年5月18日华中旅游博览会在汉召开.开幕式上用到甲、乙、丙三种造型的花束,甲种花束由3 朵红花、2朵黄花和1朵紫花搭配而成,乙种花束由2朵红花和2朵黄花搭配而成,丙种花束由2朵红花、1朵黄花和1朵紫花搭配而成.这些花束一共用了580朵红花,150朵紫花,则黄花一共用了朵.三、解答题16.已知:4x﹣3y﹣6z=0,x+2y﹣7z=0,且x,y,z都不为零.求的值.17.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积18.(武汉市中考)小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.19.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.20.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.21.已知2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h共收割小麦8hm2.求1台大收割机和1台小收割机每小时各收割小麦多少公顷(hm2)?(1)分析:如果设1台大收割机每小时各收割小麦x hm2,和1台小收割机每小时各收割小麦y hm2,则2台大收割机和5台小收割机同时工作1h共收割小麦 hm2,3台大收割机和2台小收割机同时工作1h共收割小麦hm2(均用含x,y的代数式表示);(2)根据以上分析,结合题意,请你列出方程组,求出1台大收割机和1台小收割机每小时各收割小苗多少公顷(hm2)?22.(河南省中考)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?第8章二元一次方程组中考题精选训练参考答案一、选择题1.解:若馒头每个x元,包子每个y元,由题意得:,故选:B.2.解:由题意将代入方程组得:,①+②+③得:a+2b+2b+3c+c+3a=2+3+7,即4a+4b+4c=4(a+b+c)=12,则a+b+c=3.故选A.3.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94 解得:x=8(元)故选C.4.解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.5.解:设每个长方形的长为xmm,宽为 ymm,由题意,得,解得:.9×15=135(mm2).故选:B.6.解:设从甲地到乙地上坡与平路分别为xkm,ykm,由题意得:,故选:A.7.解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.二、填空题8.解:,①+③得x+3y=6④,由②④组成方程组得.故答案为.9.解:设∠CBA和∠DBE分别为x°、y°,根据题意,可列方程组:,故答案为:.10.解:设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由题意,得:,解得:,即y=2x+30;由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.故答案为:10.11.解:由题意得:,①+②得:5m+5n=10,m+n=2,故答案为:2.12.解:∵X*Y=aX+bY,3*5=15,4*7=28,∴3a+5b=15 ①4a+7b=28 ②,②﹣①=a+2b=13 ③,①﹣③=2a+3b=2,而2*3=2a+3b=2.13.解:∵=13,∴(x﹣2)(x﹣2)﹣(x+3)(x+1)=13,x2﹣4x+4﹣x2﹣4x﹣3=13,﹣8x=12,解得,x=﹣,故答案为:﹣.14.解:设应分别锯成59mm的小铜管x段,39mm的小铜管y段.那么损耗的钢管料应是1×(x+y﹣1)=x+y﹣1(mm).根据题意得:59x+39y+x+y﹣1=359,x=6﹣y.由于x、y都必须是正整数,因此x=4,y=3,x+y﹣1=6;x=2,y=6,x+y﹣1=7;因此据此4段59mm的小钢管最省.15.解:设甲种票买x张,乙种票买y张,根据题意,得:,解得:.即:甲种票买20张,乙种票买15张.故选:20;15.16.解:∵关于x,y的二元一次方程组的解为,∴,∴,解得,故答案为:.17.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,把②代入①得:x+2y=280.所以2x+2y+z=(x+z)+(x+2y)=150+280=430(朵).即黄花一共用了430朵.故答案是:430.三、解答题18.解:解关于x、y的二元一次方程组得,把x=3z,y=2z代入得原式==.19.解:设小长方形的长为x,宽为y,如图可知,x+3y=14,①x+y﹣2y=6,即x﹣y=6,②①﹣②得4y=8,y=2,代入②得x=8,因此,大矩形ABCD的宽AD=6+2y=6+2×2=10.矩形ABCD面积=14×10=140(平方厘米),阴影部分总面积=140﹣6×2×8=44(平方厘米).20.解:设x+y=A,x﹣y=B,方程组变形得:,整理得:,①×3+②×2得:13A=156,即A=12,把A=12代入②得:B=0,∴,解得:.21.解:(1)方程x+3y=10,解得:x=﹣3y+10,当y=1时,x=7;当y=2时,x=4;当y=3时,x=1,则方程的正整数解为;;;(2)根据题意得:2x+y=0.22.解:设甲公司单独完成需x周,需要工钱a万元,乙公司单独完成需y周,需要工钱b万元.依题意得解之得即经检验:是方程组的根,且符合题意.又解之得即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.23.解:由题意可得:,解之,,所以a=6,b=.24.解:根据题意得,4×(﹣3)﹣m(﹣1)=﹣2,5n+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.25.解:(1)2台大收割机和5台小收割机同时工作1h共收割小麦(2x+5y)hm2,3台大收割机和2台小收割机同时工作1h共收割小麦(3x+2y)hm2;故答案为(2x+5y),(3x+2y);(2)由题意得,解得.答:1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.26.解:我最欣赏(1)中的乙同学的解题思路,,①+②得:5x+5y=7k+4,x+y=,∵x+y=2,∴=2,解得:k=,27.解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某旅行社拟在暑假期间面向学生推出林州红旗渠一日游活动,收费标准如下某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:
甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元。
(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?
(2)两所学校报名参加旅游的学生各有多少人?
用一元一次方程解答
解:(1)设两校人数之和为a.
若a>200,则a=18000÷75=240.
若100<a≤200,则a=18000÷85=211又17分之11,不合题意.
所以这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人
①当100<x≤200时,得:X+Y=240 85X+90Y=20800
答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.。