高中-数学-通用版-2.2.2 椭圆的简单几何性质 第1课时
高中数学选修1-1《椭圆的简单几何性质》教案
⾼中数学选修1-1《椭圆的简单⼏何性质》教案课题:椭圆的简单⼏何性质(第⼀课时)⼀、教学⽬标:1、知识与技能(1)探究椭圆的简单⼏何性质,初步学习利⽤⽅程研究曲线性质的⽅法;(2)掌握椭圆的简单⼏何性质,理解椭圆⽅程与椭圆曲线间互逆推导的逻辑关系及利⽤数形结合思想⽅法解决实际问题。
2、过程与⽅法(1)通过椭圆的⽅程研究椭圆的简单⼏何性质,使学⽣经历知识产⽣与形成的过程,培养学⽣观察、分析、逻辑推理,理性思维的能⼒。
(2)通过掌握椭圆的简单⼏何性质及应⽤过程,培养学⽣对研究⽅法的思想渗透及运⽤数形结合思想解决问题的能⼒。
3、情感、态度与价值观通过数与形的辩证统⼀,对学⽣进⾏辩证唯物主义教育,通过对椭圆对称美的感受,激发学⽣对美好事物的追求。
⼆、教学重难点:1、教学重点:椭圆的简单⼏何性质及其探究过程2、教学难点:利⽤曲线⽅程研究曲线⼏何性质的基本⽅法和离⼼率定义的给出过程。
三、教学⽅法:本节课以启发式教学为主,综合运⽤演⽰法、讲授法、讨论法、有指导的发现法及练习法等教学⽅法。
先通过多媒体动画演⽰,创设问题情境;在椭圆简单⼏何性质的教学过程中,通过多媒体演⽰,有指导的发现问题,然后进⾏讨论、探究、总结、运⽤,最后通过练习加以巩固提⾼。
四、教学过程:(⼀)创设情景,揭⽰课题多媒体展⽰:模拟“嫦娥⼀号”升空,进⼊轨道运⾏的动画. 解说:2007年10⽉24⽇,随着中国⾃主研制的第⼀个⽉球探测器——嫦娥⼀号卫星飞向太空,⾃强不息的中国航天⼈,⼜将把中华民族的崭新⾼度镌刻在太空中。
绕⽉探测,中国航天的第三个⾥程碑。
它标志着,在实现⼈造地球卫星飞⾏和载⼈航天之后,中国航天⼜向深空探测迈出了第⼀步。
“嫦娥⼀号”卫星发射后⾸先将被送⼊⼀个椭圆形地球同步轨道,这⼀轨道离地⾯最近距离为200公⾥,最远为5.1万公⾥,,⽽我们地球的半径R=6371km.根据这些条件,我们能否求出其轨迹⽅程呢?要想解决这个问题,我们就⼀起来学习“椭圆的简单⼏何性质”。
高二数学2.2.2 椭圆的简单几何 性质(第一课)优秀课件
-3
-4
B2
A2
1 2 3 4
B1
5
x
1、范围
2
2
x y
在方程
2
1
(
a
b
0
)
中,如何确定
x
、
y
的范围
?
2
a b
2
2
2
y
x x
1
2
1
,
a
x
a
2
2
b
a a
2
2
2
x
y y
1
1
b
y
b
2
2
2
ab b yB2a Nhomakorabeab
A1
F1
o
B1
c
A2
F2
2、对称性
你能利用方程研究椭圆
(0,b)
F1
o
c
B1
(0,-b)
A2 (a,0)
F2
4、离心率
离心率:椭圆的焦距与长轴长的比:
c
e
a
叫做椭圆的离心率。
0<e<1
[1]离心率的取值范围:
“越小越圆,越大越扁〞
[2]离心率对椭圆形状的影响:
1〕e 越接近 1,c 就越接近 a,从而 b就越小,椭圆就越扁
2〕e 越接近 0,c 就越接近 0,从而 b就越大,椭圆就越圆
b
A1
F1
o
B1
c
A2
F2
2
• 【20xx高考理20】椭圆C:
2.2.2椭圆的简单几何性质(1)
研一研· 问题探究、课堂更高效
2.2.2
问题 5 比较下列椭圆的形状, 哪一个更圆, 哪一个更扁? 为什么?
2 2 x y 4x2+9y2=36 与 + =1 25 20 2 2 x y 答案 将椭圆方程 4x2+9y2=36 化为标准方程 9 + 4 =1,
则 a2=9,b2=4,所以 a=3,c= a2-b2= 5,故离心 5 x 2 y2 率 e= 3 ;椭圆25+20=1 中,a2=25,b2=20,则 a=5, 5 2 2 c= a -b = 5,故离心率 e= 5 .
解
x y 把椭圆的方程化为标准方程 9 + 4 =1.
可知此椭圆的焦点在 x 轴上,且长半轴长 a=3, 短半轴长 b=2;又得半焦距 c= a2-b2= 9-4= 5 因此,椭圆的长轴长 2a=6,短轴长 2b=4;两个焦点 的坐标分别是(- 5,0),( 5,0);四个顶点的坐标分 5 c 别是(-3,0),(3,0),(0,-2),(0,2);离心率 e=a= 3 .
研一研· 问题探究、课堂更高效
b c 问题 4(1)a或b的大小能刻画椭圆的扁平程度吗?为什么? c (2)你能运用三角函数的知识解释,为什么 e=a越大,椭 c 圆越扁?e=a越小,椭圆越圆吗? a2-c2 b 2 答案 (1)都能.由a= 2 = 1-e (0<e<1)可知, a
b 当 e 越趋近于 1 时,a越趋近于 0,椭圆越扁;当 e 越趋 b 近于 0 时,a越趋近于 1,椭圆越接近于圆.当且仅当 a =b 时,c=0,两焦点重合,图形变为圆。 c (2)如图,在 Rt△ BF2O 中,cos∠ BF2O= , a c c 越大,∠BF2O 越小,椭圆越扁; 越小, a a
由于前一个椭圆的离心率较大, 因此前一个椭圆更扁, 后 一个椭圆更圆.
课件1:2.1.2 椭圆的简单几何性质(一)
§2.1 椭圆
2.1.2 椭圆的简单几何性质(一)
1.掌握椭圆的几何性质,掌握标准方程中 a,b,c,e 的 几何意义及其相互关系.
2.能根据椭圆的方程讨论椭圆的几何性质 体会代数方法研究曲线的几何性质,如:对称中心,对称 轴,范围等.
本节重点:利用椭圆的标准方程研究椭圆的几何性质. 本节难点:椭圆的几何性质的实际应用.
命题方向三、 求椭圆的离心率
[例 3] A 为 y 轴上一点,F1、F2 是椭圆的两个焦点,△ AF1F2 为正三角形,且 AF1 的中点 B 恰好在椭圆上,求此椭圆 的离心率.
[解析] 如图,连接 BF2.
∵△AF1F2 为正三角形, 且 B 为线段 AF1 的中点. ∴F2B⊥BF1.
又∵∠BF2F1=30°,|F1F2|=2c, ∴|BF1|=c,|BF2|= 3c, 由椭圆定义得|BF1|+|BF2|=2a, 即 c+ 3c=2a, ∴ac= 3-1. ∴椭圆的离心率 e= 3-1.
∴椭圆的方程为2y72 +x92=1. 综上可知椭圆方程为x92+y32=1 或2y72 +x92=1.
(2)设椭圆的方程为ax22+by22=1(a>b>0). 如图所示,△A1FA2 为等腰直角三角形, OF 为斜边 A1A2 的中线(高), 且|OF|=c,|A1A2|=2b, ∴c=b=4,∴a2=b2+c2=32, 故所求椭圆的方程为3x22 +1y62 =1.
不妨设 x 轴与椭圆的一个交点为 A(a,0), ∴c= a2-b2, 由△PF1F2 为正三角形可知:|PF1|=|PF2|=|F1F2|, ∴a=2c①
又焦点到椭圆上的点的最短距离为 a-c,于是 a-c= 3② 由①②可得:a=2 3,c= 3,从而 b2=a2-c2=9. ∴所求椭圆方程为1x22 +y92=1.
原创1:2.2.2 椭圆的简单几何性质
+
2
64
= 1.
跟踪训练
y
(2)由已知:a=2c,a-c= 3
a
解得:a=2 3,c= 3
∴b2=a2-c2=9
∴椭圆的方程为
2
12
+
O
2
9
=
2
1或
9
2
+
12
a-c
=1.
x
典例分析
如图所示,椭圆的中心在原点,焦点F1,F2在x轴上,
A,B是椭圆的顶点,P是椭圆上一点,且PF1⊥x轴,
9
= 1.
跟踪训练
求满足下列各条件的椭圆的标准方程.
1
(1)已知椭圆的中心在原点,焦点在y轴上,离心率为 ,
2
焦距为8.
(2)短轴一个端点与两焦点组成一个正三角形,且焦点
到同侧顶点的距离为 3.
解:(1)由题意知,2c=8,c=4,
∴e=
=
1
,∴a=8,
2
从而b2=a2-c2=48,
2
∴椭圆的标准方程是
+
=
+
=
y
O
x
椭圆中的弦的中点满足此性质吗?
y
O
B(x2, y2)
y=kx+m
A(x1, y1)
x
+ +( +)
( + )
=
+
=
y=kx+m
b2x2+a2y2-a2b2=0
典例分析
2
已知椭圆
16
2
4
2.2.2椭圆的简单几何性质1
-2≤x ≤2
-4≤y ≤4
Y
二、椭圆的对称性
关于y轴对称
P(x,y)
P2(-x,y)
O
X
关于原点对称
P3(-x,-y)
P1(x,-y)
关于x轴对称
结论:坐标轴是椭圆的对称轴,原点是椭圆的对称中心 中心:椭圆的对称中心叫做椭圆的中心
三、顶点
y B1(0,b)
A (-a,0) 1
2a
F1
2b
2c
F2
例2
0 椭圆的一个顶点为 A2, ,其长轴长是短轴
长的2倍,求椭圆的标准方程.
分析:题目没有指出焦点的位置,要考虑两种位置
a 0 解:(1)当 A2, 为长轴端点时,
2 ,b 1,
x2 y2 椭圆的标准方程为: 1 ; 4 1 0 (2)当 A2, 为短轴端点时, b 2 , a
x2 y2 2 1 2 b a
a b 0
|x| a |y| b (c,0)、(c,0) (a,0)、(0,b)
c e a
|x| b |y| a
对称性
关于x轴、y轴、原点对称 (0,c)、(0,c) (b,0)、(0,a)
焦
顶
点
点
离心率
例1 求椭圆 16 x2 + 25y2 =400的长轴和短轴的长、离心
当椭圆的焦点在 ,b2 a 9
2
y 轴上时,
k 8
,得 c 1 k .
2
1 5 1 k 1 ,即 k . 由e ,得 9 4 2 4
5 ∴满足条件的 k 4 或 k . 4
小结:
1.知识小结:
(1) 学习了椭圆的范围、对称性、顶点坐标、离 心率等概念及其几何意义。 (2) 研究了椭圆的几个基本量a,b,c,e及顶点、 焦点、对称中心及其相互之间的关系
高二文科数学《2.1.2椭圆的简单几何性质(一)》
2
2
湖南省长沙县第三中学
课外作业
1. 回顾教材P.41-P.44; 2. P47.第4、5题 3. 预习教材P.44-P.45;
4. 选作题
湖南省长沙县第三中学
a 2b 依题意有: 16 1 2 1 2 b a
湖南省长沙县第三中学
讲授新课
例2 求经过点P (4, 1),且长轴长是短轴 长的2倍的椭圆的标准方程.
: 解:若焦点在x轴上,设椭圆方程为 2 2 x y 2 1(a b 0), 2 a b a 2 5 a 2b 依题意有: 得: 16 1 b 5 1
湖南省长沙县第三中学
9 x2 y 2 36
练习:
3、比较下面一组椭圆的形状,哪一个更圆, 哪一个更扁?
9 x y 36
2
2
与
x y 1. 16 12
2
2
4、若椭圆的两个焦点把长轴三等分, 则椭圆的离心率为 ( )
湖南省长沙县第三中学
讲授新课
例2 求经过点P (4, 1),且长轴长是短轴 长的2倍的椭圆的标准方程.
: 解:若焦点在x轴上,设椭圆方程为 2 2 x y 2 1(a b 0), 2 a b
湖南省长沙县第三中学
讲授新课
例2 求经过点P (4, 1),且长轴长是短轴 长的2倍的椭圆的标准方程.
: 解:若焦点在x轴上,设椭圆方程为 2 2 x y 2 1(a b 0), 2 a b
湖南省长沙县第三中学
2
2
讲授新课
第2章2.2.2 椭圆的简单几何性质(一)
高考调研 ·新课标 ·数学选修2-1
例 2 根据下列条件,求中心在原点,对称轴在坐标轴上的 椭圆方程.
(1)焦点在 x 轴上,一个焦点与短轴的两端点连线互相垂直, 且半焦距为 6;
(2)与椭圆x92+y42=1 有相同的焦点,且离心率 e= 55; (3)以直线 3x+4y-12=0 与两坐标轴的交点分别作为顶点 和焦点.
第25页
高考调研 ·新课标 ·数学选修2-1
互动 2 (1)ba与bc的大小能刻画椭圆的扁平程度吗?为什 么?
(2)你能运用三角函数的知识解释,为什么 e=ca越大,椭圆 越扁?e=ac越小,椭圆越圆?
第26页
高考调研 ·新课标 ·数学选修2-1
【解析】 (1)都能.由ba= a2-a2 c2= 1-e2(0<e<1)可知, 当 e 越趋近于 1 时,ba越趋近于 0,椭圆越扁;当 e 越趋近于 0 时, ba越趋近于 1,椭圆越接近于圆.当且仅当 a=b 时,c=0,两焦 点重合,图形变为圆,方程为 x2+y2=a2.
【解析】 把已知方程化成标准方程为2y52 +x2=1. 这里 a=5,b=1,所以 c= 25-1=2 6. 因此,椭圆的长轴和短轴的长分别是 2a=10 和 2b=2,两个焦 点分别是 F1(0,-2 6),F2(0,2 6),椭圆的四个顶点是 A1(0,- 5),A2(0,5),B1(-1,0)和 B2(1,0).
第29页
高考调研 ·新课标 ·数学选修2-1
【解析】 (1)将椭圆方程 4x2+9y2=36 化为标准方程x92+y42
=1,则 a2=9,b2=4,所以 a=3,c= a2-b2= 5,故离心率 e = 35;椭圆2x52+2y02 =1 中,a2=25,b2=20,则 a=5,c= a2-b2
椭圆的简单几何性质(第1课时)(30张PPT)高中数学人教A版选择性必修第一册
例3.已知F₁,F₂ 是椭圆的两个焦点,过F₁且与椭圆长轴垂直的直线交椭圆于A,B 两点,若△ABF₂是正三角形,求该椭圆的离心率.解:不妨设椭圆的焦点在x轴上,因为ABLF₁F₂, 且△ABF₂ 为正三角形,所以在Rt△AF₁F₂中,∠AF₂F₁=30°,令|AF₁ I=x, 则|AF₂ I=2x, 所以|F₁F₂ I= √ |AF₂ I²-|AF₁ I²= √3x=2c,再由椭圆的定义,可知|AF₁ I+|AF₂ I=2a=3x,所)
椭圆的简单几何性质
03性质应用P A R T 0 N
于是a=5,b=4,c= √25-16=3.因此,椭圆的长轴和短轴的长分别是2a=10, 和2b=8,离心率两个焦点坐标分别是F₁ (-3,0)和F₂ (3,0),四个顶点坐标分别是A₁ (-5,0),A₂ (5,0),B₁ (0,-4),B₁ (0,4).
·
·
椭圆的简单几何性质
椭圆的简单几何性质 方法总结利用性质求椭圆的标准方程的方法:(1)确定标准方程的形式.(2)由a,b,c,e 的关系列出方程.(3)利用待定系数法求出椭圆方程,焦点不明确时要分类讨论.
练习:求适合下列条件的椭圆的标准方程.(1)长轴长是短轴长的5倍,且过点A(5,0).(2)离心率 焦距为12.解:(1)若椭圆焦点在x 轴上,设其标准方程为由题意得
椭圆的简单几何性质
一个焦点F(c,O), 则直线l 的方程 ,即bx+cy-bc=0.
解 , 即 故选B.
由题意知
练习:若椭圆 的离心率 则 k 的值等于 解:分两种情况进行讨论:当焦点在x 轴 上 时 ,a²=k+8,b²=9, 得 c²=k—1,又 少 解得k=4.当焦点在y 轴 上 时 ,a²=9,b²=k+8, 得 c²=1—k,
(部编版)2020学年高中数学第二章2.2.2椭圆的简单几何性质第一课时椭圆的简单几何性质学案含解析
第一课时椭圆的简单几何性质[提出问题]图中椭圆的标准方程为x2 a2+y2b2=1(a>b>0).问题1:椭圆具有对称性吗?提示:有.椭圆是以原点为对称中心的中心对称图形,也是以x轴、y轴为对称轴的轴对称图形.问题2:可以求出椭圆与坐标轴的交点坐标吗?提示:可以,令y=0得x=±a,故A1(-a,0),A2(a,0),同理可得B1(0,-b),B2(0,b).问题3:椭圆方程中x,y的取值范围是什么?提示:x∈[-a,a],y∈[-b,b].问题4:当a的值不变,b逐渐变小时,椭圆的形状有何变化?提示:b越小,椭圆越扁.[导入新知]椭圆的简单几何性质1.由不等式x 2a 2=1-y 2b 2≤1可得|x |≤a ,由y 2b 2=1-x 2a2≤1可得|y |≤b ,从而可得椭圆的范围.2.椭圆有四个顶点、两个焦点共六个特殊点,研究椭圆时一定要注意这六个特殊点的位置,注意长轴长是2a ,而不是a .3.椭圆的离心率e 的大小,描述了椭圆的扁平程度.e 越接近1,则c 就越接近a ,从而b =a 2-c 2越小,因此,椭圆越扁;反之,e 越接近0,则c 就越接近0,从而b 越接近a ,这时椭圆越接近圆.特别地,当a =b 时,c =0,椭圆就变为圆了,此时方程为x 2+y 2=a 2.[例1] 求椭圆4x 2+9y 2=36 [解] 椭圆方程变形为x 29+y 24=1,∴a =3,b =2,∴c = a 2-b 2=9-4= 5.∴椭圆的长轴长和焦距分别为2a =6,2c =25, 焦点坐标为F 1(-5,0),F 2(5,0),顶点坐标为A 1(-3,0),A 2(3,0),B 1(0,-2),B 2(0,2), 离心率e =c a =53. [类题通法]求椭圆的性质时,应把椭圆化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a ,b 的数值,进而求出c ,求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性质.[活学活用]已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率; (2)写出椭圆C 2的方程,并研究其性质.解:(1)由椭圆C 1:x 2100+y 264=1可得其长半轴长为10,短半轴长为8,焦点坐标(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1, 性质:①范围:-8≤x ≤8,-10≤y ≤10; ②对称性:关于x 轴、y 轴、原点对称;③顶点:长轴端点(0,10),(0,-10),短轴端点(-8,0),(8,0); ④离心率:e =35.[例2] (1)长轴长是10,离心率是45;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. [解] (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0)或y 2a 2+x 2b2=1(a >b >0). 由已知得2a =10,a =5.又∵e =c a =45,∴c =4.∴b 2=a 2-c 2=25-16=9.∴椭圆的标准方程为x 225+y 29=1或y 225+x 29=1.(2)依题意可设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).如图所示,△A 1FA 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b , 则c =b =3,a 2=b 2+c 2=18, 故所求椭圆的标准方程为x 218+y 29=1.[类题通法](1)利用椭圆的几何性质求椭圆的标准方程时,通常采用待定系数法,其步骤是: ①确定焦点位置.②设出相应椭圆的方程(对于焦点位置不确定的椭圆可能有两种标准方程).③根据已知条件构造关于参数的关系式,利用方程(组)求参数.列方程(组)时常用的关系式为b 2=a 2-c 2,e =c a等.(2)在椭圆的简单性质中,轴长、离心率不能确定椭圆的焦点位置,因此仅依据这些条件确定的椭圆方程可能有两个.[活学活用]求适合下列条件的椭圆的标准方程. (1)焦点在x 轴上,短轴长为2,离心率e =22; (2)长轴长是短轴长的5倍,且过点A (5,0).解:(1)设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由题意知⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =22,2b =2,解得a =2,b =1,因此,椭圆的标准方程为x 22+y 2=1.(2)若椭圆焦点在x 轴上,设其标准方程为x 2a 2+y2b 2=1(a >b >0),由题意得⎩⎪⎨⎪⎧2a =5×2b ,25a 2+0b2=1,解得⎩⎪⎨⎪⎧a =5,b =1.故所求椭圆的标准方程为x 225+y 2=1;若焦点在y 轴上,设其标准方程为y 2a 2+x 2b2=1(a >b >0),由题意,得⎩⎪⎨⎪⎧2a=5×2b ,0a 2+25b 2=1,解得⎩⎪⎨⎪⎧a =25,b =5.故所求椭圆的标准方程为y 2625+x 225=1.综上所述,所求椭圆的标准方程为x 225+y 2=1或y 2625+x 225=1.[例3] 如图,已知F 1P 为椭圆上的一点,当PF 1⊥F 1A ,PO ∥AB (O 为椭圆的中心)时,求椭圆的离心率.[解] 由已知可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), 则由题意可知P ⎝⎛⎭⎪⎫-c ,b 2a .∵△PF 1O ∽△BOA ,∴PF 1BO =F 1OOA ,∴b 2a b =c a,即b =c , ∴a 2=2c 2,∴e =ca =22. [类题通法]椭圆的离心率的求法求椭圆的离心率,关键是寻找a 与c 的关系,一般地: (1)若已知a ,c ,则直接代入e =c a求解; (2)若已知a ,b ,则由e =1-⎝ ⎛⎭⎪⎫b a 2求解;(3)若已知a ,b ,c 的关系,则可转化为a ,c 的齐次式,再转化为含e 的方程求解即可. [活学活用]若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34 D.64 解析:选A 依题意,△BF 1F 2是正三角形.∵在Rt △OBF 2中,|OF 2|=c ,|BF 2|=a ,∠OF 2B =60°,∴a cos 60°=c ,∴c a=12,即椭圆的离心率e =12.4.忽视椭圆焦点位置致误[典例] 已知椭圆的中心在原点,对称轴是坐标轴,离心率e =32,且过P (2,3),求此椭圆的标准方程. [解] (1)当焦点在x 轴上时, 设椭圆的标准方程为x 2a 2+y2b 2=1(a >b >0). 由题意知⎩⎪⎨⎪⎧c a =32,4a 2+9b 2=1,a 2=b 2+c 2,解得b 2=10,a 2=40.所以所求椭圆的标准方程为x 240+y 210=1. (2)当焦点在y 轴上时,设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0).由题意得⎩⎪⎨⎪⎧c a =32,9a 2+4b 2=1,a 2=b 2+c 2,解得b 2=254,a 2=25.所以所求椭圆的标准方程为y 225+x 2254=1. 综上,所求椭圆的标准方程为x 240+y 210=1或y 225+x 2254=1.[易错防范]求解时不讨论焦点的位置,而默认为椭圆的焦点在x 轴上,这是最常见的错解. [成功破障] 若椭圆x 2k +8+y 29=1的离心率e =12,则k 的值等于________. 解析:分两种情况进行讨论:当焦点在x 轴上时,a 2=k +8,b 2=9,得c 2=k -1, 又∵e =12,∴k -1k +8=12,解得k =4. 当焦点在y 轴上时,a 2=9,b 2=k +8,得c 2=1-k , 又∵e =12,解得k =-54.∴k =4或k =-54.答案:4或-54[随堂即时演练]1.中心在原点,焦点在x 轴上,若长轴长为18,且两个焦点恰好将长轴3等分,则此椭圆的标准方程是( ) A.x 281+y 272=1 B.x 281+y 29=1 C.x 281+y 245=1 D.x 281+y 236=1 解析:选A 因为2a =18,2c =13×2a =6,所以a =9,c =3,b 2=81-9=72.2.椭圆C 1:x 225+y 29=1与椭圆C 2:x 225-k +y 29-k =1(k <9)( )A .有相同的长轴B .有相同的短轴C .有相同的焦点D .有相等的离心率解析:选C 25-9=(25-k )-(9-k ),故两椭圆有相同的焦点. 3.椭圆x 2+4y 2=16的短轴长为________. 解析:由x 216+y 24=1可知b =2, ∴短轴长2b =4. 答案:44.直线x +2y -2=0经过椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点和一个顶点,则该椭圆的离心率e =________.解析:由题意知椭圆焦点在x 轴上, ∴在直线x +2y -2=0中, 令y =0得c =2;令x =0得b =1. ∴a =b 2+c 2= 5.∴e =c a =255.答案:2555.求适合下列条件的椭圆的标准方程: (1)中心在坐标原点,长轴在x 轴上,离心率为32,且椭圆上一点到两个焦点的距离之和为12; (2)对称轴是坐标轴,一个焦点是(0,7),一个顶点是(9,0). 解:(1)由题意设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0), ∵椭圆上一点到两个焦点的距离之和为12, ∴2a =12,即a =6. ∵椭圆的离心率为32, ∴e =c a =a 2-b 2a =36-b 26=32,∴b 2=9.∴椭圆的标准方程为x 236+y 29=1.(2)由题意知椭圆的焦点在y 轴上,可设椭圆的标准方程为y 2a 2+x 2b2=1(a >b >0),则b =9.因为c =7,所以a 2=b 2+c 2=81+49=130, ∴椭圆的标准方程为y 2130+x 281=1.[课时达标检测]一、选择题1.椭圆以两条坐标轴为对称轴,一个顶点是(0,13),另一个顶点是(-10,0),则焦点坐标为( ) A .(±13,0) B .(0,±10) C .(0,±13)D .(0,±69)解析:选D 由题意知椭圆焦点在y 轴上,且a =13,b =10, 则c =a 2-b 2=69,故焦点坐标为(0,±69).2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1 D.x 212+y 24=1 解析:选A 由椭圆的性质知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,∴a = 3. 又∵e =33, ∴c =1.∴b 2=a 2-c 2=2, ∴椭圆的方程为x 23+y 22=1.3.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( )A .a 2=25,b 2=16 B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25 D .a 2=25,b 2=9解析:选D 因为椭圆x 225+y 216=1的长轴长为10,焦点在x 轴上,椭圆y 221+x 29=1的短轴长为6,所以a 2=25,b 2=9.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且BF ⊥x 轴,直线AB 交y 轴于点P .若AP ―→=2PB ―→,则椭圆的离心率是( )A.32 B.22C.13D.12解析:选D ∵AP ―→=2PB ―→, ∴|AP ―→|=2|PB ―→|. 又∵PO ∥BF , ∴|PA ||AB |=|AO ||AF |=23, 即aa +c =23, ∴e =c a =12.5.椭圆mx 2+ny 2+mn =0(m <n <0)的焦点坐标是( ) A .(0,±m -n ) B .(±m -n ,0) C .(0,±n -m )D .(±n -m ,0)解析:选C 化为标准方程是x2-n +y2-m=1,∵m <n <0,∴0<-n <-m .∴焦点在y 轴上,且c =-m --n =n -m . 二、填空题6.与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是________________.解析:椭圆9x 2+4y 2=36可化为x 24+y 29=1,因此可设待求椭圆为x 2m +y 2m +5=1.又因为b =25,故m =20,得x 220+y 225=1. 答案:x 220+y 225=17.椭圆x 24+y 2m =1的离心率为12,则m =________.解析:当焦点在x 轴上时,4-m 2=12⇒m =3; 当焦点在y 轴上时,m -4m=12⇒m =163. 综上,m =3或m =163.答案:3或1638.已知椭圆的中心在原点,焦点在x 轴上,离心率为55, 且过点P (-5,4),则椭圆的方程为__________. 解析:∵e =c a =55, ∴c 2a 2=a 2-b 2a 2=15, ∴5a 2-5b 2=a 2, 即4a 2=5b 2.设椭圆的标准方程为x 2a 2+5y 24a2=1(a >0).∵椭圆过点P (-5,4),∴25a 2+5×164a 2=1,解得a 2=45.∴椭圆的方程为x 245+y 236=1. 答案:x 245+y 236=1三、解答题※ 推 荐 ※ 下 载 ※ 椭圆C 于A ,B 两点,且△ABF 2的周长为16,求椭圆C 的标准方程.解:设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0). 由e =22知c a =22,故c 2a 2=12, 从而a 2-b 2a 2=12,b 2a 2=12. 由△ABF 2的周长为|AB |+|BF 2|+|AF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =16,得a =4,∴b 2=8. 故椭圆C 的标准方程为x 216+y 28=1. 10.椭圆x 2a 2+y 2b2=1(a >b >0)的右顶点是A (a,0),其上存在一点P ,使∠APO =90°,求椭圆离心率的取值范围. 解:设P (x ,y ),由∠APO =90°知,点P 在以OA 为直径的圆上,圆的方程是:⎝ ⎛⎭⎪⎫x -a 22+y 2=⎝ ⎛⎭⎪⎫a 22, 所以y 2=ax -x 2.① 又因为P 点在椭圆上,故x 2a 2+y 2b2=1.② 把①代入②化简,得(a 2-b 2)x 2-a 3x +a 2b 2=0,即(x -a )[(a 2-b 2)x -ab 2]=0.∵x ≠a ,x ≠0, ∴x =ab 2a 2-b2,又0<x <a , ∴0<ab 2a 2-b 2<a ,即2b 2<a 2. 由b 2=a 2-c 2,得a 2<2c 2,所以e >22. 又∵0<e <1,∴22<e <1, 即椭圆离心率的取值范围是⎝⎛⎭⎪⎫22,1.。
§2.2.2椭圆的几何性质(第1课时)
x y 1 的两个焦点,过 F1 的直线与椭圆交于 A 、 16 9 B 两点,则 AF2 B 的周长为______________.
2.求满足下列条件的椭圆的标准方程: (1)短轴一个端点与两焦点组成正三角形,焦点到同侧顶点的距离为 3 ; (2)经过点 P(2 3,1) , Q( 3, 2) .
编号:X2-1002 学习 目标
§2.2.2 椭圆的几何性质(第 1 课时)
(1)掌握椭圆的简单的几何性质; (2)感受运用方程研究曲线方程几何性质的思想方法; (3)运用椭圆的方程和几何性质处理简单的实际问题. 二次总结栏
一.课前复习 1.如果方程 x2 ky 2 k 表示焦点在 y 轴上的椭圆,则实数 k 的取值范围 是 . 2 2 x y 1 有相同焦点且过点 ( 6,1) 的椭圆的标准方程. 2.求与椭圆 9 5
二.知识点总结 标准方程
图形
焦点 顶点 轴长 对称性 范围 离心率
三.典型例题
x2 y2 1 的长轴长、短轴长、离心率、焦点和顶点坐Biblioteka 25 9 标,并用描点法画出这个椭圆.
【例 1】求椭圆
第1页
江苏省大港中学高二数学学案
选修 2-1 选修 1-1 错误!链接无效。
【练习 1】 (1)求椭圆 9 x 2 y 2 81的长轴长、短轴长和顶点坐标. (2)求椭圆 x 2 4 y 2 16 的长轴长、短轴长和顶点坐标.
二.今日练习 3.求椭圆 4 x2 3 y 2 12 的长轴长,短轴长,离心率,焦距和顶点坐标.
4.若椭圆的长轴长是短轴长的 2 倍,则离心率为
.
5.若椭圆
x2 y2 1 的一个焦点是 (2,0) ,则 a = a 2 3a
第二章 2.2.2 第1课时 椭圆的几何性质
2.2.2椭圆的简单几何性质第1课时椭圆的几何性质学习目标 1.掌握椭圆的几何性质,了解椭圆标准方程中a,b,c的几何意义.2.会用椭圆的几何意义解决相关问题.知识点一椭圆的简单几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)范围-a≤x≤a,-b≤y≤b -b≤x≤b,-a≤y≤a顶点A1(-a,0),A2(a,0),B1(0,-b),B2(0,b)A1(0,-a),A2(0,a),B1(-b,0),B2(b,0)轴长短轴长=2b,长轴长=2a焦点(±a2-b2,0)(0,±a2-b2) 焦距|F1F2|=2a2-b2对称性对称轴:x轴、y轴对称中心:原点离心率e=ca∈(0,1) 知识点二离心率对椭圆扁圆程度的影响如图所示,在Rt△BF2O中,cos∠BF2O=ca,记e=ca,则0<e<1,e越大,∠BF2O越小,椭圆越扁;e越小,∠BF2O越大,椭圆越圆.1.椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴长是a .( × )2.椭圆的离心率e 越大,椭圆就越圆.( × )3.若椭圆的对称轴为坐标轴,长轴长与短轴长分别为10,8,则椭圆的方程为x 225+y 216=1.( × )4.设F 为椭圆x 2a 2+y 2b 2=1(a >b >0)的一个焦点,M 为其上任一点,则|MF |的最大值为a +c (c 为椭圆的半焦距).( √ )一、椭圆的简单几何性质例1 求椭圆m 2x 2+4m 2y 2=1(m >0)的长轴长、短轴长、焦点坐标、顶点坐标和离心率. 解 由已知得x 21m 2+y 214m 2=1(m >0),因为0<m 2<4m 2,所以1m 2>14m2,所以椭圆的焦点在x 轴上,并且长半轴长a =1m ,短半轴长b =12m ,半焦距c =32m,所以椭圆的长轴长2a =2m ,短轴长2b =1m ,焦点坐标为⎝⎛⎭⎫-32m ,0,⎝⎛⎭⎫32m ,0,顶点坐标为⎝⎛⎭⎫1m ,0,⎝⎛⎭⎫-1m ,0,⎝⎛⎭⎫0,-12m ,⎝⎛⎭⎫0,12m , 离心率e =c a =32m 1m=32.反思感悟 从椭圆的标准方程出发,分清其焦点位置,然后再写出相应的性质.跟踪训练1 已知椭圆C 1:x 2100+y 264=1,设椭圆C 2与椭圆C 1的长轴长、短轴长分别相等,且椭圆C 2的焦点在y 轴上.(1)求椭圆C 1的长半轴长、短半轴长、焦点坐标及离心率;(2)写出椭圆C 2的方程.解 (1)由椭圆C 1:x 2100+y 264=1,可得其长半轴长为10,短半轴长为8,焦点坐标为(6,0),(-6,0),离心率e =35.(2)椭圆C 2:y 2100+x 264=1.二、由几何性质求椭圆的标准方程 例2 求适合下列条件的椭圆的标准方程. (1)短轴长25,离心率e =23;(2)在x 轴上的一个焦点与短轴两个端点的连线互相垂直,且焦距为6. 解 (1)由2b =25,e =c a =23,得b 2=5,a 2-b 2a 2=49,a 2=9.当焦点在x 轴上时,所求椭圆的标准方程为x 29+y 25=1;当焦点在y 轴上时,所求椭圆的标准方程为y 29+x 25=1.综上,所求椭圆的标准方程为x 29+y 25=1或y 29+x 25=1.(2)依题意可设椭圆方程为x 2a 2+y 2b 2=1(a >b >0).如图所示,△A 1F A 2为一等腰直角三角形,OF 为斜边A 1A 2的中线(高),且|OF |=c ,|A 1A 2|=2b , 所以c =b =3, 所以a 2=b 2+c 2=18, 故所求椭圆的方程为x 218+y 29=1.反思感悟 此类问题应由所给的几何性质充分找出a ,b ,c 所应满足的关系式,进而求出a ,b ,在求解时,需注意椭圆的焦点位置.跟踪训练2 分别求出满足下列条件的椭圆的标准方程.(1)短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3; (2)离心率为32,经过点(2,0). 解 (1)由题意知a =5,c =3,b 2=25-9=16, 焦点所在坐标轴可为x 轴,也可为y 轴, 故椭圆的标准方程为x 225+y 216=1或x 216+y 225=1.(2)由e =c a =32,设a =2k ,c =3k ,k >0,则b =k . 又经过的点(2,0)为其顶点,故若点(2,0)为长轴顶点,则a =2,b =1, 椭圆的标准方程为x 24+y 2=1;若点(2,0)为短轴顶点,则b =2,a =4,椭圆的标准方程为x 24+y 216=1.三、求椭圆的离心率例3 (1)如图所示,A ,B ,C 分别为椭圆x 2a 2+y 2b 2=1(a >b >0)的顶点与焦点,若∠ABC =90°,则该椭圆的离心率为( )A.-1+52 B .1-22 C.2-1 D.22答案 A解析 由(a +c )2=a 2+2b 2+c 2, 又因为b 2=a 2-c 2,所以c 2+ac -a 2=0. 因为e =ca,所以e 2+e -1=0,所以e =-1+52.(2)已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别是椭圆的左、右焦点,椭圆上总存在点P 使得PF 1⊥PF 2,则椭圆的离心率的取值范围为________. 答案 ⎣⎡⎭⎫22,1解析 由PF 1⊥PF 2,知△F 1PF 2是直角三角形, 所以|OP |=c ≥b ,即c 2≥a 2-c 2,所以a ≤2c , 因为e =c a ,0<e <1,所以22≤e <1.反思感悟 求椭圆离心率及范围的两种方法(1)直接法:若已知a ,c 可直接利用e =ca 求解.若已知a ,b 或b ,c 可借助于a 2=b 2+c 2求出c 或a ,再代入公式e =ca求解.(2)方程法:若a ,c 的值不可求,则可根据条件建立a ,b ,c 的关系式,借助于a 2=b 2+c 2,转化为关于a ,c 的齐次方程或不等式,再将方程或不等式两边同除以a 的最高次幂,得到关于e 的方程或不等式,即可求得e 的值或范围.跟踪训练3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B ,若椭圆C 的中心到直线AB 的距离为66|F 1F 2|,求椭圆C 的离心率. 解 由题意知A (a ,0),B (0,b ), 从而直线AB 的方程为x a +yb =1,即bx +ay -ab =0, 又|F 1F 2|=2c ,∴aba 2+b 2=63c . ∵b 2=a 2-c 2,∴3a 4-7a 2c 2+2c 4=0, 解得a 2=2c 2或3a 2=c 2(舍去),∴e =22.椭圆几何性质的应用典例 神舟五号飞船成功完成了第一次载人航天飞行,实现了中国人民的航天梦想.某段时间飞船在太空中运行的轨道是一个椭圆,地心为椭圆的一个焦点,如图所示.假设航天员到地球的最近距离为d 1,最远距离为d 2,地球的半径为R ,我们想象存在一个镜像地球,其中心在神舟飞船运行轨道的另外一个焦点上,上面住着一个神仙发射某种神秘信号,需要飞行中的航天员中转后地球人才能接收到,则传送神秘信号的最短距离为( )A .d 1+d 2+RB .d 2-d 1+2RC .d 2+d 1-2RD .d 1+d 2答案 D解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),半焦距为c ,两焦点分别为F 1,F 2,飞行中的航天员为点P ,由已知可得⎩⎪⎨⎪⎧d 1+R =a -c ,d 2+R =a +c ,则2a =d 1+d 2+2R ,故传送神秘信号的最短距离为|PF 1|+|PF 2|-2R =2a -2R =d 1+d 2.[素养提升] 将太空中的轨迹与学过的椭圆建立起对应关系.利用椭圆的几何性质来解决航空航天问题,考查了学生运用所学知识解决实际问题的能力.1.椭圆以两坐标轴为对称轴,并且过点(0,13),(-10,0),则焦点坐标为( ) A .(±13,0) B .(0,±10) C .(0,±13) D .(0,±69)答案 D解析 由题意知,椭圆的焦点在y 轴上, 且a =13,b =10,则c =a 2-b 2=69,故选D.2.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则椭圆C 的方程是( )A.x 23+y 24=1 B.x 24+y 23=1 C.x 24+y 23=1 D.x 24+y 2=1 答案 C解析 依题意知,所求椭圆的焦点位于x 轴上, 且c =1,e =c a =12,即a =2,b 2=a 2-c 2=3,因此椭圆的方程是x 24+y 23=1.3.若椭圆的两个焦点与短轴的一个端点构成一个正三角形,则该椭圆的离心率为( ) A.12 B.32 C.34D.64答案 A解析 不妨设椭圆的左、右焦点分别为F 1,F 2,B 为椭圆的上顶点.依题意可知,△BF 1F 2是正三角形. ∵在Rt △OBF 2中,|OF 2|=c , |BF 2|=a ,∠OF 2B =60°, ∴cos 60°=c a =12,即椭圆的离心率e =12,故选A.4.椭圆x 2k +8+y 29=1的离心率为12,则k 的值为( )A .4B .-54C .4或-54D .不能确定答案 C解析 当k +8>9,即k >1时,e 2=c 2a 2=k +8-9k +8=14,k =4.当0<k +8<9,即-8<k <1时, e 2=c 2a 2=9-k -89=14,k =-54.5.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 的值为( ) A.12 B.14 C .2 D .4 答案 B解析 椭圆x 2+my 2=1的焦点在y 轴上,短半轴长为1,长轴长是短轴长的2倍, 故1m =2,解得m =14.1.知识清单: (1)椭圆的几何性质. (2)求椭圆的离心率.2.方法归纳:定义法、数形结合、函数与方程.3.常见误区:忽略椭圆离心率的范围0<e <1及长轴长与a 的关系.1.已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则椭圆C 的离心率为( )A.13B.12C.22D.223 答案 C解析 ∵a 2=4+22=8,∴a =22,∴e =c a =222=22.故选C.2.椭圆(m +1)x 2+my 2=1的长轴长是( )A.2m -1m -1B.-2-m mC.2m mD .-21-m m -1答案 C解析 椭圆方程可化简为x 211+m +y 21m =1,由题意,知m >0,∴11+m <1m,∴a =m m ,∴椭圆的长轴长2a =2mm.3.焦点在x 轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为( ) A.x 236+y 216=1 B.x 216+y 236=1 C.x 26+y 24=1 D.y 26+x 24=1 答案 A解析 设椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),依题意得c =25,a +b =10,又a 2=b 2+c 2, 解得a =6,b =4.则椭圆的方程为x 236+y 216=1.4.已知椭圆x 2a 2+y 2b 2=1与椭圆x 225+y 216=1有相同的长轴,椭圆x 2a 2+y 2b 2=1的短轴长与椭圆y 221+x 29=1的短轴长相等,则( ) A .a 2=25,b 2=16 B .a 2=9,b 2=25C .a 2=25,b 2=9或a 2=9,b 2=25D .a 2=25,b 2=9 答案 D解析 椭圆x 225+y 216=1的长轴长为10,椭圆y 221+x 29=1的短轴长为6,由题意可知椭圆x 2a 2+y 2b 2=1的焦点在x 轴上,即有a =5,b =3.5.过椭圆x 24+y 23=1的焦点的最长弦和最短弦的长分别为( )A .8,6B .4,3C .2, 3D .4,2 3答案 B解析 由题意知a =2,b =3,c =1,最长弦过两个焦点,长为2a =4,最短弦垂直于x 轴,长度为当x =c =1时,纵坐标的绝对值的2倍为3. 6.已知椭圆的短半轴长为1,离心率0<e ≤32,则长轴长的取值范围为________. 答案 (2,4] 解析 ∵e =1-⎝⎛⎭⎫b a 2,b =1,0<e ≤32, ∴1-⎝⎛⎭⎫b a 2≤32,则1<a ≤2,∴2<2a ≤4, 即长轴长的取值范围是(2,4].7.在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么椭圆C 的方程为_____________. 答案 x 216+y 28=1解析 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由e =22,知c a =22,故b 2a 2=12.由于△ABF 2的周长为|AB |+|BF 2|+|AF 2|=(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=4a =16,故a =4,∴b 2=8,∴椭圆C 的方程为x 216+y 28=1.8.已知长方形ABCD ,AB =4,BC =3,则以A ,B 为焦点,且过C ,D 的椭圆的离心率为________. 答案 12解析 如图,AB =2c =4,∵点C 在椭圆上,∴CB +CA =2a =3+5=8,∴e =2c 2a =48=12. 9.已知椭圆x 2+(m +3)y 2=m (m >0)的离心率e =32,求m 的值及椭圆的长轴和短轴的长、焦点坐标、顶点坐标.解 椭圆方程可化为x 2m +y 2m m +3=1(m >0), ∵m -m m +3=m (m +2)m +3>0,∴m >m m +3. ∴a 2=m ,b 2=m m +3,c =a 2-b 2=m (m +2)m +3. 由e =32,得m +2m +3=32,∴m =1. ∴椭圆的标准方程为x 2+y 214=1. ∴a =1,b =12,c =32. ∴椭圆的长轴长为2,短轴长为1;两焦点坐标分别为F 1⎝⎛⎭⎫-32,0,F 2⎝⎛⎭⎫32,0; 四个顶点坐标分别为A 1(-1,0),A 2(1,0),B 1⎝⎛⎭⎫0,-12,B 2⎝⎛⎭⎫0,12. 10.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点M ⎝⎛⎭⎫43,13,求椭圆C 的离心率.解 2a =|MF 1|+|MF 2|=⎝⎛⎭⎫43+12+⎝⎛⎭⎫132+⎝⎛⎭⎫43-12+⎝⎛⎭⎫132=2 2. 所以a = 2. 又由已知c =1,所以椭圆C 的离心率e =c a =12=22.11.椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为( ) A.12B.13C.14D.22答案 A 解析 由题意知a =2c ,∴e =c a =c 2c =12. 12.已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 分别为椭圆的左顶点和上顶点,F 为右焦点,且AB ⊥BF ,则椭圆的离心率为( )A.22 B.32 C.3-12 D.5-12 答案 D解析 在Rt △ABF 中,AB =a 2+b 2,BF =a ,AF =a +c ,由AB 2+BF 2=AF 2,得a 2+b 2+a 2=(a +c )2.将b 2=a 2-c 2代入,得a 2-ac -c 2=0,即e 2+e -1=0,解得e =-1±52, 因为0<e <1,所以e =5-12. 13.若将一个椭圆绕中心旋转90°,所得椭圆的两顶点恰好是旋转前椭圆的两焦点,这样的椭圆称为“对偶椭圆”.下列椭圆的方程中,是“对偶椭圆”的方程是( ) A.x 28+y 24=1 B.x 23+y 25=1 C.x 26+y 22=1 D.x 26+y 29=1 答案 A解析 由题意,知当b =c 时,将一个椭圆绕中心旋转90°,所得椭圆的两顶点恰好是旋转前椭圆的两焦点,该椭圆为“对偶椭圆”.选项中只有A 中b =c =2符合题意,故选A.14.如图,已知F 1,F 2分别是椭圆的左、右焦点,现以F 2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M ,N ,若过F 1的直线MF 1是圆F 2的切线,则椭圆的离心率为( )A.3-1B .2- 3 C.22 D.32答案 A解析 ∵过F 1的直线MF 1是圆F 2的切线,∴∠F 1MF 2=90°,|MF 2|=c ,∵|F 1F 2|=2c ,∴|MF 1|=3c ,由椭圆定义可得|MF 1|+|MF 2|=c +3c =2a ,∴椭圆离心率e =21+3=3-1. 15.已知椭圆x 249+y 224=1上一点P 与椭圆两焦点F 1,F 2的连线夹角为直角,则|PF 1|·|PF 2|=________.答案 48解析 依题意知,a =7,b =26,c =49-24=5,|F 1F 2|=2c =10.∵PF 1⊥PF 2,∴|PF 1|2+|PF 2|2=|F 1F 2|2,即|PF 1|2+|PF 2|2=100.又由椭圆定义知|PF 1|+|PF 2|=2a =14,∴(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|=100.即196-2|PF 1|·|PF 2|=100.解得|PF 1|·|PF 2|=48.16.在平面直角坐标系中,椭圆x 2a 2+y 2b2=1(a >b >0)的焦距为2c ,以O 为圆心,a 为半径的圆,过点⎝⎛⎭⎫a 2c ,0作圆的两切线互相垂直,则离心率e =________.答案 22 解析 如图,切线P A ,PB 互相垂直,又半径OA 垂直于P A ,所以△OAP 是等腰直角三角形,a 2c=2a . 解得e =c a =22, 则离心率e =22.17.已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,短轴的一个端点为M ,直线l :3x -4y =0交椭圆E 于A ,B 两点.若|AF |+|BF |=4,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )A.⎝⎛⎦⎤0,32B.⎝⎛⎦⎤0,34 C.⎣⎡⎭⎫32,1 D.⎣⎡⎭⎫34,1 答案 A解析 设左焦点为F 0,连接F 0A ,F 0B ,则四边形AFBF 0为平行四边形. ∵|AF |+|BF |=4, ∴|AF |+|AF 0|=4, ∴a =2.设M (0,b ),则4b 5≥45,∴1≤b <2. 离心率e =c a=c 2a 2=a 2-b 2a 2=4-b 24∈⎝⎛⎦⎤0,32, 故选A.18.如图,已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率; (2)若椭圆的焦距为2,且AF 2→=2F 2B →,求椭圆的方程.解 (1)由∠F 1AB =90°及椭圆的对称性知b =c ,则e =c a =c 2a 2=c 2b 2+c 2=22. (2)由已知a 2-b 2=1,A (0,b ),F 2(1,0),设B (x ,y ), 则AF 2→=(1,-b ),F 2B →=(x -1,y ), 由AF 2→=2F 2B →,即(1,-b )=2(x -1,y ),解得x =32,y =-b 2,则94a 2+b 24b 2=1, 得a 2=3,因此b 2=2,椭圆的方程为x 23+y 22=1.。
2.2.2椭圆的几何性质(第1课时)
,当e=1时为线段
2
显然当e=0时为圆 , 0<e<1时为椭圆
[3]e与a,b的关系:
c a b b e 1 2 2 a a a
x y 2 1( a b 0 ) 2 a 2 b 2 y x 2 1( a b 0 ) 2 a b
二、椭圆
x 1、范围: 2 1, a
2
简单的几何性质
y2 1得: 2 b
-a≤x≤a,
-b≤y≤b 知
椭圆落在x=±a,y= ± b组成的矩形中 y
B2 A1
b F1
2 2
标准方程 范围
x2 y 2 2 1(a b 0) 2 a b
x2 y 2 2 1(a b 0) 2 b a
|x|≤ a,|y|≤ b
关于x轴、y轴成轴对称; 关于原点成中心对称
|x|≤ b,|y|≤ a
同前
(b,0)、(-b,0)、 (0,a)、(0,-a) (0 , c)、(0, -c) 同前 同前
3 5
6
。
焦点坐标是:
4) (3, 0) 。顶点坐标是: 。 (5, 0) (0,
外切矩形的面积等于:
80
。
解题的关键:1、将椭圆方程转化为标 2 2 准方程 明确a、b x y
25 16 1
2、确定焦点的位置和长轴的位置
练习1.
已知椭圆方程为6x2+y2=6
。短轴长是:
.离心率等于:
2 2 x y 轴上,所以,椭圆的标准方程为 1 9 4 c 3 . e 2a 20 , (2)由已知, a 5
高中数学 2.2.2 第1课时 椭圆的简单几何性质课件 新人
根据椭圆的方程研究其几何性质
已知椭圆 x2+(m+3)y2=m(m>0)的离心率 e= 33,求椭圆的长轴长、短轴长、焦点.
【思路探究】 根据已知条件,如何求出 a、b、c 的值?
【自主解答】
方程化为xm2+
y2 m
=1(m>0),
m+3
∴a= m,b= mm+3,c2=mm2++23m.
●教学流程设计
演示结束
1.掌握椭圆的几何性质,了解椭圆 课
标准方程中 a、b、c 的几何意义.(重 标
点) 解
2.会用椭圆的几何意义解决相关问 读
题.(难点)
椭圆的简单几何性质 【问题导思】 1.观察椭圆xa22+by22=1(a>b>0)的形状,
图 2-2-2 你能从图中看出它的范围吗?它具有怎样的对称 性?椭圆上哪些点比较特殊?
本例中若把椭圆方程改为“9x2+16y2=144”求
其长轴长、短轴长、离心率、焦点坐标和顶点坐标.
【解】 已知方程化成标准方程为1x62+y92=1.
∴a=4,b=3,c= 16-9= 7.
∴椭圆的长轴长与短轴长分别为 8 和 6,离心率 e
=ac=
7 4.
焦点坐标为 F1(- 7,0),F2( 7,0);四个顶点的
又 e= 23,则34=mm2m++2m3,∴m=1,
从而
a=1,b=12,c=
3 2.
∴椭圆的长轴长 2a=2,短轴长 2b=1,
焦点坐标 F1(- 23,0),F2( 23,0).
1.已知椭圆的方程讨论性质时,若不是标准形式 的先化成标准形式,再确定焦点的位置,进而确定椭圆 的类型.
2.焦点位置不确定的要分类讨论,找准 a 与 b, 正确利用 a2=b2+c2 求出焦点坐标,再写出顶点坐 标.同时要注意长轴长、短轴长、焦距不是 a,b,c, 而应是 a,b,c 的两倍.
高中数学2.2.2椭圆的几何性质(1)优秀课件
椭圆的标准 方程 范围 顶点 焦点 对称性 轴
离心率
a,b,c关系
关于x轴,y轴,原点对称 长轴长2a,短轴长2b,焦距2c
根据的
x2 y2 a2 b2 1(a b 0)
性质说出
y2 a2
x2 b2
1(a b o)
的性质
方程
x2 a2
叫做椭圆的离心率.
a
[1]离心率的取值范围:
y b
因为 a > c > 0,所以 1 >e > 0
[2]离心率对椭圆形状的影响:
o
a2 c2 x
1〕e 越接近 1,c 就越接近 a,从而 b就越小, 椭圆就越扁 2〕e 越接近 0,c 就越接近 0,从而 b就越大, 椭圆就越圆
特别需要说明的是:
e =0,那么 a = b,那么 c=0,两个焦点重合,椭圆方程变
关于x、y轴对称,
关于原点对称
A1(0,-a)、A2(0,a)、 B1(-b,0)、B2(b,0)
离心率
练习、求适合以下条件的椭圆的标准方程:
〔1〕经过点P(-3,0),Q(0,-2);
〔2〕长轴长等于20,离心率等于
3
5.
〔3〕长轴长等于20,离心率等于
3 5
.
解:(3) 由已知 2a 20 ,e c 3 ,a5a Fra bibliotek10,c 6 .
b2 a2 c2 64 .
x2 y2 1 或 100 64
y2 x2 1. 100 64
例2:计算以下椭圆的离心率,并判断哪一个椭圆更圆
P3(x,-y)
故,坐标轴是椭圆的对称轴, 中心:椭圆的对称中心
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.2.2 椭圆的简单几何性质第1课时一、选择题1、焦点在x轴上,长、短半轴长之和为10,焦距为45,则椭圆的方程为()A.2213616x y+= B.2211636x y+=C.22164x y+= D.22146x y+=2、椭圆221259x y+=与221925x yk k+=--(0<k<9)的关系为()A. 有相等的长轴B. 有相等的短轴C. 有相同的焦点D. 有相等的焦距3、椭圆的短轴的一个顶点与两焦点组成等边三角形,则它的离心率为()A. 12B.13C.14D.24、已知椭圆22221x ya b+=(a>b>0),A,B分别为椭圆的左顶点和上顶点,F为右焦点,且AB⊥BF,则椭圆的离心率为()A.22B.32C.312-D.512-5、如图,把椭圆2212516x y+=的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的上半部分于P1,P2,…,P7七个点,F是椭圆的左焦点,则|P1F|+|P2F|+…+|P7F|=()A. 35B. 30C. 25D. 206、已知F是椭圆22221x ya b+=(a>b>0)的左焦点,A为右顶点,P是椭圆上一点,且PF⊥x轴,若|PF|=14|AF|,则该椭圆的离心率是()A. 14B.34C.12D.37、“m=3”是“椭圆2214x ym+=的离心率为12”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件二、填空题8、已知长方形ABCD,AB=4,BC=3,则以A,B为焦点,且过C、D的椭圆的离心率为______.9、已知椭圆的中心在原点,焦点在x 5,且过P(-5,4),则椭圆的方程为______.10、已知P(m,n)是椭圆x2+22y=1上的一个动点,则m2+n2的取值范围是______.11、已知中心在原点,焦点在x轴上的椭圆C上的点到焦点的距离的最大值为3,最小值为1,则椭圆C的标准方程为______.12、已知椭圆22221x ya b+=(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF⊥x轴,直线AB交y轴于点P.若2AP PB=,则椭圆的离心率是______.三、解答题13、设椭圆22221x ya b+=(a>b>0)与x轴交于点A,以OA为边作等腰三角形OAP,其顶点P在椭圆上,且∠OP A=120°,求椭圆的离心率.14、已知在平面直角坐标系xOy中的一个椭圆的中心在原点,左焦点为F1(3-0),且右顶点为D(2,0).设点A的坐标是1 1,2⎛⎫ ⎪⎝⎭.(1)求该椭圆的标准方程.(2)若P是椭圆上的动点,求线段P A的中点M的轨迹方程.15、已知点A,B分别是椭圆2213620x y+=的左、右顶点,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,P A⊥PF.(1)求点P的坐标;(2)设M是椭圆长轴AB上的一点,且M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.答案第1页,共4页参考答案1、【答案】A【分析】本题考查椭圆的焦点,长、短半轴长以及焦距.【解答】由题意知,解得,因此所求椭圆的方程为2213616x y +=. 2、【答案】D【分析】本题考查椭圆的焦点,长、短半轴长以及焦距.【解答】由25-9=(25-k )-(9-k )知,两椭圆有相等的焦距.3、【答案】A【分析】本题考查椭圆的离心率.【解答】由题意知a =2c ,∴e =c a =2c c =12. 4、【答案】D【分析】本题考查椭圆的离心率.【解答】在Rt △ABF 中,|AB ||BF |=a ,|AF |=a +c ,由|AB |2+|BF |2=|AF |2,得a 2+b 2+a 2=(a +c )2.将b 2=a 2-c 2代入,得a 2-ac -c 2=0,即e 2+e -1=0,解得e , ∵0<e <1,∴e .选D. 5、【答案】A 【分析】本题考查椭圆的定义以及对称性.【解答】设椭圆右焦点为F ′,由椭圆的对称性,知|P 1F |=|P 7F ′|,|P 2F |=|P 6F ′|,|P 3F |=|P 5F ′|,∴原式=(|P 7F |+|P 7F ′|)+(|P 6F |+|P 6F ′|)+(|P 5F |+|P 5F ′|)+|P 4F |=7a =35. 6、【答案】B【分析】本题考查椭圆的离心率.【解答】由于PF ⊥x 轴,则令x =-c ,代入椭圆方程,得y 2=b 2221c a ⎛⎫- ⎪⎝⎭=42b a,∴y =±2b a , 又|PF |=14|AF |,即2b a =14(a +c ),即4(a2-c2)=a2+ac,即(3a-4c)(a+c)=0,则e=ca=34,选B.7、【答案】A【分析】本题考查椭圆的离心率.【解答】椭圆2214x ym+=的离心率为12,当0<m<4时,122=,得m=3,当m>412=,得m=163,即“m=3”是“椭圆2214x ym+=的离心率为12”的充分不必要条件.8、【答案】1 2【分析】本题考查椭圆的定义和离心率.【解答】如图,AB=2c=4,∵点C在椭圆上,∴CB+CA=2a=3+5=8,∴e=22ca=4 8=12.9、【答案】221 4536x y+=【分析】本题考查椭圆的离心率.【解答】设所求椭圆的方程为22221x ya b+=(a>b>0)由题意得解得,因此所求椭圆方程为221 4536x y+=.10、【答案】[1,2]【分析】本题考查椭圆的性质.【解答】∵P(m,n)是椭圆x2+22y=1上的一个动点,∴m2+22n=1,即n2=2-2m2,∴m2+n2=2-m2,又-1≤m≤1,∴1≤2-m2≤2,∴1≤m2+n2≤2.11、【答案】221 43x y+=【分析】本题考查椭圆的性质.【解答】由题意知,解得,则b2=3,故所求椭圆方程为22143x y+=.12、【答案】12【分析】本题考查椭圆的离心率.【解答】由2AP PB=,得|AO|=2|FO|(O为坐标原点),即a=2c,则离心率e=12.13、【答案】3.【分析】本题考查椭圆的离心率.【解答】不妨设A(a,0),点P在第一象限内,由题意知,点P的横坐标是2a,设,2aP y⎛⎫⎪⎝⎭,由点P在椭圆上,得222221aya b⎛⎫⎪⎝⎭+=,y2=34b2,即2aP⎛⎫⎪⎪⎝⎭,又∠OP A=120°,∴∠POA=30°,故tan∠POA=22a=,∴a=3b,∴cea====14、【答案】(1)24x+y2=1;(2)()222112142xy-⎛⎫+-=⎪⎝⎭.【分析】本题考查椭圆的标准方程和性质.【解答】(1)∵a=2,c b1.∴椭圆的标准方程为24x+y2=1.(2)设P(x0,y0),M(x,y),答案第3页,共4页由中点坐标公式,得∴ 又∵220014x y +=,∴()222112142x y -⎛⎫+-= ⎪⎝⎭,即为中点M 的轨迹方程.15、【答案】(1)3,22⎛ ⎝⎭;(2. 【分析】本题考查椭圆的标准方程和性质.【解答】(1)由已知可得A (-6,0),B (6,0),F (4,0), 设点P 的坐标是(x ,y ),则AP =(x +6,y ),FP =(x -4,y ). 由已知得则2x 2+9x -18=0,解得x =32或x =-6.由于y >0,∴只能取x =32,于是y =2.∴点P 的坐标是32⎛ ⎝⎭.(2)直线AP 的方程是x +6=0.设点M 的坐标是(m ,0),则M 到直线AP 的距离是62m +, 又B (6,0),于是62m +=|m -6|,又-6≤m ≤6,解得m =2,设椭圆上的点(x ,y )到点M 的距离为d ,则d 2=(x -2)2+y 2=x 2-4x +4+20-59x 2=24992x ⎛⎫- ⎪⎝⎭+15,由于-6≤x ≤6,∴当x =92时,d .。